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Abstract—The accelerated integration of edge computing and
artificial intelligence has promoted the rise of edge intelligence,
which is regarded as the key to solving the last-mile delivery
problem of artificial intelligence technology. Although previous
research has made many efforts in this area, they have struggled
to serve the scenario containing multiple heterogeneous task re-
quests. This challenge is further exacerbated when the number of
terminal devices increases and multiple edge servers are required to
collaborate to handle task requests. To this end, this paper proposes
a fine-grained Collaborative DNN Model Selection scheme for
heterogeneous edge computing systems (CoMS), aiming to promote
cooperation between edge servers and achieve more effective model
selection. Specifically, we first design a reinforcement learning
scheme with real-time dynamic normalization strategy, aiming to
accelerate model convergence and improve the efficiency of model
selection. Next, we introduce a model selection strategy based on
greedy algorithm and an efficient fine-grained collaborative model
selection strategy respectively to promote cooperation between
edge servers, thereby further achieving a balance between inference
accuracy and overhead. Extensive experimental results show that
compared with baselines, our CoMS reduces the average trade-off
overhead by 4.2% to 12.8% and improves the success ratio by 3%
to 16%.

Index Terms—Deep learning, deep reinforcement learning, edge
computing, edge intelligence, model selection.

I. INTRODUCTION

IN RECENT years, vision sensors (e.g., cameras) have been
widely used as a type of device for capturing images and

videos in fields such as smart factories, traffic management
systems, and unmanned driving [1]. The images and videos in
the above fields are often processed by deep learning models to
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ensure production safety and driving safety [2]. Such tasks need
to be processed (i.e., inference or prediction) by deep learning
models (e.g., Deep Neural Network, DNN) are called Deep
Learning Tasks (DLT) [3], and are also computation-intensive
and resource-intensive tasks [4]. Effectively handling the DLT
can improve air quality and employee safety as well as help
reduce investment in human and material resources [5]. How-
ever, when faced with numerous DLTs, resource-constrained
sensors (i.e., terminal devices) may be unable to maintain normal
operation (e.g., not able to perform shooting operations) due to
frequent calls to the DNN model. This problem can be solved
by offloading technology in edge computing to transfer tasks to
edge servers with rich resources and closer to users [6], [7].

As an emerging computing paradigm, edge computing can
achieve response in a shorter time due to its low-latency charac-
teristics [8], [9]. The convergence of artificial intelligence and
edge computing has given rise to edge intelligence, which pro-
vides an effective solution for efficiently processing DLTs [10],
[11]. Thanks to the advantages of edge computing, the deployed
DNN model can perform low-latency inference at the edge of
the network. Nevertheless, edge nodes are resource-constrained
(e.g., weak CPU or GPU), which becomes a performance
bottleneck when facing state-of-the-art DNN models such as
YOLO [12], SSD [13], and R-FCN [14].

To address the above issues, researchers have proposed many
model compression methods to promote the matching of DNN
models with resource-constrained edge nodes [15]. Specifically,
by applying knowledge distillation [16], model weight prun-
ing [17], quantization [18], etc., to compress DNN models.
The updated model has fewer weights, smaller model size, and
consume less resource. However, model compression harms the
inference accuracy of the model [19]. Therefore, we should not
blindly compress the model but flexibly select appropriate infer-
ence models for edge nodes with different resources. The latter is
defined as model selection, which can serve inference requests in
a resource-efficient manner [20]. Specifically, when edge system
resources are limited, the most appropriate model can be selected
for arriving inference requests and the inference accuracy can
be improved without violating resource constraints.

Given the advantages of the model selection strategy, re-
searchers have carried out some important research work. For
example, Romero et al. [21] developed a distributed inference
service system that can select appropriate model variants ac-
cording to queries with different service level goals (e.g., latency
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requirements). Wang et al. [22] simultaneously optimized video
configuration and network bandwidth allocation with Lyapunov
technology to achieve a trade-off between accuracy, latency, and
energy consumption. Gao et al. [23] formulated the model selec-
tion problem as an online optimization problem with long-term
constraints, whose goal is to minimize the total cost. However,
model selection becomes challenging for the following reasons:
(1) For arrival inference requests, they can be processed by
multiple DNN models. For example, YOLO, SSD, and R-FCN
can be used to process inference requests for target detection
tasks. To handle the same task, different DNN models require
resources and provide accuracy may be different. (2) We can
reduce resource overhead by sharing the same DNN model
instance to handle different types of inference requests (e.g.,
traffic analysis applications such as object counting and collision
analysis). (3) As the number of terminal devices increases, the
limited number of edge servers and the lack of good cooperation
among edge servers lead to a decrease in inference accuracy
and an increase in edge server operational overhead, which
impairs the quality of service and user experience. To solve the
above challenges, this paper proposes a Collaborative Model
Selection strategy for heterogeneous edge computing systems
based on deep reinforcement learning and greedy algorithms
(CoMS), aiming to select the most appropriate model for each
DLT, determine the number of instances of each DNN model,
and promote reasonable collaboration between edge servers,
thereby trade-off the inference accuracy and overhead of the
edge computing system. In particular, the main contributions of
this paper are as follows:
� We propose CoMS, a scheme for collaborative DNN model

selection in heterogeneous edge computing systems. It
promotes cooperation between edge servers and enables
more efficient model selection, aiming to trade-off the
inference accuracy and system overhead (i.e., increase the
inference accuracy while reducing the overhead of edge
systems as much as possible), thus improving the quality
of service and user experience.

