
Journal of Network and Computer Applications xxx (xxxx) xxx 
Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Research paper

FastTSS: Accelerating tuple space search for fast packet classification in
virtual SDN switches
Bing Xiong a , Jing Wu a, Guanglong Hu a, Jin Zhang a,∗, Baokang Zhao b,∗, Keqin Li c ,∗

a School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
b School of Computer Science, National University of Defense Technology, Changsha 410073, PR China
c Department of Computer Science, State University of New York at New Paltz, New York 12561, USA

A R T I C L E I N F O

Keywords:
Dynamic tuple sorting
Network traffic locality
Packet classification
Virtual SDN switches
Well-exploited flow cache

A B S T R A C T

The increasing tendency of network virtualization gives rise to extensive deployments of virtual switches in
various virtualized platforms. However, virtual switches are encountered with severe performance bottlenecks
with regards to their packet classification especially in the paradigm of Software-Defined Networking (SDN).
This paper is thus motivated to design a fast packet classification scheme based on accelerated tuple space
search, named as FastTSS, for virtual SDN switches. In particular, we devise a well-exploited cache with active
exact flows to directly retrieve respective flow entries for most incoming packets, in virtue of the temporal
locality of network traffic. Furthermore, we propose a novel hash algorithm to resolve the hash collisions of
the cache, by providing three candidate locations for each inserted flow and making room for conflicting flow
through kicking operation. As for the case of cache miss, we utilize the spatial locality of packet traffic to
accelerate tuple space search, by dynamically sorting all tuples in terms of their reference frequencies and
load factors. Eventually, we evaluate our designed packet classification scheme with physical network traffic
traces by experiments. Extensive experimental results indicate that our designed FastTSS scheme outperforms
the state-of-the-art ones with stable cache hit rates around 85% and the speedup of average search length up
to 2.3, significantly promoting the packet classification performance of virtual SDN switches.
1. Introduction

Nowadays, existing Internet architecture is restricted to simple lim-
ited updates and difficult to deploy novel network technologies. To
break this restriction, network virtualization is proposed to separate
network services from hardware infrastructure and enable multiple
different network architectures to coexist on a shared physical sub-
strate. Due to its high flexibility, manageability and security, it is
generally considered as a promising solution to eradicate the Internet
ossification in the long term (Chowdhury and Boutaba, 2010). With
the rapid development of network virtualization, virtual switches have
been widely deployed in a variety of virtualized environments in recent
years. Particularly, virtual switches, functionally equivalent to physical
switches, can provide logical network functions and services for virtual
machines in various cloud platforms. Meanwhile, Software-Defined
Networking (SDN) has become a prevalent paradigm for modern large-
scale networks in recent years. Until now, virtual SDN switches have
become a prevalent provider of network services across various virtu-
alized environments, particularly within cloud data centers (Yi et al.,
2018).

∗ Corresponding authors.
E-mail addresses: jzhang@csust.edu.cn (J. Zhang), bkzhao@nudt.edu.cn (B. Zhao), lik@newpaltz.edu (K. Li).

In order to flexibly define packet flows of different granularity, SDN
incorporates wildcards into the match fields of its flow tables, chiefly
comprised of key fields in the headers of protocol layers (Mckeown
et al., 2008). Nevertheless, this prevents virtual SDN flow tables from
directly employing hashing techniques to support fast lookup. To ad-
dress this problem, virtual SDN switches generally adopt tuple space
search (TSS) to implement wildcarding. It partitions all flow rules into
several tuples according to the mask that identifies the position of
wildcards in the match fields. Then, each tuple is managed as a hash
table, and searched in terms of its unique mask and the match fields
in each flow entry. As for an arrived packet, it is unaware of its mask,
and unable to directly retrieve its respective tuple in the flow table.
Therefore, each packet must look up all tuples in turn until a successful
lookup. This brings high overheads regarding flow table lookups and
imposes a great penalty on packet classification performance. More
seriously, it will present a sharp increase in the number of tuples and
the size of each tuple under network traffic surges, especially induced
by cyber attacks (Tang et al., 2022a). Thus, it is crucial to expedite
packet classification in virtual SDN switches (Emmerich et al., 2018).
https://doi.org/10.1016/j.jnca.2025.104112
Received 24 September 2024; Received in revised form 21 December 2024; Accept
Available online 22 January 2025 
1084-8045/© 2025 Elsevier Ltd. All rights are reserved, including those for text and

Please cite this article as: Bing Xiong et al., Journal of Network and Compute
ed 14 January 2025

 data mining, AI training, and similar technologies. 

r Applications, https://doi.org/10.1016/j.jnca.2025.104112 

https://www.elsevier.com/locate/jnca
https://www.elsevier.com/locate/jnca
https://orcid.org/0000-0002-3006-7295
https://orcid.org/0000-0001-5224-4048
mailto:jzhang@csust.edu.cn
mailto:bkzhao@nudt.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.jnca.2025.104112
https://doi.org/10.1016/j.jnca.2025.104112
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2025.104112&domain=pdf


B. Xiong et al.

c
e
a
i
c
f

t

e
p
w
c

f
w
t
t
S
n
c
h
t
t
c
c

p
c
a

i
p
a

s

c
I

a

h

f
s
m
e
D

f

s

c

Journal of Network and Computer Applications xxx (xxxx) xxx 
To date, considerable effort has been devoted to enhancing packet
lassification performance for virtual SDN switches. These work is
ssentially classified into three categories: optimizing packet switching
rchitectures, enhancing packet classification algorithms, and employ-
ng caching techniques. Initially, significant advancements in packet
lassification performance were made by offloading packet switching
rom CPU to programmable NICs as fast data path (Luo et al., 2010;

Firestone, 2017). Subsequently, some researchers optimized packet
classification algorithms by speeding up the update of decision trees
supporting fast lookups (He et al., 2014; Li et al., 2018), and decreasing
he lookup overheads of flow tables with fast updates (Daly and Torng,

2017; Daly et al., 2019). In proximity to our research, cache techniques
were employed to directly locate corresponding flow entries for incom-
ing packets by leveraging temporal locality in network traffic (Pfaff
t al., 2015; Wang et al., 2017). But there is still room for improvement
rimarily due to their insufficient utilization of network traffic locality,
hich gives rise to inadequate cache utilization and unsatisfactory

ache hit rates.
This paper concentrates on how to further accelerate packet classi-

ication by adequately exploiting network traffic locality. To this end,
e have an insight into the temporal and spatial locality of network

raffic in terms of packet flows in virtual SDN switches. Afterwards,
he temporal locality is leveraged to optimize the flow cache design of
DN flow tables, by caching presently active exact flows rather than
ewly emerged ones. Furthermore, we devise a Well-Exploited Flow
ache called WEFcache, by proposing a novel hash algorithm to resolve
ash collisions. Meanwhile, the spatial locality is utilized to expedite
he tuple space search of the flow table by dynamically sorting its all
uples for the case of cache miss. By this way, we achieve a fast packet
lassification scheme named FastTSS for virtual SDN switches. The key
ontributions of this paper are summarized as follows.

• Taking an insight into network traffic locality from the perspec-
tive of packet flows in the paradigm of SDN both in time and
space. The temporal and spatial locality of network traffic is
respectively exploited to increase the hit rates of flow caches and
decrease the overhead of tuple space search in respective flow
tables.

• Designing a well-exploited flow cache to achieve high cache hit
rates, by caching currently active exact flows for more cache-
hit packets, and devising a novel hash algorithm which provides
three candidate locations for each inserted flow and makes room
for conflicting flow through kicking operation, to resolve hash
collisions for higher cache utilization.

• Accelerating the tuple space search of the respective flow table
for cache-miss packets, by dynamically sorting all tuples in terms
of their reference frequencies and load factors, and formulating
the average number of failed tuple lookups with the geometric
progression assumption of tuple reference probabilities.

• Calculating the average search length of our proposed packet
classification scheme FastTSS with the cache hit rate and average
number of failed tuple lookups, and verifying the performance
superiority of the FastTSS scheme by experiments with physical
network traffic traces.

The rest of this paper is organized as follows. Section 2 introduces
related work. In Section 3, we introduce the background of virtual
SDN switches especially its flow caches/tables. Section 4 depicts our
roposed packet classification scheme FastTSS, which optimizes flow
ache design and tuple space search, respectively in virtue of temporal
nd spatial locality of packet traffic. In Section 5, we provide the algo-

rithmic implementations of our proposed FastTSS scheme, and analyze
ts average search length. Section 6 evaluates the packet classification
erformance of the FastTSS scheme, in terms of cache hit rate and
verage search length. Eventually, we conclude the paper in Section 7.
2 
2. Related work

In recent years, optimization techniques have been extensively
tudied to improve packet classification performance for virtual SDN

switches. Initially, some researchers strived to promote software packet
lassification performance, by developing novel frameworks for packet
/O on general-purpose operating systems (Rizzo et al., 2012), lever-

aging most advanced multi-core CPUs and OS technology (Nakajima
et al., 2014), and employing template-based code generation to compile
any OpenFlow pipeline into efficient machine code as a fast data
path (Molnár et al., 2016). With the advent of programmable NICs
(PNIC), many developers set out to offload virtual SDN switches from
host CPU to PNICs (Luo et al., 2010; Firestone, 2017), and implemented
packet classification based on Intel’s Data Plane Development Kit
(DPDK) (Rahimi et al., 2016; Pongrácz et al., 2013). This achieves high
programmability of SDN data plane and speeds up packet classification
in virtual SDN switches. Moreover, some work further promoted packet
classification performance by employing specialized hardware such as
network processors (Blaiech et al., 2014), GPU (Varvello et al., 2016),
nd FPGA (Firestone et al., 2018).

