
Citation: Cui, B.; Chai, Y.; Yang, Z.; Li,

K. Intrusion Detection in IoT Using

Deep Residual Networks with

Attention Mechanisms. Future Internet

2024, 16, 255. https://doi.org/

10.3390/fi16070255

Academic Editors: Christos

Tryfonopoulos and Nicholas

Kolokotronis

Received: 13 June 2024

Revised: 15 July 2024

Accepted: 16 July 2024

Published: 18 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Intrusion Detection in IoT Using Deep Residual Networks with
Attention Mechanisms
Bo Cui 1,2 , Yachao Chai 1,2, Zhen Yang 1,2 and Keqin Li 3,*

1 College of Computer Science, Inner Mongolia University, Hohhot 010021, China; cscb@imu.edu.cn (B.C.);
32009072@mail.imu.edu.cn (Y.C.); 32209059@mail.imu.edu.cn (Z.Y.)

2 Engineering Research Center of Ecological Big Data, Ministry of Education, Hohhot 010021, China
3 Department of Computer Science, State University of New York, New Paltz, NY 12561, USA
* Correspondence: lik@newpaltz.edu

Abstract: Connected devices in IoT systems usually have low computing and storage capacity and
lack uniform standards and protocols, making them easy targets for cyberattacks. Implementing
security measures like cryptographic authentication, access control, and firewalls for IoT devices is
insufficient to fully address the inherent vulnerabilities and potential cyberattacks within the IoT
environment. To improve the defensive capabilities of IoT systems, some research has focused on
using deep learning techniques to provide new solutions for intrusion detection systems. However,
some existing deep learning-based intrusion detection methods suffer from inadequate feature
extraction and insufficient model generalization capability. To address the shortcomings of existing
detection methods, we propose an intrusion detection model based on temporal convolutional
residual modules. An attention mechanism is introduced to assess feature scores and enhance the
model’s ability to concentrate on critical features, thereby boosting its detection performance. We
conducted extensive experiments on the ToN_IoT dataset and the UNSW-NB15 dataset, and the
proposed model achieves accuracies of 99.55% and 89.23% on the ToN_IoT and UNSW-NB15 datasets,
respectively, with improvements of 0.14% and 15.3% compared with the current state-of-the-art
models. These results demonstrate the superior detection performance of the proposed model.

Keywords: IoT; cyber attacks; intrusion detection; deep learning; attention mechanism

1. Introduction

With the leap forward in next-generation information technology such as 5G, artificial
intelligence, and big data, IoT has entered a new era of development. However, connected
devices in IoT systems often have low computing and storage capacity and lack uniform
standards and protocols, making them easy targets for cyber attacks. Secondly, IoT device
manufacturers do not implement strict security measures when producing devices, which
makes current IoT devices have many vulnerabilities, which also leads to many potential
security threats in the IoT system composed of IoT devices [1]. For example, the Mirai
botnet is capable of executing large-scale distributed denial of service attacks via IoT
devices [2]; IoT devices are usually connected through wireless networks, and intruders
can obtain private information from communication channels through eavesdropping [3].
These cyberattacks not only disrupt the availability of device functionality but may also
steal important information and data about the device and the users who use it. Therefore,
designing a security approach that can effectively address the cyberattacks faced by IoT
has been the focus of research [4].

Implementing security measures such as cryptographic authentication, access control,
and firewalls for IoT devices does not fully address the cyberattack problem or guarantee
absolute security in the IoT environment [5]. To improve the defense capability of IoT
systems, many studies have focused on machine learning-based or deep learning-based
intrusion detection methods [6]. An intrusion detection system (IDS) [7] is a network

Future Internet 2024, 16, 255. https://doi.org/10.3390/fi16070255 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16070255
https://doi.org/10.3390/fi16070255
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0009-0006-7578-9474
https://orcid.org/0000-0001-5224-4048
https://doi.org/10.3390/fi16070255
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16070255?type=check_update&version=1


Future Internet 2024, 16, 255 2 of 15

security device that continuously monitors network traffic and issues alerts or takes proac-
tive measures when suspicious activities are detected. The difference with other network
security measures is that IDS is a proactive security protection technology. IDS solutions
can be classified into three approaches: signature-based, anomaly-based, and hybrid [6]. In
general, signature-based approaches are effective against known attacks. However, due to
the heterogeneity, dynamics, and complexity of IoT networks, the signature-based approach
is less efficient for IoT because it requires continuous human intervention to extract attack
patterns and update the IDS model. On the other hand, anomaly-based approaches are ef-
fective for unknown attacks, making them advantageous in IoT as they can detect zero-day
attacks with minimal human intervention. The hybrid approach combines signature-based
and anomaly-based techniques. However, the use of signature-based intrusion detection
methods in IoT environments is limited due to their inability to detect unknown attacks.
Therefore, anomaly-based intrusion detection systems play a crucial role in IoT security.