� In the independent model selection stage, a reinforcement
learning scheme via Proximal Policy Optimization (PPO)
based on real-time dynamic normalization strategy is pro-
posed, which aims to alleviate the training instability prob-
lem caused by sudden increases in DLTs and accelerate
the model convergence, thereby enhancing the efficiency
of model selection.

� In the collaborative model selection stage, a model se-
lection strategy based on greedy algorithm is designed to
prevent discarding some DLTs due to edge server overload.
Moreover, an efficient fine-grained collaborative model
selection strategy is proposed to promote cooperation be-
tween edge servers, aiming to further achieve a trade-off
between inference accuracy loss and overhead.

� We verified CoMS through extensive experiments on two
large datasets. The results show that CoMS outperforms
various baselines in terms of the average trade-off overhead
and the success ratio.

The paper is organized as follows. Section II provides a
review of related work. Section III describes the system model

and problem formulation. Section IV introduces the CoMS.
The proposed solution is evaluated in Section V. This paper
is concluded in Section VI.

II. RELATED WORKS

With the widespread application of vision sensors (e.g., cam-
eras), people can easily access large amounts of image and video
data. Effective processing of the above visual information with
the help of deep learning techniques can drive the development
of such fields as product quality inspection [24], factory danger-
ous behavior detection [25], and traffic condition detection [26].
These tasks that rely on deep learning models for processing
(i.e., inference or prediction) are known as Deep Learning
Tasks (DLTs), and they are both also computation-intensive and
resource-intensive tasks [27]. In general, whether the system
can effectively handle DLTs determines whether the system can
guarantee the quality of service, user experience, and operator’s
revenue. Therefore, it is crucial to study the scheduling problems
(i.e., the offloading optimization problem in this paper) for DLTs
in edge computing systems.

Compared with processing traditional task requests, handling
DLT not only relies on hardware (e.g., end devices, edge servers,
or cloud servers, etc.), but also requires the support of various
DNN models [28], e.g., R-FCN, ResNet [29] and YOLO, etc.
With the accelerated integration of artificial intelligence and
edge computing, edge intelligence has achieved unprecedented
development [30] and is expected to become a key solution for
artificial intelligence in the ‘last mile’ problem [31]. Edge intelli-
gence inherits the advantages of edge computing, allowing DNN
models to process (i.e., inference or prediction) DLT with lower
latency at the edge of the network closer to the user. Nevertheless,
the limitations of edge server resources (e.g., weak CPU or GPU)
may become a bottleneck in system performance when faced
with some advanced DNN models (usually containing more
parameters) with higher resource requirements.

To address the resource constraints of edge device, researchers
have attempted to compress existing DNN models with tech-
niques such as knowledge distillation [32], model weight prun-
ing [33], and quantification [34] to reduce the number of pa-
rameters and the size of DNN model, thus to reduces resource
consumption of systems. However, the above solution may have
a negative impact on the inference accuracy of model [19]. It can
be seen that blind compressing the DNN model is not desirable,
but appropriate inference models should be flexibly selected
based on edge servers with different resources. The latter is
called model selection, which is a strategy for task inference
without changing the accuracy of the DNN model [35]. However,
balancing the inference accuracy and server operation overhead
brought by different models, selecting the most appropriate
model for each task, and determining the number of instances of
each model remains a challenging problem of model selection
in edge computing systems.

To obtain a reasonable model selection solution, researchers
have made many efforts. For example, Lu et al. [36] em-
ployed a contextual multi-armed bandit machine framework
to achieve optimal model selection decisions. Yang et al. [37]
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simultaneously optimized video configuration and edge server
resource allocation through deep reinforcement learning, aim-
ing to ensure the real-time delay requirements of various
video streams while maximizing long-term inference accuracy.
Crankshaw et al. [38] proposed an inference service system with
two-layer framework. The system combines model selection and
model abstraction to achieve low latency, high throughput, and
high accuracy. However, the above solutions are difficult to apply
to multi-user scenarios.

To this end, Zhang et al. [39] formulated an optimization
problem to maximize the average inference accuracy, and solved
it with the Markov decision process. Wu et al. [40] studied col-
laborative DNN inference between multi-terminal devices and
servers, and jointly optimized task sampling rate selection, task
offloading, and resource allocation through a deep reinforcement
learning scheme, which aims to minimize service latency while
guaranteeing average accuracy requirements. Huang et al. [41]
provided latency guarantees for inference tasks by adaptively
adjusting the compression ratio of task data. Zhao et al. [4]
explored how to serve multiple artificial intelligence applica-
tions and models at the edge of the network, and the proposed
EdgeAdaptor achieves a trade-off between inference accuracy,
latency, and resource consumption.

