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Abstract—This paper explores the design of an architecture
that replaces Disk with Persistent Memory (PM) to achieve the
highest I/O throughput in Log-Structured Merge Tree (LSM-
Tree) based key-value stores (KVS). Most existing LSM-Tree
based KVSs use PM as an intermediate or smoothing layer,
which fails to fully exploit PM’s unique advantages to maximize
I/O throughput. However, due to PM’s distinct characteristics,
such as byte addressability and short erasure time, simply
replacing existing storage with PM does not yield optimal I/O
performance. Furthermore, LSM-Tree based KVSs often face
slow read performance. To tackle these challenges, this paper
presents HPDK, a hybrid PM-DRAM KVS that combines level
compression for LSM-Trees in PM with a B+-tree based in-
memory search index in DRAM, resulting in high write and read
throughput. HPDK also employs a key-value separation design
and a live-item rate-based dynamic merge method to reduce
the volume of PM writes. We implement and evaluate HPDK
using a real PM drive, and our extensive experiments show that
HPDK provides 1.25-11.8 and 1.47-36.4 times higher read and
write throughput, respectively, compared to other state-of-the-art
LSM-Tree based approaches.

Index Terms—B+-tree, key-value store, log-structured merge
trees, persistent memory.

I. INTRODUCTION

THE rapid growth of large-scale cloud computing appli-
cations, such as mobile internet, e-commerce, and social

networking platforms, has led to an influx of massive real-time
data access requests. This has resulted in a significant increase
in throughput requirements for read and write operations [1],
[2]. Yahoo! has reported a shift in their typical workloads, with
reads and writes now comprising similar proportions [3].

LSM-Tree based Key-Value Stores (KVSs) [4], [5], [6], [7]
with Persistent Memories (PM) have recently emerged as cru-
cial components to support various data-intensive applications
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TABLE I
THE DIFFERENCES BETWEEN PM AND SSD

PM SSD

Storage Non-Volatile Non-Volatile
Read/Write Load/Store Instructions I/O Command
Granularity Cache Line Block

in data centers. PM offers byte-addressability, large capacity,
and non-volatility, which opens new opportunities for building
high-throughput KVSs. However, there are two main challenges
in LSM-Tree based KVSs that hinder further improvements in
throughput. Firstly, LSM-Tree based KVSs exhibit high write
throughput but slow read performance, as read operations ne-
cessitate scanning multiple files. Secondly, most existing stud-
ies [8], [9], [10], [11] combine PM with disks, such as Solid
State Disks (SSDs) and Hard Disk Drives (HDDs). The dif-
ferences between PM and SSD are listed in Table I. While
data is stored on the disk, PM is used as an intermediate or
buffering layer to improve system latency. Accessing data on
SSDs results in higher latency compared to PM; thus, replacing
SSDs with PM for data storage may be more effective. However,
the differing characteristics of byte addressability and rapid
erasure time for PM means that simply replacing SSDs is not
the best solution.

To address these challenges, this paper proposes HPDK1,
a high I/O throughput KVS based on a hybrid PM-DRAM
system. The main architecture incorporates a hybrid index with
an LSM-tree in PM, a B+-tree in DRAM, and PM replacing the
disk for storing all persistent data. B+-tree based KVSs [12],
[13] have high read throughput but poor write throughput. Thus,
HPDK employs LSM-Tree to handle incoming key-value pairs
for low write latency while maintaining a B+-tree in DRAM
to index key-value pairs in PM and improve read performance.
Furthermore, HPDK compresses LSM-Tree levels to eliminate
write amplification generated by the compaction process. Since
there is no compaction process, expired key-value pairs affect
space utilization and system throughput. To address this, HPDK
implements a live rate-based dynamic merge algorithm for
garbage collection of data blocks with many expired key-value
items. Finally, HPDK adopts a key-value separation scheme to
reduce PM writes and extend PM’s service life.

1The source code of HPDK is https://github.com/QiaoHU-HNU/HPDK.git
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We evaluate HPDK using the db_bench micro-benchmark
[7] for read/write throughput and YCSB macro-benchmark
[14] suite for real-world workloads released with three repre-
sentative LSM-Tree based KVSs. Our extensive experiments
demonstrate that HPDK provides 1.25-11.8 and 1.47-36.4 times
higher read and write throughput respectively, compared to
other methods.

In summary, the main contributions of this work are
as follows:

1) We are the first that propose a hybrid LSM-Tree based
KVS architecture in a PM-DRAM environment, com-
pletely replacing disks with PM. The hybrid KVS archi-
tecture combines an LSM-tree in PM and a B+-tree in
DRAM, aiming to maximize I/O throughput within the
PM-DRAM system.

2) Our approach includes a meticulous design of a level-
compression scheme and a dynamic merge scheme for
LSM-Tree. These schemes effectively reduce write am-
plification during garbage collection. Moreover, we in-
troduce a key-value separation scheme for the B+-tree,
which significantly decreases PM writes.

3) To demonstrate the exceptional I/O throughput achieved
by HPDK, we implement it into an actual PM-DRAM
system and conduct extensive experiments.

The rest of this paper is organized as follows. We motivate
our work in Section II. Then we present the design and imple-
mentation of HPDK in Section III and Section IV, respectively.
Next we evaluate HPDK in Section V. The related work and
limitations are discussed in Section VI and Section VII sepa-
rately. Finally we make a conclusion in Section VIII.

II. BACKGROUND AND MOTIVATION

In this section, we discuss the LSM-Tree and PM, as well as
our considerations and motivations for building a throughput-
optimized KVS on PM.

A. LSM-Trees and LevelDB

LSM-Tree is a persistent storage data structure that pro-
vides high write throughput for update-frequent applications.
In LSM-Tree, index changes are first deferred and buffered
in DRAM, then flushed to disk, merging and sorting level by
level. Due to its high put throughput, LSM-Tree and its variants
are widely used in KVS [15], [16], [17], [18]. LevelDB [7]
is one of the popular LSM-Tree-based KVS that is extended
by Google Bigtable [4]. The LevelDB architecture is shown in
Fig. 1. Its main data structure consists of a fixed-size buffer
MemTable and an Immutable MemTable in DRAM, a multi-
level data organization structure for disk. The capacity of each
level is configured to be ten times larger than its previous level.
The key-value pairs in each level are ordered except level 0. At
level 0, only the key-value pairs inside each SSTable are ordered
without sorting the SSTable, which improves flush throughput
from the DRAM to the disk.