Some existing anomaly intrusion detection systems use traditional machine learning
techniques to build IDS models [8]. These traditional techniques, however, encounter chal-
lenges with the high speed and volume of data generated by IoT devices. They rely exten-
sively on feature engineering to extract representative features from the unstructured data,
leading to performance degradation when applied to large-scale and high-dimensional
datasets. Consequently, several studies have shifted focus toward employing deep learning
techniques to develop more effective solutions [9].

Deep learning automates feature extraction and classification by designing multilayer
neural networks into architectures and using large amounts of data and computation.
The advantage of this approach is that it can perform feature learning without human
intervention and can achieve good results when dealing with large or complex datasets.
The powerful data processing and feature learning capabilities and the ability to detect
unknown attacks that deep learning has can provide advanced solutions for IoT intrusion
detection [9–12]. Therefore, researchers have applied deep learning to the field of IoT
intrusion detection and have achieved good results [9–14].

However, there are several obvious problems with some current deep learning-based
IoT intrusion detection methods. First, most of the current methods use previous data
sources, i.e., NSL-KDD, KDD-99, etc., for evaluation [9–13], which do not contain current
and up-to-date attack data against the IoT. Secondly, the detection models mentioned in
a significant number of methods have a complex structure [11–14], which leads to the
limitation of the application of the models in the IoT environment. In addition, some
methods ignore the fact that IoT traffic data has both spatial and temporal features [12],
which leads to inadequate feature extraction by the models proposed in the methods
and thus affects the detection performance. Moreover, some models cannot be processed
for heterogeneous data in the IoT environment, which leads to a slight lack of model
generalization [15], i.e., the models are not sufficiently adaptable to new data and have
poor detection performance on new datasets. Finally, the limited amount of labeled data
available for training deep learning models in the IoT environment seriously affects the
detection performance of the classifier. In our work, we proposed an improved residual
network structure, which consists of three residual modules, each containing a CONV-
LSTM sub-network, and connects the module design to the attention module, which greatly
reduces the complexity of the model structure. The evaluation results based on ToN_IoT
with the UNSW-NB15 dataset show that our model has better performance performance
than existing models. The contributions of our work are as follows:

• Considering the spatiotemporal characteristics of IoT traffic data, we proposed an
improved residual network structure that avoids the performance impact of extracting
only a single feature.

• We introduced an attention mechanism in the model to compute weights repre-
senting the importance of different features to help the model focus on the most
important features.



Future Internet 2024, 16, 255 3 of 15

• Higher detection accuracy. The performance of the algorithm proposed in this paper,
in terms of detection accuracy, is superior to some current state-of-the-art methods.

• Stronger generalization ability. With a certain amount of data, this paper improves
the model’s expressiveness by increasing the network width and optimizing the loss
function to reach the global optimum.

The rest of this paper is organized as follows. Section 2 describes the intrusion
detection-related work. Section 3 describes the mathematical modeling of the proposed
model. Section 4 presents the experimental results and discussion. Finally, Section 5
summarizes the contributions and results of this study.

2. Related Work

In recent years, Hasan et al. [16] studied attack detection models in IoT sensors
using machine learning methods. They accurately compared the performance of several
machine learning techniques in predicting attacks and violations in IoT systems. A robust
algorithm was developed for detecting IoT cyberattacks, particularly focusing on virtual
environments. The proposed system demonstrated better detection accuracy compared
to existing models. Ravi et al. [17] proposed DDoS attack mitigation and learning-driven
detection in IoT through SDN-Cloud architecture. This approach aims at detecting DDoS
attacks launched in IoT servers using malicious wireless IoT. Zhang et al. [18] proposed an
effective method for classifying network traffic, which uses principal components analysis
(PCA) to remove irrelevant features and Gaussian Parsimonious Bayes as a classifier.
However, machine learning methods have certain limitations. Firstly, their performance
is heavily dependent on the robustness of the feature engineering techniques employed.
Secondly, their effectiveness diminishes when applied to large-scale and high-dimensional
data. Lastly, their learning capability is insufficient to effectively handle unknown attacks
in the IoT environment.

The most important advantage of deep learning over traditional machine learning
is its superior performance on large datasets. The use of IoT systems usually generates
a large amount of data, which is more complex and diverse, and contains a variety of
intrusive behaviors. The ability of deep learning to automatically model complex feature
sets from sample data makes deep learning more relevant in IoT security applications.
For example, Mohamed et al. [19] proposed the use of DeepIFS integrated with gated
recurrent units and a multi-headed attention mechanism to detect intrusions. Liu et al. [20]
introduced a federated learning approach for collaborative and decentralized training on
edge devices. They utilized LSTM to capture temporal representations and employed
attention-enhanced convolutional neural networks to learn important spatial information.
The study of Recurrent Neural Networks and their variants is important for improving
the security of IoT systems, especially against time-series-based threats. For example, Yan
et al. [21] used a variational autoencoder (VAE) as a network baseline and then learned
potential temporal representations of the input time series for intrusion detection by RNNs.
They also used FNN to parameterize the mean and variance of each time window to provide
a non-smooth architecture that can operate in the absence of persistent noise. Gao et al. [22]
introduced the LSTM-GaussianNB architecture for evaluating the probability of outliers
in IoT data. These research works further demonstrate the suitability of recurrent neural
networks as an IoT intrusion detection model. Therefore, some researchers have gone a
step further and combined recurrent neural networks with other methods to achieve better
detection in the field of IoT intrusion detection. For example, Parra et al. [23] proposed a
distributed cloud-based approach based on CNN and LSTM to detect and mitigate phishing
and botnet attacks on client devices, which outperformed a single LSTM model.