Substantial progress have been achieved through the algorithmic
optimization on packet classification in SDN switches. Many decision
trees can achieve high-speed classification, such as HiCuts (Gupta and
McKeown, 2000), HyperCuts (Singh et al., 2003), SmartSplit (He et al.,
2014) and CutSplit (Li et al., 2018). Unfortunately, it will generate
eavy overheads to update decision trees, which needs the reconstruc-

tion of trees through a battery of adjustments. On the contrary, tuple
space search (TSS) (Srinivasan et al., 1999) is utilized to facilitate
ast updates, by partitioning a large number of flow rules into a
maller number of tuples based on the positions of wildcards in their
atch fields. However, TSS performs lookups with great overheads

specially in scenarios with a great many tuples. To enhance TSS,
aly et al. Daly and Torng (2017)Daly et al. (2019) further designed

a novel packet classification algorithm TupleMerge, which merges
low rules by ignoring some bits to cut down the number of tuples.

This greatly promotes classification performance while keeping similar
update speeds. To incorporate the advantages of decision trees and
TSS, Yingchareonthawornchai et al. (2016)Yingchareonthawornchai
et al. (2018) designed an integrated approach PartitionSort, which
utilizes ruleset sortability to achieve a reduced number of partitions and
employs multi-dimensional interval trees for fast lookup and updates
within each partition. Li et al. (2020) presented a two-stage scheme
CutTSS, which initially builds partial decision trees from various rule
ubsets classified based on their small fields, and utilizes TSS to perform

packet classification at non-leaf terminal nodes. But the classification
performance will be degraded with unbearable sorting overheads for
the case of too many rulesets.

The caching techniques have been extensively employed to improve
packet classification performance in virtual SDN switches. Congdon
et al. (2014) established a prediction circuitry for arrived packets in
virtue of the temporal locality of network traffic to reduce latency and
power consumption simultaneously. Pfaff et al. developed a popular
virtual SDN switch, Open vSwitch, widely deployed in virtualized
platforms. It first cached mega-flows without priority and overlapping
as a kernel-mode flow table, which enables most packets to pass fast
kernel data-path (Pfaff et al., 2009). Subsequently, it cached micro-
flows in the form of connections or sessions in its mega-flow table,
which further enhances packet classification performance (Pfaff et al.,
2015). Additionally, Wang et al. (2017) Wang et al. (2018) designed a
tuple mapping cache CuckooDistributor to directly retrieve tuples for
incoming packets, for decreasing the overhead of tuple space search
within the mega-flow table. Furthermore, they dynamically regulated
the speed of inserting new flows into the micro-flow cache, in ac-
ordance with its recent miss rate, for improving its hit rate. To

further optimize the flow cache, Zhou et al. (2020) employed bounded
linear probing to address its hash collisions, and devised probabilistic



B. Xiong et al.

w

m

h
m
s
m
u

h
o
a

u
g
W

u

a
f
i
t
s
i
l
m
t
i

r
c

n
l
s

e

t
r

r

Journal of Network and Computer Applications xxx (xxxx) xxx 
Fig. 1. Packet classification in Open vSwitch.

bubble LRU to facilitate its replacements, for sufficient cache utiliza-
tion. Rashelbach et al. (2022)Rashelbach et al. (2023) applied the
neural network algorithm NuevoMatch for packet classification, which

as used as the front-cache of mega-flow cache or completely replaced
the OVS datapath, to improve the OVS packet forwarding performance.
But the above flow caches accommodate arbitrary sets of exact flows,
and their hit rates can be further elevated.

To break the limitation of above flow caches, we previously devised
an active-exact-flow cache by applying Cuckoo hashing, allowing a

ajority of packets to directly retrieve their corresponding flow en-
tries (Xiong et al., 2019). However, cuckoo hashing needs additional
ash computation to locate another candidate position from directly
apped position, for both its lookup and insertion operations. More

eriously, its insertion operations will produce cyclic kicking due to
utual indexing of its two candidate positions, especially when cache
tilization rates reach a certain value typically 60% (Duffield et al.,

2005). This gives rise to inadequate cache utilization and unsatisfactory
cache hit rates, especially under traffic jitters even cyber attacks (Tang
et al., 2023). To address these problems, we propose a novel hash
algorithm to resolve the hash collisions of the cache, by providing
three candidate locations for each inserted flow and making room for
conflicting flow through kicking operation. Furthermore, we accelerate
tuple space search in the case of cache miss, by keeping all tuples in
order of their reference frequencies and load factors. Through these im-
provements, it is expected to significantly promote packet classification
performance in virtual SDN switches.

3. Background

Virtual SDN switches are commonly installed on general-purpose
hardware platforms without ternary content addressable memories
(TCAM) supporting wildcarding, and their flow tables must run in
random access memories (RAM). Thus, virtual SDN flow tables can no
longer apply classical fast lookup algorithms such as hash tables, owing
to the introduction of wildcards into their match fields. To address
this problem, a mask is designed for each flow entry to indicate the
positions of wildcards in the match fields, similarly to the subset mask
of an IP address. Subsequently, all entries in a flow table are classified
into a small number of tuples in terms of their masks. Each tuple can
be looked up in a hash table by the bitwise AND of its unique mask and
the match fields in each flow entry. These tuples compose a tuple space,
which will be searched for a matched flow entry on each packet arrival.
This solution is called tuple space search (TSS) (Srinivasan et al., 1999).

According to the above principle, the TSS solution will produce
eavy lookup overheads of a flow table, especially with a great number
f tuples. Upon receiving a packet, the switch is unaware of its mask,
nd unable to determine its corresponding tuple in the flow table.
3 
Hence each packet requires to match against all tuples individually,
ntil a flow entry is successfully identified. This means that it has to
o through failed lookup over many tuples until a successful match.
hen it comes to a flow table with abundant tuples, the tuple space

search will implement flow table lookups with great overheads, and
brings a performance bottleneck to packet classification. To mitigate
this bottleneck, caching techniques are extensively applied to speed
p the tuple space search for fast packet classification. Particularly,

some most advanced virtual switches such as Open vSwitch (Pfaff
et al., 2015) designed multiple levels of flow caches/tables in Fig. 1,
to provide fast classification paths for incoming packets.

As shown in Fig. 1, the switch first picks out disjoint flows without
 priority from flow tables in user space and caches them as a mega-
low table in its kernel module. The mega-flow table is implemented
n the form of tuple space search, but supports much faster lookups
han flow tables in user space for two reasons: (a) its tuple space
earch will terminate in the case of a successful match; (b) there
s only one classifier, in contrast to a pipeline of them requiring a
ong series of flow table lookups in user space. The micro-flow cache
aps traditional flows (typically TCP connections) into the masks of

heir belonging mega-flows. This allows radical simplification of its
mplementation as a plain hash table, and requires only one time of

hash table lookup for an incoming packet. Unfortunately, the cache hit
ate will be sharply decreased for a considerable number of short lived
onnections in the case of network traffic jitters and cyber attacks (Tang

et al., 2022b). Hence it is requisite to optimize the micro-flow cache
and the mega-flow table for fast packet classification in virtual SDN
switches. For simplicity, flow table and flow cache are respectively
short for mega-flow table and micro-flow cache in the rest of this paper.

4. Fast packet classification based on network traffic locality

This section builds an efficient packet classification scheme based on
etwork traffic locality, which designs a well-exploited flow cache with
ow hash collisions and expedites tuple space search by dynamically
orting all tuples.

4.1. Packet classification scheme

Massive network investigations indicate that packet traffic shows
vident locality properties both in time (temporal locality) and space

(spatial locality) (Duffield et al., 2005; Williamson, 2001). Network
traffic locality brings about the reference locality of tuples and flow
entries in flow tables, which inspires us to further accelerate packet
classification for virtual SDN switches. In particular, we devise a well-
exploited flow cache in virtue of the temporal locality of network
traffic. The cache accommodates currently active exact flows, other
han recently emerged ones, for more incoming packets to hit the
ate. Furthermore, we leverage the spatial locality of cache-miss packet

traffic, by dynamically sorting all tuples in the flow table to reduce
average tuple space search overheads. Fig. 2 illustrates the fundamental
principle of our proposed packet classification scheme FastTSS for
virtual SDN switches.

As for an arrived packet, the switch first extracts its flow identifier,
and queries the well-exploited flow cache before its flow table lookup.
If the cache hits, we will obtain a cache entry to directly locate the
espective flow entry in the flow table, bypassing expensive tuple space

search. Once the cache misses, it needs to perform tuple space search on
the flow table, by looking up all tuples one by one with their associated
masks. The tuple space search will continue before a successful match
in any tuple. As for a matched tuple, we adaptively adjust its position in
the tuple space if necessary to keep all tuples in order, with the aim to
cut down the tuple space search overheads for subsequent cache-miss
packets. By this way, it is expected to greatly boost the classification
speed of incoming packets in virtual SDN switches.



