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Abstract—In recent years, since edge computing has improved
the performance of transportation systems, research on
edge-computing-enabled transportation systems has received
widespread attention. However, most previous studies overlooked
that task requests in transportation systems are unevenly dis-
tributed in time and space, which easily causes the overloading
of edge servers, resulting in high response latency. To this end,
we present a novel task offloading scheme based on graph
neural network (GNN) and deep reinforcement learning (DRL)
in edge-computing-enabled transportation systems (TransEdge).
Specifically, we first propose an adaptive node placement algo-
rithm to assign Internet of Things sensors to appropriate
edge servers, thereby minimizing transmission latency. Then, an
improved DRL scheme based on GNN is designed to capture
the spatial features between sensors, aiming to improve the
accuracy of task offloading decisions. Finally, we introduce a task
forwarding strategy based on the greedy algorithm to achieve
collaborative task offloading between different edge servers and
overcome the system instability caused by a sudden surge in task
requests. We conduct extensive experiments on two real-world
traffic data sets. The results show that TransEdge reduces the
response latency by at least 3.7% compared to four baselines
while achieving a success rate of 99%.

Index Terms—Deep reinforcement learning (DRL), edge
computing, graph neural network (GNN), task offloading,
transportation systems.

I. INTRODUCTION

THE EMERGENCE of the Internet of Things (IoT) tech-
nology has promoted the transformation of traditional

vehicles to connected vehicles, thereby enhancing the devel-
opment of conventional transportation systems to intelligent
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transportation systems [1]. In the above intelligent transporta-
tion system, we need to process a large amount of data (e.g.,
navigation data, video data, audio data, etc.) generated by vehi-
cles with the help of roadside sensors (i.e., IoT sensors), which
aims to provide users with road safety and driving comfort [2].
This scenario poses higher demands on the computational
capability, processing latency, and memory consumption of the
sensor hardware [3]. However, the resources are very limited
in sensors, and processing raw data directly with sensors may
potentially lead to high latency [4]. To address this problem,
most of the previous works directly send the data collected by
the sensor to a remote central cloud for analysis, subsequently
receiving the processed results from the cloud. This leverages
sufficient resources from the cloud to make up for the lack of
the sensors’ own resources. Nevertheless, the sensor transmits
a large amount of data from the network’s edge to the central
cloud, which burdens the network transmission bandwidth,
leading to intolerant transmission latency (TL). It can be
seen that cloud computing struggles to support real-time
computation for the vast amount of data in transportation
systems [5].

Fortunately, edge computing is an outstanding computing
paradigm that promises to provide low-latency services in
transportation systems [6], [7]. It sinks resources from the
central cloud to edge servers closer to users, while applying
task offloading to transmit data (i.e., tasks) from IoT sensors
to nearby edge servers to provide reliable, efficient, and low-
latency services [8], [9]. It is evident that edge computing
harbors immense potential for saving TL, alleviating network
bandwidth pressure, and reducing energy consumption [10].
Nevertheless, without a proper task offloading method among
edge servers (e.g., collaborative task offloading [11]), it is
difficult to fully exploit the performance advantages of edge
computing, and it may lead to excessively high response
latency and energy consumption due to edge server over-
load [12].

Researchers have made many efforts to solve the above
problems. For example, Chen et al. [13] defined task soft-
ware cache update and computation offloading as a joint
optimization problem. For the computation offloading sub-
problem, a decentralized algorithm is proposed to find the
Nash equilibrium solution. Next, a method based on double
deep Q-network is introduced to solve the task software cache
update subproblem. Although these schemes achieve good
performance, they are difficult to scale to scenarios involving
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multiple edge servers. To this end, Liu et al. [14] jointly
optimized the computation offloading and resource allocation
problems in multiuser edge computing networks by taking
into account the transmission power level, subchannel, and
wireless access technologies. Then, the problem is modeled
as a Markov game process, and an independent learners-based
multiagent Q-learning algorithm is proposed to solve it, aiming
to improve the performance of the system. Chen et al. [15]
first transformed the communication and computing resource
management strategy of each edge server into a digital twin
migration problem. Next, the problem is modeled as a decen-
tralized partially observable Markov decision process. Finally,
a novel agent-contribution-enabled multiagent reinforcement
learning algorithm is introduced to solve it. Nevertheless,
transportation scenarios usually contain many IoT sensors. If
corresponding deep learning models are deployed on each
sensor, frequent training or inference of these models will
cause a large overhead. Last but not least, the uneven temporal
and spatial distribution of task requests in transportation
systems [16], leads to the overload of edge servers at certain
times. In this case, even the ideal task offloading strategy
fails to ensure the performance of edge-computing-enabled
transportation systems.

To solve this challenge, scholars have proposed some novel
solutions. For example, Xu et al. [3] first used the graph
neural network (GNN, which is a deep learning model that
aims to extract as much potential representation information
in the “graph” as possible [17]) to predict traffic flow in
the transportation system. Then, the authors estimated the
result of resource allocation according to the flow value.
Finally, they implemented a task offloading scheme between
edge servers based on deep reinforcement learning (DRL,
which combines deep learning and reinforcement learning
to solve problems that require a series of decisions [18]).
Liu et al. [19] separately considered peak and off-peak periods
in the task offloading decision problem. For off-peak periods,
task requests are directly offloaded to the edge server, which is
modeled as the integer programming problem (IP). The above
IP problem is addressed using the simulated annealing genetic
algorithm (SAGA). For peak periods, task requests have the
option to be handled locally or offloaded to the edge server,
with solutions provided by deep Q network (DQN). However,
these approaches have the following shortcomings: 1) they
overlook the significance of preplacement of sensors, resulting
in increased TL; 2) the reinforcement learning schemes used
fail to capture spatial features of task requests, diminishing
the rationality of task offloading decisions; and 3) they lack
an effective task forwarding strategy, making it challenging to
achieve reasonable collaborative task offloading when facing
a sudden increase in task requests.