In the last two years of research work, Khan et al. [24] proposed an efficient model
called XSRU-IoMT for the effective and timely detection of complex attack traffic in medical
IoT. However, the authors tested it using only a single dataset, which was not sufficient to
demonstrate the effectiveness of the model. Wu et al. [25] proposed a hierarchical CNN-
RNN neural network LuNet, but the generalization ability of the model was poor. Later,



Future Internet 2024, 16, 255 4 of 15

Wu et al. proposed a dense residual network Densely-ResNet [15] based on LuNet for
secure detection of edge, cloud, and fog layers. Although the generalization ability of the
model was improved, it was slightly inadequate and the structure of the model was too
complex. Latif et al. [26] pointed out that their proposed dense random neural network
(DnRaNN) could improve the generalization performance of the model, but there were not
enough experiments to show that the generalization ability of the model was improved.
Therefore, to further improve the detection accuracy of the model while maintaining good
generalization ability, this paper proposes an intrusion detection model based on temporal
convolutional residual modules, which consists of three residual modules, each containing a
CONV-LSTM subnetwork, and connects the module design to the attention module, which
greatly reduces the complexity of the model structure. The model can effectively learn
the spatiotemporal representation of IoT data and obtain high accuracy while maintaining
good generalization performance. All experiments are conducted on the ToN_IoT dataset
and the UNSW-NB15 dataset.

3. Proposed Model
Model Overview

To achieve intrusion detection in the IoT environment, researchers have introduced
convolutional neural networks [27]. However, CNNs are usually used for feature extraction
in static environments and lack long-term relevance storage mechanisms, which are not
suitable for modeling sequential data in IoT. Some researchers have applied RNNs to
the field of IoT intrusion detection for the sequential relationship of traffic data in the
IoT environment. RNNs integrate a temporal layer to capture sequential data, learning
multifaceted changes through the hidden units of recurrent units. These hidden units
are modified based on the data provided to the network and are continuously updated.
RNNs are used for IoT security due to their efficient management of sequential data. The
study of RNNs and their variants is important to improve the security of IoT systems,
especially against time-series-based threats [14]. However, RNNs suffer from the gradient
disappearance or explosion problem, where gradients can become too small or too large
during training, leading to their unsatisfactory predictions for IoT intrusion detection.

This paper studies intrusion detection models based on the combination of deep
learning and attention mechanisms [28] for intrusion detection from IoT traffic data. For
the characteristics of data in IoT, this paper combines CNN and LSTM units, redesigns
and improves the ResNet architecture [29], and introduces an attention mechanism for
the extracted high-dimensional features to give weight information to different features
to avoid the problem of failing to express important information due to the excessive
dimensionality of the features.

The ResNet model proposed in this paper consists of three main pairs of modules.
Each module pair contains a residual module and a ResBlock-CBAM module. A jump
connection is used between each two module pairs, and after the summation operation
is performed on the output of the last module pair, the output of the module pair is
classified by the classification layer, which finally constitutes the main structure of the
deep residual network model used in this paper. The overall architecture of the model
is shown in Figure 1. This network model overcomes the disadvantages of traditional
deep learning, such as gradient disappearance and gradient explosion, and has a strong
generalization capability.

Input IoT
Traffics

Data
Preprocessing

Res Block 1 Res Block 2 Res Block 3

CBAM
Module

CBAM
Module

CBAM
Module

co
nc
at
en
at
io

n

Fe
ed
 f

or
wa
rd
 l
ay
er

So
ft
ma
x 
la
ye

r

A
t
t
a
c
k
 

cl
as
si
fi
ca
ti
on
 

Figure 1. Model architecture diagram.



Future Internet 2024, 16, 255 5 of 15

4. Residual Network Architecture

The specific structure design of the residual module proposed in this paper is shown
in Figure 2. Each residual module consists of a CNN unit and an LSTM unit. The CNN
unit mainly consists of three convolutional layers: the first convolutional layer has a
convolutional kernel size of 1 × 1, which is used to reduce the dimensionality of the input
feature map; the second convolutional layer has a convolutional kernel size of 3 × 3, which
is the core part of the CNN structure and is used for feature extraction and nonlinear
transformation; the third convolutional layer has a convolutional kernel size of 1 × 1, which
is used to restore the dimensionality of the feature map to its original size. The proposed
model extracts the features of the input data through the convolutional and pooling layers,
and then the feature map is transformed and input to the LSTM unit.

Figure 2. Residual network structure diagram.