Nevertheless, as the number of terminals and edge servers
increases, the above solutions will fail. The reason is that they
do not consider the cooperation between edge servers, failing to
respond to task requests on time, which damages the quality
of service and user experience. To this end, we propose a
collaborative DNN model selection scheme based on adaptive
strategy that aims to promote cooperation among edge servers,
full utilize system resources, reduce the edge server operational
overhead and improve the inference accuracy of the edge com-
puting system, thereby enhancing the quality of service and user
experience.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system model of the
heterogeneous edge computing systems. Then, we give an ex-
planation of the performance metrics. Finally, we describe the
problem formulation.

A. System Model

This paper explores using multiple edge servers to pro-
vide inference services for heterogeneous Deep Learning Tasks
(DLTs). An example of heterogeneous DLT inference in Edge
Computing-assisted Transportation Systems (ECTS) is shown
in Fig. 1. This example contains N IoT sensors (e.g., cameras),
J edge servers, and L base stations. The set of IoT sensors
is denoted as S = {s0, s1, . . . , sN−1}, which are often used to
capture image data of pedestrians, buses, cars, motorcycles, etc.
The set of edge servers is denoted as E = {e0, e1, . . . , eJ−1},
where each server is pre-deployed with different types of DNN
models for processing image data (i.e., task requests) captured
by IoT sensors. The set of DNN deployed on the jth edge
server is represented by Dj = {dj0, dj1, . . . , dj(K−1)} and their
capacities areCapj = {capj0, capj1, . . ., capj(K−1)}, where K

Fig. 1. An example of model selection in edge computing-assisted transporta-
tion systems. In brief, the IoT sensors in the example are used to collect various
types of task requests and transmit them to appropriate edge servers through
base stations for processing. However, there are different DNN instances in
each edge server and the revenue obtained when processing task requests using
different instances is different. To improve the overall revenue of the system, it
is necessary to adapt the best DNN instance to the arrival task request.

is the number of DNN types. We define At
i as the number of ith

task requests in the tth time slot, where i ∈ I , I is the number of
task types. Base stations are used to receive image data (i.e., task
requests) captured by IoT sensors and send them to edge servers.
In this scenario, it is challenging to select an appropriate DNN
model for handling different tasks. As the number of IoT sensors
increases and collaborative processing tasks between multiple
edge servers are required, this challenge is further exacerbated.

B. Performance Metrics

Edge server operational overhead: This paper considers the
operational overhead incurred by running DNN model instances
on edge servers, which is determined by both energy consump-
tion and response costs [42]. Here, ck represents the unit cost
of running one instance of the kth DNN model. The system’s
operational overhead is the total accumulated overhead while
processing multiple tasks. Thus, this overhead depends on the
number of instances of the DNN model and the corresponding
unit cost. To illustrate more specifically, the total operational
overhead in the tth time slot is defined as follows:

U t
E =

∑

j∈J

∑

k∈K
ctky

t
jk, (1)

where ytjk represents the number of the kth DNN’s instances on
the jth edge server in the tth time slot.

Inference accuracy loss: There are usually differences in the
inference accuracy obtained by processing tasks with different
DNN models. To accurately describe this case, aik represents
the inference accuracy achieved by the ith task under the kth
model. Meanwhile, xijk is set as the decision variable for model
selection, where xijk �= 0 means that the ith task is processed
by the kth model instance on the jth edge server. Thus, the total
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TABLE I
THE SUMMARY OF NOTATIONS

inference accuracy loss for all tasks in the tth time slot is defined
as:

U t
A =

∑

i∈I

∑

j∈J

∑

k∈K
(1 − aik)x

t
ijk, (2)

where aik is the inference accuracy of processing the ith task
request through the kth model.

C. Problem Formulation

To improve the overall performance of edge inference sys-
tems, our work aims to jointly optimize the edge server oper-
ational overhead and inference accuracy loss. This problem is
defined as follows:

P1 : min

T∑

t=0

U t
E + U t

A (3)

subject to:
∑I

i=0
xt
ijk ·At

i ≤ ctky
t
jk, ∀ck ∈ C, (3a)

∑J

j=0

∑K

k=0
xt
ijk = 1, ∀si ∈ S, (3b)

xt
ijk ∈ [0, 1], ytjk ∈ N, ∀si ∈ S, ∀cj , ck ∈ C, (3c)

where the (3a) aims to ensure that the number of task requests
processed by the edge server will not exceed the sum of all task
inference requests received. Equation (3b) guarantees that all
inference requests reach the destination edge server. Equation
(3c) specifies the value range of the decision variable and ensures
that the number of running DNN model instances is an integer
value. A summary of the key notations is provided in Table I.

IV. COMS OVERVIEW

P1 can be regarded as the model selection problem, which is
difficult to estimate accurately in the long-term optimization
process. In particular, the difficulty of solving this problem
increases significantly when the number of end devices is large

and multiple edge servers are required to be introduced for col-
laborative processing DLTs. Given the complexity of the above
problem, this paper considers splitting it into an independent
model selection problem and a collaborative model selection
problem. Meanwhile, we propose a collaborative DNN model
selection scheme based on deep reinforcement learning and
greedy algorithms (CoMS) to solve them, aiming to achieve a
reasonable trade-off between the inference accuracy loss and
edge server operational overhead. CoMS mainly consists of
independent model selection and collaborative model selection
stages. In the former, to meet the real-time requirements, we
introduce a deep reinforcement learning-based scheme to adap-
tively and quickly obtain the preliminary allocation result for
task requests. In the latter, we focus on the reasonable use
of idle resources and design a greedy algorithm-based scheme
to achieve accurate matching between task requests and DNN
instances, thereby further improving the revenue of the system.
The framework of CoMS is shown in Fig. 2.