To tackle the challenges above, we provide a novel
task offloading scheme with GNN and DRL in edge-
computing-enabled transportation system, namely, TransEdge.
Specifically, we first design an adaptive genetic algorithm
(AGA) to achieve reasonable placement of IoT sensors and
reduce TL. Next, an improved reinforcement learning scheme
based on GNN is proposed, which empowers reinforcement
learning to capture the spatial correlation relationship between

tasks and enhance the accuracy of task offloading decisions.
Subsequently, a task forwarding strategy based on greedy
algorithm (which always makes the most advantageous choice
in the current state) is introduced to alleviate the edge server
overload problem. Finally, the simulation results show the
advantages of TransEdge. The main contributions of our work
are as follows.

1) We propose TransEdge, a collaborative task offloading
scheme that can efficiently handle the request tasks with
spatiotemporally uneven distribution in edge-computing-
enabled transportation systems.

2) To reduce TL, we propose a node placement scheme
based on an AGA. With the premise of minimizing TL,
this scheme transmits the task requests from each sensor
to an appropriate edge server.

3) To obtain reasonable task offloading decisions, we
design a DRL scheme based on GNN that can learn
the spatial features of task requests. On this basis,
we present an efficient task forwarding strategy based
on the greedy algorithm. It aims to facilitate efficient
collaboration between edge servers, thereby overcoming
system instability caused by sudden increases in task
requests.

4) We perform comprehensive experiments with two real-
world traffic data sets. The results show that TransEdge
surpasses four baseline algorithms in terms of response
latency and success rate.

This article is organized as follows. Section II provides
a review of related work. Section III describes the system
model and problem formulation. Section IV introduces the
TransEdge. The proposed solution is evaluated in Section V.
This article is concluded in Section VI.

II. RELATED WORK

With the burgeoning of artificial intelligence (AI) and the
emergence of edge computing, the transportation system has
seen unprecedented development [1]. Thanks to the short dis-
tance between computing resources and users, edge computing
is expected to alleviate the problem of limited capability of
IoT sensors in transportation systems, while achieving the
goal of low response latency (it is challenging to ensure low
response latency just by using IoT sensors to process a large
number of task requests [20]). Moreover, the introduction
of AI technology further enables edge computing to learn
knowledge from past experience and make intelligent task
offloading decisions.

Huang et al. [21] considered using wireless power tech-
nology to charge terminal devices, and decomposed the
task offloading decision and resource allocation into two
subproblems. The above problems are tackled with online
reinforcement learning. Bi et al. [22] described each time
frame’s decision as a multistage stochastic mixed integer
nonlinear programming problem (MINLP). Subsequently, they
combined the strengths of Lyapunov and DRL to design
LyDROO to solve the above problem. The results show
that LyDROO can effectively address the per-frame MINLP
problem with remarkably low computational complexity and
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is suitable for networks with fast-fading channels. Considering
the impact of the multiple attributes of tasks, the inference
accuracy of the model, and the inference error of the model,
Fan et al. [23] proposed a machine learning task offload-
ing scheme to minimize the total task processing latency
with guaranteed task accuracy requirements. Given that both
communication and machine learning computation cause data
processing latencies and errors, Yang et al. [24] proposed a
novel framework for machine learning task offloading based
on edge computing, aiming to minimize total latency with
factors, such as the complexity of the machine learning model
and the error rate of inference, the quality of data, and the
computational capacity of devices. However, as the number
of edge servers rises, without a reasonable task offloading
scheme among edge servers, it will cause intolerable latency
and greatly reduce user satisfaction [25].

To achieve collaborative task offloading in edge comput-
ing, Lee and Lee [26] employed a traditional algorithm
to orchestrate a collaboration between parked vehicles and
traditional edge servers to establish a cooperative edge com-
puting system, aiming to minimize the service latency of
the entire vehicle group. Qi et al. [27] proposed a dual
task offloading mechanism for the cooperation of a multiple
unmanned aerial vehicles-assisted mobile-edge computing
network. Guo et al. [28] proposed a multiple unmanned
aerial vehicles collaborative communication and computing
optimization scheme (MCCCO) and experimentally proved
that MCCCO achieves better performance in reducing task
processing latency and balancing UAV energy consumption
load than traditional schemes. Yen et al. [29] devised a dual-
layer system that involved the vehicle and the edge server,
aiming to minimize cumulative execution cost by fine-tuning
the choice of offloading destinations and the proportion of
offloading. Pu et al. [30] suggested an auction algorithm for
computational resource sharing, aiming to incentivize idle
users to participate in task offloading, thereby facilitating
cooperation among various users. Liu et al. [31] presented
a task request schedule algorithm tailored to unmanned
aerial vehicle swarms, which co-optimizes task offloading and
multihop routing scheduling within an edge-cloud environ-
ment. These previous studies have successfully applied edge
computing to various scenarios to deal with the challenges of
resource constraints and latency reduction. However, for task
requests that are unevenly distributed in time and space (e.g.,
the task request from transportation systems), it is hard for
those studies to avoid the overloading problem of edge servers.

Recently, some researchers have tried to address the above
issues. For example, Xu et al. [3] designed a task offload-
ing approach for predicting traffic flow and minimizing the
response latency in an Internet of Vehicles driven by edge
computing. The authors first presented a graph weighted
convolutional network (GWCN), aiming to mine the spatial
feature among road segments to accurately predict traf-
fic flow. The results from the prediction are used as the
foundation for updating resource allocation across various
regions. Subsequently, a deep deterministic policy gradient
(DDPG)-driven task offloading approach is used to acquire
the best task offloading solution for the edge server. Finally,

Fig. 1. System model of an edge-computing-enabled transportation system.
It contains critical entities, such as the IoT sensor, the edge server, and the
cloud server. Here, the IoT sensor is deployed beside the road to collect task
requests from passing vehicles and transmit these task requests to the edge
server. After receiving the task request, the edge server needs to judge whether
to process it locally or offload it to other edge servers for processing. If all
edge servers cannot handle the current task request, it will be offloaded to
the cloud. Based on the connectivity of the road network, we can obtain the
spatial structure among IoT sensors, which is the basis for learning the spatial
features of each IoT sensor.

comprehensive testing shows the superior performance of the
proposed approach in reducing response latency. Liu et al. [19]
considered two distinct scenarios: 1) off-peak periods and
2) peak periods, and the schemes executed in these two cases
are different. During off-peak periods, tasks can be directly
offloaded to MEC servers and the problem of minimizing
average execution latency is modeled as the IP problem
and addressed using the SAGA. During peak periods, task
requests have the option of either being processed locally or
offloaded to MEC servers, which is a more complex problem,
so the author adopted the DQN to solve it. Despite the
aforementioned schemes achieving good results, they still have
high TL and a lack of reasonable task forwarding strategy,
resulting in high response latency.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system model of the
edge-computing-enabled transportation system. Then, the TL,
computation latency (CL), and forwarding latency (FL) are
modeled separately. Finally, we give the problem formulation
and describe some key notations in this article.