For the PUT operation, LevelDB first appends the newly
written key-value pairs to the Write-Ahead-Logging(WAL) and
then adds it to MemTable. MemTable uses a skip list to sort all

Fig. 1. LevelDB architecture. This figure shows the LevelDB architecture.
The memory component consists of a MemTable and an Immutable MemTable;
the disk components include multi-levels of SSTables and some component files
with metadata. Flush operation occurs when there is an Immutable MemTable
in memory. Compact operation is conducted level by level to merge SSTables
from the lower to higher levels in the background.

buffered key-value pairs ordered by key. When the MemTable
is full, LevelDB marks it as Immutable MemTable and then
flushes it to the disk of level 0 as SSTable, and the WAL is
deleted. SSTables need to be compact to higher levels when
any level reaches the limit size. The compact process consists
of three steps. First, LevelDB reads the key-value pairs in level
i and level i+1 into memory(i>0). Second, LevelDB sorts and
reorganizes valid key-value pairs into SSTable. Finally, Lev-
elDB writes the SSTable with valid key-value pairs back to the
level i+1. Those victim SSTables and the overlapped SSTables
will become invalid and then delete from the disk. In LevelDB,
an inserted key-value pair needs to be continuously sorted,
merged and written to disk, and it will generate a considerable
write amplification.

For the GET operation, LevelDB first searches MemTable
and Immutable MemTable in DRAM in order; if not found,
then searches the multi-level from level 0 to level n in order.
For level 0, LevelDB will search all of the SSTable; for levels
1-n, LevelDB only needs to search candidate one because they
are ordered. If the key-value pair is not found at one level, it will
search the next level until the last level. The search operation
ends once the key-value pair is found and the result is returned.
In the worst case, to obtain a key-value pair LevelDB needs
to read all the SSTables at level 0 and one SSTable in each
remaining level.

LevelDB also maintains the metadata of the SSTable in the
current LSM-Tree in a file called MANIFEST. The metadata
includes a list of SSTable files for each level and a range of
keys for each SSTable. During the compact process, the meta-
data changes of the SSTable are first logged and recorded in
MANIFEST when the compact is finished, and then the expired
SSTable is deleted. When the system crashes, LevelDB can
recover to a consistent KVS even if the crash occurs during the
compact process.

Although LevelDB has the advantages of high update
throughput and consistency, it still has the disadvantages of
slow read throughput and high I/O amplification. To build a
high-throughput KVS base on LSM-Tree, we need to solve
these problems.
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B. Persistent Memory

Persistent Memory is an emerging computer storage de-
vice with non-volatile and byte-addressable that can provide
data persistence while achieving I/O throughput comparable to
DRAM. Data on PM are available upon power-up, and applica-
tions do not need to spend time warming up the cache. They can
access the data as soon as the memory is mapped. Compared to
DRAM, PM has non-volatile as well as the ability to provide
more data to a multi-core environment with the same area of
memory slot [9], [19]. Compared to traditional disks, PM offers
high throughput, low I/O latency, low power consumption, and
small volumes [20]. Systems that include PM can provide faster
boot times, faster access to large in-memory data sets, and lower
total ownership costs, outperforming traditional SSD based data
center configurations. However, PM has a shorter erase time
than traditional disks.

C. Motivation and Challenges

PM offers new opportunities for constructing high I/O
throughput KVSs. However, directly incorporating PM into ex-
isting KVSs may not fully leverage PM’s advantages and could
even be counterproductive. KVSs designed for DRAM and
common disk structures may become inefficient when imple-
mented within a PM-DRAM architecture. Such non-optimized
KVSs could waste space and bandwidth and even shorten
PMs’ lifetimes.

There have been many KVS designs based on LSM-Trees for
PM [8], [9], [10], [21]. Most of these designs employ PM as
buffering or smoothing layers to enhance system performance.
For example, in NoveLSM [10], PM is a middle layer to store
level 0 and level 1 data; HiKV [9] maintains a hybrid index
in a hybrid memory system of DRAM and PM for a KVS and
supports rich key-value operations; SLM-DB [21] uses PM as
DRAM. However, they do not exploit the advantages of PM
to build a fully optimized KVS for high throughput. Moreover,
most of the existing KVSs which based on LSM-Trees have an
inherent I/O amplification structure. In LevelDB [7], an inserted
key-value pair needs to be constantly merged and sorted, and
written to disk by background compact. For a n level LSM
tree from LevelDB, its write amplification can be as high as
10n [22], [23], [24]. It dramatically affects the lifetime of the
PM device if we use PM to directly store these data because
PM devices have a shorter erasure lifetime than SSD. For GET
operations, LevelDB also needs to search multiple SSTables
in most cases, significantly affecting read throughput. Hence,
it is crucial to design a new structure for LSM-Trees based
KVS which can fully utilize PM and ensure high I/O throughput
compared to other designs.

There are several challenges in building a high-throughput
LSM-Trees based KVS for PM-DRAM architecture.

• For PM. Utilizing PM’s large capacity and non-volatility,
we must select the appropriate PM usage to maximize
system I/O throughput. Additionally, PM’s shorter erasure
time compared to other hardware impacts its lifetime if
excessive writing occurs.

Fig. 2. HPDK architecture. This figure shows the architecture of HPDK.
The memory component consists of a MemTable, an Immutable MemTable,
and a B+-tree; the PM components include a single level 0, a value area,
and some component files with metadata. Flush operation occurs when there
is an Immutable MemTable in memory, and it will add key-address pairs into
level 0 and B+-tree at the same time. Merge operation run when the expired
key-address pair reach the garbage collection condition we defined.

• For Key-Value Store. Introducing PM into traditional KVS
architectures requires KVS redesign and optimization for
throughput. Also, considering PM’s shorter lifetime, ad-
dressing potential I/O amplification structures in KVS for
PM is necessary to extend PM’s life without affecting
I/O throughput.

• For Overall System. When building a high-throughput
PM-based KVS, we must enable crash recovery to ensure
availability and implement a garbage collection strategy to
improve PM space utilization.