A. Independent Model Selection

In the independent model selection phase, we focus on each
edge server independently matching appropriate DNN instances
for arriving task requests. Specifically, this involves determining
which DNN model instances in a given edge server should
handle which arriving task requests, aiming to achieve a balance
between inference accuracy and operational overhead initially.
This problem can be reduced to the multi-knapsack problem.
The proof is as follows.

Theorem 1: The model selection problem P1 is NP-hard.
Proof: We prove the NP-hardness of P1 by reducing from

the Multiple Knapsack Problem (MKP), which is known to be
NP-hard [43]. Given N items and M knapsacks, each item i has
a weight wi and a value vi. Each knapsack j has a maximum
capacityWj . The MKP selects suitable items put into knapsacks,
ensuring that the total capacity of each knapsack does not exceed
its maximum capacity while maximizing the total value of the
items in all knapsacks. In P1, the task’ type i corresponds to
the item i in the MKP, the amount of a certain task request At

i

corresponds to the item weight wi in the MKP, the sum of in-
ference accuracy loss and overhead

∑T
t=0 U

t
E + U t

A represents
the value of the item in the MKP and capjk corresponds to the
maximum capacity Wj in each backpack in the MKP. It can be
seen that the solution to P1 is also the optimal solution to the
MKP. Therefore, P1 is an NP-hard problem.

The emergence of deep reinforcement learning provides new
ideas for solving NP-hard problems [44]. Meanwhile, Proxi-
mal Policy Optimization (PPO) has outstanding performance in
many deep reinforcement learning schemes [45]. To this end, we
employ the PPO reinforcement learning algorithm to solve P1.
However, when the number of task requests fluctuates greatly,
if they are direct input into the traditional PPO reinforcement
learning scheme will bring the following adverse effects: 1)
increasing the complexity of the state space in PPO, making the
learning process more difficult, 2) hurting the training stability,
especially at the early stages of training, the model may have
difficulty in adapting to extreme or uncommon states, resulting
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Fig. 2. CoMS overview. In (a), different edge servers will receive different task requests (e.g., pedestrian pictures, bus pictures, bicycle pictures, and car pictures).
In general, the number of different types of task requests usually differs. Meanwhile, the number of task requests received by different edge servers is also
different and changes over time. The above information is usually used as the environment state as input for reinforcement learning schemes. In (b), the real-time
dynamic normalization strategy is first used to preprocess the environmental state information. Next, the PPO reinforcement learning algorithm is used to infer this
information to obtain the strategy (i.e., action) of model selection. Finally, PPO feedback on this action to the ECTS environment. In (c), we need to determine
whether there are ‘homeless tasks’ after the ECTS environment accepts the action from (b). If it exists, we perform Algorithm 1 to prevent the edge server from
dropping task requests due to overload. Otherwise, we will directly execute Algorithm 2 and be guided by utilization, achieve collaboration between edge servers,
and trade-off the inference accuracy loss and edge server operational overhead in the edge computing system. (a) Real-time dynamic heterogeneous tasks. (b) First
stage: independent model selection. (c) Second stage: collaborative model selection.

in a slow or unstable learning process. The common way to
overcome the above problems is to normalize the data. However,
unlike traditional scenarios, the task requests processed in our
work are generated in real-time and their number fluctuates
greatly, which is not suitable to be processed by traditional
normalization algorithms. To this end, we design a real-time
dynamic normalization strategy, aiming to accelerate the con-
vergence of PPO and enhance its generalization ability.

1) Real-Time Dynamic Normalization Strategy: Assuming
that X is the input raw data, we can initialize it with (4), where
X is used to represent the sequence consisting of the number of
various task requests assigned to each edge server and the DNN
instance state in the edge server.

X = 2 · X −minV alue

maxV alue−minV ale
− 1, (4)

where minV alue and maxV alue are the minimum value and
maximum value of the input raw data respectively. They can be
updated via (5) and (6),

minV alue = min(minV alue,min(X)), (5)

maxV alue = max(maxV alue,max(X)), (6)

where the initial value of minV alue is the maximum number,
and the initial value ofmaxV alue is the negative ofminV alue.

2) Model Selection Scheme Based on PPO Reinforcement
Learning: After obtaining the normalized input, we introduce

the PPO deep reinforcement learning algorithm to determine
which task request is processed by which DNN model. Next,
we will describe the scheme in detail.
� PPO framework: PPO belongs to a category of Actor-Critic

algorithm, which has superior performance and is expected
to solve problem P1. The Actor module of PPO consists
of an input layer, a hidden layer, and an output layer. The
dimension of the input layer is the product of the number of
task types and the number of DNN types, plus the number
of DNN types, i.e., I ×K +K. The dimension of the
output layer is the product of the number of task types
and the number of DNN types, i.e., I ×K. The input and
output dimensions of the hidden layer are both 64. The
Critic module has a similar structure to the Actor module.
The difference is that the output dimension of Critic is 1.