A. System Model

Fig. 1 shows a scenario of an edge-computing-enabled
transportation system, which includes one cloud server, L 5G
base stations (BSs), M edge servers, and N IoT sensors. These
servers are used to handle task requests (e.g., high-precision
maps, music, video, etc.) from IoT sensors. The set of servers
is defined as C = {c0, c1, . . . , cM}, where cM is the cloud
server, and the others are edge servers. The set of IoT sensors
is denoted as S = {s0, s1, . . . , sN−1}, which is employed
to monitor road traffic as well as collect and transmit task
requests from passing vehicles. In particular, the BS and the
server are connected through wired optical fiber, and the TL
is negligible [32]. IoT sensors are connected to the BS via a
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5G wireless link, and the latency is about 1 ms [33], [34]. For
simplicity, we assume that the task offloading scheme operates
in units of time slot t and consider that the network state is
unchanged within this time slot, where t ∈ [0, 1, . . . , T], T is
the life of the system cycle. The time slot t is usually a small
value, which means that the vehicle is still within the coverage
of the BS, and thus the mobility model of the transportation
system can be ignored in this article [3], [19].

To maintain a high-quality user travel experience, our task
offloading scheme should be able to dynamically adjust to
adapt to accommodate randomly arriving task requests. We
assume that the capacity set of all servers is set to Cap =
{cap0, cap1, . . . , capM}, indicating the maximum number of
task requests each server can handle per second. capM
represents the capacity of the cloud, which is far greater
than the capacity of other edge servers. When servers still
have the residual capacity, they can handle any arriving task
requests through a reasonable forwarding rule. We define the
total of task requests generated by passing vehicles as R =
{r0, r1, . . . , rN−1}, where ri represents the total task requests
from IoT sensor si.

B. Latency Model

In general, the response latency of the edge-computing-
enabled transportation system can be used to represent the user
experience [35], i.e., the faster the system processes the task
request, the smaller the response latency, and the better the
user experience. The response latency in this article includes
TL, CL, and FL. TL refers to the total latency of all task
requests to be transmitted from IoT sensors to servers, as
follows:

TL =
N−1∑

i=0

M∑

j=0

rixijdij (1)

where ri represents the volume of task requests from IoT
sensor si. xij is a binary decision variable, when xij = 1
indicates the IoT sensor si communicates with the server cj

and pushes all the task requests ri collected by it to the server
cj for pending processing. dij represents the distance between
IoT sensor si and server cj.

CL represents the total latency generated by servers pro-
cessing all task requests, as follows:

CL =

⎧
⎪⎪⎨

⎪⎪⎩

∑N−1
i=0

∑M
j=0 xij

ri
capyij

if ri ≤ capyij

∑N−1
i=0

∑M
j=0 xij

capyij
capyij

if ri > capyij

(2)

where ri is the same as ri in (1). yij is a decision variable and
satisfies yij ∈ {0, 1, . . . , M}, which represents that the pending
task request ri on server cj will be migrated to server cyij for
processing. If ri ≤ capyij

, ri is completely processed by server
cyij . Otherwise, only capyij

task requests are processed by the
server on the server cyij . The remaining task requests ri−capyij

need to be forwarded to other servers for processing. Here,
capyij

is the maximum processing capacity of server cyij .

FL indicates the latency in transmitting all task requests
from the current server to another server, as follows:

FL =
N−1∑

i=0

M∑

j=0

xijr
′
idjyij (3)

where r′i = ri−capyij
indicates unprocessed task requests. djyij

represents the distance between server cj and server cyij .
Therefore, we can express the response latency as

Latency = TL+ CL+ FL. (4)

C. Problem Formulation

This article aims to minimize the response latency of task
requests in edge-computing-enabled transportation systems
through rational cooperation among multiple edge servers. To
this end, we can study the task offloading decisions problem
with the objective of minimizing response latency in each slot
t. Based on the above definitions, the task offloading decisions
problem is formalized as

P1: min
xt,yt

(
TLt + CLt + FLt) (5)

subject to:
M∑

j=0

xt
ij = 1 ∀si ∈ S (5a)

N−1∑

i=0

rt
ix

t
ij ≤ capyt

ij
∀cyt

ij
∈ C (5b)

N−1∑

i=0

rt
ix

t
ij ≤ capj ∀cj ∈ C (5c)

xt
ij ∈ {0, 1}, yt

ij ∈ {0, 1, . . . , M} ∀si ∈ S ∀cj ∈ C (5d)

where (5a) constraints on task offloading, and (5b) and (5c)
are constraints on server capacity. Equation (5a) ensures that
all task requests are processed. Equation (5b) ensures that
the task requests migrated to each server do not exceed its
maximum capacity. Equation (5c) ensures that the number of
task requests does not exceed the maximum capacity of the
server after tasks are offloaded to each server. Equation (5d)
sets the value range of the decision variable. Moreover, we
define xt = {xt

0,0, . . . , xt
N−1,M} and yt = {yt

0,0, . . . , yt
N−1,M}.

A summary of the key notations is provided in Table I.

