Supplement to
"Positive linear functionals without representing measures"

Eqg. 2.6 in the paper defines w as shown below. Proposition 2.2 in the paper
states that ?,D is independent of the variables s and t. The computational proof

of this result using Maxima is explained in detail below. The actual Maxima
commands are shown in blue color.

We start from the matrices J and W:

(1abcedfggx\
a ¢ e b f g9 d h 3j
b e d f gg xx h J k
c b f e d h gg x u
J=1 e f gg d h 53 x u w
d g9 h 53 k uwu v w
f d h g9 x uw g5 k r
gqg h 3 x* uw v k r s
Kxjk’uv’wrst/
and

(1)

x

u

J
W_k

r

v

\ v /

Following the notation in the paper, we write
ja_(P VN_.(PV
—\vT ¢)T D\ VT ¢

Vv 1 | .
Here form the last column of J~ *, and D is the determinant of J that
€

we factor out from J_l. Then,

’ 1 T 2
) = P WW) < VW Eq (2.6) from the paper

Proposition 2.2 in the paper claims that w is independent of S and .

Let
(P'W, W) = Py = ag + a15 + ans® + ast

(V' W) = Py = o+ Bis

N = Numerator(¢) = P — 2 P2

N = (ap—L82)+ (a1 — 250f1) s+ (a2 — 26%) s> +asz t
D = Denominator(y)) = +71 s+ 72 s +73 t

}) =
(

N and D above will enable us to form Eq. (2.7) in the paper:

_ N _ no+nist+nss’+ngt
V=9 =il .- Ea (2.7) from the paper
where:
no = (ap — £63); n1 = (a1 — 25oB1); n2 = (a2 — 2 63);

ng = as; dog = vo;d1 = y1; do = y2; d3 = V3

Then:

—n . n - n - n
and our goal is to show that fo, fl, f2, f3 are all equal by showing that

% — % — % —1 Eq. (2.9) from the paper

For easy reference we repeat the representations of J_l and 77b:

1 P VN 4 PV
J - VT € — D V/T ¢

’ 1 T 2
) = L WW) < VW Eq (2.6) from the paper

The table below shows the correspondence between the symbols used in the
paper and the Maxima variables we use:

Symbol from paper Variable name used in
Maxima program
J1 inv
D D
P’ rho_p
P'W rhopW
<P’VV7 W> rhopWw
e epsilon_p
V/T V_p
1"
V=, W) VW

/** Beginning of Maxima commands. All Maxima commands are in blue.
**/

/** Turn on timing of calculations - each calculation is then timed for cpu time
and elapsed time. **/

showtime:true$

/** define matrices J and W **/

J: matrlx([ll aI bI CI eI dl fl ggl X]I [al CI eI bl fl ggl dl hl J]I [bl eI dl fl ggl XI I‘]I
jl k]l [CI bI fl eI dl hl ggl XI u]l [el fl ggl dl I"'I jl XI ul V]I [dl ggl XI I‘]I jl kl ul VI
W]I [fl dl I’1I ggl XI ul jl kl r]l [ggl hl jl XI l"II VI kl rl S]I [XI jl kl ul VI WI rl SI t]);

W:transpose([h,x,u,j,k,rv,w])$
/** The next 3 commands allow factoring out the determinant of J from J*:

detout environment variable allows the determinant to be factored out from the
inverse, and it needs the doallmxops and doscmxops to be set to false.

**/

doallmxops: false$
doscmxops: false$
detout: true$

/** numlnv is the Adjoint of J, and D is the determinant of J. ***/
inv:invert(J)$

numInv:num(inv)$

D:denom(inv)$

/** reset the matrix computation parameters **/
doallmxops: true$
doscmxops: true$

/** compute the components that go in to ?ﬂ , equation (2.7) **/
rho_p:submatrix(9,numInv,9)$

rhopW:rho_p.W$

rhopWW:rhopW.W$

epsilon_p:numInv[9,9]$

V_p:submatrix(9,col(numInv,9))$
VpW:transpose(V_p).W$

/** isolate s, s”2, t coefficients as well as terms independent of sand t in
rhopWWw .

(P'W, W) = Py = ag + o158 + ans® + ast

ag = rhopWW _const
a1 = rhopWW_Csl
as = rhopWW_Cs2
as = rthopWW_Ct1

**/

rhopWW_Cs1:ratcoef(rhopWWw, s, 1)$
rhopWW_Cs2:ratcoef(rhopWWw, s, 2)$
rhopWW_Ct1:ratcoef(rhopWW, t, 1)$

rhopWW_const:expand(rhopWW-rhopWW_Cs1*s-rhopWW_Cs2*s”2
rhopWW_Ct1 * t)$

/** isolate s, s 2, t coefficients as well as terms independent of sand t in D:

D=v+ms+7 s+t

Yo = D_const
Y1 = D_Csl
Yo = D_Cs2
Y3 = D_Ct1
**/

D_Ctl:ratcoef(D,t,1)$
D_Csl:ratcoef(D,s,1)$

D_Cs2:ratcoef(D,s,2)$
D_const:expand(D-D_Cs1*s-D_Cs2*s*s-D_Ct1*t)$

/** VpW has an s' term, and terms independent of s and t. Isolate these.