� State space and action space: The PPO algorithm needs
to reasonably assign task requests to appropriate DNN
instances for processing. In this paper, we draw on the idea
of the partial offloading strategy and consider assigning
each task to each DNN instance in proportion. At the same
time, the state information of each DNN instance in the
edge server will be changed accordingly. Therefore, we
can represent the above two kinds of information as the
environmental state, then the state space is I ×K +K,
which contains the normalized value of the number of task
requests on each DNN instance (i.e., I ×K) and the state
information of the DNN instance (i.e., K).
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Fig. 3. An example of bus picture task requests transferring between different
DNN instances.

The action space is {−1, 1} × (I ×K), which represents
the proportion of each DNN instance transferring a certain
type of task request to other DNN instances, where the
positive and negative signs indicate the direction of trans-
fer. Fig. 3 gives an example of bus picture task requests
transferring between different DNN instances. To illustrate
with the SSD instance example, if the action generated by
the Actor is -0.1 (yellow dotted line), it means that 10%
of the bus picture task requests in the SSD instance will
be transferred to the YOLO instance for processing. If the
action generated by the Actor is +0.7 (yellow dotted line),
it means that 70% of the bus picture task requests in the
SSD instance will be transferred to the R-FCN instance for
processing. The remaining part will be processed locally.

� Reward shaping: In the PPO algorithm, the agent will
receive a certain reward after performing an action. The
goal is to optimize the cumulative reward through training
to obtain the proper DNN model selection solution. The
reward obtained in the tth time slot can be expressed as,

reward = −U t
E + U t

A∑I
i=0 A

t
i

, (7)

where reward is defined as the sum of the average edge
server operational overhead and average inference accu-
racy loss incurred by processing each task request in the tth
time slot. Considering that the goal of deep reinforcement
learning is to maximize the reward function, while our work
aims to minimize the objective function, the value of (7)
is converted into a negative value. Through the long-term
interactive adjustment between the state, action, and reward
function, the agent will gradually learn and adapt to the
current scenario, and thus be able to solve the problem P1
by reasonably assigning DNN model instances for arriving
task requests.

B. Collaborative Model Selection

The solution obtained during the independent model selection
phase in Section IV-A is only a preliminary result. This is
because when faced with a large number of task requests, this
solution may cause some edge servers to be overloaded, or even
be unable to handle all arriving task requests, damaging the qual-
ity of service and user experience. To this end, the collaborative
model selection phase aims to achieve a more fine-grained model
selection strategy. The core idea is to decide what strategy based

on with/without ‘homeless task’ (i.e., task requests that cannot
be processed by the current edge servers in the t th time slot)
to adopt to maximize the overall performance of the system and
improve the quality of service and user experience. Next, we
will introduce the designed algorithm in detail.

1) Task Schedule Strategy Based on Greedy Algorithm:
Faced with ‘homeless tasks’, previous solutions usually drop
them, making it difficult to ensure high quality of service and
user experience. To solve this problem, we propose a model
selection strategy based on greedy algorithm, as shown in
Algorithm 1. The key to this strategy is to comprehensively
consider the task request allocation of DNN instances in all
edge servers and forward ‘homeless task’ to DNN instances that
still have processing capability and better performance, thereby
improving the quality of service and user experience.

Algorithm 1 accepts the current server state information
CurSS, the dependency matrix of task TD, the number of task
type TT , the number of DNN type DT , the number of server
ST , the current server id CurSID, and the utilization of the
DNN instance U and the queue of homeless task HTQ as input,
aiming to output the updated current server state information
CurSS. In Algorithm 1, it is necessary to traverse the number
of each task inHTQ (Line 1 to Line 30). The decision to exit the
loop depends on whether all tasks in HTQ have been processed
(Line 2 to Line 4). Then, each ‘homeless tas’ on the current server
is greedily forwarded to another edge server for processing
based on the utilization ratio (Line 5 to Line 29). However,
when the amount of tasks that need to be processed exceeds
the processing capacity of the selected edge server: 1) To ensure
higher inference accuracy, we prioritize using the same DNN
instance on other edge servers to process the remaining tasks
without damaging inference accuracy, as shown in Fig. 4(a). 2)
Suppose the selected DNN instance on any server cannot handle
the remaining tasks. In that case, we again consider selecting
the model instance with the smallest utilization to handle the
remaining tasks to ensure that the edge server is not overloaded,
as shown in Fig. 4(b).

The main operations of Algorithm 1 include 4 layers of loop
calculations, located in Line 1, Line 5, Line 7, and Line 9
respectively. In the worst case, the loop calculation in Line 1
requires iterating TT rounds and its time complexity is O(TT ).
The loop calculation in Line 5 needs to iterateDT rounds and its
time complexity isO(DT ). The loop calculation in Line 9 needs
to iterate ST rounds and its time complexity is O(ST ). Unlike
them, the loop calculation in Line 7 depends on UFlag. We as-
sume that in the worst case, the maximum number of executions
of this loop is Z, so its time complexity is O(Z). Therefore, the
time complexity of Algorithm 1 is O(TT ∗DT ∗ ST ∗ Z). In
fact, TT , DT , and ST are usually less than 10. Z is mainly
affected by HTQ, which counts the categories and number
of ‘homeless tasks’. In general, ‘homeless tasks’ account for
only a small part, so the value of HTQ is relatively small.
To summarize, although the time complexity of Algorithm 1 is
O(TT ∗DT ∗ ST ∗ Z), it is still within the acceptable range.

