Heaps/Priority Queues

Definition: An abstract data type to efficiently support finding the item with the highest priority across a series of operations. The basic operations are: insert, find-minimum (or maximum), and delete-minimum (or maximum). Some implementations also efficiently support join two priority queues (meld), delete an arbitrary item, and increase the priority of a item (decrease-key).

Guaranteed $O(\log(n))$ extraction/insertion.

Binary Heaps: Based on complete binary trees (not search trees!).

A Binary Tree has the heap property if
1. it is empty or
2. the key in the root is larger than that in either child and both subtrees have the heap property.

A Complete Binary Tree(CBT) is filled all the way, except possibly the right-most leaves.
A CBT of height h will have n nodes where $2^h \leq n \leq 2^{h+1} - 1$. So the height of a complete binary tree is $\lfloor \log(n) \rfloor$, which is $O(\log(n))$.

Example Uses
- Simulations (events are ordered by the time at which they should be executed)
- Job scheduling in computer systems (higher priority jobs should be executed first)
- Constraint systems (higher priority constraints should be satisfied before lower priority constraints)

Example: Consider deletion from the Binary Heap (alphabetical priority):

![Binary Heap Diagram]

This is where we could have an empty space
Note that we need at most $h = O(\log(n))$ exchange operations. The deleted hole “percolates down”.

Consider inserting X into the heap:
We need to restore heap property.

So, the added vertex “percolated up”.

HeapSort algorithm

To sort n objects, add them in a heap, one item at a time, and then remove one item at a time from the heap. The removed items will be sorted.