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SOLUTION OF THE TRUNCATED MOMENT PROBLEM

WITH VARIETY y = x3

LAWRENCE A. FIALKOW

Abstract. We show that positivity, consistency, and the variety condition,
which are sufficient to solve the truncated moment problem on planar curves
of degree 2, are not sufficient for curves of higher degree. Using new, partly al-
gorithmic, conditions based on positive moment matrix extensions, we present
a concrete solution to the truncated moment problem on the curve y = x3. We
also use moment matrix extensions to solve (in a less concrete sense) truncated
moment problems on curves of the form y = g(x) and yg(x) = 1 (g ∈ R[x]),
leading to degree-bounded weighted sum-of-squares representations for poly-
nomials which are strictly positive on such curves.

1. Introduction

Let β ≡ β(2n) = {βi}i∈Z
d
+,|i|≤2n denote a real d-dimensional multisequence of

degree 2n, and let K denote a closed subset of R
d. The truncated K-moment

problem for β concerns the existence of a positive Borel measure μ, supported in
K, such that

(1.1) βi =

∫
K

xidμ (i ∈ Z
d
+, |i| ≤ 2n).

(Here, for x ≡ (x1, . . . , xd) ∈ R
d and i ≡ (i1, . . . , id) ∈ Z

d
+, we set |i| = i1 + · · ·+ id

and xi = xi1
1 · · ·xid

d .) A measure as in (1.1) is a K-representing measure for β;

for K = R
d, we refer to μ simply as a representing measure. Two general, but

abstract, solutions to the truncatedK-moment problem are known; one involves flat
extensions of positive moment matrices [CF6] (cf. Theorem 1.8 below for K = R

d)
and the other entails extensions of K-positive linear functionals [CF8] (see Section
6).

By a concrete solution to the truncated K-moment problem we mean a set of
conditions for K-representing measures that can be effectively tested in numerical
examples. Concrete solutions to the truncated K-moment problem are known in
only a few cases: for d = 1, with K = R, [0,+∞), or

⋃m
i=1[ai, bi] (cf. [AK], [KN],

[CF1]), and for d = 2, when K is an algebraic curve p(x, y) = 0 with deg p ≤ 2
(cf. [CF7], Theorem 1.2 (below)). In the sequel we provide a concrete solution in

Received by the editors April 19, 2008 and, in revised form, July 10, 2009.
2000 Mathematics Subject Classification. Primary 47A57, 47A20, 44A60; Secondary 15A57,

15-04, 47N40.
Key words and phrases. Truncated moment problems, moment matrix extensions, representing

measures, positive polynomials.
This research was partially supported by NSF Research Grants DMS-0457138 and DMS-

0758378.

c©2011 American Mathematical Society

3133



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

3134 LAWRENCE A. FIALKOW

the case when K is the planar curve y = x3 (cf. Theorem 1.4). Our results show
for the first time that the positivity and variety conditions of [AK], [KN], [CF1],
[CF7], [CFM] are inadequate to resolve truncated K-moment problems on curves of
higher degree (cf. Theorem 1.3). Instead, motivated by a recent generalization of
Tchakaloff’s Theorem due to Bayer and Teichmann [BT], we develop new conditions
for representing measures based on positive moment matrix extensions. In some
cases, these extensions can be detected analytically (cf. Theorem 1.1-iv)), while in
other cases they must be determined algorithmically (cf. Theorem 1.4-iii)).

For the classical full moment problem concerning β(∞) ≡ {βi}i∈Z
d
+

(cf. [Akh],

[ST]), a theorem of Stochel [S2] shows that β(∞) has a K-representing measure if
and only if for each n, β(2n) has a K-representing measure. In this sense, solving
the truncated K-moment problem also solves the full K-moment problem. For a
semialgebraic closed setK, [CF6, Cor. 1.4] solves the truncatedK-moment problem
in terms of flat, i.e., rank-preserving, extensions of positive moment matrices and
localizing matrices. Flat extensions are, however, problematic. For example, it is
still unknown whether, for d = 2, a positive definite M(2) admits a flat extension
M(3). For this reason, it is desirable to identify cases where the requirement for flat
extensions can be relaxed. In Section 6, we solve the truncated K-moment problem
in terms of positive moment matrix extensions, but without the requirement for flat
extensions, for planar curves of the form y = g(x) and yg(x) = 1 (g ∈ R[x]). This
solution is not really “concrete” (because we do not have precise conditions for the
required extensions), but it is strong enough to recover Stochel’s solution in [S1] to
the full K-moment problem for these curves, and it also yields “degree-bounded”
weighted sum-of-squares decompositions for polynomials that are strictly positive
on these curves (cf. Proposition 6.1 and Remark 6.5).

Let M(n) ≡ M(n)(β) denote the moment matrix associated with β (see below
for terminology and notation). The rows and columns of M(n) are denoted by Xi

and are indexed (in degree-lexicographic order) by the monomials xi in Pn ≡ {p ∈
R[x1, . . . , xd] : deg p ≤ n}. Corresponding to p ≡

∑
i∈Z

d
+,|i|≤n aix

i ∈ Pn is the

element p(X) ≡
∑

aiX
i of CM(n), the column space of M(n); M(n) is recursively

generated if whenever p, q, pq ∈ Pn and p(X) = 0, then (pq)(X) = 0. Positivity
and recursiveness ofM(n) are necessary conditions for representing measures [CF1],
[CF3]. For p ∈ Pn, M(n) is p-pure if the only dependence relations in CM(n) are

those of the form (pq)(X) = 0 (q ∈ Pn−deg p). Let p(x, y) = y−x3 and let Γ denote
the curve y = x3. Our main result, which follows, characterizes the existence of
Γ-representing measures in the p-pure case.

Theorem 1.1. Suppose d = 2, n ≥ 3, p(x, y) = y − x3, and M(n) is p-pure. The
following are equivalent for β ≡ β(2n):

i) β has a representing measure (necessarily supported in y = x3);
ii) β has a rank M(n)-atomic Γ-representing measure;
iii) M(n) admits a positive, recursively generated moment matrix extension

M(n+ 1);
iv) (concrete condition) M(n) � 0 and β1,2n−1 > ψ(β) (where ψ(β) is the ratio-

nal expression in the moment data defined by (2.21) below).

Theorem 1.1 is proved in Section 2. The numerical condition β1,2n−1 > ψ(β) in
(iv) is a new type of condition in truncated moment theory, one that is intimately
related to the curve y = x3. No such condition is required for planar curves of
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degree 1 or 2 (cf. Theorem 1.2 below). For curves of degree 3 or higher, conditions
(or sets of conditions) similar to (iv) will be required, but the specific conditions will
depend on the curves themselves. More generally, the moment matrix techniques
that we employ can be adapted to general curves, but certain details of our proofs
seem to apply only to y = x3. For this reason, our results suggest that a solution
to the truncated moment problem for planar curves cannot be both general and
concrete. We discuss this issue in Question 1.5 and in Remark 2.5.

Returning to the general case (d ≥ 1), let V ≡ V(M(n)) denote the algebraic
variety corresponding to M(n), i.e., V =

⋂
p∈Pn,p(X)=0 Zp (where Zp = {x ∈

R
d : p(x) = 0}). A necessary condition for representing measures is the “variety

condition”, r ≡ rank M(n) ≤ v ≡ card V(M(n)) (cf. [CF3, pg. 182]). The
following result of [CF7] provides a concrete solution to the truncated K-moment
problem for the case when K is a planar curve of degree 1 or 2.

Theorem 1.2 ([CF7, Theorem 1.2]; cf. [F3]). Suppose d = 2 and 1 ≤ deg p(x, y) ≤
2. For n ≥ deg p, the following are equivalent for β ≡ β(2n):

i) β has a representing measure supported in Zp;
ii) M(n) has a column dependence relation p(X,Y ) = 0, and M(n) admits a

positive, recursively generated extension M(n+ 1);
iii) (concrete condition) M(n) is positive and recursively generated, r ≤ v, and

p(X,Y ) = 0 in CM(n).

In [CFM, Theorem 5.2], Curto, Möller, and the author proved that Theorem 1.2-
iii) does not extend to polynomials of degree 3, e.g., it does not extend to p(x, y) =
y−x3: there exists M(3) that is positive and recursively generated, with Y = X3 in
CM(3) and r = v = 8, such that β(6) has no representing measure. Consider the Riesz

functional Λβ : P2n −→ R defined by Λβ(
∑

i∈Z
d
+,|i|≤2n aix

i) =
∑

aiβi. Following

[CFM], we say that β is consistent if p ∈ P2n, p|V ≡ 0 =⇒ Λβ(p) = 0. Consistency
is a necessary condition for representing measures that is strictly stronger than
recursiveness (cf. [CFM, Theorem 5.2]). In [CFM] we proved that for d ≥ 1, if
M(n) is extremal , i.e., r = v, then β has a representing measure if and only if
M(n) � 0 and β is consistent. In [CFM, Question 1.1] we asked whether this result
can be extended to the setting where r ≤ v. The following result uses Theorem 1.1
to resolve this question.

Theorem 1.3. Let d = 2. There exists M(3) that is positive and consistent, with
column relation Y = X3 and r < v, such that β(6) admits no representing measure.

The proof of Theorem 1.3 is established by Example 3.2, which shows that besides
positivity, consistency, and the variety condition, representing measures sometimes
entail an auxiliary condition such as that in Theorem 1.1-iv).

The analysis of the truncated Γ-moment problem in Theorem 1.4 (below) de-
pends in part on the notion of recursively determinate moment matrices. For this
class, the existence of representing measures can always be determined algorith-
mically . Recall from [F4] that M(n) is recursively determinate if the column de-
pendence relations in M(n) completely determine the existence or nonexistence of
(necessarily unique) successive positive, recursively generated extensions M(n+1),
M(n + 2), . . . (as described by Theorem 1.6 (below) and [F4, Algorithm 4.10]).
These extensions in turn determine the existence of representing measures for β(2n).
We refer to such extensions as recursively determined extensions. The basic ex-
ample of recursive determinancy is the case of flat data, where M(n) � 0 and
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rank M(n) = rank M(n − 1). In this case, for each i ∈ Z
d
+ with |i| = n, there

exists pi ∈ Pn−1 such that Xi = pi(X) in CM(n). [CF2] implies that for such
M(n), there exists a unique rank-preserving, recursively generated moment matrix
extension M(n + 1) (and a corresponding representing measure), determined by
Xi+j = (xjpi)(X) (i, j ∈ Z

d
+, |i| = n, |j| = 1) (cf. Theorem 1.6 below). It fol-

lows from [F4, Proposition 4.2] that if d = 2 and M(n) is recursively generated,
with Y = X3 in CM(n), then M(n) is recursively determinate if and only if there

is a column relation of the form Y i+1 = αX2Y i−1 + γXY i + q(X,Y ) for some i,
2 ≤ i < n, and some q ∈ Pi.

Our solution to the truncated Γ-moment problem, which follows in Theorem
1.4 (below), is based on a classification of the dependence relations in the columns
of M(n). Suppose M(n) is positive and recursively generated, with the column
relation Y = X3. Part i) of Theorem 1.4 concerns the case when the first 6 columns
of M(n), corresponding to the monomials 1, x, y, x2, xy, y2, are linearly dependent.
This is the case when a Γ-representing measure, if one exists, is necessarily contained
in the intersection of y = x3 with some curve of degree 1 or 2. This case follows
directly from Theorem 1.2. Suppose now that the first 6 columns of M(n) are
independent; equivalently, M(2) 
 0. Part ii) of Theorem 1.4 concerns the case
when M(n) is (y − x3)-pure, i.e., the column dependence relations in M(n) are
precisely those of the form q(X,Y )(Y −X3) = 0 for q ∈ Pn−3. This case is treated
by Theorem 1.1 (cf. Section 2). Part iii) of Theorem 1.4 concerns the remaining
case, when M(2) 
 0 and Y = X3, but there is some column dependence relation
that cannot be obtained from Y = X3 via recursiveness. In this case, there is a
minimal i, 2 ≤ i < n, such that exactly one of the following three conditions holds:

X2Y i−1 = q(X,Y ) for some q ∈ Pi;(1.2)

(1.2) does not hold, but(1.3)

XY i = αX2Y i−1 + q(X,Y ) for some α ∈ R, q ∈ Pi;

(1.2) and (1.3 ) do not hold, but(1.4)

Y i+1 = αX2Y i−1 + γXY i + q(X,Y ) for some α, γ ∈ R, q ∈ Pi.

If (1.2) holds, the existence of a representing measure will be derived from the Flat
Extension Theorem of [CF6] (cf. Theorem 1.6 below). If (1.3) holds, the existence
of a representing measure will be derived in Section 4 (Theorem 4.1). Finally, if
(1.4) holds, we will show that M(n) is recursively determinate, so the existence
or nonexistence of a representing measure can be determined by the algorithm of
[F4] (cf. Theorem 1.7 below). As described in Theorem 1.4, at most 2 iterations of
the algorithm are required. Our solution to the truncated Γ-moment problem now
assumes the following form.

Theorem 1.4. Let n ≥ 3 and let p(x, y) = y−x3. If β ≡ β(2n) has a Γ-representing
measure, then M(n) is positive and recursively generated, satisfies the variety con-
dition, and has the column relation Y = X3. Conversely, suppose M(n) satisfies
the preceding conditions, so that any representing measure is necessarily supported
in Γ.

i) If M(2) is singular, then there is a representing measure (cf. Theorem 1.3).
ii) If M(n) is p-pure, then there is a representing measure if and only β1,2n−1 >

ψ(β) (cf. Theorem 1.1).
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iii) If M(n) satisfies neither the hypothesis of i) nor of ii), then exactly one
of (1.2)-(1.4) holds. If (1.2) or (1.3) holds, there is a representing measure. If
(1.4) holds, then M(n) is recursively determinate. If (1.4) holds with i < n − 2,
there is a representing measure; if i = n − 2, there is a measure if and only if
rank M(n) = rank M(n − 1), or the recursively determined extension M(n + 1)
satisfies rank M(n+1) = rank M(n); if i = n−1, there is a measure if and only if
there are positive, recursively determined extensions M(n+ 1) and M(n+ 2), with
rank M(n+ 1) = rank M(n) or rank M(n+ 2) = rank M(n+ 1).

We summarize the organization of the paper as follows. Section 1 contains
statements of the main results and also contains some background material on the
truncated K-moment problem. Section 2 contains the proof of the main result,
Theorem 1.1, which is used in Section 4 to prove Theorem 1.4-ii). The results
of Section 2 are also used in Section 3 to prove Theorem 1.3. Section 4 contains
the proof of the case of Theorem 1.4 described by (1.3). Section 5 contains the
complete proof of Theorem 1.4, using results from Sections 2 and 4; this solves
the Γ-moment problem for n ≥ 3. The second part of Section 5 treats the Γ-
moment problem for n = 1 and n = 2. Section 6 is largely independent of the
rest of the paper and describes new cases where the truncated moment problem
can be solved entirely in terms of positive moment matrix extensions (and without
the need for a “flat” extension as in Theorem 1.8). The results of Section 6 are of
“intermediate” concreteness, more concrete than the general, but abstract, solutions
to the truncated moment problem in Theorem 1.8 or [CF8], but less concrete than
Theorem 1.4.