III. HPDK DESIGN

HPDK is a KVS based on LSM-Tree and B+-tree and
designed for PM to achieves high I/O throughput with low
read/write latency and low read/write amplification. This sec-
tion presents the design of the HPDK. Fig. 2 shows the overall
architecture of HPDK, which consists of a DRAM component
and a PM component.

HPDK is a high-throughput KVS for PM-DRAM architec-
ture with the following design principles:

1) HPDK stores all persistent data on PM to acceler-
ate access time for persistent data, further enhancing
I/O throughput.

2) HPDK is based on LevelDB and compresses its levels,
retaining only level 0 to dramatically reduce write ampli-
fication and improve write throughput.

3) Similar to [9], [21], [25], HPDK incorporates a B+-tree in
DRAM to enhance read throughput. The B+-tree stores
all live key-address pairs in level 0, while data is stored
in the B+-tree’s leaves.

4) To improve throughput for large value sizes, HPDK
adopts a key-value separation design like [23] for key-
address pairs. It stores the value in a designated area and
the key with the value’s address as the key-address pairs.
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The B+-tree also stores the address instead of the value.
In most cases, the address size is smaller than the value
[26], making the B+-tree more compact.

In summary, HPDK designs and implements a dynamic com-
paction algorithm based on key-address item live rates for
garbage collection. The algorithm merges SSTables with live
data rates lower than a preset threshold, reclaims PM space, and
ensures dirty data is cleared promptly, enhancing the device’s
space utilization. We will describe these designs in detail in the
following sections.

A. Usage of PM

As emerging hardware, PM has the advantages of large
storage capacity, non-volatility, and fast access speed. How-
ever, compared to DRAM, PM has a higher write latency (7×
−22×), a lower bandwidth (5×−10×), and a lower endurance
(104 ×−107×) [9], [19]. To build a fully optimized KVS for
I/O throughput, we directly use PM to store persistent data
instead of SSD. This speeds up the overall data access speed of
the system and improve the throughput of the KVS in this way.
To store persistent data on PM instead of SSD, we should reduce
the write to PM without affecting system throughput because
the erasure time for PM is shorter than SSD. SSD. We can also
improve PM’s space utilization to save cost. We achieve this
with the following design.

B. Level Compression

The main problem with LSM-Tree architectures like Lev-
elDB is write and read amplification. Write (Read) amplifica-
tion is the ratio between the amount of data written to (read
from) the underlying storage device and the amount of data re-
quested by the client. In LSM-Trees, write amplification mainly
results from level design requiring constant merging and sorting
data from low to high levels, causing the same data to be written
repeatedly and generating significant write amplification. As
SSTables are stored in PM in our design, we need to reduce
write amplification. As shown in Fig. 2, we compress the level
of LevelDB, making all SSTables flushed to PM at level 0.
With only one level, the database no longer needs to frequently
execute compact operations, dramatically reducing write ampli-
fication in the KVS. This also saves CPU and DRAM resources,
as compaction operations require reading data into DRAM and
involve many computation processes. Level compression does
not directly improve database throughput but benefits the sys-
tem by eliminating expensive operations like compaction.

C. B+-Tree in DRAM

When we compress the level of LSM-Tree, the write ampli-
fication of the system is alleviated. However, when performing
the read operation, if the read fails in memory, it will search
the whole level 0. Because the SSTable in level 0 is stored
unordered among them, it needs to scan all the SSTables to
perform the search, which will generate a considerable read
amplification and have a long latency. To solve this problem,
as shown in Fig. 2, we keep a B+-tree in DRAM, in which the

Fig. 3. HPDK data layout. This figure shows the data layout of B+-tree
and value log in HPDK. Key and value addresses are stored in the leaf of
B+-tree while values are appended to a separate value log. The layout of the
key-address project in the SSTable is the same as in the B+-tree.

latest version of key-address items in the PM is stored. When
performing a read operation, we first search the MemTable and
Immutable MemTable in DRAM as LevelDB; if the search is
not success, we only need to search the B+-tree instead of scan-
ning all of the SSTable, which reduces the read amplification
and improves the system read throughput.

In HPDK, when there is an Immutable MemTable, data is
flushed to level 0 and written to the B+-tree simultaneously.
During the flush operation, the system creates a background
thread to perform these operations. In the background thread,
HPDK creates a new PM pool as a new SSTable, writes key-
address pairs from the Immutable MemTable to it sequentially,
and inserts them into the B+-tree simultaneously. During the
B+-tree writing process, if the key does not exist, it is inserted
directly at the appropriate location; if the key already exists, the
value in the B+-tree is updated to the current value; if comes a
delete operation, the key-address item will be removed from the
tree. After all key-address items are written to the SSTable and
inserted into the B+-tree, the metadata of the SSTable is updated
and appended to the MANIFEST file as a log structure. Finally,
the Immutable MemTable is deleted, and the thread ends.

D. Key Value Separation

In our design, the B+-tree is stored in DRAM. In order to
save space in the DRAM, we implement key-value separation
like [23] for key-address items in HPDK. We write the values
in an exceptional value append log and use shorter addresses
to point them instead so that only the keys and corresponding
addresses of values are stored. In our experiments, the data
layout in the leaf of B+-tree is as shown in Fig. 3. The address
consists of a 6-byte value address (with a 2-byte pool number
and a 4-byte offset) and a 2-Byte pool number. The first 6 bytes
are used to locate the values, and the last 2 bytes are used to
verify the validity of a key-address item from an SSTable. The
layout of key-address items in SSTable is the same as those
in B+-tree, except that they do not have the last 2 Byte. The
value item in the value log consists of a 4 Byte value size and
the value content with variable length. In practical scenarios,
the value size is larger than 8 bytes in most cases [26]; there-
fore, using the key-value separation reduces the amount of data
stored in DRAM and reduces the amount of data written during
B+-tree balancing.

When a write operation comes in, HPDK first writes its value
to the specified value area and returns its address, then uses the
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returned address as the value of the key-address item for the
write operation, and the record in the WAL is the key-address
pair. In HPDK, value log is a PM pool with size of 128 MB,
and it appends data at the end of the pool like a log structure.
When the current pool is full, a new pool is created and data will
be appended to the new pool. Only one pool accepts the write
operations at the same time. Creating new pools continuously
will eventually exhaust the memory capacity. To address this
issue, we have implemented a simple approach that allows us
to reuse existing pools. Each pool now keeps track of the current
number of valid items it contains, enabling us to reuse a pool
when the number of valid items reaches zero.