Assuming that the input datum is x, the convolution layer in the proposed model
extracts the spatial features of the given data and performs the convolution operation on
the input data to obtain the output:

X = f (wi ⊗ xi + bi), (1)

where f (·) is the activation function, wi is the convolution kernel weight, and bi is the
corresponding bias. The rectified linear unit (ReLU) is used as the activation function:

f (x) = max(0, X). (2)

The first convolution operation is performed in the residual unit, using a 1 × 1 convo-
lution kernel, reducing the number of channels of the input feature map to C/4 and the size
of the output feature map to H × W × C/4; batch normalization (BN) and ReLU activation
operations are performed on the output feature map:

yi = λx′i + φ, (3)

where λ and φ are learning parameters and x′i is calculated as follows:

µβ =
1
m

m

∑
i=1

xi. (4)



Future Internet 2024, 16, 255 6 of 15

σ2
β =

1
m

m

∑
i=1

(xi − µβ)
2. (5)

x′i =
xi − µβ√

σ2
β − ε

. (6)

In these equations, µβ represents the mean of the mini-batch, which is the average
value of the β-th feature map element in a mini-batch; σ2

β represents the variance of the mini-
batch, which is the variance of the β-th feature map element in a mini-batch; xi represents
the i-th element of the input feature map; x′i represents the i-th element of the normalized
input feature map; m represents the size of the mini-batch in batch normalization; that is,
the number of elements in the input feature map; and ε represents a small constant in batch
normalization used to prevent division by zero.

The second and third convolution operations are performed using 3 × 3 and 1 × 1
convolution kernels, respectively, and each convolution operation is followed by a BN and
ReLU activation operation. The output of the previous layer is then downsampled by the
pooling layer to compress its features, making the data feature dimensionality reduced by:

hl
j = down

(
h(l−1)

j Ml
)

, (7)

where Ml denotes the size of the l pooling layer and down(·) denotes the downsam-
pling function.

The maximum pooling layer is a common down-sampling technique in convolutional
neural networks, which serves to reduce the feature dimension and improve the computa-
tional efficiency and generalization ability of the model. The specific roles of the maximum
pooling layer are as follows: feature compression: the maximum pooling layer can reduce
the size of the feature map to reduce the computation of the model, and it can retain the
main features of the original data to avoid overfitting. Feature invariance: The maximum
pooling layer can improve the feature invariance, i.e., the features can remain unchanged
when the input changes slightly, thus improving the model’s robustness and generalization
ability. Feature selection: The maximum pooling layer can select the most important fea-
tures in the data, i.e., keep the maximum value and ignore other values, thus improving
the expressiveness and performance of the model. In summary, the maximum pooling
layer can optimize the performance and efficiency of the convolutional neural network by
compressing the feature map, improving the feature invariance, and selecting the most
important features. The specific computational procedure is as follows:

The pooling operation converts M to Z = [z1, z2, z3, . . . , zC] of size 1 × 1 × C, where z
is calculated as follows:

zC = max(mi,j). (8)

After local features are extracted by the CNN, long-distance dependencies of these local
features are captured using the LSTM. The following outlines the process of transforming
the specific input features of the LSTM unit:

The input vector X at the current moment is input to the LSTM cell. The output value
it of the input gate of the LSTM cell is calculated by the sigmoid function, and this value
determines how the input vector x affects the state Ct. it ranges between 0 and 1. The output
value ft of the forgetting gate is computed by the sigmoid function. This value determines
which information in the state Ct−1 of the previous moment needs to be forgotten. ft ranges
from 0 to 1.

Updating the state. The current moment’s state Ct can be updated by adding the result
of the dot product of it and X to the previous moment’s state Ct−1 and subtracting the
result of the dot product of ft and the previous moment’s state Ct−1. The output value ot of
the output gate is calculated by the sigmoid function, which determines which information



Future Internet 2024, 16, 255 7 of 15

in the current moment’s state Ct needs to be output. ot ranges from 0 to 1. The hidden state
ht of the current moment can be obtained by performing a dot product operation between
the state Ct of the current moment and the output value ot of the output gate. Finally, the
output is passed to the next layer for calculation.

In this way, the input features can be better represented by the transformation of the
LSTM cells, thus improving the performance of the model.

The dropout layer is used to avoid the overfitting problem during training and to
improve the model generalization ability. ReLU is then chosen as the activation function to
overcome the gradient disappearance problem and to speed up the training speed.