The conditions of Theorem 1.4 are “concrete” in the following sense. Positivity
and recursiveness can be readily checked using elementary linear algebra. The
variety condition may require the solution of polynomial equations. For moderate
values of n, this can be carried out with software such as Mathematica, MatLab,
etc. Finally, it is a simple matter to determine whether M(2) is singular, whether
M(n) is p-pure, or whether one of (1.2)-(1.4) holds. If (1.4) holds, then M(n) is
recursively determinate, and the existence or nonexistence of a representing measure
can be resolved by Theorem 1.7 with 0 ≤ v − r ≤ 1. Thus, in this case, it is
only necessary to use [F3, Algorithm 4.10] to construct, at most, the recursively
determined extensionsM(n+1) andM(n+2). Example 5.2 illustrates the existence
of a representing measure in this case, and [CFM, Theorem 5.2] and [F4, Example
4.18] illustrate the nonexistence of representing measures in this case. The cases
of the truncated Γ-moment problem for β(2n) with n = 1 or n = 2 require special
arguments given at the end of Section 5.

We note a distinction between Theorem 1.4 and many of the results in the
moment literature. The fullK-moment problem for β(∞) has been solved concretely
in various cases (cf. [Akh], [AK], [Atz], [H], [ST], [BM], [Fug], [Cas], [SS2], [PV],
[Sch2]). Notably, the case when K is a compact semialgebraic set was solved by
Schmüdgen [Sch1], and in [SS1] Stochel and Szafraniec initiated a study of the case
when K is the algebraic variety Zp induced by a polynomial p ∈ R[x1, . . . , xd] (cf.
[S1], [BiS], [PS]). In all of these results, the conditions for K-representing measures
may be expressed in terms of positivity of the moment matrix and of the localizing
matrices directly associated to β(∞). Similarly, in the results of [AK], [KN], [CF1],
[CF7] for the truncated K-moment problem, the conditions for K-representing
measures, including positivity of the moment and localizing matrices, recursiveness,
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and the variety condition, are directly related to the moment data. By contrast, in
Theorem 1.4 we see a K-moment problem whose solution is not in “closed form”,
but instead requires parts of the problem to be solved by algorithmic procedures
whose outcomes cannot immediately be predicted from the moment data.

Let p(x, y) ∈ Pn. Theorem 1.4 (and its proof) suggest the following question.
An affimative answer would reduce the truncated moment problem for K = Zp to
the p-pure case.

Question 1.5. Let p(x, y) ∈ Pn and suppose M(n) is positive, recursively gener-
ated, satisfies the variety condition r ≤ v, and p(X,Y ) = 0 in CM(n). Does M(n)
satisfy at least one of the following properties: M(2) is singular; M(n) is p-pure;
M(n) has flat data; M(n) is extremal; M(n) is recursively determinate?

We conclude this section with some terminology and background results that we
will employ in the sequel. Unless otherwise stated, we are in the general case, i.e.,
d ≥ 1. For p ≡

∑
i∈Z

d
+,|i|≤n aix

i ∈ Pn, let p̂ ≡ (ai) denote the coefficient vector of p

relative to the basis Bn of monomials in Pn in degree-lexicographic order. Following
[CF2], [CF6], we associate to β ≡ β(2n) the moment matrix M(n) ≡ M(n)(β), with
rows and columns Xi indexed by the elements of Bn. The entry in row Xi, column
Xj of M(n) is βi+j (i, j ∈ Zd

+, |i|, |j| ≤ n), so M(n) is a real symmetric matrix
characterized by 〈M(n)p̂, q̂〉 = Λβ(pq) (p, q ∈ Pn). If μ is a representing measure
for β, then 〈M(n)p̂, p̂〉 = Λβ(p

2) =
∫
p2dμ ≥ 0, and since M(n) is real symmetric,

it follows that M(n) is positive semidefinite (M(n) � 0).
For p(x) ≡

∑
aix

i ∈ Pn, we have the column space element p(X) ≡
∑

aiX
i,

and a calculation shows that p(X) = M(n)p̂. If β admits a representing measure
μ, then

(1.5) for p ∈ Pn, supp μ ⊆ Zp ⇐⇒ p(X) = 0 (cf. [CF2, Prop. 3.1]).

It follows from (1.5) that supp μ ⊆ V(M(n)), whence
(1.6)

r ≡ rank M(n) ≤ card supp μ ≤ v ≡ card V(M(n)) (cf. [CF2, Cor. 3.7]).

In the sequel we will frequently cite the following basic existence theorem of [CF2],
[CF6] for a “minimal” representing measure, a representing measure μ satisfying
card supp μ = rank M(n).

Theorem 1.6 (Flat Extension Theorem; cf. [CF6, Thms. 1.1-1.2]). β ≡ β(2n)

has a rank M(n)-atomic representing measure if and only if M(n) � 0 and M(n)
admits a flat moment matrix extension, i.e., a moment matrix extension M(n+1)
satisfying rank M(n + 1) = rank M(n). In this case, β(2n+2) admits a unique
representing measure, μ ≡ μM(n+1), and μ satisfies supp μ = V(M(n + 1)) and
card supp μ = rank M(n). Further, M(n + 1) admits unique successive positive
extensions M(n+ 2), M(n+ 3), . . ., and these are flat extensions.

An algebraic proof of Theorem 1.6 was presented by Laurent in [L]. Note that
for the case of flat data (M(n) � 0 and rank M(n) = rank M(n − 1)), Theorem
1.6 (applied to M(n − 1)) implies the existence of a unique (rank M(n)-atomic)
representing measure for β(2n).

Suppose M(n) is positive and admits a flat extension M(n + 1). The unique
representing measure for M(n + 1) referred to in Theorem 1.6 may be explicitly
computed as follows (cf. [CF6, Theorem 1.2]). Let r = rank M(n), so that
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card V(M(n+1)) = r and V(M(n+1)) ≡ {wi}ri=1. Let B ≡ {Xi1 , . . . , Xir} denote
a basis for CM(n), and consider the Vandermonde-type matrix

(1.7) V ≡ VB :=

⎛
⎜⎝

wi1
1 . . . wi1

r
...

...

wir
1 . . . wir

r

⎞
⎟⎠ .

Then V is invertible, and [CF6] implies that β(2n+2) has the unique representing
measure μ ≡ μM(n+1), of the form μ =

∑r
i=1 ρiδwi

, where δwi
is the unit-mass

atomic measure with support {wi}, and ρ ≡ (ρ1, . . . , ρr) is determined by ρt =
V −1(βi1 , . . . , βir)

t. ([CF6] shows that μ is independent of B.)
Suppose M(n) is recursively determinate. In the sequel we require the following

result of [F4], which provides an upper bound on the number of extension steps
needed to determine whether or not β(2n) has a representing measure.

Theorem 1.7 ([F4, Theorem 4.3]). Suppose M(n) is recursively determinate and
r ≡ rank M(n) ≤ v ≡ card V(M(n)) < +∞. Then β(2n) has a representing
measure if and only if there exists i, 0 ≤ i ≤ v − r, such that M(n) admits positive
recursively determined extensions M(n+1), . . . ,M(n+ i+1), and M(n+ i+1) is
a flat extension of M(n+ i).

We note that the existence or nonexistence of the extensions in Theorem 1.7 can
always be determined algorithmically (cf. [F4]). For the Γ-moment problem, it will
only be necessary to apply Theorem 1.7 with 0 ≤ i ≤ v − r ≤ 1 (cf. Section 5).

We next recall some properties of positive moment matrix extensions that we
will refer to in the sequel. A key ingredient in our proofs is a recent result of
Bayer and Teichmann [BT], which generalizes the classical theorem of Tchakaloff
[T] concerning multivariable cubature (cf. [M], [P], [CF5]). The result of Bayer
and Teichmann implies that if β ≡ β(2n) admits a K-representing measure, then β
admits a finitely atomic K-representing measure ν. Since ν has convergent power
moments of all orders, it follows that M(n) (= M(n)[ν]) admits successive positive,
recursively generated extensions, namely, M(n+1)[ν], M(n+2)[ν], . . .. In the sequel
we will show, conversely, that in the Γ-truncated moment problem, if Y = X3 in
M(n), then the existence of a positive, recursively generated extension M(n+2) is
a sufficient condition for a Γ-representing measure (cf. Corollary 5.3).

By combining Theorem 1.6 with [BT], we have the following solution of the
truncated K-moment problem for K = R

d, expressed in terms of moment matrix
extensions. A generalization to the case when K is a closed semialgebraic subset of
R

d appears in [CF6, Cor. 1.4].

Theorem 1.8 (Moment Matrix Extension Theorem; cf. [CF3], [CF6]). β(2n) has a
representing measure if and only if there is an integer k ≥ 0 such that M(n) admits
a positive moment matrix extension M(n+k) which in turn admits a flat extension
M(n+ k + 1). In this case, we may take k ≤ dim P2n − rank M(n).

Theorem 1.8 is not, by itself, a concrete solution to the truncated K-moment
problem, but it does provide a framework for obtaining concrete solutions such
as Theorem 1.4. In [CF3], Theorem 1.8 was proved for representing measures
having convergent moments of all orders, but [BT] shows that this restriction in the
hypothesis is unnecessary. The upper bound for k comes from [BT] and improves
the bound in [CF3]. Nevertheless, this bound satisfies dim P2n − rank M(n) ≥
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dim P2n−dim Pn, and for d = 2, the latter expression equals 3
2n(n+1). By contrast,

in the truncated Γ-moment problem, Corollary 5.3 shows that in Theorem 1.8, we
may take k ≤ 1.

Consider a real symmetric block matrix M̃ ≡
(

M B
Bt C

)
. A result of Smul’jan

[Smu] implies that M̃ � 0 if and only if M � 0, there exists a matrix W such that
B = MW (equivalently, Ran B ⊆ Ran M [D]), and C � C� ≡ W tMW (note
that C� is independent of W satisfying B = MW ). In this case, the matrix M � ≡

[M ;B] :=

(
M B
Bt C�

)
is a positive flat extension of M , i.e., rank M � = rank M .

Consider a moment matrix extension

M(n+ 1) ≡
(

M(n) B(n+ 1)
B(n+ 1)t C(n+ 1)

)
.

If M(n) � 0, then M(n+1) is a flat (hence positive) extension of M(n) if and only
if B(n+1) = M(n)W (for some W ) and C(n+1) = C� ≡ W tM(n)W ; equivalently,
M(n+1) = [M(n);B(n+1)]. Suppose M(n+1) � 0 and let p ∈ Pn; the Extension
Principle [F1] shows that if p(X) = 0 in CM(n), then p(X) = 0 in CM(n+1), i.e.,
column dependence relations in M(n) extend to M(n+ 1). It follows that

(1.8) M(n+ 1) � 0 =⇒ V(M(n+ 1)) ⊆ V(M(n)).

Finally, for the planar case (d = 2), we consider the block matrix decomposition
M(n) ≡ (M [i, j])0≤i,j≤n, where M [i, j] is the matrix with i + 1 rows and j + 1
columns of the form

(1.9) M [i, j] ≡

⎛
⎜⎜⎜⎜⎜⎝

βi+j,0 βi+j−1,1 βi+j−2,2 . . . βi,j

βi+j−1,1 βi+j−2,2 . . . βi−1,j+1

βi+j−2,2 . . . βi−2,j+2

... . . .
...

βj,i βj−1,i+1 βj−2,i+2 . . . β0,i+j

⎞
⎟⎟⎟⎟⎟⎠

.

Note that M [i, j] has all of the moments in β(2n) of degree i+j and has the Hankel-
like property of being constant on cross-diagonals. In particular, in the extension
M(n+1), block C(n+1) ≡ M [n+1, n+1] is a Hankel matrix. Note that B(n+1) =
(M [i, n + 1])0≤i≤n. For 0 ≤ k ≤ n, we set [B(n + 1)]k = (M [i, n + 1])0≤i≤k.
Similarly, for 0 ≤ k ≤ n and i, j ≥ 0, i + j ≤ n + 1, we define [XiY j ]k :=
(βi,j , . . . , βk−j,j , . . . , βi,k−i)

t, the truncation of column XiY j to rows XrY s with
r + s ≤ k.

2. The truncated moment problem with variety y = x3

In this section we prove Theorem 1.1, which will be used to prove Theorem 1.3 in
Section 3 and Theorem 1.4-ii) in Section 5. For d = 2 (the plane), we characterize
the existence of representing measures for a positive (y − x3)-pure moment matrix
M(n), i.e., a moment matrix M(n) � 0 whose column dependence relations are
precisely those that can be determined from Y = X3 by recursiveness, including
all relations of the form

(2.1) XiY j+1 = Xi+3Y j (i, j ≥ 0, i+ j ≤ n− 3).
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Our hypothesis implies that V(M(n)) coincides with the curve Γ ≡ {(x, y) : y = x3}
and that rank M(n) = 3n, with a basis for CM(n) of the form

B = {1, X, Y,X2, XY, Y 2, X2Y,XY 2, Y 3, . . . ,

X2Y i, XY i+1, Y i+2, X2Y n−2, XY n−1, Y n}.
(Conversely, it follows from [S1, Prop. 3.4] that if M(n) is any moment matrix for
which V(M(n)) coincides with Γ, then M(n) is (y − x3)-pure.)

As discussed in Section 1, the existence of a representing measure for β(2n) implies
that M(n) admits a positive, recursively generated moment matrix extension

M(n+ 1) ≡
(

M(n) B(n+ 1)
B(n+ 1)t C(n+ 1)

)
.

We begin by describing concretely the structure of block B(n + 1) for such an
extension. Positivity of M(n+ 1) entails Ran B(n+ 1) ⊆ Ran M(n), so we must
show that the block that we construct satisfies this range inclusion. Positivity of
M(n+ 1) and the Extension Principle imply that the column relations (2.1) must
hold in CM(n+1). The desired recursiveness ofM(n+1) then implies that in B(n+1)
we must have column dependence relations of the form

(2.2) Xn+1 = Xn−2Y, XnY = Xn−3Y 2, . . . , X3Y n−2 = Y n−1.