But it would be better to design a garbage collection method.
For value area garbage collection, we can use a bitmap to record
the invalid area and write new items in, which will not impact
our I/O throughput. We plan to implement this in future work.

E. Live-Item Rate Based Dynamic Merge Algorithm

Since all SSTables are kept in one level, without a proper
garbage collection mechanism, many invalid key-address items
will occupy PM space in an update-intensive workload. It will
result in lower PM space utilization and further affect system
throughput. HPDK provides a live-item rate based dynamic
merge algorithm to perform garbage collection.

We maintain the ratio of valid key-address pairs to all key-
address pairs stored in each SSTable for selection purposes. We
call this ratio as the live-item rate. If the live-item rate for an
SSTable is lower than a predefined threshold, the SSTable con-
tains excessive garbage that should be collected to improve disk
space utilization. When an SSTable is created, the total number
of key-address pairs stored in it is computed, and initially, the
number of valid key-address pairs is equal to the total number
of key-address pairs in the SSTable. When a key stored in the
SSTable is updated with a fresh value, the key with the fresh
value is stored in a new SSTable file. As a result, when we
update a pointer to the new location object for the key in the B+-
tree, we decrease the number of valid KV pairs in the original
SSTable. Using these two numbers, we can compute the live-
item rate for each SSTable.

For the merge process, HPDK maintains a merge candidate
set of SSTables. During database startup, a background process
is configured to maintain this set and judge when metadata
changes (flush operation) occur. If the ratio of valid items to
total items in a single SSTable reaches a preset threshold, the
SSTable will be added to the merge candidate set. When the size
of the merge candidate set reaches the predefined threshold, the
merge process will be run.

We have a background thread that does the merge pro-
cess. Algorithm 1 is the pseudo-code that describes the
merging process. The input of this algorithm is the merge can-
didate set. Lines 1-6 check whether the SSTable in the merge
candidate set contains valid key-address items. If all the key-
address items in the SSTable are invalid, the SSTable can be
freed directly without any other changes. Lines 7-9 means that if
the merge candidate set is empty, this algorithm can be finished.

Algorithm 1 Live-item Rate Based Dynamic Merge Algorithm
Input: merge_candidate: dynamic merge candidate set

1: for pool in merge_candidate do
2: if pool.valid == 0 then
3: pool.clear();
4: merge_candidate.remove(pool);
5: end if
6: end for
7: if merge_candidate.size == 0 then
8: return ;
9: end if

10: result = merge_sort(merge_candidate);
11: iter = MakeInputIterator(result);
12: iter.SeekToFirst();
13: while iter.valid() do
14: item = BTreeSearch(iter.key);
15: if item != nullptr and item.addr == iter.value then
16: write to new SSTable;
17: update B+-tree;
18: end if
19: iter.next();
20: end while
21: InstallMergeResult();
22: merge_candidate.clear();

If the merge candidate set is not empty, SSTables in the merge
candidate set should be reordered. since the key-address pairs
in a single SSTable are ordered, lines 10 and 11 use merge
sorting to sort multiple SSTables and create an iterator that can
traverse all key-address items. Lines 12 position the iterator to
the first item, and lines 13-20 handle each key-address item. The
pseudo-code shows that for each key-address item in SSTable,
we first have a search operation for the key in the B+-tree. If
the key exists and the address is the same as the address of the
currently processed key-address items, the key-address item is
valid and then written to a new SSTable.

When the key-address item is written to a new SSTable, the
SSTable pool number of the corresponding item stored in the
B+-tree is changed, which will lead to data inconsistency in the
database if the B+-tree is not updated. So we write the item to
a new SSTable while updating the Addr part which is shown
in Fig. 3 to keep the data in the B+-tree consistency. After
all key-address items are processed, the metadata of SSTables
will be updated in lines 21 and 22, including SSTable additions
and deletions, metadata update, merge candidate set updates,
old space free, etc. Since our algorithm updates the data in
the B+-tree during handling every key-address item, if there
are changes to the valid key-address items of the new SSTable
during the merging process, it will also make the metadata
incorrect. We add a check operation when updating the meta-
data to solve this problem. When a write operation to the new
SSTable occurs before the merge process result installs, we will
record these operations and add a check to the corresponding
metadata in the InstallMergeResult() function on line 21 to
process the related metadata when updating them.
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In our merge algorithm, suppose that the number of SSTables
in the merge candidate set is k, the number of key-address pairs
in each SSTables is n, and the number of key-address items in
B+-tree is m. Then we need to search n times in the B+-tree for
each merge operation. Therefore, the complexity of our algo-
rithm is O(k · n · log(m)). Because k is always a constant, then
the time complexity of our merge algorithm is O(n · log(m)).
It means that the time complexity of our merging algorithm is
related to the key-address items in the merge candidate set and
the total amount of valid persistent data in the system.

In summary, HPDK stores all persistent data in PM to obtain
high I/O throughput, reduces the write amplification by com-
pressing the level of LSM-Tree, and reduces the read amplifi-
cation to make the read faster by keeping a B+-tree in DRAM.
Then, we have a key-address separation design in HPDK to fur-
ther reduce the write amplification and the total amount of data
in DRAM. Finally, we design a merge algorithm for SSTables,
which continuously merges those SSTables whose valid key-
address items are below our predefined threshold during the
HPDK life cycle to improve PM’s space utilization.

IV. IMPLEMENTATION

To verify the efficiency of HPDK’s design strategies, we
implement HPDK based on LevelDB(version 1.23) [7], a state-
of-the-art LSM-Tree-based KV store from Google. We use the
Persistent Memory Development Kit (PMDK) [27] interface to
access a 128 GB Intel AEP Persistent Memory. PMDK builds
on the Direct Access (DAX) feature available in Linux and
Windows, allowing applications to directly access Persistent
Memory by memory-mapping files on a PM-aware file system.

A. Key-Address Store Operations

HPDK provides a standard set of interfaces for clients, in-
cluding GET/PUT/DELETE [7]. The numbering in Fig. 2 indi-
cates the data flow for those interface.