5. Convolutional Block Attention Mechanism

In the IoT environment, network traffic data often contains different features that are
of different importance for intrusion detection. Therefore, this section introduces the CBAM
module [30] in the model to help the model distinguish the importance of features in order
to obtain important features and improve the performance of the model. As shown in
Figure 3. The structures of the channel attention module and the spatial attention module
are shown in Figures 4 and 5, respectively. The specific computational procedure of the
CBAM module is described as follows: The specific structure of the channel attention
module is shown in Figure 4. For a given feature map F, the channel attention module first
performs Global Average Pooling (GAP) to obtain the average value of each channel, and
then performs feature mapping through two fully connected layers to obtain the weight
coefficients of each channel. Finally, the weight coefficients are applied to the feature map to
emphasize the important channels and suppress the unimportant ones. The whole process
is as follows:

F′ = MC(F)⊗ F. (9)

F′′ = MC(F′)⊗ F′. (10)

where ⊗ denotes element-by-element multiplication. The channel attention module fo-
cuses on what is meaningful in the input data. CBAM has two pools: maximum pooling
(MaxPool) and average pooling (AvgPool). Pooling allows extracting high-level features,
and different pooling means extracting richer high-level features.

Previous

Module

Next

Module

ResBlock + CBAM

F

Channel
Attention
Module

Channel
Attention
Module

Spatial
Attention
Module

Spatial
Attention
Module

Channel
Attention
Module

Spatial
Attention
Module

F' F''

Figure 3. CBAM module diagram.

Since each channel of the feature map extracts some level of feature information, the
channel attention mechanism feature information is more important. In order to compute
channel attention efficiently, the channel attention module uses a spatial dimensionality
method that compresses the input feature mapping, compared to using a single pooling
method the channel attention module uses average pooling and maximum pooling methods
and proves that the dual pooling method has stronger representational power. The specific
computational procedure is shown as follows:

MC(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))). (11)



Future Internet 2024, 16, 255 8 of 15

Channel Attention Module

MaxPool

AvgPool
Input feature F

Shared MLP

Channel Attention

MC

MaxPool

AvgPool
Input feature F

Shared MLP

Channel Attention

MC

Figure 4. Channel attention module diagram.

Spatial Attention Module

ConvLayer

Channle-refined

Feature F
* [MaxPool,AvgPool]

Spatial Attention

MS

Figure 5. Spatial attention module diagram.

The specific structure of the spatial attention module is shown in Figure 5. The feature
maps processed by the channel attention module first pass through two convolution layers
to obtain the weight coefficients of each pixel point. Here, the weight coefficients are
calculated by considering the response of each pixel point on different spatial scales, and
the similarity between pixel points. Finally, the weight coefficients are applied to the feature
map to emphasize the important pixel points and suppress the unimportant ones. This
improves the generalization ability of the model. The spatial attention module focuses on
which location information is meaningful, and it also complements the channel attention
module, as shown below:

MC(F) = σ(Conv[AvgPool(F); MaxPool]). (12)

where σ(·) denotes the Sigmoid function, MaxPool(·) denotes the maximum pooling,
AvgPool(·) denotes the average pooling, MLP(·) denotes the multilayer perceptron, and
Conv(·) denotes the 3D convolutional layer.

Finally, the model uses the Softmax layer to calculate the final traffic class using the
output of the residual module and the CBAM module. The outputs of the residual and
CBAM modules and the raw inputs are fed into the fully connected layer after manipulation.
The fully connected layer then multiplies the weight matrix with the input vector and adds
the bias as follows:

zj = wj · X + bj = wj1X1 + wj2X2 + · · ·+ wjnXn + bj. (13)

where X is the input of the fully connected layer, wj is the weight of the j-th class of features,
and bj is the bias term. The feedforward layer represents the captured spatiotemporal
features as a linear representation suitable for predicting the final category labels using
Softmax operations. In this process, each category is assigned a probability score, and



Future Internet 2024, 16, 255 9 of 15

the category with the highest probability is considered the final model prediction, as
shown below:

p = SoftMax(zj) =
ezj

∑K ezj
. (14)

ŷ = arg max(p). (15)

where zj denotes the output of the feedforward layer and p denotes the probability score. The
training model is calculated to minimize the cross-entropy loss according to Equation (16):

Loss = −∑(yi · log ŷi + (1 − yi) · log(1 − ŷi)). (16)

where yi denotes the actual label and ŷi denotes the model prediction label.
To maximize feature reuse capability, this study uses jump connections to add the out-

put of the previous parameter layer to its subsequent parameter layers to maintain local orig-
inality throughout the learning phase. In addition, each pair of jump-connected residual and
attention modules will be connected to all subsequent pairs of residual and attention mod-
ules to maintain global originality throughout the learning phase. The proposed network
structure has several significant advantages to improve its generalization performance.

6. Model Evaluation and Discussions
6.1. Dataset Description

Generalization ability is an important metric to assess the performance of a model. A
good model should have strong generalization ability, meaning it can perform well on new
datasets. Therefore, in this study, the model’s generalization performance is tested using
different datasets.

To evaluate the performance of the proposed model, we used ToN_IoT [13], a real
dataset created from a large-scale IoT system developed by the Cyber IoT Laboratory
at ADFA, New South Wales, Australia. This dataset contains normal category data and
nine categories of attack data, including password, scan, ransomware, backdoor, denial of
service, distributed denial of service, MITM, injection, and XSS attacks. The total number of
data instances in this dataset is shown in Table 1. We trained our model using the ToN_IoT
dataset to ensure it learns from a comprehensive set of attacks and normal behavior data.