Thus, columns Xn+1, . . . , X3Y n−2 in B(n+ 1) inherit “moment matrix structure”
from the column segment Xn−2Y, Xn−3Y 2, . . . , XY n−2, Y n−1 in M(n). By this
we mean that within each block M [i, n + 1] (0 ≤ i ≤ n), each cross-diagonal of
this segment of columns is constant (cf. (1.9)). Further, we use “old” moments to
define [B(n+ 1)]n−1 in columns X2Y n−1, XY n, Y n+1, i.e.,
(2.3)

〈B(n+ 1)(xiyn+1−i)̂ , (xkyl)̂ 〉 = βi+k,n+1−i+l (0 ≤ i ≤ 2, l, k ≥ 0, l + k ≤ n− 1).

Thus, the segment of columns X2Y n−1, XY n, Y n+1 of [B(n+1)]n−1 also displays
moment matrix structure. To complete the proof that [B(n+1)]n−1 enjoys moment
matrix structure, we must establish moment matrix structure within [X3Y n−2]n−1

(defined as in (2.2)) and [X2Y n−1]n−1 (defined in (2.3)).

Lemma 2.1. For i ≥ 1, j ≥ 0, i + j ≤ n − 1, 〈B(n + 1)(x3yn−2)̂ , (xi−1yj+1)̂ 〉
= 〈B(n+ 1)(x2yn−1)̂ , (xiyj)̂ 〉.

Proof. We have 〈B(n+ 1)(x3yn−2)̂ , (xi−1yj+1)̂ 〉 = 〈M(n)(yn−1)̂ , (xi−1yj+1)̂ 〉 =
βi−1,n+j (by (2.2)) and 〈B(n + 1)(x2yn−1)̂ , (xiyj)̂ 〉 = βi+2,n+j−1 (from (2.3)),
so it suffices to show that βi−1,n+j = βi+2,n+j−1 for i, j ≥ 0, i + j ≤ n − 1.

Since i + j + 1 ≤ n, in M(n) we have βi−1,n+j = 〈M(n)ŷn−2, (xi−1yj+2)̂ 〉 =

〈M(n)(x3yn−3)̂ , (xi−1yj+2)̂ 〉 (from (2.2)) = βi+2,n+j−1. �
We next define the elements of columns X2Y n−1, XY n, Y n+1 in block B[n, n+1]

(cf. (2.5) below). To insure moment matrix structure in this block, we propagate
the elements of the previously defined column X3Y n−2 along the cross diagonals
of B[n, n + 1], as follows. For k = 0, 1, 2 and i, j ≥ 0 with i + j = n and
0 ≤ j ≤ n− 3 + k, we define

(2.4) 〈B(n+ 1)(xkyn+1−k)̂ , (xiyj)̂ 〉 = 〈B(n+ 1)(x3yn−2)̂ , (xk+i−3yj−k+3)̂ 〉

(= 〈B(n+ 1)ŷn−1, (xk+i−3yj−k+3)̂ 〉 = βk+i−3,n+j−k+2 (from (2.2))). To complete

the definition of B[n, n+1], we choose A,B,C ∈ R and set 〈B(n+1)(x2yn−1)̂, ŷn〉 =
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〈B(n+1)(xyn)̂, (xyn−1)̂〉 = 〈B(n+1)ŷn+1, (x2yn−2)̂〉 = A, 〈B(n+1)(xyn)̂, ŷn〉 =
〈B(n + 1)ŷn+1, (xyn−1)̂ 〉 = B, and 〈B(n + 1)ŷn+1, ŷn〉 = C. Thus, B[n, n + 1] is
of the form
(2.5)⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β2n+1,0 β2n,1 . . . . . . βn,n+1

β2n,1 . . . . . . . .
...

...
...

...
...

...
...

...
...

. . . . . . . . β3,2n−2

. . . . . . . β3,2n−2 A

. βn+1,n βn,n+1 . . . β3,2n−2 A B
βn+1,n βn,n+1 . . . β3,2n−2 A B C

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with βi,2n+1−i = βi−3,2n+2−i (3 ≤ i ≤ 2n+ 1).
Having defined B(n + 1) ≡ B(n + 1)[A,B,C] to be consistent with recursiveness

for M(n + 1), we next establish the range inclusion Ran B(n + 1) ⊆ Ran M(n).
It is clear from (2.2) that columns Xn+1, . . . , X3Y n−2 of B(n + 1) belong to the
column space of M(n), which coincides with Ran M(n), so it suffices to consider
columns X2Y n−1, XY n, and Y n+1. Let J denote the compression of M(n) to rows
and columns indexed by the elements of basis B; thus, J is positive definite (J 
 0).

For k, l ≥ 0 with k + l ≤ n+ 1, let X̃kY l denote the compression of column XkY l

of
(
M(n) B(n+ 1)

)
to the rows indexed by the elements of B. Note that the

columns of J are of the form X̃pY q (in degree-lexicographic order) with p, q ≥ 0,
p + q ≤ n, p ≤ 2. Since J is invertible, for 0 ≤ i ≤ 2 and j = n + 1 − i, we may

express X̃iY j as a linear combination of the columns of J , i.e.,

(2.6) X̃iY j =
∑

p,q≥0,p+q≤n,p≤2

c(ij)pq X̃pY q (c(ij)pq ∈ R).

We claim that the same relation holds in the columns of
(
M(n) B(n+ 1)

)
.

Lemma 2.2. In C(
M(n) B(n+ 1)

), XiY j =
∑

p,q≥0,p+q≤n,p≤2 c
(ij)
pq XpY q (0 ≤

i ≤ 2, j = n+ 1− i).

Proof. In view of (2.6), to prove Lemma 2.2 it suffices to show that for k, l ≥ 0,
k + l ≤ n, k ≥ 3,

(2.7) 〈B(n+ 1)(xiyj)̂ , (xkyl)̂ 〉 =
∑

p,q≥0,p+q≤n,p≤2

c(ij)pq 〈M(n)(xpyq)̂ , (xkyl)̂ 〉.

We note for future reference that (2.6) already shows that

(2.8) (2.7) holds whenever k, l ≥ 0, k + l ≤ n, k ≤ 2.

The proof of (2.7) for k, l ≥ 0, k + l ≤ n, k ≥ 3 is by induction on ρ ≡ k + l ≥ 3.
For ρ = 3, we have k = 3, l = 0, and we will show that in

(
M(n) B(n+ 1)

)
,

row X3 equals row Y . Since Y ∈ B, (2.7) holds for Y (k = 0, l = 1), so it will then
follow that (2.7) holds for X3, which is the base case of the induction.

In CM(n), Y = X3, so by self-adjointness, row X3 equals row Y . (2.2) now

implies that row equality also holds in columns Xn+1, . . . , X3Y n−2 of B(n + 1).
To complete the proof of row equality, it suffices to show that for i = 0, 1, 2 and

j = n+ 1− i, 〈B(n+ 1)(xiyj)̂ , x̂3〉 = 〈B(n+ 1)(xiyj)̂ , ŷ〉. We distinguish 2 cases.
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Case 1: n = 3. From (2.4), we have 〈B(4)(xiyj)̂ , x̂3〉 ≡ 〈B(4)(x3y)̂ , (xiy3−i)̂ 〉 =
〈M(3)ŷ2, (xiy3−i)̂ 〉 = βi,5−i = 〈B(4)(xiy4−i)̂ , ŷ 〉 (from (2.3)).

Case 2: n ≥ 4. 〈B(n + 1)(xiyj)̂ , x̂3〉 ≡ βi+3,n+1−i (from (2.3), since 3 < n)

= 〈M(n)(x3y)̂ , (xiyj−1)̂〉 = 〈M(n)ŷ2, (xiyj−1)̂〉 = βi,n+2−i = 〈B(n+1)(xiyj)̂ , ŷ〉
(from (2.3)). This completes the base case ρ = 3.

Assume now that (2.7) holds whenever 3 ≤ ρ < k + l (with k, l ≥ 0, k + l ≤ n,
k ≥ 3). To establish (2.7) for k and l, we first show that for 0 ≤ i ≤ 2 and k, l ≥ 0,
with k + l ≤ n and k ≥ 3,

(2.9) 〈B(n+ 1)(xiyn+1−i)̂ , (xkyl)̂ 〉 = βi+k−3,n+l+2−i.

If k + l < n, then 〈B(n + 1)(xiyn+1−i)̂ , (xkyl)̂ 〉 = βi+k,n+l−i+1 (by (2.3))

= 〈M(n)(xkyl+1)̂ , (xiyn−i)̂ 〉 (in M(n), since k + l + 1 ≤ n) = 〈M(n)(xk−3yl+2)̂ ,
(xiyn−i)̂ 〉 (recursiveness in M(n)) = βi+k−3,l+n+2−i. Next, if k + l = n, we have

〈B(n + 1)(xiyn+1−i)̂ , (xkyl)̂ 〉 ≡ 〈B(n + 1)(x3yn−2)̂ , (xi+k−3yl+3−i)̂ 〉 (by (2.4),

note that (i + k − 3) + (l + 3 − i) = n) = 〈M(n)ŷn−1, (xi+k−3yl+3−i)̂ 〉 (by (2.2))
= βi+k−3,n+l−i+2. The proof of (2.9) is complete. Now, returning to (2.7), we

have
∑

p,q≥0,p+q≤n,p≤2 c
(ij)
pq 〈M(n)x̂pyq, x̂kyl〉 =

∑
c
(ij)
pq 〈M(n)(xkyl)̂ , (xpyq)̂ 〉 (self-

adjointness in M(n)) =
∑

c
(ij)
pq 〈M(n)(xk−3yl+1)̂ , (xpyq)̂ 〉 (recursiveness in M(n))

=
∑

c
(ij)
pq 〈M(n)(xpyq)̂ , (xk−3yl+1)̂ 〉 (self-adjointness) = 〈B(n + 1)(xiyn+1−i)̂ ,

(xk−3yl+1)̂ 〉 (from (2.7), directly in the case when k − 3 ≤ 2 (cf. (2.8)), or
by induction if k − 3 ≥ 3, since ρ := (k − 3) + (l + 1) < k + l). Now,
〈B(n+1)(xiyn+1−i)̂, (xk−3yl+1)̂〉 = βi+k−3,n+l+2−i (from (2.3), since k+l−2 < n)

= 〈B(n+1)(xiyn+1−i)̂, (xkyl)̂〉 (by (2.9)). This completes the proof of (2.7); hence,
the proof of Lemma 2.2 is also complete. �

The preceding discussion yields the following result.

Proposition 2.3. If M(n) is positive and recursively generated, with column re-
lations determined entirely from Y = X3 by recursiveness, then M(n) admits a
moment matrix block B(n+1) ≡ B(n+1)[A,B,C] compatible with a recursively gen-
erated extension M(n+ 1), and any such block B(n+ 1) satisfies Ran B(n+ 1) ⊆
Ran M(n).

We note that Proposition 2.3 can be generalized to the case when M(n) is p-pure
with p(x, y) = y − xk (k ≥ 1), resulting in a block B(n + 1) ≡ B(n + 1)[A1,...,Ak]

satisfying Ran B(n+ 1) ⊆ Ran M(n).
For the (y − x3)-pure case, having just described the structure of block

B(n+1) for a positive, recursively generated moment matrix extension M(n+1) ≡(
M(n) B(n+ 1)

B(n+ 1)t C(n+ 1)

)
, we next consider conditions for the existence of block

C(n+1) ≡ B[n+1, n+1] for such an extension. Since Ran B(n+1) ⊆ Ran M(n)
(Proposition 2.3), there exists a matrix W such that B(n + 1) = M(n)W . As
discussed in Section 1, M(n+ 1) ≥ 0 if and only if

(2.10) C(n+ 1) ≥ C� ≡ B(n+ 1)tW (= W tM(n)W ).

Further, M(n + 1) is a flat extension of M(n) if and only if C� has the form of a
moment matrix block C(n+ 1) and C(n+ 1) = C�.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

3144 LAWRENCE A. FIALKOW

Since M(n + 1) is to be positive, the Extension Principle implies that each of
the column relations in (2.1) persists in M(n + 1). From this and the required
recursiveness in M(n + 1), it follows that each of the column relations in (2.2)
must hold in M(n+ 1). In particular, these relations must hold in the columns of(
B(n+ 1)t C(n+ 1)

)
. The construction of [M(n);B(n + 1)] shows that rela-

tions (2.2) also hold in
(
B(n+ 1)t C�

)
, so C(n+ 1) agrees with C� in columns

Xn+1, . . . , X3Y n−1. Since C� ≡ (C�
ij)1≤i,j≤n+2 is positive, hence real symmetric,

(2.2) implies that C� has the form of a moment matrix block C(n + 1), i.e., C� is
Hankel, if and only if

C�
n+1,n−1 = C�

n,n,(2.11)

C�
n+2,n−1 = C�

n+1,n,(2.12)

and

(2.13) C�
n+2,n = C�

n+1,n+1.

Since the element in row n, column n of C(n+1) is 〈C(n+1)(x2yn−1)̂ , (x2yn−1)̂〉,
the condition C(n+ 1) ≥ C� of (2.10) entails

(2.14) 〈C(n+ 1)(x2yn−1)̂ , (x2yn−1)̂ 〉 ≥ C�
n,n.

We next compute C� explicitly so as to analyze (2.11)-(2.14). As above, let
J ≡ [M(n)]B denote the compression of M(n) to the rows and columns indexed by
basis B, so that J 
 0. Let us write

J ≡
(

M x
xt Δ

)
,

where M is the compression of M(n) to the rows and columns indexed by the
elements of basis B except for Y n (the final basis element in the degree-lexicographic
ordering) and where (

x
Δ

)

is the compression of column Y n in M(n) to rows indexed by B. Thus, Δ =

〈M(n)Ŷ n, Ŷ n〉 = β0,2n. Since J 
 0, then M 
 0 and Δ > xtM−1x. A calculation
shows that

J−1 =

(
P v
vt ε

)
,

where

P = M−1(1 + εxxtM−1), v = −εM−1x, ε =
1

Δ− xtM−1x
(> 0).

To compute C�, let W̃ = J−1[B(n + 1)]B, where [B(n + 1)]B is the compression

of B(n + 1) to the rows indexed by B. Thus, [M(n)]BW̃ = [B(n + 1)]B. We next
define a matrix W , with the same number of rows as M(n) and the same number

of columns as W̃ . If XiY j is in basis B, then row XiY j of W coincides with row

XiY j of W̃ . If XiY j is not in B, then row XiY j of W is a row of zeros. Lemma

2.2 implies that B(n+ 1) = M(n)W , and clearly B(n+ 1)tW = [B(n+ 1)]tBW̃ , so
(2.10) implies

(2.15) C� = [B(n+ 1)]tBW̃ .
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Turning to (2.14), note that [X2Y n−1]B, the compression of column X2Y n−1 in
B(n+ 1) to rows indexed by B, is of the form(

w
A

)
,

where wt ≡ (w1, . . . , w3n−1) and each wi is an “old” moment of the form βij with
i, j ≥ 0 and i + j ≤ 2n. Let r1, . . . , r3n−1 denote the successive row vectors of P
and let vt = (v1, . . . , v3n−1). Then J−1[X2Y n−1]B ≡ (c1(A), . . . , c3n(A))t, where

(2.16) ci(A) ≡ 〈ri, w〉+ viA (1 ≤ i ≤ 3n− 1)

and

(2.17) c3n(A) ≡ 〈v, w〉+ εA.