B. Xiong et al.

i
d

n
n

t
b

l

g
d

c

w
p
l

l
s
t
T
a
i
i
a
p
a
b
t

d

c
T

Journal of Network and Computer Applications xxx (xxxx) xxx 
Fig. 2. Our proposed packet classification scheme FastTSS.

Fig. 3. A typical example of packet traffic with temporal locality.

4.2. Flow cache design

This part throws light on the temporal locality of network traffic
n terms of packet flows, and designs a well-exploited flow cache to
irectly retrieve respective flow entries for most packets.

4.2.1. Temporal locality of network traffic
Extensive network measurements have indicated that locality phe-

omenon widely occurs in packet traffic under various network sce-
arios (Duffield et al., 2005; Williamson, 2001). This phenomenon is

the combined effect of network protocols and applications, respectively
specifying and launching data transmission behaviors between com-
munication entities. Firstly, the most prevalent Internet service WWW
generally exhibits a series of file downloading/uploading behaviors
between Web servers and browsers. Secondly, popular streaming media
applications, such as Internet television and live video streaming, gen-
erate persistent content distributions from data centers or proxy servers
o end-users. Thirdly, various cloud services produce a great deal of
ulk data transfer activities in the case of user operations and data

migrations.
Fig. 3 illustrates a typical example of packet traffic with temporal

ocality in terms of flows. As shown in Fig. 3, there are 23 successive
packets mainly distributed in 4 traditional flows, including 3 TCP
connections transmitting Web and cloud service data, and 1 UDP
sessions delivering streaming media data. We can observe from Fig. 3
that successive packets are not independent of each other, but highly
related. Particularly, packets in a short time intensively reside in very
few flows. Furthermore, packets within a flow is apt to arrive in
roups. These observations are summarized as temporal locality, which
emonstrates the short-term characteristic of network traffic.

SDN enables flexible definitions of packet forwarding behaviors,
but hardly changes network traffic characteristics. On the contrary, it
strengthens the temporal locality with the incorporation of wildcards
4 
Fig. 4. Well-exploited flow cache.

into the match fields identifying a packet flow. From the viewpoint of
packet flows, each wildcard aggregates two exact flows, typically TCP
onnections or UDP sessions, into one wildcarding flow. As for network

applications, an online interaction usually induces multiple exact flows,
hich can be aggregated into a single wildcarding flow. Consequently,
acket traffic will be more intensively distributed, and the temporal
ocality will be more evident in terms of wildcarding flows in SDN.

4.2.2. Well-exploited flow cache
The above temporal locality implies that packets within a flow are

iable to arrive in batches. Therefore, a flow will exhibit two alternate
tates: (a) the active one with a batch of packets being transmitted; (b)
he idle one with only a few scattered or even no packet in transmission.
he state of a flow can be distinguished by the inter-arrival time of
 packet and its previous one within the flow. Once a flow comes
nto the active state, there probably will be multiple packets within
t arriving soon. This inspires us to design a cache accommodating all
ctive flows for more subsequent packets to hit it. As for an incoming
acket, its flow will be put into the cache in case of its packet inter-
rrival time (PIT) below a predefined threshold. The threshold should
e dynamically tuned to keep the number of active flows matched with
he cache size.

Our designed WEFcache holds active exact flows instead of wild-
carding ones in SDN flow tables, for applying hashing techniques to
achieve fast lookup. To reduce hash collisions in our designed cache, we
propose a novel hashing algorithm to make the utmost of cache space
for sufficient cache utilization. Our hashing algorithm provides three
candidate locations among the cache for each active exact flow: its
directly mapped location and two adjacent locations. As for an inserted
flow, if its three candidate locations have already filled up, we kick
out a flow from either of the adjacent locations to provide storage
space for the inserted flow. The kicked flow is then inserted into its
adjacent location in the kicking direction, and we kick out any flow that
may exist there. The above process proceeds, until a vacant location is
found, or the number of kicking operations comes up to a predefined
upper limit. This hash algorithm is expected to reduce hash collisions,
maximize cache utilization, and significantly improve the performance
of packet classification in virtual SDN switches. Fig. 4 illustrates our
esigned WEFcache with our proposed hashing algorithm.

As shown in Fig. 4, the cache consists of 𝑘 buckets, each of which
ontains one or more entries separately keeping an active exact flow.
o save cache space, each cache entry is identified by flow signature

(generally 2 or 4 bytes), rather than flow identifier at least with 13 bytes
for classical 5-tuple (source ip/port, destination ip/port and protocol
type). As for an active exact flow, we directly map it into a bucket in
the cache by hashing its identifier, whose two adjacent buckets are also
its candidate locations. We set an offset field for each cached flow to
record the offset value (0, +1, −1) between its actually stored bucket



B. Xiong et al.

t

t
e
w
a

f

i

e

w
e
f
A
b

a

t
b

t
s
f
i

S
e
g
f
a
b
a
b

Journal of Network and Computer Applications xxx (xxxx) xxx 
Fig. 5. Cache lookup.

and its directly mapped bucket. The value 0 represents that the cached
flow is kept in its directly mapped bucket. The value +1/-1 denote
hat the cached flow is hold in the adjacent bucket in the upper/lower

direction.
In addition, each cache entry also contains other necessary informa-

ion regarding its cached flow, including the address of its respective
ntry in the flow table and the timestamp of the recently arrived packet
ithin it. With the address, we can directly locate a flow entry for an
rrived packet, provided that its flow signature matches with any cache

entry. In such cases, we no longer require to perform tuple space search
with heavy lookup overheads. The timestamp is used for calculating
the idle time of the cached flow in a cache entry until now. When a
ull bucket is obliged to accommodate a new active exact flow, we will

replace it into the cache entry with the longest idle time in the bucket.
Furthermore, periodic timeout scanning will eliminate all expired flows
n terms of their idle time.

4.2.3. Cache operations
(1) Cache lookup. Fig. 5 depicts a typical example of cache lookup.

Upon receiving a packet 𝑝 belongs to a flow 𝑓4 at the time 𝑡, we first
extract its flow identifier 𝑓 𝑖𝑑 and calculate its flow signature 𝑠𝑖𝑔 𝑛. Then,
we retrieve its directly mapped bucket by hashing the flow identifier
𝑓 𝑖𝑑, and match against the bucket and its adjacent buckets by the flow
signature 𝑠𝑖𝑔 𝑛. If a cache entry is successfully matched, we directly
retrieve the corresponding entry in the flow table in terms of the flow
ntry address 𝑎𝑑 𝑑 𝑟 in the cache entry. Furthermore, we update the

timestamp 𝑡𝑖𝑚𝑒 in the cache entry to 𝑡. As for failed matching, we return
null.

(2) Cache insertion. To insert an active exact flow newly emerged,
we first compute its flow signature 𝑠𝑖𝑔 𝑛 by its flow identifier 𝑓 𝑖𝑑. Next,
we hash 𝑓 𝑖𝑑 to map the flow into the cache, and locate its directly
mapped bucket and two adjacent ones. Subsequently, we verify if there
is any vacant entry in the three buckets. Each cache insertion has three
cases:

Case 1: If there is any vacant entry in directly mapped bucket, we
ill directly write the key information of the inserted flow 𝑓10 into the
ntry, including its flow signature 𝑠𝑖𝑔 𝑛, the address of its corresponding
low entry 𝑎𝑑 𝑑 𝑟, and the timestamp of its recently arrived packet 𝑡𝑖𝑚𝑒.
s shown in Fig. 6(a), there is a vacant entry in the directly mapped
ucket of the newly arrived flow 𝑓10. In this case, we place 𝑓10 into the

vacant entry and set its offset as 0.
Case 2: If the inserted flow 𝑓11 is directly mapped into a full bucket

and either of its two adjacent buckets has a vacant entry at least, we
will write the information of the flow 𝑓 into the entry. As shown in
Fig. 6(b), there is a vacant entry in the upper adjacent bucket, we place
𝑓11 into the vacant entry and set its offset as +1.

Case 3: If there is no vacant entry in the directly mapped bucket
and its two adjacent buckets of the inserted flow 𝑓13, we will randomly
choose one of the two adjacent buckets, and kick out a flow in it to its
djacent bucket in the direction far from the directly mapped bucket. In

particular, we prefer to select a flow whose offset direction is opposite
o the kick-out direction, for returning the flow to its directly mapped
ucket while making room for the inserted flow. The above kick-out
 f

5 
Fig. 6. Cache insertion.

operation proceeds until a vacant entry is found or the number of kick-
out operations reaches a predefined limit. As shown in Fig. 6(c), the
hree candidate buckets of the inserted flow 𝑓13 are all full, and it is
uitable to kick out 𝑓3 with the offset −1 in the upper adjacent bucket
or accommodating 𝑓13. Then, 𝑓3 is pushed back into a vacant entry in
ts directly mapped bucket.

(3) Cache deletion. To delete an expired flow in the cache, we
first compute its flow signature 𝑠𝑖𝑔 𝑛 by its identifier 𝑓 𝑖𝑑. Next, we
retrieve its three candidate buckets by hashing the flow identifier 𝑓 𝑖𝑑,
and match all cache entries in the three candidate buckets one by one
with the flow signature sign. Once succeeding to match a cache entry,
we will reset it.