Table 1. ToN_IoT dataset record description.

Record Type Number of Records

Backdoor 35,000
DDoS 25,000
DoS 20,000

Injection 35,000
MITM 1043

Password 35,000
Ransomware 16,030

Scanning 3973
XSS 6116

Normal 245,000

To test the generalization ability of our model, we then used the UNSW-NB15 [31]
dataset. The raw network packets for the UNSW-NB15 dataset are created by the IXIA
PerfectStorm tool at the Australian Cyber Security Centre’s Cyber Scope Lab, which can
be used to generate a mix of modern normal activity and synthetic contemporary attack
behavior. The dataset contains a total of 49 features and 9 common attacks. The normal
information accounts for 88% of the dataset size and the attack information accounts
for 12%. We used this dataset to test the generalization ability of the model. The basic
information of this dataset is shown in Table 2.



Future Internet 2024, 16, 255 10 of 15

Table 2. UNSW-NB15 dataset record description.

Record Type Number of Records

Analysis 2000
Backdoor 1746

DoS 12,264
Exploits 33,393
Fuzzers 18,184
Generic 40,000

Reconnaissance 10,491
Shellcode 1133

Worms 130
Normal 56,000

We use several metrics to evaluate the performance of the proposed model, i.e.,
accuracy, precision, recall, and F1-score because they are widely used to evaluate deep
learning algorithms. The formula is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

F1-score =
2TP

2TP + FP + FN
(20)

where TP is true positive, representing the number of positive samples correctly identified
as positive, FP is false positive, representing the number of negative samples incorrectly
identified as positive, TN is true negative, representing the number of negative samples
correctly detected as negative, and FN is false negative, representing the number of positive
samples incorrectly identified as negative.

6.2. Hyperparameter Settings

Hyperparameters are parameters that are artificially adjusted before or during training.
To ensure the best performance of the proposed deep learning model, optimal hyperparam-
eters are determined through extensive experimentation. The hyperparameters involved
in the experimental process include learning rate, epoch, and batch size. The details are
shown in Table 3.

• Learning rate (LR): A critical hyperparameter in deep learning that regulates the
network model’s learning progress. In this paper, we set three learning rate values to
obtain the best performance.

• Batch size: This parameter indicates the number of samples selected for one training.
The batch size affects the memory usage, as well as the optimization and speed of the
model. The batch size cannot be set too large or too small, so we set the range of batch
size to 16, 32, 64, 128, 256, 512, 1024.

• Epoch: The epoch represents the process of training all the training samples once. Too
many epochs can lead to overfitting, while too few epochs may result in suboptimal
training parameters. In this study, the number of epochs is set to 100.

We divided the ToN_IoT dataset into a training set and a test set by the ratio of 80%
and 20%, respectively. Initially, we set the learning rate to 0.01, epochs fixed to 100 times,
and batch size range set to 16, 32, 64, 128, 256, 512, and 1024. We conducted experiments
at different batch sizes and recorded the results for the above learning rates in Table 3. A
detailed performance comparison of these parameters is shown in Figure 6a. The best-



Future Internet 2024, 16, 255 11 of 15

tested accuracy of the model is 96.82% for a learning rate of 0.01 and a batch size of 64. The
lowest value of accuracy for this learning rate is 90.74% for a batch size of 1024. For other
batch sizes, the accuracy and other performance scores are above 90%, demonstrating the
model’s robustness to changes in batch size.

Table 3. Performance variation at different parameters.

Performance Parameters
Batch Size

16 32 64 128 256 512 1024

LR = 0.01

Accuracy 0.9452 0.9476 0.9682 0.9360 0.9508 0.9156 0.9074
Precision 0.9352 0.9383 0.9642 0.9269 0.9445 0.9022 0.8955

Recall 0.9473 0.9487 0.9660 0.9340 0.9478 0.9193 0.9038
F1-score 0.9406 0.9430 0.9651 0.9302 0.9461 0.9092 0.8993

LR = 0.001

Accuracy 0.9870 0.9883 0.9931 0.9945 0.9943 0.9955 0.9908
Precision 0.9862 0.9866 0.9920 0.9937 0.9931 0.9951 0.9888

Recall 0.9852 0.9876 0.9929 0.9941 0.9943 0.9950 0.9911
F1-score 0.9857 0.9871 0.9925 0.9939 0.9937 0.9950 0.9899

LR = 0.0001

Accuracy 0.9869 0.9924 0.9923 0.9759 0.9856 0.9552 0.9280
Precision 0.9857 0.9918 0.9910 0.9719 0.9839 0.9505 0.9244

Recall 0.9856 0.9915 0.9920 0.9753 0.9845 0.9511 0.9162
F1-score 0.9856 0.9916 0.9915 0.9735 0.9842 0.9508 0.9201

In the second stage, we fixed the learning rate at 0.001 and the epoch remained fixed at
100 times, while the batch sizes ranged from 16, 32, 64, 128, 256, 512, and 1024. By keeping
the learning rate and epoch fixed, we conducted experiments at different batch sizes and
recorded the results in Table 3. A detailed performance comparison of these parameters is
shown in Figure 6b. The best test accuracy is 99.55% when the batch size is 512. At batch
sizes of 64, 128, 256, and 1024, the accuracy of the model was greater than 99%. At lower
batch sizes of 16 and 32, the accuracy and other performance scores decreased but were still
close to 99%. This indicates that a learning rate of 0.001 with a batch size of 512 provides
the optimal balance between training stability and performance.