IV. TRANSEDGE OVERVIEW

P1 is a constrained mixed integer linear programming
problem (MILP), and it is also an NP-hard problem [36],
which cannot be solved in polynomial time. To this end, we
propose a novel framework named TransEdge, to solve the
above MILP problem while maintaining minimal response
latency in edge-computing-enabled transportation systems.
Specifically, we first propose a node placement scheme based
on an AGA to achieve reasonable placement of IoT sensors,
aiming to minimize TL. Subsequently, a DRL framework
based on the GNN is designed to make the decision of task
offloading. Finally, we introduce a task forwarding strategy
based on the greedy algorithm to facilitate collaboration
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(a) (b)

(c)

(d)

Fig. 2. TransEdge overview. In (a), spatiotemporal data consists of spatial data between sensors in the transportation system (i.e., weighted adjacency matrix)
and time-varying task request data, which is the input of TransEdge. In (b), we obtain the placement scheme of sensor nodes based on the AGA. This scheme
can preassign each sensor node to a specific server. Furthermore, the task forwarding strategy based on the greedy algorithm facilitates collaborative task
offloading among edge servers. In (c), a GNN is used to capture the spatial features in the transportation system, and the richer information composed of
this feature and other environmental states is used as the input of reinforcement learning. In (d), the Actor–Critic interacts with the environment and makes
reasonable task offloading decisions. Also, it adjusts its policy based on TD-error, aiming to make better decisions in the future.

TABLE I
SUMMARY OF NOTATIONS

among edge servers. The framework of TransEdge is shown
in Fig. 2.

A. Node Placement Scheme Based on Adaptive Genetic
Algorithm

Given P1 is difficult to solve directly, we consider solving its
subproblems separately. In this section, we need to minimize
TLt in P1. According to (1), the TL optimization problem P2
is defined as

P2: min
xt

⎛

⎝
N−1∑

i=0

M∑

j=0

rt
ix

t
ijdij

⎞

⎠ (6)

subject to: (5a), (5c), (5d).

Theorem 1: The TL optimization problem P2 is NP-hard.
Proof: We prove the NP-hardness of P2 by reducing

from the multiple knapsack problem (MKP), which is known
to be NP-hard [37]. Given N items and M knapsacks, each
item i has a weight wi and a value vi. Each knapsack
j has a maximum capacity Wj. The MKP selects suitable
items put into knapsacks, ensuring that the total capacity of
each knapsack does not exceed its maximum capacity while
maximizing the total value of the items in all knapsacks. In
P2, the IoT sensor si corresponds to the item i in the MKP,
the task request ri corresponds to the item weight wi in the
MKP, the distance dij represents the value of the item in the
MKP and capj corresponds to the maximum capacity Wj in
each backpack in the MKP. It can be seen that the solution to
P2 is also the optimal solution to the MKP. Therefore, P2 is
an NP-hard.

To solve problem P2, we propose a node placement
scheme based on an AGA. The adaptability of AGA is
reflected in 1) adaptively adjusting the population to obtain
better evolved individuals; 2) adaptively update the crossover
probability, aiming to expand the exploration space without
reducing search efficiency; 3) adaptively update the muta-
tion probability, reducing search randomness and accelerating
the convergence; and 4) adaptively exiting the search, to
avoid overfitting and save computational resources. Fig. 3
shows the process of AGA, which is divided into five steps,
as follows.

1) Step 1 (Generate Population): A 2-D array of Popsize×
N is generated as the population P of AGA, where
Popsize is the size of the population, and N is the scale
of a single node placement solution, which is equal to
the number of IoT sensors. The values in the 2-D array
are integers between 0 and M, which indicates gene
encoding and also indicates which server the IoT sensor
should be assigned to.
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(a) (b) (c) (d)

Fig. 3. Instance of AGA for node placement scheme. In (a), an edge network and input data are given. In (b), AGA selects individuals as parents from the
population by natural selection, e.g., p and q, which are solutions to node placement, representing which IoT sensor is associated with which edge server. Given
the constraints of space, only the results for p are presented in this figure. In (c), the parents cross over with a certain probability to achieve the combination
of genes, thus obtaining new individuals. In (d), AGA realizes the mutation of its own genes based on the new individuals generated in (c), enriching the
diversity of the population and ensuring that AGA does not fall into the optimal. AGA needs to repeat iterations from (b) to (d) until convergence to obtain
better solutions.

2) Step 2 (Natural Selection): In each iteration, AGA
selects superior individuals from the population P to
evolve through a roulette wheel selection method [38].
This means that individuals with higher fitness have a
greater probability of being selected as parents. Fig. 3(b)
shows that AGA selects two individuals p and q for
evolution. The blue block, yellow block, orange block,
and green block represent server i, server j, server k, and
server l, respectively. Due to space limitations, we only
show the results of p.

3) Step 3 (Crossover): Based on the individual selected
in step 2, AGA completes the crossover between indi-
viduals with the crossover probability Crossoverprob,
achieving the combination of different genes to obtain
new individuals. As shown in Fig. 3(c), p and q perform
the crossover, and the 3rd, 4th, 6th, 7th, 9th, and 12th
genes of p are updated. The yellow line represents the
node placement results after updating individual p.

4) Step 4 (Mutation): Based on the individual updated in
step 3, AGA mutates the genes of individuals themselves
with a mutation probability of Mutationprob, aiming to
obtain new individuals and store these new individuals
into P′. As shown in Fig. 3(d), the 4th and 6th genes of
the individual p have mutated. The red line shows the
node placement solution after updating individual p.

5) Step 5 (Update and Early Stopping): Update Population:
AGA merges the populations P and P′ and selects the
top Popsize individuals as the new population P based
on (6).
Update Crossover Probability: The crossover probability
aims to enhance the diversity of the new generation pop-
ulation. Dynamically adjusting the crossover probability
for AGA allows it to broadly explore the solution space
without reducing its search efficiency. The equation for
dynamically adjusting the crossover probability as

Crossoverprob = mean

⎛

⎝
M∑

j=0

rt
ix

t
ijdij/

N−1∑

i=0

M∑

j=0

rt
ix

t
ijdij

⎞

⎠.