Now, C�
n,n = 〈C�(x2yn−1)̂ , (x2yn−1)̂〉 = [X2Y n−1]tBJ

−1[X2Y n−1]B (by (2.15))

=
(
wt A

)
⎛
⎜⎝

c1(A)
...

c3n(A)

⎞
⎟⎠ = w1c1(A) + · · · + w3n−1c3n−1(A) + A(〈v, w〉 + εA)

= εA2 + 2〈v, w〉A + ω, where ω := 〈r1, w〉w1 + · · · + 〈r3n−1, w〉w3n−1 = 〈Pw,w〉.
Setting f(A) = εA2 + 2〈v, w〉A+ ω, we have

(2.18) C�
n,n = f(A).

Returning to (2.14), moment matrix structure requires 〈C(n+1)(x2yn−1)̂,(x2yn−1)̂〉
= 〈C(n + 1)(x3yn−2)̂ , (xyn)̂ 〉 = 〈M(n + 1)ŷn−1, (xyn)̂ 〉 (by recursiveness in
M(n+ 1)) = β1,2n−1. Now (2.14) may be expressed as

(2.19) β1,2n−1 ≥ f(A) := εA2 + 2〈v, w〉A+ ω.

The minimum value of f(A) occurs with

(2.20) A = Amin :=
−〈v, w〉

ε

and

(2.21) f(Amin) = ψ(β) :=
ωε− 〈v, w〉2

ε
.

Note that ψ(β) is a rational expression in the original moment data β(2n).
The main result of this section is the following reformulation of Theorem 1.1.

For n ≥ 3, this result characterizes the existence of representing measures in the
truncated moment problem when the variety of M(n) coincides with y = x3.

Theorem 2.4. Let n ≥ 3. Suppose M(n) is positive and (y − x3)-pure; i.e.,
V(M(n)) is completely determined (via recursiveness) by the column relation Y =
X3. The following are equivalent for β ≡ β(2n):

i) β has a representing measure (necessarily supported in y = x3);
ii) M(n) has a flat extension M(n + 1) (and β has a corresponding 3n-atomic

minimal representing measure supported in y = x3);
iii) β1,2n−1 > ψ(β);
iv) M(n) admits a positive, recursively generated extension M(n+ 1).
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Proof. We will prove i) =⇒ iv) =⇒ iii) =⇒ ii), and ii) =⇒ i) follows from
Theorem 1.6. As discussed in the Introduction, the result of Bayer and Teichmann
[BT] implies that if β has a representing measure, then β admits a finitely atomic
representing measure ν. Since ν has convergent moments of all orders, M(n+1) ≡
M(n+ 1)[ν] is a moment matrix extension of M(n) which itself has a representing
measure (namely, ν), so M(n+ 1) is a positive, recursively generated extension of
M(n); thus i) =⇒ iv).

For iv) =⇒ iii), assume thatM(n+1) is a positive, recursively generated moment
matrix extension of M(n), with B(n + 1) ≡ B(n + 1)[A,B,C] as described at the

beginning of this section. Let M � ≡ [M(n);B(n+1)] denote the corresponding flat
extension (positive, but not necessarily a moment matrix), and let C� denote the
(n+ 2)× (n+ 2) lower right-hand block of M �, with rows and columns indexed as
Xn+1, XnY, . . . , Y n+1. Since M(n+ 1) is positive and recursively generated, from
(2.14), (2.19), and (2.21) we have β1,2n−1 ≥ ψ(β), and we claim that β1,2n−1 >
ψ(β). Suppose to the contrary that β1,2n−1 = ψ(β). (2.19) then implies that
β1,2n−1 = ψ(β) = f(Amin) ≤ f(A) ≤ β1,2n−1. Since A = Amin is the unique
minimum point for f(A), it follows that in B(n + 1) we have A = Amin. We will
show that for an appropriate choice of B, say B = B0, and for any C, the flat
extension [M(n);B(n + 1)[Amin,B0,C]] is a moment matrix, and this will lead to a
contradiction.

Since M(n+1) is recursively generated, M(n+1) coincides with M � in columns
Xn+1, . . . , X3Y n−2. Our immediate goal is to show thatM(n+1) andM � also coin-
cide in columnX2Y n−1. Recall from Proposition 2.3 that in C(

M(n) B(n+ 1)
),

X2Y n−1 may be expressed as a linear combination of the basis elements p1(X,Y ),
. . . , p3n(X,Y ), where p1, . . . , p3n is a listing of the monomials corresponding to basis
B in degree-lexicographic order; in particular, p3n(x, y) = yn. From J−1[X2Y n−1]B
≡ (c1(A), . . . , c3n(A))t (cf. (2.16)-(2.17)), we may express this relation as

X2Y n−1 = c1(Amin)p1(X,Y ) + · · ·
+c3n−1(Amin)p3n−1(X,Y ) + c3n(Amin)p3n(X,Y ).(2.22)

By the flat extension construction (cf. Section 1), the same relation holds in CM� .

We claim that (2.22) also holds in CM(n+1). Let C̃(n+1) denote the compression of

M(n+1) to the rows and columns indexed by Xn+1, . . . , X3Y n−2, X2Y n−1, and let

C̃� denote the corresponding compression ofM �. Since C̃� coincides with C̃(n+1) in

columns Xn+1, . . . , X3Y n−2 and C̃� and C̃(n+1) are real symmetric, it follows that

C̃� coincides with C̃(n+ 1) except possibly in the lower right corner position, cor-

responding to row and column X2Y n−1. We claim that C̃� and C̃(n + 1) agree

in this position as well. Indeed, β1,2n−1 = 〈B(n + 1)(xyn)̂ , ŷn−1〉 (by (2.3))

= 〈M(n + 1)(xyn)̂ , ŷn−1〉 = 〈M(n + 1)ŷn−1, (xyn)̂ 〉 (since M(n + 1)
= M(n + 1)t) = 〈M(n + 1)(x3yn−2)̂ , (xyn)̂ 〉 (by recursiveness in M(n + 1))
= 〈C(n + 1)(x2yn−1)̂ , (x2yn−1)̂ 〉 (since C(n + 1) is Hankel) ≥ C�

n,n (by (2.14))
= f(Amin) = β1,2n−1 (by (2.18), since A = Amin and f(Amin) = β1,2n−1). Thus,

〈C(n+ 1)(x2yn−1)̂ , (x2yn−1)̂ 〉 = C�
n,n, whence C̃(n+ 1) = C̃�. Now let M̃(n+ 1)

denote the compression of M(n+ 1) to rows and columns indexed by the monomi-

als of Pn and by Xn+1, . . . , X3Y n−2, X2Y n−1. Let M̃ � denote the corresponding
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compression of M �. We have just shown that M̃(n + 1) = M̃ �. In C
˜M�

, relation

(2.22) holds, so the same relation holds in C
˜M(n+1)

. Since M(n + 1) is positive,

it now follows from the Extension Principle that (2.22) holds in CM(n+1), whence

M(n + 1) and M � coincide in column X2Y n−1. In particular, since the Hankel
matrix C(n + 1) coincides with C� in columns X3Y n−2 and X2Y n−1, it follows
that (2.11) and (2.12) hold in C�, a fact we will use later.

We next analyze the elements in row XY n, column XY n of C(n + 1) and C�.
Denote [XY n]B in B(n+ 1) by (

u
B

)
,

where ut ≡ (u1, . . . , u3n−1), u1, . . . , u3n−2 are “old” moments and u3n−1 = Amin.
Thus, J−1[XY n]B ≡ (d1(B), . . . , d3n(B)), where di(B) = 〈ri, u〉+viB (1 ≤ i ≤ 3n−
1) and d3n(B) = 〈v, u〉+εB. From (2.15), we have C�

n+1,n+1 = 〈C�(xyn)̂, (xyn)̂〉 =
[XY n]tBJ

−1[XY n]B = u1d1(B) + · · ·+ u3n−1d3n−1(B) +Bd3n(B), whence

(2.23) C�
n+1,n+1 = ρ(B) := εB2 + 2B〈u, v〉+ γ,

with γ := 〈Pu, u〉 = u1〈r1, u〉 + · · · + u3n−1〈r3n−1, u〉. Since M(n + 1) is positive,
we have

(2.24) 〈C(n+ 1)(xyn)̂ , (xyn)̂ 〉 ≥ C�
n+1,n+1 = ρ(B).

Next, observe that 〈C(n+1)(xyn)̂ , (xyn)̂〉 = 〈C(n+1)(x2yn−1)̂ , ŷn+1〉, and recall

from above that 〈C(n+1)(x2yn−1)̂ , ŷn+1〉 coincides with 〈C�(x2yn−1)̂ , ŷn+1〉. To
compute this, denote [Y n+1]B in B(n+ 1) by⎛

⎜⎜⎝
y

Amin

B
C

⎞
⎟⎟⎠ ,

where yt := (y1, . . . , y3n−3) and each yi is an “old” moment. Now, since M(n+ 1)
and M � agree in column X2Y n−1, it follows from (2.15) that

〈C(n+ 1)(x2yn−1)̂ , ŷn+1〉 = 〈C�(x2yn−1)̂ , ŷn+1〉 = [Y n+1]tBJ
−1[X2Y n−1]B

= y1c1(Amin) + · · ·+ y3n−3c3n−3(Amin)

+Aminc3n−2(Amin) +Bc3n−1(Amin) + Cc3n(Amin).

Since A = Amin, it follows from (2.17) and (2.20) that c3n(Amin) = 0, whence

〈C�(x2yn−1)̂ , ŷn+1〉 may be expressed as 〈C�(x2yn−1)̂, ŷn+1〉 ≡ δ(B) := τ + λB,
where τ and λ depend on β and Amin, but are independent of B and C. Now,

using (2.24), we have δ(B) = 〈C�(x2yn−1)̂, ŷn+1〉 = 〈C(n + 1)(x2yn−1)̂ , ŷn+1〉 =
〈C(n+1)(xyn)̂ , (xyn)̂ 〉 ≥ C�

n+1,n+1 = ρ(B). Let h(b) := ρ(b)− δ(b) ≡ εb2+κb+α
(where κ and α depend only on moment data β). Since h(B) ≤ 0 and ε > 0,
there exists b ≡ B0 such that h(B0) = 0. Consider B(n+ 1) ≡ B(n+ 1)[Amin,B0,C]

and the corresponding flat extension M � ≡ [M(n);B(n+ 1)[Amin,B0,C]]. We claim

that M � is a moment matrix. We have already shown that (2.11) and (2.12) hold
in any flat extension of the form [M(n);B(n+ 1)[Amin,B,C]]. The preceding argu-

ment shows that δ(B0) = 〈C�(x2yn−1)̂ , (yn+1)̂ 〉 = 〈C(n + 1)(x2yn−1)̂ , (yn+1)̂ 〉
= 〈C(n + 1)(xyn)̂ , (xyn)̂ 〉 ≥ C�

n+1,n+1 = ρ(B0) = δ(B0), whence C�
n+2,n =
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〈C�(x2yn−1)̂ , (yn+1)̂ 〉 = C�
n+1,n+1. Thus, (2.13) also holds, whence M � is a mo-

ment matrix. This completes the proof that if M(n) admits a positive, recursively
generated extension with β1,2n−1 = ψ(β), then M(n) admits a moment matrix flat
extension [M(n);B(n+ 1)[Amin,B0,C]].

To obtain a contradiction, let us redefine M(n+ 1) as

M(n+ 1) := [M(n);B(n+ 1)[Amin,B0,C]].

It follows from Theorem 1.6 that M(n + 1) admits a representing measure,
whence (1.6) implies rank M(n + 1) ≤ card V(M(n + 1)). Consider g(x, y) =
x2yn−1 − (c1(Amin)p1(x, y) + · · · + c3n−1(Amin)p3n−1(x, y)). Since c3n(Amin) =
0, (2.22) implies g(X,Y ) = 0 in CM(n+1). Since Y =X3 in CM(n+1), we have

V(M(n+1)) ⊆ {(x, x3) : g(x, x3) = 0}. With y = x3, G(x) := g(x, x3) satisfies
deg G = 3n − 1 (since x2yn−1 = x3n−1 and p3n−1(x, y) = xyn−1 = x3n−2). The
preceding degree calculation implies that card V(M(n + 1)) ≤ 3n − 1 < 3n =
rank M(n) = rank M(n + 1), a contradiction to the existence of a representing
measure for M(n+1). This completes the proof that if β1,2n−1 = ψ(β), then M(n)
admits no positive, recursively generated extension M(n + 1). Thus, the proof of
iv) =⇒ iii) is also complete.

To complete the proof of Theorem 2.4, we will show iii) =⇒ ii), i.e., if β1,2n−1 >
ψ(β), then M(n) admits a flat extension M(n+1), which then implies the existence
of a rank M(n)-atomic (minimal) representing measure, necessarily supported in
y = x3 (cf. (1.5)). A flat extension requires choices of A, B, C such that M � ≡
[M(n);B(n+1)[A,B,C]] satisfies (2.11)-(2.13). For (2.11), which entails C�

n+1,n−1 =

C�
n,n, recall that C�

n,n = f(A) (cf. (2.18)). Also, from (2.2), we have X3Y n−2 =

Y n−1 in CM� , so C�
n+1,n−1 = 〈C�(x3yn−2)̂ , (xyn)̂ 〉 = 〈C�ŷn−1, (xyn)̂ 〉 = β1,2n−1.

Thus, (2.11) reduces to solving β1,2n−1 = f(A). Since β1,2n−1 > ψ(β)(= f(Amin)),
then there exist distinct values A1, A2, such that f(Ai) = β1,2n−1 (i = 1, 2), so
(2.11) holds if we use either A = A1 or A = A2 in B(n + 1). Since, from (2.17),
c3n(Ai) = 〈v, w〉 + εAi, we may choose i so that c ≡ c3n(Ai) �= 0. With this
choice, A = Ai, we will show that there exist B, C such that the flat extension
[M(n);B(n+ 1)[A,B,C]] is a moment matrix.

Since (2.11) already holds, we consider (2.12) and (2.13). For (2.12), we require

C�
n+1,n = C�

n+2,n−1. Now, C�
n+2,n−1 = 〈M �(x3yn−2)̂ , ŷn+1〉 = 〈M �ŷn−1, ŷn+1〉

(since (2.2) holds in M �) = 〈M �ŷn+1, ŷn−1〉 (since M � is real symmetric)

= 〈B(n+ 1)ŷn+1, ŷn−1〉 = β0,2n (from (2.3)). Thus, (2.12) is equivalent to

(2.25) C�
n+1,n = β0,2n.