4.2.4. Cache hit rates
Cache hit rate is a key metric for measuring cache performance.

ince our designed cache accommodates active exact flows, it is nec-
ssary to define the activity degree of an exact flow at a certain time,
enerally as the probability that the next arrived packet belongs to the
low. Assume the activity degree model of exact flows as follows: if the
ctivity degree of all exact flows decreases in equal proportion after
eing sorted, the cache hit rate can be simplified as the sum of the
ctivity degrees of top exact flows. Afterwards, the cache hit rate can
e derived in accordance with the above activity degree model of exact

lows. Let the common ratio of the activity degree be 𝑞 (0 < 𝑞 < 1),



B. Xiong et al.

S
a

t
c

s

i
o
s

t

a
f

w

f

a

i
a
i
h
C
e
𝑖

o
b
o

𝑚
m

Journal of Network and Computer Applications xxx (xxxx) xxx 
Table 1
The estimation of cache hit rate.
𝑁 𝑞 𝑛 𝑃𝑊 𝐸 𝐹 𝑐 𝑎𝑐 ℎ𝑒 𝑃𝐶 𝑢𝑐 𝑘𝑜𝑜𝐹 𝑙 𝑜𝑤
100K 0.9991 2.0K 83.48% 76.32%
100K 0.9991 2.2K 86.21% 79.49%
100K 0.9992 2.0K 79.82% 72.21%
100K 0.9992 2.2K 82.81% 75.55%
200K 0.9992 2.2K 82.81% 75.55%
200K 0.9992 2.4K 85.35% 78.48%
200K 0.9993 2.2K 78.57% 70.84%
200K 0.9993 2.4K 81.37% 73.93%
400K 0.9993 2.4K 81.37% 73.93%
400K 0.9993 2.6K 83.81% 76.69%
400K 0.9994 2.4K 76.32% 68.41%
400K 0.9994 2.6K 79.00% 71.30%

which reflects the locality degree of network traffic over exact flows.
uppose there is 𝑁 exact flows in network traffic, we can get the
ctivity degree of the 𝑖th flow 𝑎𝑖 (1 ≤ 𝑖 ≤ 𝑁) in all sorted flows as:

For simplicity, assuming that our designed cache contains the top n
flows in terms of activity degree, the cache hit rate can be computed
as the sum of their activity degrees in (2).

𝑎𝑖 = 𝑎1𝑞
𝑖−1 =

1 − 𝑞
1 − 𝑞𝑁

𝑞𝑖−1, (1)

𝑃 =
𝑛
∑

𝑖=1
𝑎𝑖 =

1 − 𝑞𝑛

1 − 𝑞𝑁
, (2)

Subsequently, we can estimate the cache hit rate 𝑃𝑊 𝐸 𝐹 𝑐 𝑎𝑐 ℎ𝑒 by setting
he activity common ratio 𝑞 for different number of exact flows 𝑁 and
ached flows 𝑛 in Table 1.

As for the scheme CuckooFlow, the cache utilization will be lower
than our designed cache because of the different hash algorithm. We as-
ume that the utilization of our cache is 100% and that of CuckooFlow

is 80%. Then, we obtain the cache hit rates of CuckooFlow 𝑃𝐶 𝑢𝑐 𝑘𝑜𝑜𝐹 𝑙 𝑜𝑤
in Table 1.

4.3. Tuple space search optimization

This part takes an insight into the spatial locality of packet traffic
missing the above flow cache, and reduces the tuple space search
overheads of the above flow table by dynamically sorting all tuples in
terms of their reference frequencies and load factors.

4.3.1. Spatial locality of packet traffic
As inferred from the working principle of our designed flow cache,

t will be missed for every scattered packet and the initial two packets
f each batch within a flow. These packets must undergo tuple space
earch on the flow table. Obviously, these packets are temporally

scattered over the flow, with the loss of temporal locality. Fortunately,
here is spatial locality among these packets, since all flows are ex-

cepted to vary in the number of packet batches and scattered packets.
In particular, most packets will concentrate on a handful of elephant
flows, while numerous mice flows will only contribute to a minority of
packets. In summary, the spatial locality will appear in packet traffic
for tuple space search from the respective of exact flows.

As for software-defined networking, wildcards in the match fields of
 flow entry aggregates multiple exact flows into a single wildcarding
low. Due to the non-uniform distribution of packet traffic on exact

flows, the traffic will similarly exhibit spatial locality in terms of
ildcarding flows. With regards to tuple space search, tuple references

will also demonstrate spatial locality, as each tuple consists of a certain
number of wildcarding flow entries. The above spatial locality is mani-
fested as the long-term characteristic of packet traffic. Fig. 7 illustrates
the spatial locality of packet traffic in terms of exact flows, wildcarding
lows, and tuples.

As shown in Fig. 7, we exhibit 24 successive packets non-uniformly
ttached to 8 exact flows {𝑒 , 𝑒 ,… , 𝑒 }. Specifically, there are 5, 4,
1 2 8 t

6 
Fig. 7. The spatial locality of packet traffic.

3, and 1 packets respectively in each flow of the sets {𝑒6}, {𝑒1, 𝑒3},
{𝑒2, 𝑒7, 𝑒8} and {𝑒4, 𝑒5}. Subsequently, the exact flow sets {𝑒1, 𝑒3},
{𝑒2, 𝑒4, 𝑒5, 𝑒7} and {𝑒6, 𝑒8} are respectively aggregated into 3 wildcard-
ing flows 𝑤1, 𝑤2, and 𝑤3, with 8 packets in each of them. The two
tuples 𝑡1 and 𝑡2 respectively contain the wildcarding flow sets {𝑤1, 𝑤3}
and {𝑤2} with 16 and 8 packets. This implies strong spatial locality
of packet traffic with its uneven quantitative distribution on tuples.
Consequently, there will be a chance to speed up tuple space search
by exploiting the spatial locality.

4.3.2. Dynamic tuple sorting
According to the above spatial locality of packet traffic, all tuples

are expected to be referenced with different frequencies. To reduce
the average number of tuple references for cache-miss packets, we
tentatively put all tuples in descending order by their reference fre-
quencies. Nevertheless, fewer tuple references do not necessarily mean
lower search overheads for a tuple space, as each tuple probably in-
volves a different number of flow entries and requires different lookup
overheads. Note that the lookup overheads of a tuple are generally
characterized by average search length, chiefly relying on the load
factor of its hash table. Consequently, we design a sorting metric for
the tuple space of our flow table, by combining the reference frequency
and the load factor of each tuple.

As for each tuple, its sorting metric is accumulated on the arrival
of each packet belonging to any one of its flow entries, to reflect
ts reference frequency. Particularly, the increment of the metric for
 packet is initially devised as the reciprocal of the load factor of
ts associated tuple, because a tuple with a larger load factor has
igher lookup overheads and should be prudently pushed forward.
onsidering the special cases of too small or large load factors, we
ventually design the metric increment 𝑚𝑖(𝑝𝑖𝑗 ) for the 𝑗th packet of the
th tuple 𝑝𝑖𝑗 as the truncation function,

𝑚𝑖(𝑝𝑖𝑗 ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜆 𝛼𝑖(𝑝𝑖𝑗 ) ≤
1
𝜆 ,

1
𝛼𝑖(𝑝𝑖𝑗 )

1
𝜆 < 𝛼𝑖(𝑝𝑖𝑗 ) < 𝜆,

1
𝜆 𝛼𝑖(𝑝𝑖𝑗 ) ≥ 𝜆,

(3)

where 𝛼𝑖(𝑝𝑖𝑗 ) represents the load factor of the 𝑖th tuple on the arrival
of the packet 𝑝𝑖𝑗 , and 𝜆 denotes the truncation value larger than 1.
As for implementations, the metric 𝑚𝑖 for the 𝑖th tuple (1≤𝑖≤𝐿) is
the accumulation of the metric increment 𝑚𝑖(𝑝𝑖𝑗 ) for all packets 𝑝𝑖𝑗
f the 𝑖th tuple. Subsequently, all tuples are kept in descending order
y their metrics all the time. Fig. 8 illustrates the schematic diagram
f dynamical tuple sorting. Upon receiving a packet 𝑝𝑖𝑗 belonging to

a flow entry in the 𝑖th tuple, we will calculate the metric increment
𝑖(𝑝𝑖𝑗 ) with (2) and update the metric of the tuple 𝑚𝑖. If the updated
etric goes beyond its front ones, the tuple should be moved forward

o keep all tuples in descending order. Considering continuous tuple



B. Xiong et al.

r

4
r
s
m
a
s
p
w
t
t
a
t

(
e

m
𝑟

f

t
a
i
f
o
A
p
e
f
f
p
o
t
2

p

Journal of Network and Computer Applications xxx (xxxx) xxx 
Fig. 8. The schematic diagram of dynamical tuple sorting.

references by packet traffic, all metrics of the tuple space should be
egularly normalized by their maximal one.

Note that the above metric increment truncates the reciprocal of
the load factor to fall in the range [1∕𝜆, 𝜆], where 𝜆 typically values
. In contrast, the accumulation frequency of the metric, i.e., the
eference frequency of the tuple, reaches up to tens of thousands per
econd (Anon, 0000). This implies that the reference frequency has a
uch greater impact on the sorting metric than the load factor for
 tuple. The tuple space will become stable with all tuples primarily
orted by their reference frequencies, after the arrival of a series of
ackets. Consequently, a majority of packets will match front tuples
ith much shorter search length, while only a minority of packets need

o go through lookup failures of most tuples before matching their
uples in the rear. In summary, it will bring an obvious decrease to the
verage search length for cache-miss packets by dynamically sorting all
uples.