(7)

Update Mutation Probability: The mutation probability
is intended to ensure that the genetic algorithm does
not stagnate at the local optimal solution. However, an
unreasonable mutation probability may cause the search
process of the algorithm to become random, making it
difficult to converge to the optimal solution. To this end,
we implement the dynamic adjustment of the mutation
probability, as follows:

Mutationprob = max

⎛

⎝
M∑

j=0

rt
ix

t
ijdij/

N−1∑

i=0

M∑

j=0

rt
ix

t
ijdij

⎞

⎠. (8)

Early Stopping: Early stopping can avoid overfitting
while saving computational resources. For example, if
the difference between the optimal fitness value and
the average fitness value is smaller than a threshold
(e.g., 0.001) many times (e.g., ten times), it can be
considered that the algorithm has converged. Exiting
computation at this time can prevent the waste of
computational resources.

By repeating steps 2–5 many times, we can obtain a solution
that satisfies P2.

B. Collaborative Task Offloading Scheme Based on Graph
Reinforcement Learning

In Section IV-A, we have obtained the solution of P2. Next,
we define the other subproblems of P1 as

P3: min
yt

(
CLt + FLt) (9)

subject to: (5b)−(5d).

P3 denotes how to assign appropriate task requests to each
server to minimize the sum of CL and FL. It can be seen
from (2) that the size between the number of task requests and
the capacity of the destination server determines whether the
task forwarding operation is required. Therefore, there may be
two different expressions of P3.

1) When the capacity of the destination server is sufficient
to handle the arriving task requests, at which time there
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is no requirement to forward the task request to other
servers, i.e., FLt = 0. Therefore, P3 can be rewritten as

P3-1: min
yt

⎛

⎝
N−1∑

i=0

M∑

j=0

xt
ij

rt
i

capyt
ij

⎞

⎠

subject to: (5b)−(5d). (10)

2) When the capacity of the destination server cannot
handle all arriving task requests, it is necessary to
migrate the remaining task requests to other servers for
processing, and the FL is as shown in (3). Therefore, P3
can be rewritten as

P3-2: min
yt

⎛

⎝
N−1∑

i=0

M∑

j=0

xt
ij

capyt
ij

capyt
ij

+
N−1∑

i=0

M∑

j=0

xt
ijr
′t
i djyt

ij

⎞

⎠

subject to: (5b)−(5d). (11)

The interdependence of decisions in P3-1 and P3-2 makes
finding an optimal solution extremely difficult. To solve the
aforementioned problem, we design a task offloading method
using the GNN and Actor–Critic, and a task forwarding strat-
egy based on the greedy algorithm. Fig. 4 gives an example
of these two schemes to solve P3-1 and P3-2. Next, we will
introduce these schemes in detail.

1) Task Offloading Scheme Based on Graph Neural
Network and Actor–Critic: Different from other fields, the
IoT sensors in edge-computing-enabled transportation systems
affect each other, leading to task requests with spatial fea-
tures. Traditional DRL cannot learn this feature [39], [40].
Fortunately, the advent of GNNs makes it possible to learn
spatial features contained in task requests [41], [42]. To this
end, we hope to improve DRL with the GNN, given it the
ability to capture the spatial features, thereby improving the
accuracy of its task offloading decision.

Fig. 2(c) shows the two-layer operation of the GNN, the
process can be expressed as

sf l+1
i = σ

⎛

⎝
∑

j∈Ni

1

cij
sf l

j wl

⎞

⎠ (12)

where Ni represents the set of neighbors of IoT sensor si. cij

denotes the value of the square root of the degree product of
si and sj. sf l

j represents the spatial feature of sj at the lth layer.
w is a trainable weight parameter. σ is the activation function.
Equation (12) signifies that each node’s spatial features are
updated through a weighted average of the information from
its own and its neighbors.

On the basis of spatial features, we introduce the Actor–
Critic reinforcement learning framework to predict the
decision of task offloading, as shown in Fig. 2(d). Next, we
will introduce the framework in detail.

1) Actor–Critic Framework: The Actor–Critic is highly
efficient in solving the problem of task offloading
between edge servers [43], [44]. In this article, the Actor
is a fully connected layer with an input dimension of
128 and an output dimension equal to the number of
servers, which is utilized to determine the task offloading

Fig. 4. Example of solving P3-1 and P3-2. In this example, the task
requests (ri) generated by the IoT sensor are offloaded to the server E0 via
the BS to wait for processing. Next, the agent (composed of a neural network)
interacts with the environment (including information, such as remaining task
requests, remaining capacity of the server, and spatial feature between IoT
sensors) to generate an action policy (a), i.e., the probability of offloading
task request to each server (i.e., 0.75, 0.13, 0.11, and 0.01) and the server with
the largest probability value is selected as the destination server (i.e., E0).
Finally, task requests are allocated reasonably based on the size relationship
between the task request volume and the remaining capacity of the server
(RCap). Specifically, when the number of task requests is 200 (red dotted),
the remaining capacity of server E0 is sufficient, and all task requests can
be processed using only server E0. When the number of task requests is 800
(blue dotted), server E0 can handle up to 600 task requests, and the remaining
200 task requests need to be migrated to a reasonable server (i.e., E2) for
processing through our task forwarding strategy to improve user experience.

decision. The Critic is also a fully connected layer with
an input dimension of 128 and an output dimension is 1,
which is employed to assess the current task offloading
decision. Besides, there is a common fully connected
layer, whose input dimension is the sum of the number
of IoT sensors, the number of servers, and the spatial
feature of each IoT sensor plus 1, and the dimension of
the output layer is 128. The common fully connected
layer acts as a shared layer for the Actor and Critic.
We hope that the Actor can make better decisions and
enable the Critic to give better scores to corresponding
decision making through training.