GET(k) means to obtain the value with key k in the KVS.
To get the value for the given key k from KVS, HPDK does
GET_1, GET_2, and GET_3 that in Fig. 2 in order. GET_1
searches in the current MemTable in DRAM, GET_2 searches
on Immutable MemTable in DRAM, if k does not exist,GET_3
is executed. GET_3 searches in the B+-tree in DRAM. If any
phase finds k successfully, the corresponding value is retrieved
from the value area in PM according to the read address and
returned to the client. If any of the three phases does not find
k, it is returned to the client as ‘notfound’. During the whole
execution of the GET(k), HPDK returns the result to the client
without reading any SSTable.

PUT(k, v) means to write a key-address pair (k, v) to the
KVS. It does INSERT(k, v) insert the pair (k, v) to the KVS
if the key k does not exist and UPDATE(k, v) update the value
of key k to v if it does. To write a given key-address pair
(k, v) to KVS, the data flow inside HPDK is represented in
Fig. 2 as ① - ⑧. ① receives a PUT operation for a given key-
address pair (k, v). ②,③ writes the value v to the value area
and returns the address that includes the location information
of the written value v, and replaces v with the address for

subsequent operations. ④ log the now operation to the WAL
for failure recovery in case of a system crash. ⑤ put the pair
(k, addr) as (k, v) in MemTable in DRAM and returns the result
of the current operation. ⑥ - ⑧ is the background data flow.
When the MemTable is full, ⑥ set the MemTable to Immutable
MemTable and create a new MemTable to continue receiving
writes. Once there is an Immutable MemTable in the DRAM,
the flush process of Immutable MemTable is triggered. ⑦ flush
Immutable MemTable to level 0 in PM as SSTable and write it to
the B+-tree in DRAM at the same time. When SSTable in level
0 has too many invalid items, ⑧ merge algorithm of SSTable
will be triggered to merge multiple SSTables where invalid
items exceeding the predefined threshold into one SSTable, to
improve the space utilization of PM.

DELETE(k) means to remove the key-address pair, where
the key (k) is from the KVS. It can be implemented by
PUT(k, v) by setting the v to a delete flag.

B. Crash Recovery

HPDK provides crash-consistency guarantees for data in PM
and DRAM similar to those in LevelDB. Like LevelDB, the
data recently written to WAL in HPDK is not committed (i.e.,
fsync()) by default because a commit is expensive. However,
the latency of the data commit per write in PM is smaller than
in SSD, so if a strong consistency guarantee is needed, HPDK
can also achieve commit per write with less overhead based on
PM. If it is a normal shutdown during recovery, we can simply
rebuild the whole system using the MANIFEST file records.

HPDK utilizes the LevelDB recovery mechanism. Compared
with LevelDB, HPDK adds more SSTable metadata informa-
tion. Such as the merge candidate list (including the add, delete,
and update of the list), the number of valid key-address pairs in
each SSTable, and the total number of key-address pairs in each
SSTable. In addition, HPDK adds the recovery information of
B+-tree and the value area. The recovery information of B+-
tree is all key-address pairs information in all leaf nodes. The
recovery information for the value area is the number of valid
records, the total number of records contained in each value
pool, and the current write position of each pool. Information
about the SSTable is incrementally recorded in the MANIFEST
file. The information of the B+-tree and the value area is
recorded in separate files. Since the B+-tree is relatively large
and very expensive to record, the B+-tree information will only
be recorded after merging the SSTable.

When the system starts, it will first check the MANIFEST file
and the recovery files of B+-tree and value area to determine
whether the system exited normally last time. If it is a normal
exit, HPDK uses the MANIFEST file to execute the recovery
procedure like LevelDB. For B+-tree and value area, HPDK
will reconstruct it based on the recovery file record. If the
system is an abnormal exit, HPDK will first recover the normal
data part, just like the normal exit, and then re-execute the
records in WAL to recover the whole system except the B+-tree.
Regarding the B+-tree, HPDK will first rebuild part of the B+-
tree using the recovery file and then read the SSTable sequen-
tially, which is generated after the recovery file is last recorded
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to rebuild the whole B+-tree. Since all SSTables belong to the
same level, the key-address pair in the newer SSTable is also
newer, so the B+-tree will be consistent with before. HPDK
also detects if a merge process has not been completed, if so,
HPDK must restart the merge. When a merge process begins,
we create a merge log file with a record in it, and the merge
log file will be deleted after the merge process. For PM data
corruption caused by hardware errors, data recovery, and fault
tolerance features such as data replication and erasure coding
can be used [28].

V. EVALUATION

HPDK is a PM-based key-value store (KVS) with high
throughput. In this section, we first evaluate the read and write
throughput of three representative LSM-Tree based KVSs: Lev-
elDB [7], NoveLSM [10], SLM-DB [21], HPDK-KS (HPDK
with only the key-value separation of our four techniques), and
HPDK using db_bench micro-benchmark [7]. Next, we assess
LevelDB and HPDK’s throughput using the YCSB macro-
benchmark [14] suite. Finally, we examine the impact of the
other three techniques of HPDK. All experiments are executed
as single-threaded workloads as LevelDB is not optimized for
multi-threaded workloads (HPDK is implemented based on
LevelDB). We deploy HPDK on Optane DC Persistent Memory.

A. Methodology

Our experiments use a machine with an Intel Xeon Platinum
8222L CPU (3.0GHz), a Samsung 981A SSD of 512G, 32GB
DRAM, and Intel AEP Persistent Memory of 128G. Ubuntu
20.04.2 LTS with Linux kernel version 5.8 is used for the ma-
chine. We use a 128GB PM to run HPDK. We employ PMDK
[27] to manage PM as a layout with some pool and configure
a DAX-enabled ext4 file system to access PM. In the default
setting, every PM pool size is set to 8MB.

We evaluate the throughput of HPDK and compare it with
NoveLSM and LevelDB(version 1.23) over varying value size
and fixed key size with 16 Byte. The size of MemTable is set to
4MB to suit the PM pool size, and a fixed key size of 16 bytes is
used. Note that in HPDK, all SSTable files are stored on PM. For
LevelDB, all parameters are set to default values. For HPDK,
The live-item rate threshold is set to 0.5, if we increase this
threshold, HPDK will perform dynamic merge more actively.
In all experiments, NoveLSM, LevelDB and HPDK are with
the same setting.