2) Fine-Grained Collaborative DNN Model Selection
Strategy: Without ‘homeless tasks’, edge servers will not be
overloaded. Nevertheless, the utilization of each server is not
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Fig. 4. The example of Algorithm 1 and Algorithm 2 in Fig. 2(c). In this example, Edge 1 and Edge 2 communicate with each other and the capacity of each
class of model instance is 100. Specifically, in (a), there are 20 homeless tasks in the YOLO instance in Edge 2. We prioritize forwarding homeless tasks to the
same instance in Edge 1 (i.e., YOLO) for processing without compromising the system’s inference accuracy. In (b), the remaining capacity of the YOLO instance
in Edge 1 alone cannot handle all the tasks from the YOLO instance in Edge 2. To avoid the adverse effects of model instance overload, we select the model
instance with the smallest utilization in Edge 1 (i.e., SSD) to process the remaining homeless tasks. In (c), considering that unbalanced server utilization will lead
to a waste of system resources and affect the quality of service and user experience, we introduce the utilization of each class of model instance as a guide to adjust
the distribution of tasks again. (a) Alg. 1(Case1). (b) Alg. 1(Case2). (c) Alg. 2.

balanced and there are even idle servers, resulting in a waste of
system resources. Considering that the utilization of each edge
server directly affects its processing performance, especially
under high load, the processing performance of the server will
be reduced accordingly, resulting in a significant increase in the
time required to process the same task, thereby affecting the
quality of service and user experience. To this end, we propose
an efficient fine-grained collaborative model selection strategy,
which employs the utilization of each class of DNN instances
as a guide to adaptively adjusting the task allocation of DNN
instances, thereby increasing the overall benefits of the system,
as shown in Algorithm 2 and Fig. 4(c).

Algorithm 2 takes the state information of all servers SS, the
number of task types TT , the number of DNN types DT , the
number of serversST , the DNN instance capacityDCap and the
maximum number of DNNs in the edge server MaxNumDIS
as input, and aims to output the number of DNN instances
deployed in each edge server. In Algorithm 2, we first count
the sum of tasks existing on DNN instances in each edge server
(Line 1 to Line 3). Next, according to the sum of tasks in all
edge servers on different DNNs divided by the capacity of the
corresponding DNN instances, the number of different DNN
instances required can be obtained (Line 4). To balance the load
between edge servers, we hope the number of DNN instances
started is reasonable in the corresponding edge server. To this
end, we obtain the number of DNNs required to be deployed

by dividing the maximum number of DNNs deployed on each
edge server by the sum of DNNs and multiplying by the sum of
DNN instances required (Line 5). However, the above solution is
approximately optimal and may not always be sufficient to han-
dle all tasks. Therefore, we need to obtain the number of DNNs
that still require deployment (Line 6). Even if the corresponding
number of DNNs is obtained, it is still a challenge to deploy
them on which edge server. To quickly solve this problem, we
use utilization as a guide to greedy finding edge servers suitable
for deploying the added DNN instances, thereby achieving the
purpose of saving overhead (Line 8 to Line 21).

The main operation of Algorithm 2 is loop calculation, where
Line 1 to Line 3 is the first loop and its time complexity
is O(ST ). Line 8 to Line 21 is the second loop calculation,
and its computational complexity is O(DT ). Line 9 to Line
20 is the third loop calculation, whose stopping condition is
that RemainD[j] is empty. Assuming the maximum value
of RemainD[j] is Z, the time complexity of the third loop
calculation is O(Z). Line 12 to Line 16 is the fourth loop
calculation, and its time complexity is O(ST ). Therefore, the
time complexity of Algorithm 2 is O(ST +DT ∗ Z ∗ ST ).
In fact, ST and DT are usually less than 10. And Z usually
represents the DNN that requires additional startup, so its value
is usually smaller. In summary, although the time complexity
of Algorithm 2 is O(ST +DT ∗ Z ∗ ST ), it is still within the
acceptable range.
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Algorithm 1: Task Schedule Strategy Based on Greedy
Algorithm.

V. EXPERIMENTS

In this section, we describe the experimental setup and re-
sults. The results obtained with CoMS are compared with three
baseline algorithms for model selection in edge computing. The
Python program implementation of CoMS is available in [46].

A. Experimental Setup

Dataset: We validate CoMS on two real-world datasets, i.e.,
PeMSD4 and PeMSD8. These datasets are widely used in
experimental tests in the transportation field (e.g., Internet of
Vehicles) [49]. PeMSD4 contains traffic data from 307 sensor
nodes in the San Francisco Bay Area, and the data spans January
to February 2018. PeMSD8 collected traffic data from 170

Algorithm 2: An Efficient Fine-Grained Collaboration
DNN Model Selection Strategy.

sensors in San Bernardino from July to August 2016. In the
simulation experiment, the sensors included in the above two
datasets can be regarded as end devices, and the collected data
can be considered as generated task requests.