2) Action Space and State Space: According to the AGA
scheme in Section IV-A, we know that the task request
on the IoT sensor will first be transmitted to the corre-
sponding server for processing (either processed on the
current server or offloaded to other servers). At each time
slot t, the Actor–Critic processes the task request on each
IoT sensor one by one. The Actor determines where to
process the task requests of the IoT sensors based on the
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current state of the environment. Here, the action space
of the task offloading decision is [0, 1]×(M+1), which
represents the probability that the current task request is
offloaded to M+1 servers for processing. (In this article,
we select the server corresponding to the maximum
probability value as the destination server.) The state can
be expressed as Statet = {RRt, RCapt, SFt}. RRt is the
remaining task request. RCapt represents the remaining
capacity set of all servers. SFt is the spatial features of
all IoT sensors learned by the GNN.

3) Reward Function: In reinforcement learning, an agent
obtains a certain reward when it performs an action.
The objective of the Actor–Critic model is to optimize
the cumulative reward through training to obtain an
appropriate computation offloading scheme. At time slot
t, the task request of IoT sensor si is offloaded to servers,
whose reward can be expressed as

rewardt = − CLt
i

Cap− Rcapt
i
−

FTt
q∑

q=0

γ (13)

where γ represents the penalty for the forwarding
operation. Rcapt

i represents the remaining capacity set
of the server after processing the task request of si at
time slot t. According to (2), CLt

i indicates the CL for
processing task request r′ at time slot t. FTt

q indicates
the number of forwarding times when processing task
request rt

i at time slot t. Reinforcement learning usually
aims to maximize reward, while our goal is to minimize
response latency. Therefore, we need to take the negative
value of the reward.

4) Loss Function: The temporal difference error (TD-error)
represents the discrepancy between the estimated value
of the current state and the actual reward obtained [45].
In the Actor–Critic algorithm, the result generated by
the Critic is used to calculate the TD-error. The TD-
error is often used to update the value estimation of
the Critic itself and is also used as a signal to guide
the adjustment of the Actor’s policy. After continuous
iteration, the policy generated by the Actor will tend to
choose actions that can reduce the TD-error, which is
better than expected. The TD-Error plays a bridging role
in the learning process of the Actor and Critic, enabling
them to learn collaboratively and continuously improve
the estimation of policy and value functions to achieve
better performance. For this purpose, we devise a loss
function based on TD-error to update the neural network,
which can be expressed as

Loss = −Apro × δ + δ2 (14)

where Apro is the logarithmic probability of the Actor
executing a specific action. TD-error represents δ =
reward+0.99×next_value−value. reward is calculated
based on (13). value and next_value are calculated by
the Critic based on the current state and the next state.

2) Task Forwarding Strategy Based on Greedy Algorithm:
In general, task requests are generated randomly. When there
are fewer task requests, only a single server can handle all

Algorithm 1 Task Forwarding Strategy Based on Greedy
Algorithm
Input:
r′ // the task request that needs to be processed
Cap // the capacity set of servers
M // the number of edge servers
Output:
CF // the sum of CL and FL
based on (9)
1: CF ← 0, RCap ← Cap // RCap represents the remain

capacity set of server;
2: repeat
3: if

∑M−1
i=0 �= 0 then // Edge servers have capacity;

4: Id ← Find(RCap[:M]); // Find the edge server
with the best capacity based on greedy algorithm;

5: if RCap[Id] ≥ r′ then
6: CF← CF + r′/Cap[Id];
7: RCap[Id]← RCap[Id]− r′;
8: r′ ← 0;
9: else

10: CF← CF + RCap[Id]/Cap[Id];
11: r′ ← r′ − RCap[Id];
12: RCap[Id]← 0;
13: end if
14: else// Only the cloud server has the capacity;
15: CF← CF + r′/Cap[M];
16: RCap[M]← RCap[M]− r′;
17: r′ ← 0;
18: end if
19: until r′ = 0
20: return CF

requests. In this case, the solution given by the above task
offloading algorithm based on GNN and DRL is applicable.
However, with the increase of task requests, especially the
sudden increase of task requests (common in transportation
systems), it is easy to cause an increase in response latency
due to the limited capacity of a single server. Therefore,
it is necessary to design a reasonable strategy to migrate
the remaining task requests to the appropriate servers for
processing. To this end, we propose a task forwarding strategy
based on the greedy algorithm, as described in Algorithm 1.
The core idea of Algorithm 1 is that when the remaining
capacity of the current server cannot handle all incoming tasks,
some tasks need to be forwarded to a server with excellent
processing performance and still has the remaining capacity,
thus ensuring lower response latency.

Algorithm 1 accepts the task request r′, the capacity set of
servers Cap, and the number of servers M as input, aiming to
optimize the solution of P3-2, i.e., to minimize the sum of CL
and FL. The r′ comes from the remaining tasks after offloading
using reinforcement learning. We define the sum of CL and
FL as CF and the remaining capacity set of servers as RCap,
and initialize them. As long as the r′ is not 0, Algorithm 1
needs to continue forwarding the task until it is completely
processed (line 2).
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After the task request r′ arrives, Algorithm 1 first judges
whether edge servers still have the remaining capacity. If not,
they directly offload the task request r′ to the cloud (line 14)
update the task of r′, the remaining capacity set of the server,
and return the result. Otherwise (line 3), Algorithm 1 will use
the greedy algorithm to find the best-performing edge server
among those with remaining capacity, and use it to process
the current task request r′ to ensure the minimum CF (line 4).
However, not the remaining capacity of each edge server can
process the task request r′ at once. Algorithm 1 needs to judge
whether the selected edge server can process the task request
r′ at one time. If it can (line 5), it updates the task request
r′ and the remaining capacity set of the server, and returns
the result. Otherwise (line 9), after updating task request r′
and the remaining capacity set of the server, Algorithm 1 still
needs to continue using the greedy algorithm to find a suitable
server to process r′.

The main operations of Algorithm 1 include loop computation
(line 2) and Find function (line 4). The Find function is
implemented based on the greedy algorithm, and it needs to
traverse M servers, so its time complexity is O(M). The main
loop of Algorithm 1 is the repeat loop (lines 2–19). In the worst
case, the value of task request r′ (we assume the value is Z) is
decremented by a constant in each iteration, so this loop will
repeat Z times and the time complexity of this loop is O(Z).
Therefore, the time complexity of Algorithm 1 is O(M)×O(Z),
i.e., O(M × Z). In fact, the number of M is usually less than
100, or even less than 10. At each time slot t, the value of the
task request r′ (i.e., Z) is usually also around 10. In conclusion,
although the time complexity of Algorithm 1 is O(M × Z), it
is still within the acceptable range.