4.3.3. Search length
For simplicity, we take the average number of failed tuple lookups

per packet as the performance metric of tuple space search. For feasible
deduction of the performance metric, suppose tuple reference proba-
bilities decrease in a geometric progression with the common ratio 𝑟
𝑟 ≤ 1). Suppose each packet will and only will match a tuple, we can
xpress the reference probability of the 𝑖th (1 ≤ 𝑖 ≤ 𝐿) tuple:

𝑎𝑖 = 𝑎1𝑟
𝑖−1 = 1 − 𝑟

1 − 𝑟𝐿
⋅ 𝑟𝑖−1. (4)

Consequently, we can derive the average number of failed tuple
lookups per packet:

𝑁fail =
𝐿
∑

𝑖=1
(𝑖 − 1)𝑎𝑖 = 𝑟

1 − 𝑟
− 𝐿𝑟𝐿

1 − 𝑟𝐿
. (5)

The factor 𝑟𝐿 in (5) comes close to 0, due to the common ratio 𝑟
less than 1 and the number of tuples 𝐿 generally dozens and even up to
hundreds. Therefore, we can approximate the average number of failed
tuple lookups:

𝑁fail ≈
𝑟

1 − 𝑟
. (6)

As seen from (6), the average number of failed tuple lookups is
erely dominated by the common ratio of tuple reference probability

. Specifically, when the common ratio 𝑟 values 0.7, 0.8 and 0.9,
we can estimate the average number of failed tuple lookups 𝑁fail
respectively as 2.33, 4, and 9. As for direct tuple space search, suppose
all tuples are referred with identical probability, we can easily achieve
its average number of failed tuple lookups as (𝐿−1)∕2. This is to say, the
average number of failed tuple lookups grows almost linearly with the
increasing number of tuples, and goes far beyond that of sorted tuple
space. In conclusion, it will significantly reduce the average number of
ailed tuple lookups.
7 
5. Algorithmic implementation and performance analysis

This section presents the algorithmic implementations of our pro-
posed packet classification scheme FastTSS, and analyzes its algorith-
mic complexity in regards to average search length.

5.1. Packet classification algorithm

Algorithm 1 provides the pseudo-code implementation of our pro-
posed packet classification scheme FastTSS for virtual SDN switches. As
for an arrived packet, a switch initially decodes its protocol headers to
obtain its key fields, and computes its flow identifier 𝑓 𝑖𝑑 for the lookup
on our designed cache (lines 1–2). If the cache lookup is successful to
locate a cache entry, we proceed to retrieve the respective flow entry
with its address 𝑎𝑑 𝑑 𝑟 recorded in the entry. Afterwards, we obtain the
match fields from the flow entry and check if they are matched with the
flow identifier 𝑓 𝑖𝑑 (lines 3–5). Once the match succeeds, it can directly
forward the packet with the action set in the flow entry, bypassing the
tuple space search on the flow table (line 6). Ultimately, the cache entry
should be updated, i.e., its timestamp is reset by packet arrival time
(line 7). Meanwhile, the flow entry also needs to be updated such as
counters (line 8).

If the cache lookup fails, it has to proceed with tuple space search on
he virtual SDN flow table. Specifically, we sequentially iterate through
ll tuples in the flow table, with their respective masks and the flow
dentifier, for a matched flow entry. With regard to each tuple, we
irst operate the bitwise AND on its mask and the flow identifier to
btain a masked key, and perform lookup on the tuple (lines 12–14).
s for successful tuple lookup, we will retrieve a flow entry and directly
rocess the packet by its action set (lines 15–16). Moreover, the flow
ntry should be updated, such as counters and its recently arrived exact
lows (line 17). Afterwards, we verify whether the corresponding exact
low has transitioned into the active state. Specifically, we compare the
acket arrival interval between the current one and the recently arrived
ne in the exact flow with the PIT threshold. If the interval goes below
he PIT threshold, the exact flow should be inserted into the cache (lines
1–24). Otherwise, we update the sorting metric of the matched tuple,

and move the tuple ahead if required to keep tuple space in order (lines
26–29). As for failed tuple space search, the virtual SDN switch will
transmit a flow setup request to its SDN controller for a flow rule (lines
35–36).

5.2. Algorithmic complexity analysis

Average search length is a key performance metric of our proposed
acket classification scheme FastTSS. Given that packet traffic can be

broken down into exact flows, we formulate average search length for
each packet within an exact flow. As for packets in each exact flow,
each of them either hit the above cache, or perform the tuple space
search for the case of cache miss. The average search length of the tuple
space can be deduced with the average number of failed tuple lookups.
Then we can further derive the average search length of our proposed
FastTSS scheme based on the cache hit rate.

Algorithm 1 The pseudo-code implementation of our proposed packet
classification scheme FastTSS.
PacketClassify (Packet 𝑝𝑘𝑡)
1: 𝑓 𝑖𝑑 ← ParsePacket(𝑝𝑘𝑡);
2: 𝑐 𝑒 ← CacheLookup(𝑓 𝑖𝑑);
3: if 𝑐 𝑒 is not NULL, then
4: 𝑓 𝑒 ← GetFlowEntry(𝑐 𝑒.𝑎𝑑 𝑑 𝑟);
5: if 𝑓 𝑒==𝑓 𝑒− > 𝑓 𝑖𝑑 then
6: ExecuteActions(𝑓 𝑒.𝑎𝑐 𝑡𝑖𝑜𝑛𝑠, 𝑝𝑘𝑡);
7: UpdateFlow(𝑓 𝑒, 𝑝𝑘𝑡);
8: 𝑐 𝑒.𝑡𝑖𝑚𝑒 ← Normalize(𝑝𝑘𝑡.𝑡𝑖𝑚𝑒);
9: return true;



B. Xiong et al. Journal of Network and Computer Applications xxx (xxxx) xxx 
10: end if
11: end if
12: for 𝑖 ← 1, 𝑇𝑈𝑃𝐿𝐸_𝑁𝑈𝑀 do
13: 𝑘𝑒𝑦 ← 𝑝𝑘𝑡.𝑓 𝑖𝑑&𝑡𝑢𝑝𝑙 𝑒𝑠[𝑖].𝑚𝑎𝑠𝑘;
14: for 𝑓 𝑒 ∈ 𝑡𝑢𝑝𝑙 𝑒𝑠[𝑖], do
15: if 𝑓 𝑒.𝑘𝑒𝑦 == 𝑘𝑒𝑦, then
16: ExecuteActions(𝑓 𝑒.𝑎𝑐 𝑡𝑖𝑜𝑛𝑠, 𝑝𝑘𝑡);
17: UpdateFlow(𝑓 𝑒, 𝑝𝑘𝑡);
18: break
19: end if
20: end for
21: if 𝑓 𝑒 is not NULL, then
22: if 𝑓 𝑒.𝑙 𝑎𝑡𝑒𝑠𝑡_𝑓 𝑖𝑑 = 𝑓 𝑖𝑑 && 𝑝𝑘𝑡.𝑡𝑖𝑚𝑒 − 𝑓 𝑒.𝑡𝑖𝑚𝑒 ≤ 𝑃 𝐼 𝑇 , then
23: 𝑓 ← NewFlow(𝑓 𝑖𝑑 , 𝑎𝑑 𝑑 𝑟, 𝑝𝑘𝑡.𝑡𝑖𝑚𝑒);
24: CacheInsert(𝑓 );
25: else
26: UpdateMetric(𝑡𝑢𝑝𝑙 𝑒𝑠[𝑖].𝑚𝑒𝑡𝑟𝑖𝑐);
27: while 𝑖 ≥ 1 && 𝑡𝑢𝑝𝑙 𝑒𝑠[𝑖].𝑚𝑒𝑡𝑟𝑖𝑐 > 𝑡𝑢𝑝𝑙 𝑒𝑠[𝑖 − 1].𝑚𝑒𝑡𝑟𝑖𝑐 , do
28: Swap(𝑡𝑢𝑝𝑙 𝑒𝑠[𝑖], 𝑡𝑢𝑝𝑙 𝑒𝑠[𝑖 − 1]);
29: 𝑖 − −;
30: end while
31: end if
32: return true;
33: end if
34: end for
35: 𝑚𝑠𝑔 ← CreateMessage(𝑝𝑘𝑡);
36: SendMessage(𝑚𝑠𝑔);
37: return false;

Upon receiving a packet, the switch first looks up the cache. As
for successful cache lookup, we will directly retrieve a matched cache
entry and locate the respective flow entry with the search length
𝑆 𝐿cache-hit=1. Otherwise, we must perform tuple space search, by se-
quentially looking up all tuples until a matched flow entry is found. As
for the lookup failure of each tuple, we need to traverse the tuple with
the search length 𝑆 𝐿tuple-fail = 𝛼, where 𝛼 denotes the load factor of
the tuple. If a tuple lookup finally succeeds, it needs the search length
𝑆 𝐿tuple-hit = 𝛼∕2 + 1 to find out a flow entry in the tuple. With the
approximate average number of failed tuple lookups 𝑁fail in (6), we
further derive the search length for the case of cache miss:
𝑆 𝐿cache-miss = 1 +𝑁fail ⋅ 𝑆 𝐿tuple-fail + 𝑆 𝐿tuple-hit

≈
𝛼(1 + 𝑟)
2(1 − 𝑟)

+ 2. (7)

With the cache hit rate in (2), we finally derive the average search
length of our proposed FastTSS scheme:

ASLFastTSS = 𝑃 ⋅ 𝑆 𝐿cache-hit + (1 − 𝑃 )𝑆 𝐿cache-miss. (8)

As shown in (8), the average search length primarily depends on
the cache hit rate 𝑃 , the common ratio of tuple reference probability
𝑟, and the load factor of each tuple 𝛼. By substituting typical values of
each parameter into (8), we can compute the estimated average search
length of our proposed FastTSS scheme in Table 2.