Baseline Algorithms: This paper demonstrates the advantages
of CoMS by comparing CoMS with three baseline algorithms,
i.e., EdgeAdaptor [4], the classical PPO [48], and Random [47].
EdgeAdaptor utilizes multiple DNN instances to provide in-
ference services for multiple task requests in a single-server
edge computing system. However, it is difficult to perceive en-
vironmental changes and cannot benefit other servers. Similarly,
classic PPO only focuses on running on a single-server and
cannot benefit neighboring servers. The difference is that classic
PPO can adapt to the environment and give reasonable solutions
through long-term state, action, and reward function interaction.
Random means that arriving task requests are randomly sent to
any DNN instance for processing, and it is difficult to obtain
ideal results.

Parameter Settings: All the results are evaluated on Intel(R)
Xeon(R) Silver 4112 2.2GHz CPU and 13GB of memory. We
assume that the end device generates 5 different types of task

Authorized licensed use limited to: Central South University. Downloaded on February 17,2025 at 00:11:10 UTC from IEEE Xplore.  Restrictions apply. 



3180 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 74, NO. 2, FEBRUARY 2025

TABLE II
INFERENCE ACCURACY

TABLE III
THE RESOURCE CAPACITY OF THE EDGE SERVER FOR VARIOUS DNNS

requests, i.e., I = 5. These task requests will be responded to by
3 different DNN models deployed in edge servers, i.e., K = 3,
where the number of edge servers is J = 4. Table II shows
the inference accuracy obtained by different DNN models in
processing various task requests [4]. The capacity of the different
DNN models (i.e., YOLOv2, SSD, and R-FCN) is referenced
from [4], i.e., [180, 200, 190], which denotes the maximum
amount of task requests that can be processed on the DNN
instance in each time slot. Table III shows the maximum number
of DNN instances that the edge server can start, i.e., the resource
capacity of the edge server for various DNNs. N is determined
by the dataset, N is 170in PeMSD8, and N is 307in PeMSD4.
The training parameters of CoMS and the classical PPO are both
set as follows: the learning rate of the Actor module is 0.0003, the
learning rate of the Critic module is 0.001, the discount factor is
0.99, and the random seed is equal to 0. Other parameter settings
can be found in [46].

Evaluation Metrics: This paper uses the average Inference
Accuracy Loss (IAL), the average edge server Operational Over-
head (OO), the average Trade-Off Overhead (TOO, trade-off
between OO and IAL), and the success ratio (succRatio) as
evaluation metrics, which are key metrics for evaluating system
performance [20]. Here, the succRatio represents the proportion
of task requests successfully processed by the DNN instance.

B. Results and Analysis

1) The Convergence of CoMS: As shown in Fig. 6, we
evaluate the convergence of CoMS. The two curves in the figure
are the reward functions of the classic PPO algorithm and our
proposed scheme CoMS respectively. It can be seen that the
reward function of classic PPO is difficult to converge and
is correlated with the fluctuation of task requests (Fig. 5). In
contrast, the rewards of CoMS gradually increase over time
and stabilize after 10,000 time frames. The reason is that the
real-time dynamic normalization strategy limits fluctuating task
requests to a smaller interval, which alleviates the problem of
unstable training and accelerates model convergence.

Fig. 5. An example of the total task requests for each time slot in PeMSD8.

Fig. 6. Comparison of the reward.

TABLE IV
PERFORMANCE COMPARISON

2) Comprehensive Performance Comparison: We compare
the results of our proposed model selection method CoMS with
three baseline algorithms including EdgeAdaptor, PPO, and
Random, as shown in Table IV. Overall, CoMS is near-optimal
on the PeMSD8 and PeMSD4 datasets using all metrics, which
demonstrates the advancement of our scheme. Specifically,
CoMS achieves TOO and succRatio improvement compared
with the state-of-the-art model (i.e., EdgeAdaptor), i.e., TOO is
improved by 7.2% and 5.9%, and succRatio is improved by 5.3%
and 3.1% on PeMSD8 and PeMSD4, respectively. Furthermore,
we can make the following observations: (1) Random has the
worst performance. This observation indicates that randomly
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Fig. 7. Performance comparison of different algorithms under Long-Term continuous constraints. (a) Performance comparison on PeMSD8. (b) Performance
comparison on PeMSD4.

TABLE V
THE ABLATION TEST OF COMS

matching task requests to DNN instances hardly gives satis-
factory results. (2) PPO is a solution that can interact with the
environment and adaptively change its own policies. Although
it is worse than the state-of-the-art algorithm EdgeAdaptor in
terms of IAL and succRatio, its OO and TOO are superior.
This result shows that PPO can better achieve a trade-off
between edge server operational overhead and accuracy loss.
(3) Compared with other solutions, EdgeAdaptor tries its best not
to drop task requests while ensuring lower inference accuracy
loss, but the edge server operating overhead is too high. The
reason is that the lack of collaboration between edge servers
causes some edge servers to be overloaded and increases their
operational overhead. To summarize, Random is worse than
CoMS. This is because CoMS has optimization goals and can
guide it in a better direction. CoMS performs better compared to
PPO and EdgeAdaptor. This is because CoMS not only realizes
collaboration between edge servers, but can also adaptively
adjust its own policies. In addition, the introduction of real-time
dynamic normalization strategy greatly reduces the impact of
CoMS from task fluctuations and accelerates its convergence.