V. EXPERIMENTS

In this section, we outline the experimental setups and
discuss the results. The results obtained with TransEdge are
compared with four algorithms for task offloading in edge-
computing-enabled transportation systems. The source code of
TransEdge is available in [46].

A. Experimental Setups

Data set: We validate the proposed model on two highway
traffic data sets PEMS4 and PEMS8, which come from the
real world and are widely used in the traffic field [47]. PEMS4
represents traffic data from the San Francisco Bay Area, which
contains 307 IoT sensors and spans from January to February
2018. PEMS8 contains traffic data from San Bernardino for
July–August 2016, including 170 IoT sensors. In this article,
we select data of 1000 consecutive time slots (approximately
3.5 days, where each time slot represents the number of
task requests generated per 5 min) from the data set for
experimental verification, as shown in Fig. 5. Fig. 6 shows the
arrival of task requests from two different sensors in PEMS8.

Parameter Settings: All the results are evaluated on Intel
Xeon Silver 4112 2.2-GHz CPU and 13 GB of memory. The
population size Popsize in AGA is 100. The GNN utilized in
this article is composed of two layers. The input dimension of
the first layer is determined by the data set’s dimensions (2816

Fig. 5. Example of the total task requests for each time slot in two data sets.

Fig. 6. Example of the task requests for each time slot on two sensors in
PEMS8.

for PEMS8, and 2624 for PEMS4), and the output dimension
is 128. The input dimension of the second layer is 128, and
the output dimension is 6. The number of edge servers M is 5.
N is determined by the data set, N is 170 in PEMS8, and N is
307 in PEMS4. σ in (12) is the activation function ReLU [48]
and γ in (13) is 0.03. The value of Cap is determined by
the data set, whose unit is task request per second (i.e., the
number of task requests processed by the edge server per
second) [49]. When evaluating TransEdge on PEMS8, Cap =
{400, 50, 100, 50, 200, 1000}, when evaluating TransEdge on
PEMS4, Cap = {800, 50, 100, 50, 300, 1000}.

Baseline Algorithms: This article demonstrates the advan-
tages of TransEdge by comparing it with four baseline
algorithms, namely, GWCN [3], GADQN [19], Near, and
Random. GWCN is the first to achieve collaborative task
offloading in transportation systems where task requests are
unevenly distributed in space and time. It utilizes the GNN
to estimate the number of task requests in the future and
preallocate corresponding resources, while implementing task
request scheduling between edge servers based on DDPG.
Similar to GWCN, GADQN also considers task requests in
transportation scenarios. Differently, GADQN considers two
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Fig. 7. Comparison of the reward.

situations: 1) during off-peak periods, it considers offloading
tasks directly to edge servers and models this problem as an
IP, while using SAGA to solve this problem and 2) during
peak periods, it uses DQN to determine whether to process
task requests locally or offload them to edge servers. Near
implies that task requests from sensors are only transmitted to
the nearest edge servers for processing. Random denotes that
the task request of the sensor is randomly transmitted to any
edge server for processing.

Evaluation Metrics: We evaluate the TransEdge with two
metrics, including the response latency and success rate. The
response latency is a key indicator in evaluating the edge-
computing-enabled transportation system [50]. Considering
that the generated tasks can be processed using either edge
servers or central cloud servers, where the latter usually incur
high response latency to meet the real-time requirements of
terminal users and can be regarded as failures. To this end,
we define the success rate as

SuccessRatet = 1− rt
cloud∑N−1
i=0 rt

i

(15)

where rt
cloud denotes the total number of task requests pro-

cessed by the central cloud server in the tth time slot.

B. Results and Analysis

1) Convergence of TransEdge: As shown in Fig. 7, we
evaluate the convergence of TransEdge. The two curves in
the figure represent the reward functions of the state-of-the-
art algorithm GWCN and our proposed scheme, respectively.
It can be seen that TransEdge has a similar convergence
performance to GWCN. Also, their reward gradually increases
over time, and gradually flattens after 200 time slots, but there
are still minor fluctuations. This is because the transportation
scenario is dynamically changing and the volume of task
requests arriving also varies. Since the reward value is related
to the task request volume, the reward value will fluctuate
within a small range.

2) Rationality of AGA in TransEdge: To explore the ratio-
nality of AGA, we introduce the original genetic algorithm
(OGA) in TransEdge to compare with TransEdge with AGA.

Fig. 8. Performance comparison of AGA and OGA.

Fig. 8 shows that the AGA scheme is superior to OGA in
terms of convergence speed and TL. This is because AGA
adopts adaptively adjusted crossover probability and mutation
probability, enabling it to generate solutions that adapt to
the current state more optimally and stably. Furthermore,
the mechanism of updating the population in AGA makes it
possible to dynamically retain the current optimal solution.
Last but not least, the introduction of an early stopping
mechanism allows it to exit the optimization phase faster while
avoiding the waste of computational resources.

3) Performance Comparison Under Long-Term Continuous
Constraints: We compare the results of TransEdge with
four baseline algorithms (i.e., Random, Near, GADQN, and
GWCN) on PEMS8 and PEMS4, as shown in Figs. 9–11.
Overall, TransEdge outperforms all schemes in performance
after convergence (i.e., after the 200th time slot in Fig. 7) on
the two real data sets, demonstrating the advantages of our
proposed scheme. Specifically, compared to the state-of-the-art
algorithm (i.e., GWCN), TransEdge improves response latency
performance by at least 9.3% and 3.7% on the PEMS8 and
PEMS4 data sets. Moreover, we can also make the following
observations.

1) The scheme based on reinforcement learning (i.e.,
GADQN, GWCN, and TransEdge) is better than the
traditional scheme (i.e., Random and Near). This is
because the reinforcement learning-based schemes, after
a long period of interaction with the environment, have
learned how to deal with the sudden increase in task
requests.