From (2.15), we have C�
n+1,n = [XY n]tBJ

−1[X2Y n−1]B, where J−1[X2Y n−1]B
≡ (c1(A), . . . , c3n(A))t and [XY n]tB ≡ (q1, . . . , q3n−2, A,B), with each qi an “old”

moment. Thus, C�
n+1,n = q1c1(A) + · · · + q3n−2c3n−2(A) + Ac3n−1(A) + Bc3n(A).

Since c3n(A) �= 0, there exists a unique B such that (2.25) holds. It remains to
choose C for block B(n+1) such that (2.13) holds, i.e., C�

n+1,n+1 = C�
n+2,n. Using

(2.15), C�
n+1,n+1 = 〈C�(xyn)̂, (xyn)̂ 〉 = [XY n]tBJ

−1[XY n]B, and since [XY n]B
is independent of C, so is C�

n+1,n+1 (though it depends on A and B). Fur-

ther, from (2.15) we see that C�
n+2,n = [Y n+1]tBJ

−1[X2Y n−1]B, where [Y n+1]tB ≡
(y1, . . . , y3n−3, A,B,C) and each yi is an “old” moment. Thus, C�

n+2,n = y1c1(A)+
· · · + y3n−3c3n−3(A) + Ac3n−2(A) + Bc3n−1(A) + Cc3n(A). Since c3n(A) �= 0, it
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follows that there is a unique C such that (2.13) holds. Thus, M(n) has the flat
extension M(n+ 1)[A,B,C]; the proof is complete. �

Remark 2.5. Note that in the proof of Theorem 2.4, the number of conditions for a
flat extension (cf. (2.11)-(2.13)) matches the number of free choices in constructing
B(n+1) ≡ B(n+1)[A,B,C]. For curves of higher degree, such as y = xk, the number
of conditions for a flat extension exceeds the number of free choices in constructing
B(n+ 1). For k = 4, there are four free choices in B(n+ 1) and six constraints for
a flat extension. We therefore cannot expect that, for k > 3, representing measures
in the pure case will always correspond to flat extensions; rather, we surmise that
representing measures in the pure case will sometimes entail several rank-increasing
extensions, followed by a flat extension. Similarly, we would expect condition iii)
of Theorem 2.4 to be replaced by a set of several conditions.

3. A consistent sequence having no representing measure

In this section we provide an example illustrating Theorem 2.4 (equivalently,
Theorem 1.1). As a special case, we describe a moment matrixM(3) that is positive
and consistent, with Y = X3 and rank M(3) < card V(M(n)), but for which
β(6) admits no representing measure. This provides a negative answer to [CFM,
Question 1.1] and proves Theorem 1.3.

Lemma 3.1. β ≡ β(2n) is consistent if M(n) is p-pure, where deg p(x, y) = n, p
is irreducible in R[x, y] and Zp is infinite.

Proof. The hypothesis implies that V ≡ V(M(n)) = Zp. Suppose r(x, y) ∈ P2n

with r|V ≡ 0. Since p is irreducible and Zp is infinite, it follows from [S1, Prop. 3.4]
that there exists q(x, y) ∈ R[x, y] such that r = pq, and thus deg q = deg r−deg p ≤
n. Now, M(n)p̂ = p(X,Y ) = 0, so Λβ(r) = 〈M(n)p̂, q̂〉 = 0, and it follows that β is
consistent. �

Example 3.2. Consider M(3) defined by

(3.1) M(3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 2 5 0 0 0 x
0 1 2 0 0 0 2 5 14 42
0 2 5 0 0 x 5 14 42 132
1 0 0 2 5 14 0 0 x 0
2 0 0 5 14 42 0 x 0 0
5 0 x 14 42 132 x 0 0 0
0 2 5 0 0 x 5 14 42 132
0 5 14 0 x 0 14 42 132 r
0 14 42 x 0 0 42 132 r s
x 42 132 0 0 0 132 r s t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is clear that Y = X3 in CM(3). Let x1 = 1
2 (
√
85− 9) ≈ 0.109772. A straightfor-

ward calculation with nested determinants shows that if 0 ≤ x < x1, then M(2) 
 0
and M8, the compression of M(3) to the first 8 rows and columns, is positive with
rank M8 = 7.

We first consider the case when x = 0, r = 429, s = 1422, and t = 4798. A further
calculation with nested determinants implies that M(3) � 0 with rank M(3) = 9,
whence V(M(3)) = Γ ≡ {(x, y) : y = x3}. Thus 9 = rank M(3) < card V(M(3)) =
+∞, and Lemma 3.1 implies that M(3) is consistent. We claim that β(6) admits no
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representing measure. Indeed, a calculation shows that ψ(β) = 1429 > 1422 = β1,5,
so the result follows from Theorem 2.4. In more detail, following the proof of

Theorem 2.4, we see that block C̃(4) in any recursively generated moment matrix
extension M(4) of M(3) must be of the form

C̃(4) =

⎛
⎝ 14 42 132

42 132 429
132 429 1422

⎞
⎠ .

Now, det C̃(4) = −341, so M(4) cannot be positive. Since M(3) admits no positive
recursively generated extension, it follows from [BT] (as in the proof of Theorem
2.4) that β(6) admits no representing measure. This example proves Theorem 1.3.

We next consider the case of (3.1) when x = 1
10 , r = 600, s = 526337068574699

741609900 ≈
709722, and t = 2849859462886367177063452994221

251774383728200998950 ≈ 11319100143. As in the previous
case, M(3) � 0, with rank M(3) = 9, whence V(M(3)) = Γ and rank M(3) <
card V(M(3)). Lemma 3.1 implies that M(3) is consistent. A calculation shows
that ψ(β) = 526337068574699

741609900 = β1,5, so Theorem 2.4 again implies that β(6) has no
representing measure.

For our final case of (3.1), we again set x = 1
10 and r = 600. A calculation

shows that in this case ψ(β) is independent of s and t, with ψ(β) = 526337068574699
741609900

(as above). We set s = ψ(β) + 1. Let t0 denote the unique value for β0,6 such
that rank M(3) = 8, and set t = t0 + 1. Now, M(3) is positive with rank 9, so
V(M(3)) = Γ and Theorem 2.4 applies. Since s > ψ(β), there exists a flat extension
M(4) and a corresponding 9-atomic representing measure supported in y = x3. To
find the atoms, we construct B(4) as in the proof of Theorem 2.4. For A, we
choose the smaller of the two roots of C�

3,3(A) = β1,5 (= s), and then B and C are
uniquely determined. In accordance with Lemma 2.2 and Proposition 2.3, we next
express each column XiY j of B(4) as a linear combination of columns of M(3), i.e.,
XiY j = pij(X,Y ) for some pij ∈ P3 (i, j ≥ 0, i+ j = 4). Setting qij = xiyj − pij ,
we find the 9 common zeros of the qij , expressed as (xk, x

3
k) (1 ≤ i ≤ 9), with

x1 ≈ −138.164, x2 ≈ −1.91764, x3 ≈ −1.49303, x4 ≈ −0.711011, x5 ≈ 0.257975,
x6 ≈ 1.16441, x7 ≈ 1.7846, x8 ≈ 29.6804, x9 ≈ 109.398. Let ρk (1 ≤ k ≤ 9) denote

the corresponding densities of the representing measure μ ≡
∑9

k=1 ρkδ(xk,yk). To

find the densities, we consider the linear system in ρk defined by
∑9

k=1 ρkx
i
ky

j
k = βij

(i, j ≥ 0, i + j ≤ 6). This system is very poorly conditioned, but a calculation
using Mathematica’s LinearSolve yields ρ1 ≈ 0 (order 10−23), ρ1 ≈ 0.0203374,
ρ3 ≈ 0.131487, ρ4 ≈ 0.271837, ρ5 ≈ 0.309585, ρ6 ≈ 0.205296, ρ7 ≈ 0.0614581,
ρ8 ≈ 0 (order 10−18), ρ9 ≈ 0 (order 10−22). With these values, μ interpolates 20
of the 28 moments with high precision, but interpolates very poorly the moments
for y4 and for monomials of degrees 5 and 6 having degree in y at least 3. In this
case, Theorem 2.4 ensures the existence of a representing measure, but numerical
difficulties interfere with a precise calculation of the densities. �

4. A finite variety case of the y = x3
moment problem

In this section we study the case (1.3) of Section 1, which is used in Section 5 to
prove part of Theorem 1.4-iii). We solve the moment problem for β(2n) in the case
when M(n) has the column relation

(4.1) Y = X3
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and also a column relation of the form

(4.2) XY i = αX2Y i−1 + p(X,Y ),

where 2 ≤ i ≤ n− 1, α ∈ R, p ∈ Pi, and the set of columns

Si ≡ {1, X, Y, X2, XY, Y 2, . . . , X2Y j−2, XY j−1, Y j ,

. . . , X2Y i−2, XY i−1, Y i, X2Y i−1}
is independent. The following result provides part of the proof of Theorem 1.4 (cf.
Section 5, Theorem 5.1-iii)).

Theorem 4.1. Suppose n ≥ 3 and M(n) satisfies (4.1) and (4.2) (for some i,
2 ≤ i ≤ n− 1, with Si independent). The following are equivalent for β ≡ β(2n):

i) β admits a representing measure (necessarily supported in y = x3);
ii) β admits a rank M(n)-atomic representing measure;
iii) M(n) is positive and recursively generated, and r ≡ rank M(n) ≤ v ≡

card V(M(n)).

For n = 3, Theorem 4.1 essentially coincides with [CFM, Theorem. 4.1]. Our
proof of Theorem 4.1 generalizes the method of [CFM, Section 4].

We require several preliminary results. The first result does not require (4.2).

Lemma 4.2. Suppose M(n) is recursively generated and Y = X3 in CM(n). If
i, j ≥ 0 and 3 + i+ j ≤ 2n, then β3+i,j = βi,j+1.

Proof. Suppose first that 3 + i ≤ n, so that X3+i = XiY by recursiveness. If
j ≤ n, then β3+i,j = 〈M(n)(x3+i)̂ , (yj)̂ 〉 = 〈M(n)(xiy)̂ , (yj)̂ 〉 = βi,j+1. If

j > n, then 0 < j − n ≤ 3 + i + j − n ≤ n, so β3+i,j = 〈M(n)(x3+iyj−n)̂ , (yn)̂ 〉
= 〈M(n)(xiyj−n+1)̂ , (yn)̂ 〉 = βi,j+1. Next, suppose 3 + i > n (≥ 3). Then

β3+i,j = 〈M(n)(xn)̂ , (x3+i−nyj)̂ 〉 = 〈M(n)(xn−3y)̂ , (x3+i−nyj)̂ 〉 = βi,j+1. �

Suppose M(n) has the column basis

B = Sn−1 ≡ {1, X, Y, X2, XY, Y 2, . . . , X2Y j−2, XY j−1, Y j ,

. . . , X2Y n−3, XY n−2, Y n−1, X2Y n−2}.
Thus, in addition to Y = X3, there are column relations of the form

(4.3) XY n−1 = αX2Y n−2 + p(X,Y ) (α ∈ R, p ∈ Pn−1)

and

(4.4) Y n = γX2Y n−2 + q(X,Y ) (γ ∈ R, q ∈ Pn−1).

Let V ≡ V(M(n)), so that

y − x3|V ≡ 0,(4.5)

xyn−1 − αx2yn−2 − p(x, y)|V ≡ 0,(4.6)

and

(4.7) yn − γx2yn−2 − q(x, y)|V ≡ 0.
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Lemma 4.3. Suppose M(n) satisfies (4.1) and has column basis B = Sn−1. If μ
is a signed measure supported in V ≡ V(M(n)) which interpolates all monomials
corresponding to elements of B, then μ is an interpolating measure for β(2n); i.e.,
for i, j ≥ 0 and i+ j ≤ 2n,

(4.8)

∫
xiyjdμ = βij .

Proof. Since Y = X3, (4.5) holds. Since B is a basis for CM(n), we have column
relations (4.3) and (4.4), so (4.6)-(4.7) also hold. The proof is by induction on the
degree δ ≡ i + j of xiyj , and since μ interpolates the moments corresponding to
elements of B, (4.8) holds for δ = 0, 1, 2. Now suppose (4.8) holds for some δ,
2 ≤ δ < n − 1. Since B contains X2Y k, XY k+1, Y k+2 for 0 ≤ k ≤ n− 3, to show
that (4.8) holds for degree δ+1, it suffices to verify (4.8) for xiyj with 3 ≤ i ≤ δ+1,
j = δ+1−i. Now,

∫
xiyjdμ =

∫
xi−3yj+1dμ = βi−3,j+1 (from (4.5), and from (4.8)

by induction, since i+ j − 2 < δ). Lemma 4.2 implies βi−3,j+1 = βi,j , so it follows
that (4.8) holds for i+ j = δ+ 1. Thus, by induction, (4.8) holds for i+ j ≤ n− 1.

Now assume that n − 1 ≤ δ < 2n and that (4.8) holds whenever i + j ≤ δ. To
show that (4.8) holds for δ + 1, assume first that i + j = δ + 1 with i ≥ 3. The
proof procedes exactly as just above, so we have

(4.9)

∫
xiyjdμ = βi,j (i+ j = δ + 1 and i ≥ 3).

Next, consider x2yn+s with n ≤ n+ s+ 2 = δ+ 1 ≤ 2n. We have
∫
x2yn+sdμ =∫

xys+1(xyn−1)dμ =
∫
xys+1(αx2yn−2+p(x, y))dμ (from (4.6)) =

∫
αx3yn+s−1dμ

+
∫
xys+1p(x, y)dμ = Λβ(αx

3yn+s−1) + Λβ(xy
s+1p) (by (4.9) for the first

term, by (4.8) and induction for the second term, since deg xys+1p ≤ δ) =
〈M(n)(αx2yn−2 + p)̂ , (xys+1)̂ 〉 = 〈M(n)(xyn−1)̂ , (xys+1)̂ 〉 (by (4.3)) = β2,n+s.
We now have

(4.10)

∫
x2yn+sdμ = β2,n+s (n+ 1 ≤ n+ s+ 2 = δ + 1 ≤ 2n).

We next consider xyn+t, where n ≤ n + t + 1 = δ + 1 ≤ 2n. We have∫
xyn+tdμ =

∫
yt+1(xyn−1)dμ =

∫
yt+1(αx2yn−2 + p(x, y))dμ (from (4.6)) =∫

αx2yn+t−1dμ+
∫
yt+1pdμ = Λβ(αx

2yn+t−1) + Λβ(y
t+1p) (by (4.10) for the first

term (with s = t−1), by (4.8) and induction for the second term, since deg yt+1p ≤
δ) = 〈M(n)(αx2yn−2+p)̂ , (yt+1)̂ 〉 = 〈M(n)(xyn−1)̂ , (yt+1)̂ 〉 (by (4.3)) = β1,n+t.
Thus,

(4.11)

∫
xyn+tdμ = β1,n+t (n ≤ n+ t+ 1 = δ + 1 ≤ 2n).