B. Results With PM in LevelDB Directly

To evaluate the efficiency of PM in HPDK, we first run
a modified version of LevelDB, i.e. LevelDB + PM, which
directly uses PM as a block device and access it with a standard
POSIX interface to replace SSD without other modifications as
in HPDK. We run the modified version of LevelDB with a fixed
key size of 16 bytes with a varying value size of 100 Byte and
1 KB, respectively. As in Fig. 4, we can observe that the write
throughput of LevelDB+PM is 52% – 157% higher when the
value size is from 1 KB to 16 KB, and the read throughput is

(a) (b)

Fig. 4. Read and write throughput comparison. The x-axis represents various
value sizes, and the y-axis represents the normalized throughput to LevelDB
with the same setting. (a) Read. (b) Write.

slightly (4% to 10%) lower than LevelDB. So directly using PM
as a block device to store SSTable files instead of SSD can get
a positive result to write throughput because PM has low write
latency. So we run LevelDB in PM in the following experiment.
In Fig. 4, the throughput is normalized to those of LevelDB.

C. Results With Micro-Benchmarks

Fig. 5 shows the operation throughput with HPDK for ran-
dom read, random write, and overwrite workloads compared to
LevelDB, NoveLSM and SLM-DB. To evaluate the influence
of key-value separation, we also have a modified version of
HPDK, i.e. HPDK-KS, which only has the key-value separation
of the four techniques of HPDK. For all KVS, we first do
a random write workload to create a database and then do a
random read in that database. Then, we open the database that
creates in random write and writes the same data as the random
write workload does to the database for the overwrite workload,
all workloads run with 1,000,000 items. Every workload starts
after the previous one is finished avoiding other effects. From
the results we make the following observations:

For a random read operation, compared to LevelDB and
SLM-DB, HPDK consistently has higher performance ranging
from 25% to 11× when the value size is from 100 Byte to 16
KB, respectively. Although compared to NoveLSM, the read
throughput of HPDK is lower when the value size is 100 Byte,
with the increase of value size, the throughput of HPDK is
much higher. For the random write operation, HPDK provides
higher throughput than LevelDB, NoveLSM and SLM-DB for
values sizes from 100B to 16KB. Compared to these three
approaches, HPDK provides up to 36.4× throughput improve-
ment. For overwrite workload, HPDK has similar throughput
with other three methods when the value size is 100 Byte. But
its performance surges with the increasing of value size and
it outperforms other three methods by up to 45.3× through-
put improvement.

The reason that HPDK outperforms other methods is the
implementation of the key-value separation scheme. From the
throughput of HPDK-KV, we can see that the key-value sepa-
ration design of HPDK prevents the system throughput from
being affected by the value size of the key-value pair. Thus
HPDK can provide a significant throughput improvement of I/O
operations when the value size increases. However, as shown
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(a) (b) (c)

Fig. 5. Normalized throughput of HPDK compares to LevelDB, NoveLSM and SLM-DB with the same setting for db_bench. The x-axis represents various
value sizes, and the y-axis represents the normalized throughput to LevelDB. HPDK-KS is HPDK only with the key-value separation of our four techniques.
(a) Random read. (b) Random write. (c) Overwrite.

(a) (b) (c) (d)

Fig. 6. YCSB throughput of HPDK compares to LevelDB and SLM-DB in various value sizes with the same setting. The x-axis represents data
loading and different workloads, and the y-axis represents throughput (Kop/s). (a) Value size: 100 Byte. (b) Value size: 1 KB. (c) Value size: 4 KB.
(d) Value size: 16 KB.

in Fig. 5(c), the throughput of HPDK decreases in overwrite
workloads compared to HPDK-KS. This decrease is primarily
due to HPDK’s dynamic merging algorithm. In the overwrite
workload, HPDK must run the dynamic merge all the time,
saving disk space but reducing the throughput. In LevelDB,
writing duplicate key-address pairs do not affect the number
of compression operations, so HPDK has about 7% throughput
degradation compared with HPDK-KS in overwrite workload.

D. Results With YCSB

Yahoo! Cloud Serving Benchmark (YCSB) [14] is a tool
for the basic testing of KVSs. It provides a framework and a
basic set consisting of six workloads close to real to the real
scene to evaluate the throughput of KVSs. We use YCSB to
compare the throughput of HPDK, LevelDB and SLM-DB in
a 20GB database with the value of 100 Byte, 1 KB, 4 KB, and
16 KB, respectively.

Fig. 6 shows the throughput of HPDK with different value
sizes. Since the original version of LevelDB does not implement
range query, we do not run workload E. From Fig. 6, we can
learn that HPDK has better throughput than LevelDB in data
loading and the five workloads. When the value size is 100 Byte,
the throughput of HPDK is more than twice that of LevelDB and
SLM-DB. As the value size increases, the throughput improve-
ment becomes obvious. This is mainly because the key-value
separation design of HPDK makes the effect of value size small.

When LevelDB throughput decreases due to increase value size,
the advantages of HPDK become noticeable.

In the experiment, we first load fixed-size data by inserting
fixed quantity key-address pairs and then execute workloads A,
B, C, D, and F in sequence. Workload A composed of 50%
reads, 50% updates, workload B performs 95% reads and 5%
updates, workload C performs 100% reads, workload D com-
posed of 95% reads and 5% inserts and workload F performs
50% reads and 50% read-modify-writes. For these workloads,
A, B, C, and F use zipfian distribution, and workload D
performs all read for the latest keys.

From Fig. 6(a), we can learn that when the value size is 100
Byte, the throughput of HPDK is higher than LevelDB in data
loading and all workloads, in data loading, the throughput of
HPDK is 25.87% higher than LevelDB. In workload A, work-
load B, workload C, workload D, and workload F, the through-
put of HPDK are 205.89%, 112.95%, 148.85%, 132.31%, and
22.21% respectively, higher than LevelDB. Fig. 6(b), 6(c), and
6(d) shows that when the value size increases, the throughput
improvement of HPDK compared to LevelDB was increased, in
data loading, the throughput of HPDK is 9×–46× higher than
LevelDB, and 10×–32×, 4×–17×, 4×–6×, 3×–12× and 9×
–14× higher in workload A, B, C, D, and F respectively when
value size from 1KB increase to 16KB.