2) In overall performance, Random always has the highest
latency because it cannot find suitable edge servers
for task request transmission and forwarding, i.e., it
increases the probability of forwarding task requests to
the central cloud server and reduces the success rate.
Although Near has the lowest FL, due to the sudden
increase of task requests, it only forwards task requests
to the server closest to itself, resulting in a high CL.

3) In partial performance, the TL of TransEdge is better
than other schemes, which is attributed to AGA being
able to obtain a better node placement solution in a
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(a) (b)

(d)(c)

Fig. 9. Latency comparison of different algorithms under long-term continuous constraints on PEMS8.(a) Comparison of the total response latency.
(b) Comparison of the TL. (c) Comparison of the CL. (d) Comparison of the FL.

short time. Compared with other solutions, even though
TransEdge needs more FL to achieve task scheduling,
it can always find the servers with better capacity for
processing task requests, hence its CL is lower. Last but
not least, TransEdge has the highest success rate (this
value is close to 99%), which means that it offloads
fewer task requests to the central cloud server for
processing, effectively reducing response latency.

4) Performance Comparison Under Different Capacity: As
shown in Figs. 12 and 13, we evaluate the performance
of all schemes by varying the total capacity of all edge
servers. The results indicate that with the increase in the
total capacity of the edge server, the average response latency
of all schemes will decrease and the success rate of them
will increase. The reasons are: 1) the better the edge server
capacity, the shorter the CL for processing the same task
request and 2) as the capacity of edge servers increases, the
probability of forwarding task requests to the central cloud
server gradually decreases, thereby improving the success
rate of task request processing. Particularly, the reinforce-
ment learning-based solutions (i.e., TransEdge, GWCN, and

GADQN) outperform Random and Near in handling sudden
task requests. The reason is that reinforcement learning enables
the agent to learn from experience gained through interacting
with the environment and improve based on TD-error, thus
endowing the agent with the ability to cope with sudden task
requests. Specifically, GADQN considers the off-peak period
and the peak period separately and its performance in the off-
peak period is similar to Near, and the performance in the peak
period is similar to GWCN. Different from them, TransEdge
uses AGA for efficient IoT sensor placement during the trans-
mission process and employs Actor–Critic for task offloading
after capturing the spatial features among IoT sensors through
GNNs. Last but not least, when the server cannot handle
the current task request, a more flexible and efficient greedy
strategy is employed for task forwarding. The above strategies
make TransEdge achieve the best performance. Particularly,
compared with GWCN, our TransEdge improves the average
response latency by 3.5%–9.5% (on PEMS8) and 4.7%–9.4%
(on PEMS4).

5) Performance Comparison Under Different Resource
Placement: Fig. 14 shows that as the total capacity of all edge

Authorized licensed use limited to: Central South University. Downloaded on November 23,2024 at 00:44:52 UTC from IEEE Xplore.  Restrictions apply. 



38162 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 23, 1 DECEMBER 2024

(a) (b)

(d)(c)

Fig. 10. Latency comparison of different algorithms under long-term continuous constraints on PEMS4. (a) Comparison of the total response latency.
(b) Comparison of the TL. (c) Comparison of the CL. (d) Comparison of the FL.

(a) (b)

Fig. 11. Success rate comparison of different algorithms under long-term continuous constraints. (a) Success rate comparison on PEMS8. (b) Success rate
comparison on PEMS4.

servers increases, the response latency of some methods (e.g.,
Random and Near) does not necessarily decrease. This moti-
vates us to explore the impact of different resource placements

on the performance of all schemes, as shown in Fig. 14.
It can be seen that despite changing resource placement,
TransEdge still has the lowest response latency compared
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(a) (b)

Fig. 12. Latency comparison of different algorithms under different capacity. (a) Latency comparison on PEMS8. (b) Latency comparison on PEMS4.

(a) (b)

Fig. 13. Success rate comparison of different algorithms under different capacity. (a) Success rate comparison on PEMS8. (b) Success rate comparison on
PEMS4.

(a) (b)

Fig. 14. Latency comparison of different algorithms under different resource placement. (a) Latency comparison on PEMS8. (b) Latency comparison on
PEMS4.

to the other methods. Moreover, there are differences in
the average response latency of all schemes under different
resource placements. Specifically, the average response latency

difference ranges from 2.8% to 10.6% on PEMS8 and 1.1%
to 56.5% on PEMS4. The reason for this phenomenon may
be that the performance of the server serving the sensor
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(a) (b)

Fig. 15. Success rate comparison of different algorithms under different capacity. (a) Success rate comparison on PEMS8. (b) Success rate comparison on
PEMS4.

has degraded, causing the tasks that originally needed to be
processed on the current server to be frequently forwarded to
other servers for processing, especially to the central cloud
server, which implies a reduction in the success rate of the task
request processing (as shown in Fig. 15), thereby increasing
the response latency. Conversely, the response latency is
reduced. This exploration is of great significance, and it
promises to minimize the response latency through reasonable
resource placement under the condition of limited resources.

VI. CONCLUSION

In this article, we propose a novel task offloading scheme
based on GNNs and DRL in an edge-computing-enabled
transportation system. Specifically, we first introduce a node
placement scheme based on the AGA, aiming at allocating
IoT sensors to appropriate edge servers to minimize TL. Then,
we present an improved DRL scheme based on the GNN to
learn the spatial features between sensors, aiming to obtain
more reasonable task offloading decisions. Finally, a task
forwarding strategy based on the greedy algorithm is designed
to facilitate collaborative task offloading among different edge
servers and overcome the system instability caused by the
sudden surge of task requests. Extensive experimental results
show that TransEdge reduces the response latency by at least
9.3% (on PEMS8) and 3.7% (on PEMS4) compared to four
baseline algorithms while achieving a success rate of 99%.
Interestingly, the average response latency of the same scheme
under different resource placements differs by up to 56.5%,
which implies that predicting the resource placement scheme
of each edge server is crucial in the future.
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