As for the packet classification scheme CuckooFlow, its average
search length primarily relies on the cache hit rate 𝑃𝐶 𝑢𝑐 𝑘𝑜𝑜𝐹 𝑙 𝑜𝑤, the
common ratio of tuple reference probability 𝑟, and the load factor of
each tuple 𝛼. By substituting typical values of each parameter into 2,
we can calculate the estimated average search length of the classical
packet classification scheme in Table 2.

As shown in Table 2, our proposed FastTSS scheme achieves shorter
average search length than the packet classification scheme Cuck-
ooFlow by estimation, with the speedup ratio above 1.2 all the time.
Specifically, the average search length of our proposed FastTSS scheme
is estimated to fall below 6 in most of the time, while that of the
CuckooFLow keeps above 5 most of the time. Furthermore, we can
also see that the average search length of our proposed FastTSS scheme
chiefly depends on the cache hit rate 𝑃 and the load factor of each tuple
𝛼.
8 
Table 2
The estimation of average search length for different packet classification scheme.
𝛼 𝑟 𝑃𝑊 𝐸 𝐹 𝑐 𝑎𝑐 ℎ𝑒 𝑃𝐶 𝑢𝑐 𝑘𝑜𝑜𝐹 𝑙 𝑜𝑤 𝐴𝑆 𝐿𝐹 𝑎𝑠𝑡𝑇 𝑆 𝑆 𝐴𝑆 𝐿𝐶 𝑢𝑐 𝑘𝑜𝑜𝐹 𝑙 𝑜𝑤 𝑆 𝑝𝑒𝑒𝑑 𝑢𝑝
2 0.8 0.7632 0.6841 3.36 4.15 1.23
2 0.9 0.7632 0.6841 5.73 7.31 1.27
4 0.8 0.7632 0.6841 5.49 7.00 1.27
4 0.9 0.7632 0.6841 10.23 13.32 1.30
2 0.8 0.7900 0.7130 3.10 3.87 1.24
2 0.9 0.7900 0.7130 5.20 6.74 1.29
4 0.8 0.7900 0.7130 4.99 6.45 1.29
4 0.9 0.7900 0.7130 9.19 12.19 1.32
2 0.8 0.8381 0.7669 2.61 3.33 1.27
2 0.9 0.8381 0.7669 4.23 5.66 1.33
4 0.8 0.8381 0.7669 4.07 5.42 1.33
4 0.9 0.8381 0.7669 7.31 10.09 1.37
2 0.8 0.8621 0.7949 2.37 3.05 1.28
2 0.9 0.8621 0.7949 3.75 5.10 1.35
4 0.8 0.8621 0.7949 3.62 4.89 1.35
4 0.9 0.8621 0.7949 6.37 8.99 1.41

Fig. 9. The number of wildcarding flows in the traces.

6. Experiments

This section evaluates the packet classification performance of our
proposed FastTSS scheme in terms of cache hit rate and average search
length with physical network traffic traces.

6.1. Experimental methodology

To facilitate convenient experimental comparison, we implement
various packet classification schemes for virtual SDN switches with
C/C++ programming language. For multiple experimental evaluations,
the program is repeatedly operated off-line on physical network traffic
traces. As for our experimental traces, we select a popular public
network traffic TRACE1 and TRACE2 (Anon, 0000). Each trace con-
tains 15,420,235 packets captured from a 10Gps backbone network
connecting Jiangsu Province to the CERNET, with the sampling ratio
1:4. Fig. 9 demonstrates the changing number of wildcarding flows in
the above traces. It can be seen that TRACE1 and TRACE2 respectively
have approximate duration 122 s and 100 s. After initial 10 s set as
timeout, both TRACE1 and TRACE2 keep a relatively steady number
of wildcarding flows, respectively with about 35 k and 24.5 k.

Particularly, we perform different classification schemes for packets
in traffic traces, and record statistical information to compute perfor-
mance metrics such as cache hit rate and average search length. For
simplicity, we choose the classical five fields, i.e., source ip, source port,
destination ip, destination port and protocol type, as the match fields of
flow tables. The mask of each match field is configured as follows: 0𝑥𝑓𝑓
for protocol type, 0 × 8000 for both types of ports, and default subnet
mask for both types of IP (0𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 for classes D and E addresses).
This will generate 16 different masks. Furthermore, we set 10 s for the
timeout interval of each flow entry.



B. Xiong et al. Journal of Network and Computer Applications xxx (xxxx) xxx 
Fig. 10. The cache hit rate for different cache sizes.

Fig. 11. The cache hit rate for different PIT thresholds.

6.2. Cache hit rate

Cache hit rate is a primary performance metric of flow caches. As
for our designed flow cache, the cache hit rate primarily relies on the
cache size and the PIT threshold of active exact flows. By fixing the
PIT threshold as 256 ms and setting different cache sizes, we perform
our proposed FastTSS scheme on the above traffic traces and get the
respective cache hit rate in Fig. 10.

As shown in Fig. 10, the cache hit rate stably goes up with the
increasing cache size no more than 8𝑘, and turns to remain constant
for larger cache size, no matter which traffic trace. Then we can infer
that there are around 8𝑘 active exact flows in traffic traces with the
PIT threshold 256 ms. As for the cache size smaller than 8𝑘, we can
obtain a higher cache hit rate by increasing the cache size to keep more
active exact flows. When the cache size goes beyond 8𝑘, the cache has
already kept all active exact flows, and it no longer brings any benefit
by enlarging the cache size.

Similarly to the above experiment, we obtain the cache hit rate of
our proposed FastTSS scheme for the above traffic traces in Fig. 11, by
fixing the cache size as 8𝑘 and setting different PIT thresholds. As seen
from Fig. 11, no matter which traffic trace, the cache hit rate shows
a similar rule of first rising and then falling, and reaches its peak for
the PIT threshold between 128 ms and 256 ms. When the PIT threshold
is too small, there will be only a small number of active exact flows
far from filling up the cache. As for too large PIT thresholds, almost
all exact flows are deemed to be active, and it is nearly equal to cache
recently emerged exact flows. These two extreme cases will lead to low
cache hit rates. In particular, the cache hit rate will get its maximum
when the cache size just matches with the number of active exact flows.
9 
Fig. 12. The cache hit rate for different packet classification schemes..

According to the above experimental results, it is suitable to config-
ure the cache size and the PIT threshold respectively as 8𝑘 and 256 ms
for our proposed FastTSS scheme with the WEFcache. Subsequently,
we operate typical packet classification schemes on each traffic trace,
count the number of packets with cache hit, and calculate the cache hit
rate in Fig. 12. We can see from Fig. 12 that our proposed WEFcache
achieves the highest cache hit rate up to 77% and 85% respectively
for TRACE1 and TRACE2. Specifically, the two packet classification
schemes based on active-exact-flow caches obtain much higher cache
hit rates compared to Open vSwitch with the micro-flow cache. This
is because our designed WEFcache achieve better utilization of cache
space than cuckoo hashing in the CuckooFlow scheme, by applying our
proposed hash algorithm with low hash collision.

6.3. Average search length

Average search length is a classical performance metric of packet
classification for virtual SDN switches. As for the tuple space search
in the case of cache miss, its performance is characterized by average
search length of tuple space. With the above configurations and the
hash length of each tuple set as 29, we operate typical packet classifica-
tion schemes on each traffic trace, and calculate average search length
of tuple space for each cache-miss packet and that of flow table for each
packet respectively in Figs. 13 and 14.

As shown in Fig. 13, our proposed FastTSS scheme has shorter
average search length of tuple space compared to the other two packet
classification schemes. This is attributed to the fact that the FastTSS
scheme adjusts the tuple space if necessary after each packet arrival,
which effectively reduces the search length of the tuple space for
subsequent packets in accordance with the spatial locality of packet



B. Xiong et al. Journal of Network and Computer Applications xxx (xxxx) xxx 
Fig. 13. Average search length of tuple space for different packet classification
schemes.

traffic. In contrast, the other two packet classification schemes keep
the tuple space constant all the time without consideration of network
traffic characteristic.

As seen from Fig. 14, our proposed FastTSS scheme achieves shorter
average search length of flow table compared to the other packet clas-
sification schemes. Specifically, the FastTSS scheme performs packet
classification with the average search length about 10.42 for TRACE1,
while the CuckooFlow and Open vSwitch schemes need to take the
average search length respectively around 11.96 and 20.37. As for
TRACE2, we also achieve a great improvement with the average search
length of the FastTSS scheme about 5.51, while that of the CuckooFlow
and Open vSwitch schemes respectively around 7.06 and 12.72. In
summary, our FastTSS scheme achieve the speedup of average search
length 1.15 2.30 compared to the other two schemes. This is because
our FastTSS scheme achieve higher cache hit rates than the other two
schemes, and accelerate tuple space search by dynamically sorting the
tuple space.