3) Ablation Test: To further explore the impact of
the fusion of multiple parts in CoMS, we compare
CoMS with CoMS(w/o_norm), CoMS(w/o_homeless),
and CoMS(w/o_fine), where CoMS(w/o_norm), CoMS(w
/o_homeless), and CoMS (w/o_fine) are part of CoMS and are

described as completing model selection without considering
normalization, ‘homeless tas’ judgment, and fine-grained
collaboration respectively. As shown in Table V, CoMS
performs better than CoMS(w/o_norm), CoMS(w/o_homeless),
and CoMS(w/o_fine). Specifically, CoMS (w/o_norm) performs
worse than CoMS. This is because when the real-time dynamic
normalization strategy is not used, the fluctuating task request
volume will reduce the performance of the PPO. CoMS
(w/o_homelss) is worse because some edge servers will drop
some tasks appropriately due to overload. CoMS (w/o_fine)
does not consider fine collaboration task allocation, which will
lead to high utilization of some edge servers, thus increasing
the edge server operational overhead.

4) Performance Comparison Under Long-Term Continuous
Constraints: Figs. 7 and 8 show the performance comparison
of multiple model selection schemes on the two datasets under
long-term continuous constraints. It can be seen that the TOO of
each method increases over time. The reason is that task requests
are generated in real-time and processing each task incurs the
corresponding edge server operational overhead and inference
accuracy loss. The succRatio is only relevant to the strategy
and hardly changes over time. In particular, our CoMS always
achieves the best results regarding TOO and succRatio, and its
numerical results show that CoMS improves TOO and succRatio
by at least 3.5% and 3.3% on both datasets, respectively. This
is because, 1) a collaborative approach guarantees that arriving
task requests will not be dropped due to overload of the DNN in-
stance, thereby maintaining a high succRatio, 2) the fine-grained
collaboration strategy guided by the utilization ratio enables
CoMS to reduce the edge server operational overhead while
maintaining high accuracy, thereby obtaining a lower average
trade-off overhead.

5) Utilization Comparison Under Different Algorithms: To
explore the reasons for the performance differences between
different schemes, we count the utilization of DNN instances in
each edge server at a certain time, as shown in Figs. 9 and 10.
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Fig. 8. Success ratio comparison of different algorithms under Long-Term continuous constraints. (a) Performance comparison on PeMSD8. (b) Performance
comparison on PeMSD4.

Fig. 9. Utilization comparison of different algorithms under different DNN instances on PeMSD8. (a) Utilization comparison on YOLOv2 instance. (b) Utilization
comparison on SSD instance. (c) Utilization comparison on R-FCN instance.

Fig. 10. Utilization comparison of different algorithms under different DNN instances on PeMSD4. (a) Utilization comparison on YOLOv2 instance.
(b) Utilization comparison on SSD instance. (c) Utilization comparison on R-FCN instance.

Firstly, we find that the utilization of different DNN instances
is different. This is because using different DNN instances to
process the same task usually results in different edge server
operational overhead and inference accuracy loss. To ensure
better performance of the system, it is necessary to match each
task with an appropriate DNN instance, resulting in differences

in the utilization of different DNN instances. Meanwhile, it can
be seen that the utilization of DNN has reached 100% in some
methods, which shows that there is a high probability of current
packet loss, making the success ratio less than 100%. Last but
not least, thanks to the collaborative strategy, our CoMS can
guarantee similar utilization of DNN instances of the same type
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in different edge servers, so it can better reduce overall overhead.
In general, a large difference in utilization rate can harm the
performance of DNN instances, e.g., increasing overhead.

VI. CONCLUSION

In this paper, we propose a fine-grained edge Collabora-
tive Model Selection scheme (CoMS) for heterogeneous task
requests, which aims to facilitate collaboration between edge
servers and achieve more effective model selection, thereby
improving the overall revenue of the system. Specifically, we
first present a PPO reinforcement learning scheme based on real-
time dynamic normalization strategy, which aims to alleviate
the training instability problem caused by sudden increases in
DLTs and accelerate the model convergence, thereby enhancing
the efficiency of model selection. Then, we design a model
selection strategy based on greedy algorithm that aims to prevent
discarding some DLTs due to edge server overload. Finally,
an efficient fine-grained collaborative model selection strategy
is introduced to promote cooperation between edge servers,
aiming at achieving a balance between the inference accuracy
loss and edge server operational overhead. We conduct extensive
experiments on two real-world datasets. The results show that the
proposed scheme CoMS reduces the average trade-off overhead
by 4.2% to 12.8% and improves the success ratio by 3% to 16%
compared with three baselines.

However, data drift will occur in the long-term operation
of real scenarios (i.e., the distribution between the data for
training the model and the data generated later is too different),
which makes the initially deployed inference model no longer
applicable. Therefore, continuous training of deployed inference
models will be a hot topic in future work. In addition, the data for
training the model comes from various edge servers. To avoid
privacy leaks, the algorithm designed considering this security
factor is more compatible with actual scenarios.
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