Finally, we consider yn+r with n ≤ n + r = δ + 1 ≤ 2n. We have
∫
yn+rdμ

=
∫
(γx2yn−2 + q(x, y))yrdμ (from (4.7)) = Λβ(γx

2yn+r−2) + Λβ(y
rq) (by (4.10)

with s = r− 2 for the first term, by induction with (4.8) for the second term, since

deg yrq ≤ δ) = 〈M(n)(γx2yn−2 + q)̂ , (yr)̂ 〉 = 〈M(n)ŷn , ŷr 〉 (by (4.4)) = β0,n+r.
Thus,

(4.12)

∫
yn+rdμ = β0,n+r (n ≤ n+ r = δ + 1 ≤ 2n).

In view of (4.9)-(4.12), we conclude that (4.8) holds for δ+1; the proof is complete.
�
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Proof of Theorem 4.1. Since ii) and (1.5) imply i), and i) always implies iii) (cf.
Section 1), it suffices to show that iii) implies ii). Let f(x, y) = xyi − αx2yi−1 −
p(x, y) and let g(x) = f(x, x3). From (4.1) and (4.2), we have v ≤ deg g = 3i + 1.
Since Si is independent and M(n) � 0, the Extension Principle implies that 3i+1 =
card Si ≤ rank M(i+ 1) ≤ r ≤ v ≤ 3i+ 1, whence M(n) is extremal, with

(4.13) rank M(n) = card V(M(n)) = 3i+ 1 = rank M(i+ 1) = card Si.

If i+1 < n, then since rank M(i+1) = rank M(n), M(n) has flat data, so Theorem
1.6 implies that β has a (unique, rank M(n)-atomic) representing measure.

Assume now that i + 1 = n, so (4.13) implies that r = v = 3n − 2, whence
B ≡ Sn−1 is a basis for CM(n). We will show that β is consistent, and thereby
derive the existence of a representing measure from [CFM, Theorem 2.8]. Let
V ≡ {(xi, x

3
i )}3n−2

i=1 denote the distinct points of V ≡ V(M(n)), and note that the
xi’s are necessarily distinct. We claim that Kn := {p ∈ Pn : p|V ≡ 0} satisfies
dim Kn ≤ dim Pn − v. For each i, 3 ≤ i ≤ n, consider the i − 2 monomials
xi, xi−1y, . . . , x3yi−3. Under the substitution, y = x3, these are precisely the
monomials in Pn which, when restricted to V , agree with monomials of strictly
lower degree; indeed, for 3 ≤ p ≤ i ≤ n, xpyi−p|V ≡ xp−3yi−p+1|V . Let T denote
the collection of all such monomials in Pn, together with xyn−1 and yn. The latter
two monomials are the only monomials in Pn which, under the substitution y = x3,
have degree in x exceeding v − 1. Note that

τ ≡ card T =
1

2
(n2 − 3n+ 6) = dim Pn − v.

Consider the mapping Ψ : Kn −→ R
τ defined as follows. For

p(x, y) ≡
∑

i,j≥0, i+j≤n

cijx
iyj ∈ Kn,

let

Ψ(p) = (c3,0, c4,0, c3,1, . . . , ci,0, . . . , c3,i−3, . . . , cn,0, . . . , c3,n−3, c1,n−1, c0,n),

the vector of coefficients corresponding to monomials in T . We assert that Ψ
is 1 − 1. For suppose Ψ(p) = 0, i.e., cij = 0 if xiyj ∈ T . Then p(x, y) =∑

xiyj∈Pn\T cijx
iyj = c2,n−2x

2yn−2 + c0,n−1y
n−1 + c1,n−2xy

n−2 + c2,n−3x
2yn−3 +

· · ·+ (terms of lower degree). Thus, q(x) := p(x, x3) satisfies deg q ≤ 3n− 3. Since
p|V ≡ 0, we have q(xi) = 0 (1 ≤ i ≤ 3n − 2), whence q ≡ 0 and cij = 0 for all
xiyj ∈ Pn\T . Thus, p ≡ 0, so Ψ is 1− 1 and dim Kn ≤ dim Pn − v.

Since dim Kn ≤ dim Pn−v, it follows from [CFM, Lemma 4.3] that β is extremal
and weakly consistent , i.e., p ∈ Pn, p|V ≡ 0 =⇒ p(X,Y ) = 0 in CM(n). Consider
the basis B for CM(n). Since β is extremal and weakly consistent, [CFM, Lemma
2.7 and (2.5)] implies that there is a signed measure μB such that supp μB = V
and

∫
xiyjdμB = βij whenever XiY j ∈ B. Lemma 4.3 now implies that μB is an

interpolating measure for β, whence [CFM, Theorem 2.8] implies that μB is actually
a representing measure for β. The proof is now complete. �

5. Solution of the y = x3
truncated moment problem

In this section we provide concrete necessary and sufficient conditions for Γ-
representing measures. Theorem 5.1 (which restates Theorem 1.4) treats the case
n ≥ 3. In Propositions 5.5-5.9 we treat the cases n = 1 and n = 2. In the sequel, for
1 ≤ i ≤ n, Pi[X,Y ] denotes the linear span in CM(n) of the set {p(X,Y ) : p ∈ Pi}.
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Suppose M(n) is recursively generated and Y = X3 in CM(n). It follows that for

1 ≤ i < n, XkY i+1−k ∈ Pi[X,Y ] (3 ≤ k ≤ i+ 1). If there is a dependence relation
in Pi+1[X,Y ] involving X2Y i−1, XY i, or Y i+1, then exactly one of the following
cases holds:

X2Y i−1 ∈ Pi[X,Y ],(5.1)

X2Y i−1 /∈ Pi[X,Y ] and XY i ∈ span{X2Y i−1,Pi[X,Y ]},(5.2)

X2Y i−1 /∈ Pi[X,Y ], XY i /∈ span{X2Y i−1,Pi[X,Y ]},(5.3)

and Y i+1 ∈ span{X2Y i−1, XY i,Pi[X,Y ]}.

Theorem 5.1. Let n ≥ 3. If β ≡ β(2n) has a representing measure supported in y =
x3, then M(n) is positive and recursively generated, rank M(n) ≤ card V(M(n)),
and

(5.4) Y = X3 in CM(n).

Conversely, suppose M(n) satisfies all of the preceding conditions, so that any rep-
resenting measure is necessarily supported in y = x3.

i) If M(2) is singular, then β has a representing measure.
ii) If M(n) is (y − x3)-pure, then β has a representing measure if and only if

β1,2n−1 > ψ(β).
If neither (i) nor (ii) holds, there is a minimal i, 2 ≤ i < n, such that exactly

one of (5.1)-(5.3) holds.
iii) If (5.1) or (5.2) holds, then β has a representing measure.
iv) Suppose neither (5.1) nor (5.2) holds, but (5.3) holds for some minimal i. If

i ≤ n− 3, then β admits a representing measure. If i = n− 2, then M(n) admits a
recursively determined extension M(n+1) and β has a representing measure if and
only if rank M(n) = rank M(n−1) or rank M(n+1) = rank M(n). If i = n−1,
then M(n) is recursively determinate and β admits a representing measure if and
only if M(n) admits positive, recursively determined extensions M(n+1), M(n+2)
satisfying rank M(n+ 1) = rank M(n) or rank M(n+ 2) = rank M(n+ 1).

Proof. The necessity of the conditions is clear, and it follows from (1.5) that if
β has a representing measure supported in y = x3, then Y = X3 in CM(n). For
the converse, suppose that M(n) is positive, recursively generated, rank M(n) ≤
card V(M(n)), and Y = X3 in CM(n). For i), suppose M(2) is singular, with a
column relation q(X,Y ) = 0 for some q ∈ P2. Since M(n) � 0, the Extension
Principle implies q(X,Y ) = 0 in CM(n). The existence of a representing measure
now follows from Theorem 1.2. For ii), the result follows directly from Theorem
1.1. If neither i) nor ii) holds, there is a minimal i, 2 ≤ i ≤ n − 1, such that
exactly one of (5.1), (5.2), or (5.3) holds. For case iii), suppose first that (5.1)
holds, i.e., the first dependence relation that cannot be derived from (5.4) via
recursiveness is of the form X2Y i−1 = p(X,Y ) for some p ∈ Pi. Let q(x, y) :=
x2yi−1−p(x, y) and set g(x) := q(x, x3). We have 3i = rank M(i) ≤ rank M(n) ≤
card V(M(n)) ≤ deg g ≤ 3i, whence M(n) is a flat extension of M(i), so the
existence of a representing measure follows from Theorem 1.6. To complete case
iii), if (5.2) holds, the existence of a representing measure follows from Theorem
4.1.

To prove iv), we note that in the remaining case, X2Y i−1 /∈ Pi[X,Y ], XY i /∈
span{X2Y i−1,Pi[X,Y ]}, and Y i+1 ∈ span{X2Y i−1, XY i, Pi[X,Y ]}. It follows
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that rank M(i + 1) = rank M(i) + 2 = 3i + 2. Further, there is a column rela-
tion in M(i + 1) of the form Y i+1 = αX2Y i−1 + γXY i + q(X,Y ), with q ∈ Pi.
Let g(x, y) := yi+1 − (αx2yi−1 + γxyi + q(x, y)), so that card V(M(i + 1)) ≤
deg g(x, x3) = 3i + 3. Suppose first that i + 1 ≤ n − 2. Since M(n) is positive,
the Extension Principle implies that 3i + 2 ≤ rank M(i + 1) ≤ rank M(n − 2) ≤
rank M(n − 1) ≤ rank M(n) ≤ card V(M(n)) ≤ card V(M(i + 1)) ≤ 3i + 3.
So either rank M(n − 2) = rank M(n − 1) or rank M(n − 1) = rank M(n),
and the existence of a representing measure follows from the case of flat data (cf.
Theorem 1.6). Suppose next that i+ 1 = n− 1. Relation (5.3) and [F4, Prop. 4.2]
imply that M(n− 1) is recursively determinate, and M(n) is a positive, recursively
generated extension of M(n − 1). Since card V(M(n − 1)) − rank M(n − 1) ≤
(3n− 3)− (3n− 4) = 1, it follows from Theorem 1.7 (applied to M(n− 1)) that β
admits a representing measure if and only if rank M(n) = rank M(n− 1), or the
recursively determined extension M(n+ 1) satisfies rank M(n+ 1) = rank M(n).
Finally, suppose i + 1 = n. Again, [F4, Prop.4.2] implies that M(n) is recursively
determinate and card V(M(n))− rank M(n) ≤ 3n− (3n− 1) = 1, so Theorem 1.7
implies that β has a representing measure if and only if M(n) admits positive,
recursively determined extensionsM(n+1) andM(n+2) satisfying rank M(n+1) =
rank M(n) or rank M(n+ 2) = rank M(n+ 1). �

Several examples of [CF7] illustrate case i) of Theorem 5.1. Example 3.2 (above)
illustrates case ii). The flat extension M(4) in Example 3.2 illustrates (5.2) in case
iii), while [CFM, Example 4.2] illustrates (5.3) in case iii). In case iv) of Theorem
5.1, the existence or nonexistence of the extensions M(n + 1) and M(n + 2) (and
the existence of a representing measure) can be determined from the algorithm
presented in [F4, Algorithm 4.10], which shows how to implement Theorem 1.7.
[F4, Example 4.18] illustrates iv) in a case where n = 3, i = 2, r = v = 8, but the
recursively determined extension M(4) is not positive, so there is no representing
measure. [F4, Example 3.3] illustrates iv) in a case with n = 3, i = 2, r = 8, and
v = 9, so in principle the recursively determined extensions M(4) and M(5) are
required. However, in this example, M(4) is already a flat extension of M(3), so
the existence of a representing measure is established without recourse to M(5).
We next illustrate Theorem 5.1-iv) in a case where n = 3, i = 2, r = 8, v = 9, and
both M(4) and M(5) are used to determine whether or not β(6) has a representing
measure.

Example 5.2. Let n = 3 and consider

M(3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 2 5 0 0 0 0
0 1 2 0 0 0 2 5 14 42
0 2 5 0 0 0 5 14 42 132
1 0 0 2 5 14 0 0 0 0
2 0 0 5 14 42 0 0 0 0
5 0 0 14 42 132 0 0 0 0
0 2 5 0 0 0 5 14 42 132
0 5 14 0 0 0 14 42 132 429
0 14 42 0 0 0 42 132 429 2000
0 42 132 0 0 0 132 429 2000 338881

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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We have M(3) � 0, M(2) 
 0, and rank M(3) = 8, with column relations

Y = X3

and

Y 3 = q(X,Y ),

where q(x, y) := −2285x + 5720y − 34441x2y + 578xy2. Let r1(x, y) = y − x3 and
r2(x, y) = y3+2285x−5720y+3441x2y−578xy2. Then V ≡ V(M(3)) = Zr1

⋂
Zr2 ,

and a calculation shows that V = {(xi, x
3
i )}9i=1, where x1 = 0, x2 ≈ 0.765081,

x3 ≈ 1.4139, x4 ≈ 1.84764, x5 ≈ 23.9166, and x5+i = −xi+1 (1 ≤ i ≤ 4). M(3)
satisfies the hypothesis of Theorem 5.1-iv) with i = n−1, so we proceed to generate
the recursively determined extension M(4). This extension is uniquely determined
by imposing the column relations X4 = XY , X3Y = Y 2, XY 3 = (xq)(X,Y ),
and Y 4 = (yq)(X,Y ) (first in

(
M(3) B(4)

)
, then in

(
B(4)t C(4)

)
). A cal-

culation shows that these relations unambiguously define a positive moment ma-
trix M(4) with rank M(4) = 9. It follows that M(3) admits no flat extension,
so we attempt to construct the extension M(5), uniquely determined by impos-
ing the relations X5 = X2Y , X4Y = XY 2, X3Y 2 = Y 3, X2Y 3 = (x2q)(X,Y ),
XY 4 = (xyq)(X,Y ), Y 5 = (y2q)(X,Y ). A calculation of these columns (first
in

(
M(4) B(5)

)
, then in

(
B(5)t C(5)

)
), shows that they do fit together

to unambiguously define a moment matrix M(5). From the form of q(x, y), we
see that M(5) is actually a flat extension of M(4). For example, in CM(5) we

have X2Y 3 = (x2q)(X,Y ) = −2285X3 + 5720X2Y − 34441X4Y + 578X3Y 2 =
−2285Y + 5720X2Y − 34441XY 2 + 578q(X,Y ), and each column in the last ex-
pression has degree at most 3. Corresponding to this flat extension is the unique
representing measure μ ≡ μM(5) described in Section 1 (cf. Theorem 1.6). Clearly,

supp μ = V , so μ is of the form μ =
∑9

i=1 ρiδ(xi,x3
i )
. To compute the densities,

we use (1.7) with the column basis B ≡ {1, X, Y,X2, XY, Y 2, X2Y,XY 2, X2Y 2}
for M(4), and we find ρ1 ≈ 0.249891, ρ2 = ρ6 ≈ 0.21335, ρ3 = ρ7 ≈ 0.125055,
ρ4 = ρ8 ≈ 0.0366505, and ρ5 = ρ9 ≈ 0 (order 10−20). Thus, the existence of a
representing measure for β(6) is established on the basis of the extensions M(4)
and M(5), in keeping with Theorem 5.1-iv). (Since M(4) is extremal, instead of
computing the flat extension M(5), we could have established the existence of a
representing measure by showing that β(6) is consistent, but this entails a matrix
calculation based on an application of [F3, Prop. 3.6].) �

As an application of Theorem 5.1, we have the following criterion for Γ-represent-
ing measures, expressed in terms of moment matrix extensions.