7. Conclusion

Virtual switches performance is seriously deteriorated in SDN, ow-
ing to the incorporation of wildcards into its flow tables. This paper is
motivated to propose a fast packet classification scheme called FastTSS.
In particular, we design a well-exploited flow cache to directly retrieve
respective flow entries for incoming packets. Furthermore, we propose
a novel hash algorithm to resolve the hash collisions of the cache, by
providing three candidate locations for each inserted flow and making
room for conflicting flow through kicking operations. However, non-
empty cache items will converge to integrate several blocks, and it
10 
Fig. 14. Average search length of tuple space for different packet classification
schemes.

is difficult to carry out kicking operation. As for cache-miss packets,
we expedite tuple space search by dynamically sorting all tuples in
accordance with their reference frequencies and load factors.

We have experimentally evaluated the performance of our proposed
FastTSS scheme with physical network traffic traces. Based on the
experimental result, it is evident that our proposed FastTSS scheme
surpasses both Open vSwitch and CuckooFlow in terms of cache hit rate
and average search length. Specifically, the FastTSS scheme achieves
high cache hit rates of approximately 77% and 85%, along with short
average search length about 10.4 and 5.5, respectively for TRACE1
and TRACE2. In conclusion, the FastTSS scheme achieves significant
acceleration of packet classification for virtual SDN switches.

In our future work, we will collect more traffic traces from various
network scenarios, and utilize them to validate the superiority of our
proposed packet classification scheme. Meanwhile, we are planing to
implement the scheme, and integrate it into prevalent virtual SDN
switches including Open vSwitch. Furthermore, other applications of
the scheme are also within our future work plan. Particularly, we
will attempt to employ our proposed flow cache to other flow-based
network appliances such as hardware switches, to mitigate various
kinds of performance bottlenecks like high energy consumption.

CRediT authorship contribution statement

Bing Xiong: Writing – review & editing, Project administration.
Jing Wu: Writing – original draft, Visualization. Guanglong Hu:
Software, Formal analysis. Jin Zhang: Methodology, Investigation.
Baokang Zhao: Supervision, Resources. Keqin Li: Methodology, Con-
ceptualization.



B. Xiong et al.

F
u

g
(

S
a

Journal of Network and Computer Applications xxx (xxxx) xxx 
Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Baokang Zhao reports financial support was provided by National
Natural Science Foundation of China. Bing Xiong reports financial sup-
port was provided by Hunan Provincial Natural Science Foundation of
China. Bing Xiong reports financial support was provided by Scientific
Research Foundation of Hunan Provincial Education Department. Jing
Wu reports financial support was provided by Postgraduate Scientific
Research Innovation Project of Hunan Province. Bing Xiong has patent
pending to Changsha University of Science and Technology. If there
are other authors, they declare that they have no known competing
financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was supported in part by National Natural Science
oundation of China (U22B2005, 61972412), Hunan Provincial Nat-
ral Science Foundation of China (2023JJ30053), Scientific Research

Fund of Hunan Provincial Education Department (22A0232), and Post-
raduate Scientific Research Innovation Project of Hunan Province
CX20230913).

Data availability

The data that has been used is confidential.

References

Anon, Network traffic traces, http://iptas.edu.cn/src/system.php.
Blaiech, K., Hamadi, S., Mseddi, A., et al., 2014. Data plane acceleration for vir-

tual switching in data centers: NP-based approach. In: Proceedings of the 3rd
IEEE International Conference on Cloud Networking. CloudNet, Luxembourg, pp.
108–113.

Chowdhury, K., Boutaba, R., 2010. A survey of network virtualization. Comput. Netw.
54 (5), 862–876.

Congdon, P.T., Mohapatra, P., Farrens, M., et al., 2014. Simultaneously reducing latency
and power consumption in OpenFlow switches. IEEE/ACM Trans. Netw. 22 (3),
1007–1020.

Daly, J., Bruschi, V., Linguaglossa, L., et al., 2019. TupleMerge: Fast software
packet processing for online packet classification. IEEE/ACM Trans. Netw. 27 (4),
1417–1431.

Daly, J., Torng, E., 2017. Tuplemerge: building online packet classifiers by omitting
bits. In: Proceedings of the 26th IEEE International Conference on Computer
Communication and Networks. ICCCN, Vancouver, Canada, pp. 1–11.

Duffield, N., Lund, C., Thorup, M., 2005. Estimating flow distributions from sampled
flow statistics. IEEE/ACM Trans. Netw. 13 (5), 933–946.

Emmerich, P., Raumer, D., Gallenmüller, S., et al., 2018. Throughput and latency
of virtual switching with Open vSwitch: A quantitative analysis. J. Netw. Syst.
Manage. 26 (2), 314–338.

Firestone, D., 2017. VFP: A virtual switch platform for host SDN in the public cloud.
In: Proceedings of the 14th USENIX Symposium on Networked Systems Design and
Implementation. NSDI, Boston, USA, pp. 315–328.

Firestone, D., Putnam, A., Mundkur, S., et al., 2018. Azure accelerated networking:
Smartnics in the public cloud. In: Proceedings of the 15th USENIX Symposium on
Networked Systems Design and Implementation. NSDI, Renton, USA, pp. 51–64.

Gupta, P., McKeown, N., 2000. Packet classification using hierarchical intelligent
cuttings. IEEE Micro 4 (1), 34–41.

He, P., Xie, G., Salamatian, K., et al., 2014. Meta-algorithms for software-based
packet classification. In: Proceedings of the 22nd IEEE International Conference
on Network Protocols. ICNP, Research Triangle Park, North Carolina, USA, pp.
308–319.

Li, W., Li, X., Li, H., Xie, G., 2018. CutSplit: A decision-tree combining cutting and
splitting for scalable packet classification. In: Proceedings of the IEEE Conference
on Computer Communications. INFOCOM, Honolulu, USA, pp. 2645–2653.

Li, W., Yang, T., Rottenstreich, O., et al., 2020. Tuple space assisted packet classification
with high performance on both search and update. IEEE J. Sel. Areas Commun. 38
(7), 1555–1569.

Luo, Y., Murray, E., Ficarra, T., 2010. Accelerated virtual switching with programmable
NICs for scalable data center networking. In: Proceedings of the 2nd ACM
SIGCOMM Workshop on Virtualized Infrastructure Systems and Architectures. New
Delhi, India, pp. 65–72.
 n

11 
Mckeown, N., Anderson, T., Balakrishnan, H., et al., 2008. OpenFlow: Enabling
innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 38 (2),
69–74.

Molnár, L., Pongrácz, G., Enyedi, G., et al., 2016. Dataplane specialization for high-
performance openflow software switching. In: Proceedings of the ACM Conference
on Special Interest Group on Data Communication. SIGCOMM, Florianopolis, Brazil,
pp. 539–552.

Nakajima, Y., Hibi, T., Takahash, H., et al., 2014. Scalable, high-performance, elastic
software OpenFlow switch in userspace for wide-area network. In: Proceedings of
the Research Track in Open Networking Summit. ONS, Santa Clara, USA, pp. 1–2.

Pfaff, B., Pettit, J., Koponen, T., et al., 2009. Extending networking into the virtualiza-
tion layer. In: Proceedings of the 8th ACM SIGCOMM Workshop on Hot Topics in
Networks. HotNets, New York, NY, pp. 1–16.

Pfaff, B., Pettit, J., Koponen, T., et al., 2015. The design and implementation of Open
vSwitch. In: Proceedings of the 12th USENIX Symposium on Networked Systems
Design and Implementation. NSDI, Oakland, CA, pp. 2–16.

Pongrácz, G., Molnar, L., Kis, Z., 2013. Removing roadblocks from SDN: OpenFlow
software switch performance on intel DPDK. In: Proceedings of the 2nd European
Workshop on Software Defined Networks. EWSDN, Berlin, Germany, pp. 62–67.

Rahimi, R., Veeraraghavan, M., Nakajima, Y., et al., 2016. A high-performance Open-
Flow software switch. In: Proceedings of the 17th IEEE International Conference
on High Performance Switching and Routing. HPSR, Yokohama, Japan, pp. 93–99.

Rashelbach, A., Rottenstreich, O., Silberstein, M., 2022. Scaling Open vSwitch with a
computational cache. In: 19th USENIX Symposium on Networked Systems Design
and Implementation. NSDI 22.

Rashelbach, A., Rottenstreich, O., Silberstein, M., 2023. Scaling by learning: Acceler-
ating Open vSwitch data path with neural networks. IEEE/ACM Trans. Netw. 31
(3), 1230–1243.

Rizzo, L., Carbone, M., Catalli, G., 2012. Transparent acceleration of software packet
forwarding using netmap. In: Proceedings of the 31st Annual IEEE Interna-
tional Conference on Computer Communications. INFOCOM, Orlando, USA, pp.
2471–2479.

Singh, S., Baboescu, F., Varghese, G., et al., 2003. Packet classification using
multidimensional cutting. In: Proceedings of the ACM Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communications.
SIGCOMM, New York, pp. 213–224.

Srinivasan, V., Suri, S., Varghese, G., 1999. Packet classification using tuple space
search. ACM SIGCOMM Comput. Commun. Rev. 29 (4), 135–146.