Finally, we set the learning rate to 0.0001, and the other parameters were kept the same
as those in the first two stages. The detailed performance comparison of these parameters
is shown in Figure 6c. The best test accuracy is 99.24% when the batch size is 32. For
batch sizes of 16, 64, and 256, the accuracy of the model is above 98%. For other batch
sizes, the accuracy and other performance scores decreased but the results were above
90%. The comparative experimental results of the above performance parameters show
that the proposed model achieves the best results when the learning rate is 0.001, epochs
are 100, and the batch size is 512. This combination of parameters consistently provides
high accuracy and stable performance across different configurations, demonstrating the
robustness and generalizability of the proposed model.

(a) LR = 0.01 performance. (b) LR = 0.001 performance. (c) LR = 0.0001 performance.

Figure 6. Performance at different learning rates.



Future Internet 2024, 16, 255 12 of 15

Finally, we set the learning rate to 0.0001, and the other parameters were kept the same
as those in the first two stages. The detailed performance comparison of these parameters
is shown in Figure 6c. The best test accuracy is 99.24% when the batch size is 32. For batch
sizes of 16, 64, and 256, the accuracy of the model is above 98%. For other batch sizes, the
accuracy and other performance scores decreased, but the results were above 90%.

The comparative experimental results of the above performance parameters show that
the proposed model achieves the best results when the learning rate is 0.001, epochs are
100, and batch size is 512.

6.3. Comparison with State-of-the-Art Methods

To further analyze the effectiveness of the proposed model, we compared the proposed
model with some of the best current methods and evaluated the performance differences
between the proposed model and other methods. The result is shown in Figure 7. As can
be seen from the figure, the proposed model has the best performance on the ToN_IoT
dataset, outperforming existing models in terms of accuracy, precision, recall, and F1-
score. Specifically, the proposed model achieved an increase in accuracy from 99.20% with
DnRaNN to 99.55%, an increase of 0.35%. Compared to XSRU-IoMT, the accuracy increased
from 99.38% to 99.55%, which is an increase of 0.17%. Additionally, the accuracy improved
from 99.43% with Densely-ResNet to 99.55%, an increase of 0.12%. These results verify the
validity of our proposed model.

Figure 7. Performance comparison with other models.

In addition, we compared the generalization ability of the model with several deep
learning methods on the UNSW-NB15 dataset, as shown in Table 4. Our proposed LSTM-
ResNet model achieved accuracy, precision, recall, and F1-score values of 89.23%, 88.83%,
87.77%, and 88.25%, respectively. This represents a significant improvement in performance
metrics compared to other models. For instance, the accuracy of our model is 15.3% higher
than that of the Densely-ResNet model, which is the second-best performing model in
our comparison.

The severe class imbalance problem in the UNSW-NB15 benchmark often leads to
poor model generalization performance. However, our proposed model demonstrates
robust performance despite this challenge. As shown in Table 4, the LSTM-ResNet model



Future Internet 2024, 16, 255 13 of 15

not only achieves the highest accuracy but also excels in precision, recall, and F1-score
compared to LSTM, LuNet, Densely-ResNet, and CNN models. This indicates that our
model has superior generalization capability and can effectively handle imbalanced data.
These results highlight the robustness and reliability of our method in diverse scenarios,
confirming its effectiveness in real-world applications.

Moreover, the attention mechanism incorporated in our model helps it focus on
important features, further enhancing its performance and robustness. This makes the
LSTM-ResNet model particularly effective in identifying and classifying network intrusions,
as evidenced by its leading performance across multiple evaluation metrics.

Table 4. Comparison of model generalization performance on the UNSW-NB15 dataset.

Model Accuracy Precision Recall F1-Score

LSTM 0.7015 0.7754 0.7724 0.8628
LuNet 0.7267 0.7850 0.8290 0.8750

Densely-ResNet 0.7393 0.8094 0.8668 0.8811
CNN 0.8163 0.8094 0.8578 0.8121

LSTM-ResNet 0.8923 0.8883 0.8777 0.8825

7. Conclusions

In this paper, we propose a deep learning model based on the temporal convolution
residual module and attention mechanism for IoT anomaly detection and analyze the
model in depth on the ToN_IoT dataset, which is the latest publicly available IoT dataset.
In addition, the proposed model is evaluated on the UNSW-NB15 dataset, and its gen-
eralization performance is compared with several deep learning methods. As a result,
ResNet achieves state-of-the-art detection accuracy on the UNSW-NB15 benchmarks while
maintaining a low false positive rate. The evaluation results confirm the effectiveness and
stability of the proposed model, and it is recommended for use in other intrusion detection
tasks in the future.