Table II shows the comparison of average latency and 99th
percentile latency between HPDK and LevelDB in the YCSB
workloads with different value sizes, from which we can see
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TABLE II
AVERAGE AND 99THPERCENTILE LATENCY (μs) OF YCSB BENCHMARK ON HPDK AND LEVELDB

Workload A Workload B Workload C Workload D Workload F

Read Update Read Update Read Insert Read Read RMW

Ave 99th Ave 99th Ave 99th Ave 99th Ave 99th Ave 99th Ave 99th Ave 99th Ave 99th

100 B
LevelDB 16 86 27 1074 13 61 7 26 12 55 12 36 16 53 9 49 12 55
HPDK 7 12 7 11 6 23 8 25 5 10 11 20 6 13 6 11 12 21

1 KB
LevelDB 42 219 146 1195 32 120 11 38 25 125 18 71 34 105 24 202 173 1236
HPDK 7 17 9 17 5 11 8 15 5 12 13 23 7 14 6 11 13 23

4 KB
LevelDB 152 1494 428 1531 83 912 512 1564 25 109 35 103 61 451 30 196 210 1377
HPDK 7 15 14 18 5 12 11 17 5 13 16 25 7 12 6 18 19 24

16 KB
LevelDB 218 3486 1132 1385 97 1062 615 1705 33 140 519 1472 87 730 49 237 636 1672
HPDK 7 15 34 29 5 11 31 30 5 12 42 63 6 14 6 13 39 42

The average and 99thPercentile latency(μs) of YCSB benchmark on HPDK and LevelDB. RMW means Read-Modify-Write.

(a) (b) (c)

Fig. 7. Impact of different techniques in HPDK on system throughput. The x-axis represents the operation number, and the y-axis represents the throughput
(Kop/s). HPDK-NT is HPDK without the B+-tree, HPDK-NC is HPDK without level compression, and HPDK-NGC is HPDK without the dynamic merge
algorithm. (a) Random read. (b) Random write. (c) Overwrite.

that the average latency and tail latency of HPDK in each
workload is much lower than that of LevelDB. In HPDK, only
the write latency is affected by the change of value size because
the persistence time of large values is higher than that of small
ones. Benefitting from the design of HPDK, the value size does
not affect the read latency.

E. Impact of Different Techniques

We use four techniques in HPDK to improve the throughput
of various aspects of the system: level compression, in-memory
B+-tree, key-value separation, and live-item rate based dynamic
merge algorithm. We evaluated the throughput optimization of
key-value separation on the system in Section V-C, so in this
section, we compare the impact of the other three techniques
on HPDK. Since the value size in key-address pairs has al-
most no effect on HPDK, we fix the value size to 100 Byte
with a fixed key size of 16 Byte and use increasing opera-
tion number to evaluate the change in system throughput with
growing data.

The variation of system throughput with the number of op-
erations is shown in Fig. 7. HPDK-NT is HPDK without the
B+-tree, HPDK-NC is HPDK without level compression, and
HPDK-NGC is HPDK without the dynamic merge algorithm.

From Fig. 7(a), we can observe that the in-memory B+-
tree in HPDK significantly improves the read throughput of the
system, and the throughput improvement increases from 5 times
to 85 times as the operation number increase from 1,000,000
to 16,000,000. The throughput improvement is mainly because
the level compression design in HPDK makes the read latency
high. It makes the SSTable all located at level 0, which means
that if a read operation is not found in memory, it needs to read
all the SSTable until it finds the current items. The in-memory
B+-tree only needs one search operation in the tree. Another
technique to improve the system read throughput is the dynamic
merging algorithm in HPDK, mainly achieved by reducing
the number of useless SSTables, thus reducing the latency of
a single read operation from the side. The dynamic merging
algorithm in HPDK improves the read throughput by about
30% and is not affected by the number of operations increase.
The impact of level compression in HPDK on the system read
throughput is negligible, only 1% to 4%, which is also caused
by the compact of HPDK-NLC reducing a certain number
of SSTables.

From Fig. 7(b), we can observe that the improvement of
write throughput in HPDK is mainly due to the technique of
level compression. The actual low throughput in HPDK-NLC is
primarily because the compact operation will cause a write stall,
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increasing write operations’ latency. The level compression of
HPDK allows the system to perform garbage collection using
the dynamic merge algorithm with less overhead without a
compact process which significantly improves the write
throughput of the system. However, the dynamic merging
algorithm in HPDK also degrades the system throughput
somewhat, which mainly depends on the execution frequency
of the merging algorithm. From Fig. 7(c), the dynamic merging
algorithm degrades the overall system throughput by about
45% in the least HPDK-friendly overwrite workload. The write
throughput impact of B+-tree in memory in HPDK is Larger
as the number of operations increases, and the throughput
decrease increase from 8% to 39% as the operation number
increase from 1,000,000 to 16,000,000.

For the overwrite workload, as shown in Fig. 7(b) and
7(c), the throughput of HPDK-NGC and HPDK-NT is almost
the same as the random write operation. However, this same
throughput means that the throughput of the overwrite work-
load is reduced mainly by the dynamic merging algorithm and
the in-memory B+-tree in HPDK. The impact of the dynamic
merge algorithm on the throughput primarily comes from the
resource consumption of the merge process. In the merging
process, HPDK needs to search and update the B+-tree, which
consumes a lot of system resources and thus reduces the system
throughput. Furthermore, the dynamic merge algorithm will
be triggered frequently in overwrite workloads, resulting in
a significant reduction in system throughput. The overwrite
workload also reduces the throughput of HPDK-NLC, mainly
because the overwrite workload trigger more background com-
pact processes than random writes.

In summary, all four techniques in HPDK have different
impacts on system throughput; level compression improves the
throughput of random write. Still, it reduces read throughput
by eliminating the compact operations background. In-memory
B+-tree significantly improves read throughput but requires
additional memory space and affects write throughput. Key-
value separation improves the read throughput and the write
throughput for large values. Finally, the dynamic merge algo-
rithm improves the read throughput of the system while saving
hard disk space. Still, it has a particular impact on the write
throughput, and the more frequent the trigger, the more signifi-
cant the effect on the system, mainly because the merge process
requires a search and update operation for the B+-tree.