Tang, D., Wang, S., Liu, B., et al., 2023. GASF-IPP: Detection and mitigation of LDoS
attack in SDN. IEEE Trans. Serv. Comput. 1–12 (early access).

Tang, D., Yan, Y.D., Zhang, S.Q., et al., 2022a. Performance and features: Mitigating
the low-rate TCP-targeted dos attack via SDN. IEEE J. Sel. Areas Commun. 40 (1),
428–444.

Tang, D., Zhang, S., Yan, Y., et al., 2022b. Real-time detection and mitigation of LDoS
attacks in the SDN using the HGB-FP algorithm. IEEE Trans. Serv. Comput. 15 (6),
3471–3484.

Varvello, M., Laufer, R., Zhang, F., et al., 2016. Multilayer packet classification with
graphics processing units. IEEE/ACM Trans. Netw. 24 (5), 2728–2741.

Wang, Y., Gobriel, S., Wang, R., et al., 2018. Hash table design and optimization
for software virtual switches. In: Proceedings of the ACM SIGCOMM Afternoon
Workshop on Kernel Bypassing Networks. KBNets, Budapest, Hungary, pp. 22–28.

Wang, Y., Tai, T.Y.C., Wang, R., et al., 2017. Optimizing Open vSwitch to support
millions of flows. In: Proceedings of the IEEE Global Communications Conference.
GlobeCom, Singapore, pp. 1–7.

Williamson, C., 2001. Internet traffic measurement. IEEE Internet Comput. 5 (6), 70–74.
Xiong, B., Hu, Z., Luo, Y., et al., 2019. CuckooFlow: Achieving fast packet classifi-

cation for virtual OpenFlow switching by exploiting network traffic locality. In:
Proceedings of the 17th IEEE International Symposium on Parallel and Distributed
Processing with Applications. ISPA, Xiamen, China, pp. 1071–1078.

Yi, B., Wang, X., Li, K., et al., 2018. A comprehensive survey of network function
virtualization. Comput. Netw. 133, 212–262.

Yingchareonthawornchai, S., Daly, J., Liu, A.X., et al., 2016. A sorted partitioning
approach to high-speed and fast-update OpenFlow classification. In: Proceedings
of the 24th IEEE International Conference on Network Protocols. ICNP, Singapore,
pp. 1–10.

Yingchareonthawornchai, S., Daly, J., Liu, A.X., et al., 2018. A sorted-partitioning
approach to fast and scalable dynamic packet classification. IEEE/ACM Trans. Netw.
26 (4), 1907–1920.

Zhou, D., Yu, H., Kaminsky, M., et al., 2020. Fast software cache design for network
appliances. In: Proceedings of the 2020 USENIX Annual Technical Conference.
USENIX ATC, Boston, MA, pp. 657–671.

Bing Xiong received the Ph.D. degree in Computer Science by master-doctorate
program from Huazhong University of Science and Technology (HUST), China, in 2009,
and the B.S. degree from Hubei Normal University, China, in 2004. He worked as
a visiting scholar in the Department of Computer and Information Science, Temple
University, USA, from 2018 to 2019. He is currently an associate professor in the
chool of Computer and Communication Engineering, Changsha University of Science
nd Technology, China. His main research interests include future network architecture,
etwork measurements, and artificial intelligence applications.

http://iptas.edu.cn/src/system.php
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb2
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb2
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb2
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb2
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb2
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb2
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb2
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb3
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb3
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb3
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb4
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb4
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb4
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb4
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb4
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb5
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb5
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb5
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb5
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb5
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb6
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb6
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb6
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb6
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb6
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb7
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb7
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb7
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb8
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb8
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb8
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb8
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb8
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb9
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb9
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb9
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb9
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb9
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb10
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb10
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb10
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb10
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb10
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb11
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb11
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb11
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb12
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb12
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb12
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb12
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb12
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb12
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb12
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb13
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb13
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb13
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb13
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb13
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb14
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb14
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb14
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb14
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb14
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb15
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb15
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb15
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb15
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb15
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb15
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb15
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb16
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb16
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb16
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb16
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb16
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb17
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb17
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb17
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb17
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb17
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb17
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb17
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb18
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb18
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb18
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb18
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb18
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb19
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb19
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb19
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb19
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb19
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb20
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb20
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb20
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb20
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb20
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb21
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb21
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb21
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb21
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb21
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb22
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb22
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb22
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb22
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb22
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb23
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb23
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb23
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb23
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb23
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb24
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb24
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb24
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb24
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb24
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb25
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb25
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb25
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb25
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb25
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb25
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb25
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb26
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb26
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb26
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb26
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb26
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb26
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb26
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb27
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb27
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb27
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb28
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb28
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb28
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb29
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb29
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb29
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb29
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb29
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb30
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb30
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb30
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb30
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb30
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb31
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb31
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb31
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb32
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb32
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb32
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb32
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb32
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb33
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb33
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb33
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb33
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb33
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb34
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb35
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb35
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb35
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb35
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb35
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb35
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb35
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb36
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb36
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb36
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb37
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb37
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb37
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb37
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb37
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb37
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb37
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb38
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb38
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb38
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb38
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb38
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb39
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb39
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb39
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb39
http://refhub.elsevier.com/S1084-8045(25)00009-8/sb39


B. Xiong et al.

U

U
s

o

T
p

U
e

D
t
p

U
U
p
e
d
p
i
a
p
N
i
y
d
e
C
a
o
T
A
o

Journal of Network and Computer Applications xxx (xxxx) xxx 
Jing Wu received the B.S. degree in Computer Science and Technology from Changsha
niversity of Science and Technology, China, in 2022. He is currently pursuing the

M.S. degree in the School of Computer and Communication Engineering, Changsha
niversity of Science and Technology, China. His main research interests include

oftware-defined networking, network virtualization and packet classification.

Guanglong Hu received the B.S. degree in Network Engineering from Hunan Institute
f Technology, China, in 2022. He is currently pursuing the M.S. degree in the School

of Computer and Communication Engineering, Changsha University of Science and
echnology, China. His main research interests include software-defined networking,
acket classification and green communications.

Jin Zhang received the B.S. degree in communication engineering and the M.S. degree
in computer application from Hunan University, Changsha, China, in 2002 and 2004,
respectively, and the Ph.D. degree in biomedical engineering from Zhejiang University,
Hangzhou, China, in 2007. He has been a Professor with Changsha University of
Science and Technology since 2021. From 2008 to 2009, he worked as an Associate
Professor with the Hunan University, Changsha, China. From 2009 to 2011, he worked
as a Postdoctoral Fellow with the Beijing Normal University, Beijing, China. From
2012 to 2013, he worked as a Postdoctoral Fellow with the University of Chicago,
Chicago, IL, USA. From 2014 to 2021, he has been a Professor with Hunan Normal

niversity, Changsha, China. His research interests include computer network, software
ngineering, and artificial intelligence.
12 
Baokang Zhao received the B.S., M.S., and Ph.D. degrees from National University of
efense Tec hnology, all in computer science. He is currently an Associate Professor in

he School of Computer Science, NUDT. His research interests include system design,
rotocols, algorithms, and security i ssues in computer networks.

Keqin Li is a SUNY Distinguished Professor of Computer Science with the State
niversity of New York. He is also a National Distinguished Professor with Hunan
niversity, China. His current research interests include cloud computing, fog com-
uting and mobile edge computing, energy efficient computing and communication,
mbedded systems and cyber–physical systems, heterogeneous computing systems, big
ata computing, high-performance computing, CPU–GPU hybrid and cooperative com-
uting, computer architectures and systems, computer networking, machine learning,
ntelligent and soft computing. He has authored or coauthored over 900 journal
rticles, book chapters, and refereed conference papers, and has received several best
aper awards. He holds nearly 70 patents announced or authorized by the Chinese
ational Intellectual Property Administration. He is among the world’s top 5 most

nfluential scientists in parallel and distributed computing in terms of both single-
ear impact and career-long impact based on a composite indicator of Scopus citation
atabase. He has chaired many international conferences. He is currently an associate
ditor of the ACM Computing Surveys and the CCF Transactions on High Performance
omputing. He has served on the editorial boards of the IEEE Transactions on Parallel
nd Distributed Systems, the IEEE Transactions on Computers, the IEEE Transactions
n Cloud Computing, the IEEE Transactions on Services Computing, and the IEEE
ransactions on Sustainable Computing. He is an AAAS Fellow, an IEEE Fellow, and an
AIA Fellow. He is also a Member of Academia Europaea (Academician of the Academy
f Europe).


	FastTSS: Accelerating tuple space search for fast packet classification in virtual SDN switches
	Introduction
	RELATED WORK
	BACKGROUND
	FAST PACKET CLASSIFICATION BASED ON NETWORK TRAFFIC LOCALITY
	Packet Classification Scheme
	Flow Cache Design
	Temporal locality of network traffic
	Well-exploited flow cache
	Cache operations
	Cache hit rates

	Tuple Space Search Optimization
	Spatial locality of packet traffic
	Dynamic tuple sorting
	Search length


	ALGORITHMIC IMPLEMENTATION AND PERFORMANCE ANALYSIS
	Packet Classification Algorithm
	Algorithmic Complexity Analysis

	EXPERIMENTS
	Experimental Methodology
	Cache Hit Rate
	Average Search Length

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