Bo = VpW _const
61 = VpW_Csl

**/
VpW_Cs1:ratcoef(VpW,s,1)$
VpW_const:expand(VpW-VpW_Cs1*s)$

/** epsilon_p is independent of s and t. We redefine epsilon_p as ep for
convenience **/

ep:epsilon_p$

/** compose the terms f0, f1, f2, f3 for equation (2.9)

f — Ng __ (Q’O_%/BCQ))
0 do Yo

ne (01— 2B0B)
fi d_i T

f __ no __ (a2_€l//8%)
2 da Y2

fa=12 =02
3

**/

fO:(rhopWW_const-(1/ep)*(VpW_const)”2)/D_const$
f1:(rhopWW_Cs1-(2/ep)*(VpW_const*VpW_Csl1))/D_Cs1$
f2:(rhopWW_Cs2-(1/ep)*(VpW_Cs1*VpW_Csl1))/D_Cs2$%
f3:rhopWW_Ct1/D_Ct1$

/** you can store these values in their non-simplified form to disk so that you do
not have to recalculate them again. This is particularly true for fO, which is time
and space intensive to simplify. To save fO to disk, for example, do the next
command.

Note: "save" saves the expression in maxima lisp format, which you can readily
load back into maxima with the "loadfile" command. However, if you want a
readable text output, you need to use the "stringout" command on the
expression.

**/

save("/home/easwaran/L/2009/f0.maxima", f0)$

/**Simplify f1, f2, f3.

Warning: Trying to simplify fO will hang unless you do as described below. **/
ratsimped_f1l:ratsimp(fl)$

ratsimped_f2:ratsimp(f2)$

ratsimped_f3:ratsimp(f3)$

/** save these simplified expressions **/

save("/home/easwaran/L/2009/ratsimpedfl.maxima", ratsimped_f1)$
save("/home/easwaran/L/2009/ratsimpedf2.maxima", ratsimped_f2)$
save("/home/easwaran/L/2009/ratsimpedf3.maxima", ratsimped_f3)$

/** The next step is the most time-consuming one. It will not work unless your
Lisp Engine is allowed to use large temporary heap space, and your maxima
temporary directory has large enough storage. Here is how we proceeded:

1. Recompile SBCL, as explained in the SBCL web page

http://sbcl.sourceforge.net/getting.html under the heading "Installing from
source". When you configure your make environment, you can specify

"--dynamic-space-size 25600" to allow the Lisp engine to use up to 25GB of
temporary heap space. Install the re-compiled SBCL following instructions in the
same web URL mentioned above, under the section "Installing from Binary".

2. By default Maxima uses your home directory (on Unix systems) as its
temporary working directory. You can re-set it by the Maxima command:

maxima_tempdir="/path/to/new/tempdir"

http://sbcl.sourceforge.net/getting.html%20

where the quoted path is a directory on a file system with large enough space,
and where the user has read/write permissions.

After recompiling SBCL and installing it, start Maxima again, adjust the
maxima_tempdir if necessary, and then read from disk the stored value of fO, and
simplify it.

**/

loadfile("/home/easwaran/L/2009/f0.maxima")$
ratsimped_f0O:ratsimp(f0)$

/** After fO is simplified, you can load back simplified versions of f1, f2 and 3,
and check f0/f3, f1/f3, f2/f3. These will all be equal to 1 as claimed in the paper

**/

loadfile("/home/easwaran/L/2009/f1.maxima")$
loadfile("/home/easwaran/L/2009/f2.maxima")$
loadfile("/home/easwaran/L/2009/f3.maxima")$

/** These are all 1, completing the proof of Proposition 2.2 **/
ratsimp(f0/f3);
ratsimp(f1/f3);
ratsimp(f2/f3);

Here is a link to the actual expression fO=f1=f2=f3.

Here is a sample maxima session output.

PDF version of this file.
HTML version of this file.

http://cs.newpaltz.edu/~easwaran/PLF/webPage.html
http://cs.newpaltz.edu/~easwaran/PLF/webPage.pdf
http://cs.newpaltz.edu/~easwaran/PLF/maxima_code.txt
http://cs.newpaltz.edu/~easwaran/PLF/Str_final_f2.txt