VI. RELATED WORK

HPDK is a high I/O throughput KVS based on a hybrid
PM-DRAM system, which aims to achieve high throughput
and low write amplification. We first discuss existing works on
PM. NoveLSM [10] uses PM as a middle layer to store level
0 and level 1 data, but it is also employs the architecture of
LevelDB, resulting in higher write amplification compared to
HPDK. SLM-DB [21] uses PM as DRAM removes the WAL of
LevelDB and directly stores the MemTable on PM. It maintains
a B+-tree index, and has a single-level architecture like HPDK.
However, it does not use DRAM to store data, which affects

system throughput. SLM-DB also performs garbage collection
by compacting SSTables with a high overlap rate, leading to
higher overhead than HPDK. HiKV [9] maintains a hybrid
index in a hybrid memory system of DRAM and PM for a
KVS and supports rich key-value operations. HiKV maintains
a hash index in PM for efficient reading and writing and a B+-
tree index in DRAM to support range query. However, it does
not improve write throughput, and the resizing overhead for
the hash index is also high. uDepot [29] maintains an index
structure in DRAM and leverages the throughput of PM devices
to realize a cache server with throughput close to DRAM at a
lower cost. FlatStore [25] matches the persistence granularity in
PMs, decouples the KVS into a volatile index and log-structured
storage, and manages the index and small-sized KVs with a per-
core OpLog to better support batching. Bullet [30] uses cross-
referencing logs to smooth the throughput differences between
PM and DRAM through the producer-consumer model, making
their throughput similar. PapyrusKV [8] is designed for dis-
tributed HPC architecture. LevelHash [19] optimizes the hash
for the PM to reduce the amount of writing.

Next, we discuss research aiming at improving LSM-Trees
throughput by reducing the write amplification caused by com-
paction. PebblesDB [15] reduces write amplification by de-
creasing data rewriting rather than dividing data into small
blocks. It divides SSTables into blocks at each level, ensuring
that blocks do not overlap. SSTables can be directly divided
during compaction and put into different blocks according to
the key range, reducing or eliminating writes during com-
paction. Like HPDK, WiscKey [23] also employs key-value
separation, reducing write amplification during compression
when the value size is large. HashKV [31] is optimized based
on WiscKey,using key-value separation and adding hash-based
data grouping, dynamic reserved space allocation, hotness
awareness, and selective key-value separation. This optimizes
throughput for update-intensive workloads and garbage collec-
tion. Both WiscKey and HashKV partially reduce write amplifi-
cation, but they still perform expensive background compaction
operations competing with clients. LWC-Tree [16] eliminates
I/O amplification by appending data to SSTables and only merg-
ing metadata. It retains aggregated metadata of the underlying
overlapping tables in each SSTable, reducing the small random
disk reading in the execution process. SlimDB [22] redesigns
the index block to a three-level compact index, using a Multi-
Level Cuckoo Filter, and proposes a stepped-merge algorithm to
optimize read, write throughput, and memory usage for semi-
sorted data. GearDB [17] achieves high throughput and high
space utilization through a new on-disk data layout that reor-
ganizes every zone for one level, a compaction window per-
forming gear compaction, and the gear compaction performing
garbage collection-free on HM-SMR. TRIAD [18] reduces the
time and space required for compaction and flush operations by
partitioning hot and cold data, delaying the SSTable compaction
to enough overlap between SSTables, and changing the role of
WAL in LSM-Tree and using it like SSTable. SILK [32] reduces
high tail latency without affecting the original throughput of
the system by prioritizing deal operations close to DRAM.
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(a) (b)

Fig. 8. Limitations of HPDK. The x-axis represents key-address item
number, and the y-axis represents the latency(s). (a) The startup latency of
HPDK and LevelDB. (b) The latency of rebuild B+-tree in DRAM in HPDK.

Kreon [33] uses random I/O instead of CPU overhead and I/O
amplification. It uses an index within each level to eliminate the
need for sorting large segments and employs a custom memory-
mapped I/O path to reduce the cost of I/O.

Finally, several studies [2], [24], [34], [35], [36] provide high
throughput for KVS with different methods. Other works [12],
[37] are based on B+-tree or its variants, proposing optimization
schemes or optimal persistent data structures. HPDK, based on
PM, modifies the LSM-Tree and combines it with B+-tree to
achieve high throughput, reducing the amount of data written
while attaining high read and write throughput.

VII. LIMITATIONS

HPDK is a KVS based on PM with high throughput, low
latency, and low write/read amplification. However, Since it
keeps a B+-tree in DRAM, it needs to rebuild it in DRAM every
time it is started, which will consume some time. When HPDK
adopts the design of key-value separation, the rebuilding time of
B+-tree is only related to the number of key-address items. As
shown in Fig. 8(a), The startup time increases linearly with the
number of key-address items. When the number of valid key-
address items in KVS is 25,000,000, it takes about 2.5 minutes
to restart the whole HPDK, while for LevelDB, the system
startup is only related to the amount of data in WAL, which
is less than the amount of data in one SSTable. Additionally, to
evaluate the additional latency required to recover the B+-tree
after a crash, we also tested the time to rebuild the B+-tree from
SSTable. As shown in Fig. 8(b), as with normal startup, the time
required to rebuild the B+-tree in DRAM is proportional to the
number of key-address items. When we rebuild about 570,000
key-address items from 8 SSTables to the B+-tree in DRAM,
it takes about 3.28 seconds, which is also close to the time we
need to rebuild the B+-tree during normal startup.

The cost of PM (Persistent Memory) is another constraint
in implementing our method, as it is significantly higher com-
pared to NVMe (Non-Volatile Memory Express). However, our
method is well-suited for data centers where high performance
holds greater importance than cost. For instance, a military data
center would be a suitable choice for implementing our method.

HPDK is the first that adopts a hybrid LSM-Tree based KVS
architecture which totally replacing Disk by PM. Also HPDK

improves the slow read performance which exists in traditional
LSM-Tree based KVS.

VIII. CONCLUSION

This paper presents HPDK, a hybrid LSM-Tree based KVS
architecture designed for PM-DRAM environments. HPDK is
designed to achieve high throughput through low read and write
latency using four techniques: level compression for LSM-Tree
in PM, key-value separation design, a B+-tree index in DRAM,
and a merge algorithm for SSTable in Persistent Memory. We
implement HPDK on a real Persistent Memory. Experimental
results show that HPDK outperforms LevelDB and SLM-DB
in read and write throughput. For example, when value sizes
are 100 Bytes, 1 KB, 4 KB, and 16 KB, HPDK improves read
and write throughput by up to 36.4×. These results confirm
the effectiveness of our design for high I/O throughput in PM-
DRAM systems.
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