Corollary 5.3. Let n ≥ 3 and suppose Y = X3 in CM(n). β ≡ β(2n) has a Γ-
representing measure if and only if M(n) admits a positive, recursively generated
extension M(n+ 2).

Proof. The necessity of the condition is clear from (1.5) and [BT]. For sufficiency,
we consider the types of dependence relations that may be present in CM(n). If there
is a nonzero q ∈ P2 such that q(X,Y ) = 0 (equivalently, if M(2) is singular), then
the existence of a positive, recursively generated extension M(n+1) is sufficient for
a Γ-representing measure (cf. Theorem 1.2). Similarly, in the case when M(n) is
(y−x3)-pure, Theorem 1.1-iii) shows that if there is a positive, recursively generated
extension M(n+ 1), then β has a Γ-representing measure.
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In the remaining case, recursiveness implies that at least one of the following
relations holds in CM(n):

Y n = αXY n−1 + δX2Y n−2 + q(X,Y ) (q ∈ Pn−1),(5.5)

XY n−1 = δX2Y n−2 + q(X,Y ) (q ∈ Pn−1),(5.6)

X2Y n−2 = q(X,Y ) (q ∈ Pn−1).(5.7)

Consider the case when (5.5) holds. Since Y = X3, recursiveness implies that
in CM(n+2) we have Xn+2 = Xn−1Y, . . . , X3Y n−1 = Y n. Further, X2Y n =

αY n + δXY n−1 + (x2q)(X,Y ) ∈ Pn+1[X,Y ], whence XY n+1 = αX2Y n + δY n +
(xyq)(X,Y ) ∈ Pn+1[X,Y ], and thus Y n+2 = αXY n+1 + δX2Y n + (y2q)(X,Y ) ∈
Pn+1[X,Y ]. The preceding relations show that M(n + 2) is a flat extension of
M(n + 1), so the existence of a representing measure (necessarily supported in Γ)
follows from Theorem 1.6.

Next suppose that (5.6) holds. In M(n+ 1), we then have

(5.8) X2Y n−1 = δY n−1 + (xq)(X,Y ) ∈ Pn[X,Y ].

We may express q(X,Y ) as q(X,Y ) = aY n−1+bXY n−2+cX2Y n−3+r(X,Y ) (r ∈
Pn−2), so in M(n+ 2), we have

(5.9) Y n = X3Y n−1 = δXY n−1 + aX2Y n−1 + bY n−1 + cXY n−2 + (x2r)(X,Y ).

Now, (5.8) and (5.9) imply that relation (5.5) holds in M(n), so the existence of a
representing measure follows from the previous case.

To complete the proof, we consider the case when relation (5.7) holds, and we
may express this relation as

(5.10) X2Y n−2 = αY n−1 + δXY n−2 + γX2Y n−3 + r(X,Y ) (r ∈ Pn−2).

In M(n+ 1), we have

(5.11) Y n−1 = αXY n−1 + δX2Y n−2 + γY n−2 + (xr)(X,Y ).

If α �= 0, (5.11) may be reduced to the form of (5.6), so we may assume α = 0.
Writing r(X,Y ) = aY n−2+bXY n−3+cX2Y n−4+s(X,Y ) (s ∈ Pn−3, c = 0 if n =
3), (5.11) (with α = 0) implies XY n−1 = δY n−1+γXY n−2+aX2Y n−2+ bY n−2+
cXY n−3 + (x2s)(X,Y ), so we may again reduce to the case when (5.6) holds. �

The preceding result yields a degree-bounded weighted sum-of-squares represen-
tation for polynomials that are strictly positive on Γ.

Corollary 5.4. Let n ≥ 3. If r(x, y) ∈ P2n is strictly positive on Γ, then r admits
a decomposition of the form r(x, y) =

∑
fi(x, y)

2 + (y − x3)
∑

gi(x, y)
2, where

deg f2
i , deg (y − x3)g2i ≤ 2(n+ 3).

Proof. Corollary 5.3 and [CF4, Proposition 3.9] together imply that Γ satisfies
property (Rn,2) of [CF8], so the result follows from [CF8, Theorem 1.5]. �

In Section 6 we provide analogues of Corollaries 5.3 and 5.4 for the curves y =
g(x) and yg(x) = 1. However, in Proposition 6.1 (the analogue of Corollary 5.3),
we generally require extensions M(n+ k) where k depends on deg g.

We conclude this section by considering the truncated Γ-moment problem for
β(2n) when n = 1 or n = 2. We normalize β0,0 = 1. For M(2) to have a representing
measure supported in y = x3 (and hence a positive extension M(3) with Y = X3),
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we must have b ≡ β0,1 = β3,0, d ≡ β0,2 = β3,1, e = β1,1 = β4,0. Thus, M(2) is of
the form

(5.12) M(2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 a b c e d
a c e b g h
b e d g h j
c b g e d f
e g h d f p
d h j f p q

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In the sequel, M4 denotes the 4 × 4 upper left-hand block in M(2). A positive,
recursively generated extension M(3) with X3 = 1 must have block B(3) of the
form

(5.13) B(3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

b g h j
e d f p
d f p q
g h j A
h j A B
j A B C

⎞
⎟⎟⎟⎟⎟⎟⎠

.

For the case when M(2) 
 0 (positive definite), we adapt the notation of Section

2 and the proof of Theorem 2.4. We set J = M(2) and write J−1 ≡
(

P v
vt ε

)

and X2Y ≡
(

w
A

)
in CB(3). In the flat extension M � ≡ [M(2);B(3)] we have

C� ≡ B(3)tJ−1B(3) = (ci,j)1≤i,j≤4, and the conditions for a flat moment matrix
extension M(3) are c2,2 = c3,1(= β4,2 = β1,3 = p), c3,2 = c4,1(= β3,3 = β0,4 = q),

and c4,2 = c3,3. As in the proof of Theorem 2.4, we set ψ(β) = ωε−〈v,w〉2
ε , where

ω = 〈Pw,w〉. A straightforward adaptation of the proof of Theorem 2.4 yields the
following result.

Proposition 5.5. If M(2) 
 0, then β ≡ β(4) has a representing measure supported
in y = x3 if and only if p ≡ β1,3 > ψ(β), in which case β admits a 6-atomic Γ-
representing measure (corresponding to a flat extension M(3)).

We next consider the case when n = 1 and M(1) 
 0, so that c > a2. Let

γ := c3−2abc+b2

c−a2 .

Proposition 5.6. Let β ≡ β(2) and suppose M(1) 
 0.
i) If e ≡ β1,1 < γ, then β admits no Γ-representing measure.
ii) If e > γ, then β admits a 6-atomic Γ-representing measure.
iii) If e = γ, there is a unique flat extension of M(1) to M4, defined by a column

relation X2 = c11 + c2X + c3Y . β has a Γ-representing measure if and only if
σ := {(x, x3) : x2 = c1 + c2x + c3x

3} has exactly 3 points, {(xi, yi)}1≤i≤3, the

matrix V in (5.17) is invertible, and the measure μ ≡
∑3

i=1 ρiδ(xi,yi) (defined in
(5.18)) interpolates the moments c, d, and e.

Proof. If β admits a Γ-representing measure, then β admits a finitely atomic Γ-
representing measure ν and M(2)[ν] must be of the form (5.12). In the sequel
we use Smuljan’s criterion for positive extensions of matrices (cf. Section 1). A



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SOLUTION OF TRUNCATED MOMENT PROBLEM WITH VARIETY y = x3 3159

calculation shows that M(1) admits an extension to a positive matrix

(5.14) M4 ≡

⎛
⎜⎜⎝

1 a b c
a c e b
b e d g
c b g e

⎞
⎟⎟⎠

if and only if e ≥ γ. Thus, if e < γ, then M(1) admits no Γ-representing measure.
Next, suppose e > γ. In this case, there exists g such that M4 
 0. By choosing

h arbitrarily and then f sufficiently large, we can ensure that M5, the 5× 5 upper
left-hand block in (5.12), is positive definite. A calculation shows that for M(2) as
in (5.12), ψ(β(4)) is independent of p and q. Thus, if we choose j arbitrarily, then
choose p > ψ(β(4)), and finally choose q sufficiently large, we can ensure that M(2)
satisfies the hypothesis and sufficiency condition of Proposition 5.5. It follows that
β(4) (and hence β(2)) admits a 6-atomic Γ-representing measure.

We now consider the case e = γ. A calculation shows that in this case there
is a unique g such that M4 is positive and that with this choice, rank M4 =
rank M(1) = 3. In M4 we thus have a column relation of the form

(5.15) X2 = c11 + c2X + c3Y.

If μ is a finitely atomic Γ-representing measure, then, by the uniqueness of g, M4 is a
positive block in M(2)[μ], so in M(2)[μ] we have β2,1 = g and relation (5.15) holds.
Thus, by the Extension Principle, (5.15) holds in the column space of M(3)[μ], as
does Y = X3, whence supp μ is contained in

(5.16) σ ≡ {(x, x3) : x2 = c1 + c2x+ c3x
3}.

Thus, 3 = rank M(1) ≤ rank M(2)[μ] ≤ rank M(3)[μ] ≤ card supp μ ≤ 3, so
supp μ = σ and σ consists of exactly 3 distinct points. Let σ = {(xi, yi)}1≤i≤3, so

that μ ≡
∑3

i=1 ρiδ(xi,yi). Consider

(5.17) V =

⎛
⎝ 1 1 1

x1 x2 x3

y1 y2 y3

⎞
⎠ .

If V t is singular, then there is a polynomial d1+d2x+d3y which vanishes on supp μ,
whence d1+d2X+d3Y = 0 in CM(1), contradicting M(1) 
 0. Thus V is invertible
and ρ ≡ (ρ1, ρ2, ρ3) is uniquely determined by

(5.18) ρ = V −1(1, a, b).

We conclude that β has a Γ-representing measure if and only if card σ = 3, V is
invertible, and the measure defined by (5.18) is a representing measure (i.e., the
measure interpolates moments b, c, and d). �

We next consider the case whenM(2) is positive and singular, withM(1) positive
definite.

Proposition 5.7. Let β ≡ β(6) and suppose that M(2) is positive and singular,
with M(1) 
 0.

i) If rank M(2) = 3, so that M(2) is a flat extension of M(1), then β has a
Γ-representing measure if and only if the unique, 3-atomic, representing measure
associated with M(2) is supported in Γ.

ii) If rank M(2) ≥ 4 and there is a column relation X2 = d11 + d2X + d3Y ,
then there is no Γ-representing measure.
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iii) If rank M(2) = 4 and there are column relations XY = r11 + r2X + r3Y +
r4X

2 and Y 2 = s11 + s2X + s3Y + s4X
2, then β admits a Γ-representing measure

if and only if the relations X3 = Y , X2Y = r1X + r2X
2 + r3XY + r4Y , XY 2 =

r1Y +r2XY +r3Y
2+r4X

2Y , and Y 3 = s1Y +s2XY +s3Y
2+s4X

2Y unambiguously
define a flat moment matrix extension M(3).

iv) If rank M(2) = 5 and there is a column relation XY = r11 + r2X + r3Y +
r4X

2, then there is no Γ-representing measure.
v) If rank M(2) = 5 and there is a column relation Y 2 = s11+s2X+s3Y+s4X

2+
s5XY , then there is a Γ-representing measure if and only if the relations X3 = Y ,
XY 2 = s1X+s2X

2+s3XY +s4X
3+s5X

2Y , and Y 3 = s1Y +s2XY +s3Y
2+s4X

2Y
unambiguously define a positive extension M(3) and recursively determine a flat
extension M(4).

Proof. The proof of i) is an immediate application of Theorem 1.6. For the re-
maining cases, we recall that if β has a Γ-representing measure, then there exists
a finitely atomic Γ-representing measure ν. For ii), note that if there exists a Γ-
representing measure, then in M(3)[ν] we must have X2 = d11 + d2X + d3X

3,
whence card supp ν ≤ 3 < rank M(2) ≤ rank M(3)[ν], a contradiction. To prove
iii), note that if β admits a Γ-representing measure, then the indicated column
relations hold in M(3)[ν]. Conversely, if these column relations unambiguously
define a moment matrix extension M(3), then M(3) is a flat extension whose cor-
responding representing measure is necessarily supported in Γ. For part iv), if
there were a Γ-representing measure, then in M(4)[ν] there would be a relation
X4 = r11 + r2X + r3X

3 + r4X
2, whence card supp ν ≤ 4 < rank M(4)[ν], a

contradiction. In case v), if there is a Γ-representing measure, then M(3)[ν] would
be determined by the indicated column relations, and these relations would re-
cursively determine M(4)[ν] as well. Further, since supp ν is contained in the
intersection of the curves y2 = s1 + s2x + s3y + s4x

2 and y = x3, then 5 =
rank M(2) ≤ rank M(3)[ν] ≤ rank M(4)[ν] ≤ card supp ν ≤ 6. Thus, either
rank M(2) = rank M(3)[ν], and thus also rank M(3)[ν] = rank M(4)[ν], or
rank M(2) < rank M(3)[ν] = rank M(4)[ν]; in either case, M(4)[ν] is a flat
extension of M(3)[ν]. Conversely, if M(3) and M(4) are well-defined by the indi-
cated column relations and M(4) is a flat extension of M(3), then clearly β has a
Γ-representing measure. �

In case v), if M(3) is a flat extension of M(2), there is no need to consider
M(4). However, examples show that a 2-step extension process may be needed if
card V(M(2)) = 6, which occurs when V(M(2)) is the 6-point intersection of a
degenerate hyperbola (2 intersecting lines) with y = x3.

We next address the case where M(2) is positive and M(1) is singular.

Proposition 5.8. For β ≡ β(4), suppose M(2) is positive and recursively generated
and M(1) is singular.

i) If rank M(1) = 1, then β has a Γ-representing measure if and only if b = a3.
ii) If rank M(1) = rank M(2) = 2, then β has a Γ-representing measure if and

only if the unique (2-atomic) representing measure associated with the flat extension
M(2) is supported in Γ.

iii) If neither i) nor ii) hold, then rank M(1) = 2 and rank M(2) = 3. In
this case, if S ≡ {1, X,X2} is dependent, there is no Γ-representing measure. If
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S is independent, there is a column relation Y = r1 + sX. Then β has a Γ-
representing measure if and only if the relations X3 = Y , X2Y = rX2 + sY ,
XY 2 = rXY + sX2Y , and Y 3 = rY 2 + sXY 2 define a flat extension M(3).

Proof. Since β0,0 > 0, if rank M(1) = 1, we have X = a1 and Y = b1, and it
follows from recursiveness that there is a unique representing measure, with support
at (a, b). Thus, there is a Γ-representing measure if and only if b = a3. The proof
of ii) is clear, since the measure corresponding to the flat extension M(2) of M(1)
is the unique representing measure for β (cf. Theorem 1.6). For iii), recursiveness
implies rank M(2) = 3. Suppose there is a column relation X2 = r1 + sX. If
β admits a Γ-representing measure, then there is a finitely atomic Γ-representing
measure ν, and in M(3)[ν] there are relations Y = X3 and X2 = r1 + sX. These
relations imply card supp ν ≤ 2, whence 3 = rank M(2) ≤ rank M(3)[ν] ≤
card supp ν ≤ 2, a contradiction. In the remaining case, since M(1) is singular
and {1, X} is independent, there is a relation Y = r1 + sX. If β admits a Γ-
representing measure, then, as above, in M(3)[ν], there are relations X3 = Y ,
X2Y = rX2 + sY , XY 2 = rXY + sX2Y , and Y 3 = rY 2 + sXY 2, so M(3)[ν]
is a flat extension of M(2). Conversely, if these relations define a flat extension
M(3), then the representing measure corresponding to M(3) via Theorem 1.6 is
necessarily supported in Γ (since Y = X3). �

Finally, we consider the case when n = 1 and M(1) is positive and singular.

Proposition 5.9. Let β ≡ β(2) and suppose M(1) is positive and singular.
i) If rank M(1) = 1, then β has a Γ-representing measure if and only if b = a3.
ii) If rank M(1) = 2 and {1, X} is dependent, there is no Γ-representing mea-

sure.
iii) If neither i) nor ii) hold, then there is a relation Y = r1 + sX. Let σ :=

{(x, x3) : x3 = r + sx}. If card σ = 1, β has no Γ-representing measure. If
card σ = 2, there is a unique 2-atomic measure μ1, supp μ1 = σ, such that β has a
Γ-representing measure if and only if μ1 is a Γ-representing measure. If card σ = 3,
there are three 2-atomic measures, μi (1 ≤ i ≤ 3), with supp μi ⊂ σ, and at most
one 3-atomic measure μ4, supp μ4 = σ, such that β has a Γ-representing measure
if and only if some μi is a Γ-representing measure.

Proof. The proof of i) is similar to the proof of Proposition 5.8-i). For ii), suppose
X = r1. As in the proof of Proposition 5.8, if ν is a finitely atomic Γ representing
measure, then in M(3)[ν] we have Y = X3, X = r1, whence 2 = rank M(1) ≤
rank M(3)[ν] ≤ card supp ν ≤ 1, a contradiction. In case iii), proceeding as
above, in M(3)[ν] there is a column relation X3 = r1 + sX, whence supp ν ⊆ σ
and card supp ν ≤ 3. If card σ = 1, then as in ii) above, card supp ν ≤ 1, a
contradiction, so there is no Γ-representing measure. Suppose card σ = 3, σ =
{(xi, yi)}1≤i≤3. Let V be as in (5.17). If V is invertible, we may define a measure

μ4 ≡
∑3

i=1 ρiδ(xi,yi), where ρ ≡ (ρ1, ρ2, ρ3) is defined as in (5.18). Then β has
a 3-atomic Γ-representing measure if and only if μ4 is such a measure. If V is
singular, we test for a 2-atomic Γ-representing measure. Select any two distinct

points of σ, xi1 and xi2 , form V =

(
1 1
xi1 xi2

)
(which is invertible), and use

(ρ1, ρ2)
t = V −1(1, a)t to form the associated measure μ ≡

∑2
k=1 ρkδ(xik

,yik
). Then
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β has a 2-atomic Γ-representing measure if and only if some measure μ of this form
is a Γ-representing measure. The case when card σ = 2 is treated similarly. �

6. Representing measures and moment matrix extensions

In [CF8] we studied polynomials p for which the existence of representing mea-
sures in the truncated Zp-moment problem can be expressed in terms of moment
matrix extensions, without the requirement for an ultimate flat extension as in
Theorem 1.8. In the present section we give new examples of this phenomenon.
In the sequel, we consider the general case, d ≥ 1, unless otherwise noted. Recall
from [S1] that in the full moment problem, p ∈ P ≡ R[x1, . . . , xd] is type A if the
conditions M(∞)(β) � 0 and p(X) = 0 imply that β(∞) admits a Zp-representing
measure (these conditions are always necessary for a Zp-representing measure). In
[S1], Stochel showed that p is type A if and only if the polynomials that are non-
negative on Zp are in the closure of sums of squares modulo the principal ideal (p)
(with respect to a suitable topology). This result depends in part on the classical
Riesz-Haviland Theorem [H]: β ≡ β(∞) has a K-representing measure if and only
if Λβ : P −→ R is K-positive, i.e., p ∈ P, p|K ≥ 0 =⇒ Λβ(p) ≥ 0. In [CF8],
we recently obtained the following analogue of the Riesz-Haviland Theorem for the
truncated K-moment problem: β ≡ β(2n) has a K-representing measure if and only

if Λβ : P2n −→ R admits a K-positive linear extension Λ̃ : P2n+2 −→ R. Moti-
vated by this result, we consider the following property for p ∈ Pn; here n ≥ 1 and
m ≥ n+ 1:

(An,m) f ∈ P2n+2, f |Zp > 0 =⇒ f =
∑

f2
i + pq, (fi, q ∈ Pm).

Proposition 6.1. Suppose p ∈ Pn satisfies (An,m) for some m ≥ n + 1. Then

β ≡ β(2n) has a Zp-representing measure if and only if p(X) = 0 in CM(n) and
M(n) admits a positive extension M(m). Further, if f ∈ P2n and f |Zp > 0, then
f =

∑
f2
i + p

∑
g2i − p

∑
h2
i (deg f2

i , deg pg2i , deg ph2
i ≤ 2m).

Proof. Since p ∈ Pn, if μ is a representing measure for β with supp μ ⊆ Zp, then
(1.5) implies that p(X) = 0 in CM(n). Further, [BT] implies that there is a finitely
atomic Zp-representing measure ν and that M(m)[ν] � 0.

Conversely, suppose p(X) = 0 in CM(n) and there is a positive extension M(m),

where m ≥ n+ 1. We may consider Λ̃ ≡ Λβ(2n+2) : P2n+2 −→ R and Λ ≡ Λβ(2m) :

P2m −→ R. We claim that Λ̃ is Zp-positive. Suppose f ∈ P2n+2, f |Zp > 0.
From (An,m), there exist polynomials f1, . . . , fs, q ∈ Pm such that f =

∑
f2
i + pq.

Now, Λ̃(f) = Λ(f) = Λ(
∑

f2
i + pq) =

∑
〈M(m)f̂i, f̂i〉 + 〈M(m)p̂, q̂〉. From the

Extension Principle, p(X) = 0 inM(m), soM(m)p̂ = p(X) = 0, and thus Λ̃(f) ≥ 0.
If ε > 0 and f ∈ P2n+2 with f |Zp ≥ 0, then (f + ε)|Zp > 0, whence (from

above) Λ̃(f + ε) ≥ 0. It follows that Λ̃(f) ≥ 0, so Λ̃ is Zp-positive, and thus the
Truncated Riesz-Haviland Theorem ([CF8, Theorem 1.2]) implies that β admits a
Zp-representing measure.

For the representation of positive polynomials, we view Zp as a semialgebraic
set. Let Q ≡ {qj}tj=0 ⊂ P2n (q0 = 1), and let KQ denote the semialgebraic

set KQ = {x ∈ R
d : qj(x) ≥ 0, 0 ≤ j ≤ t}. Let ΣQ,n = {p ∈ P2n : p =∑

f2
0,i + q1

∑
f2
1,i + · · · + qt

∑
f2
t,i, qjf

2
j,i ∈ P2n (0 ≤ j ≤ t)}. For k ≥ 0, consider

property (Sn,k) of [CF8] for KQ: if M(n) admits a positive extension M(n + k)

such that each localizing matrix Mqj (n+k) (0 ≤ j ≤ t) is positive, then β(2n) has a
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KQ-representing measure (these conditions are always necessary). [CF8, Theorem
1.5] shows that if KQ satisfies (Sn,k) for some k ≥ 0, then each polynomial in P2n

that is strictly positive on KQ belongs to ΣQ,n+k. In what follows, we set q0 = 1,
q1 = p, q2 = −p, Q = {q0, q1, q2}, and view Zp as KQ. Now let f ∈ P2n with
f |Zp > 0. To establish the desired weighted sum-of-squares decomposition for f ,
we show that Zp satisfies property (Sn,m−n). Suppose M(n) admits a positive
extension M(m) satisfying Mp(m) � 0 and M−p(m) � 0. Then Mp(m) = 0, and
since m ≥ n+1, [CF4, Prop. 3.9-i] implies that p(X) = 0 in CM(m). Since p satisfies
(An,m), the existence of a Zp-representing measure now follows from the first part
of the proof. Thus, Zp satisfies (Sn,m−n), so the representation for f follows from
[CF8, Theorem 1.5]. �

Note that in Proposition 6.1 the weighted sum-of-squares representation for f is
degree-bounded in the sense that the bound, 2m, on the degrees of the summands
in the representation is independent of f .

In [S1], Stochel proved that type A polynomials include the planar polynomials
p1(x, y) = y − q(x), p2(x, y) = yq(x) − 1 (q ∈ R[x]), and p3(x, y) with deg p3 ≤ 2.
We can prove these results via the truncated moment problem by using moment
matrix extensions. This was previously done for p3 in [CF7] (cf. Theorem 1.2). To
treat p1 and p2, we require the following result.

Corollary 6.2. Let p ∈ P. If for each n ≥ deg p there exists m(n) ≥ n + 1 such
that p satisfies (An,m(n)), then p is type A.

Proof. Suppose the hypothesis holds and suppose M(∞)(β) � 0 and p(X) = 0 in
CM(∞). For each n ≥ deg p, p(X) = 0 in M(n) and M(m(n)) is a positive extension

of M(n), so Proposition 6.1 implies that β(2n) has a Zp-representing measure. It

now follows from [S2] that β(∞) has a Zp-representing measure, so p is type A. �
We now consider d = 2 and p1(x, y) = y − q(x) for some q ∈ R[x], deg q ≥ 1.

Proposition 6.3. Let p ≡ p1. For n ≥ deg p, p satisfies (An,m) with m =
(2n+ 2)deg q − deg p.

Proof. The proof follows the argument in [S1, Prop. 5.2], except that we also keep
track of the degrees of the polynomials that appear. Suppose f(x, y) ∈ P2n+2 and
f |Zp > 0. Then s(x) := f(x, q(x)) > 0 (x ∈ R) and deg s ≤ (2n + 2)deg q.
[PoSz, p. 77] implies that there are polynomials g(x) and h(x) such that s(x) =
g(x)2 + h(x)2 (x ∈ R). Since p is irreducible in R[x, y] and Zp is infinite, then
I(Zp) ≡ {u(x, y) ∈ P : u|Zp ≡ 0} = (p) (cf. [S1, Prop. 3.4]), so there is a
polynomial r(x, y) such that f−g2−h2 = pr. Further, if ρ := (2n+2)deg q−deg p,
then deg g, deg h ≤ (n + 1)deg q ≤ ρ and deg r ≤ ρ. Since ρ ≥ n + 1, then p
satisfies (An,m) with m = ρ. �

Note that for p(x, y) = y − x3, Propositions 6.1 and 6.3 imply that β(2n) has a
Γ-representing measure if Y = X3 in CM(n) and M(n) admits a positive extension
M(6n+3). By contrast, Corollary 5.3 implies that there is a Γ-representing measure
if M(n) merely has a positive extension M(n+3) (so that M(n+2) is positive and
recursively generated; cf. [CF2, Theorem 3.14].

We now turn to p2(x, y) = yq(x)− 1 with q ∈ R[x], deg q ≥ 1.

Proposition 6.4. Let p = p2. For n ≥ deg p, p satisfies (An,m) with m =
(2n+ 2)(2 + deg q)− (1 + deg q).
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Proof. We again adapt the proof of [S1, Prop. 5.2]. Suppose f(x, y) ∈ P2n+2

and f |Zp > 0. Writing f(x, y) =
∑

i,j≥0,i+j≤2n+2 aijx
iyj , it follows that s(x) :=∑

i,j≥0,i+j≤2n+2 aijx
iq(x)2n+2−j satisfies s(x) ≥ 0 (x ∈ R) and deg s ≤ (2n +

2)deg q. Thus, from [PoSz], there are polynomials g(x), h(x), with deg g, deg h ≤
(n + 1)deg q, such that s(x) = g(x)2 + h(x)2. Let G(x, y) = yn+1g(x), H(x) =
yn+1h(x), and F (x, y) = f(x, y) − (G(x, y)2 +H(x, y)2). We have F |Zp ≡ 0, and
since p is irreducible in R[x, y] and Zp is infinite, it follows from [S1, Prop. 3.4] that
F = pr for some polynomial r ≡ r(x, y). Thus, f = G2 +H2 + pr. Since deg f ≤
2n+2 and deg (G2+H2) ≥ 2n+2, then deg pr ≤ deg(G2+H2) ≤ (2n+2)(1+deg q),
whence deg r ≤ (2n+ 2)(1 + deg q)− deg p = (2n+ 2)(1 + deg q)− (1 + deg q) =
(2n + 1)(1 + deg q) ≡ τ . Now, deg G2 ≤ 2n + 2 + deg g2 ≤ 2n + 2 + deg s ≤
2n+ 2 + (2n+ 2)(deg q), so deg G ≤ (n+ 1)(1 + deg q) < τ , and similarly for H.
Thus, p satisfies (An,m) with m = τ . �

Remark 6.5. The preceding results imply that for i = 1, 2, pi is type A and each
polynomial that is strictly positive in Zpi

admits a degree-bounded weighted sum-
of-squares decomposition (as in Proposition 6.1).
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