Author Contributions: Conceptualization, B.C. and Y.C.; methodology, B.C. and Y.C.; investigation,
B.C. and Y.C.; writing—original draft preparation, B.C., Y.C., K.L. and Z.Y.; writing—review and
editing, B.C., Y.C., K.L. and Z.Y.; visualization, Y.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This paper is supported by the National Natural Science Foundation of China (61962042),
the Natural Science Foundation of Inner Mongolia (2022MS06020), the Central Government Guides
Local Science and Technology Development Fund (2022ZY0064), the University Youth Science and
Technology Talent Development Project (Innovation Group Development Plan) of Inner Mongolia A.
R. of China (grant no. NMGIRT2318), and the Fund for Supporting the Reform and Development of
Local Universities (Disciplinary Construction).

Data Availability Statement: The datasets used in this study are publicly available at the following
links: https://research.unsw.edu.au/projects/unsw-nb15-dataset and https://research.unsw.edu.
au/projects/toniot-datasets, accessed on 1 May 2024.

Acknowledgments: The authors would like to extend their sincere appreciation to the reviewers for
their invaluable feedback and insightful suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Bertino, E.; Islam, N. Botnets and internet of things security. Computer 2017, 50, 76–79. [CrossRef]
2. Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. DDoS in the IoT: Mirai and other Botnets. Computer 2017, 50, 80–84. [CrossRef]
3. Abomhara, M.; Koien, G.M. Cyber security and the internet of things: Vulnerabilities, threats, intruders and attacks. J. Cyber Secur.

Mobil. 2015, 4, 65–88. [CrossRef]

https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://research.unsw.edu.au/projects/toniot-datasets
https://research.unsw.edu.au/projects/toniot-datasets
http://doi.org/10.1109/MC.2017.62
http://dx.doi.org/10.1109/MC.2017.201
http://dx.doi.org/10.13052/jcsm2245-1439.414


Future Internet 2024, 16, 255 14 of 15

4. Thakkar, A.; Lohiya, R. A review on machine learning and deep learning perspectives of IDS for IoT: Recent updates, security
issues, and challenges. Arch. Comput. Methods Eng. 2021, 28, 3211–3243. [CrossRef]

5. Al-Garadi, M.A.; Mohamed, A.; Al-Ali, A.K.; Du, X.; Ali, I.; Guizani, M. A survey of machine and deep learning methods for
internet of things (IoT) security. IEEE Commun. Surv. Tutorials 2020, 22, 1646–1685. [CrossRef]

6. Babu, M.R.; Veena, K.N. A survey on attack detection methods for IoT using machine learning and deep learning. In Proceedings
of the 2021 3rd International Conference on Signal Processing and Communication (ICPSC), Coimbatore, India, 13–14 May 2021;
IEEE: Piscataway, NJ, USA, 2021; pp. 625–630.

7. Denning, D.E. An intrusion-detection model. IEEE Trans. Softw. Eng. 1987, SE-13, 222–232. [CrossRef]
8. Chaabouni, N.; Mosbah, M.; Zemmari, A.; Sauvignac, C.; Faruki, P. Network intrusion detection for IoT security based on learning

techniques. IEEE Commun. Surv. Tutor. 2019, 21, 2671–2701. [CrossRef]
9. Alsoufi, M.A.; Razak, S.; Siraj, M.M.; Nafea, I.; Ghaleb, F.A.; Saeed, F.; Nasser, M. Anomaly-based intrusion detection systems in

IoT using deep learning: A systematic literature review. Appl. Sci. 2021, 11, 8383. [CrossRef]
10. Selvapandian, D.; Santhosh, R. Deep learning approach for intrusion detection in IoT-multi cloud environment. Autom. Softw.

Eng. 2021, 28, 19. [CrossRef]
11. Khoa, T.V.; Saputra, Y.M.; Hoang, D.T.; Trung, N.L.; Nguyen, D.; Ha, N.V.; Dutkiewicz, E. Collaborative learning model for

cyberattack detection systems in IoT industry 4.0. In Proceedings of the 2020 IEEE Wireless Communications and Networking
Conference (WCNC), Seoul, Republic of Korea, 25–28 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6.

12. Haider, A.; Adnan Khan, M.; Rehman, A.; Rahman, M.; Kim, S.H. A real-time sequential deep extreme learning machine
cybersecurity intrusion detection system. Comput. Mater. Contin. 2021, 66, 1785–1798. [CrossRef]

13. Booij, T.M.; Chiscop, I.; Meeuwissen, E.; Moustafa, N.; Den Hartog, F.T. ToN_IoT: The role of heterogeneity and the need for
standardization of features and attack types in IoT network intrusion data sets. IEEE Internet Things J. 2021, 9, 485–496. [CrossRef]

14. Tsimenidis, S.; Lagkas, T.; Rantos, K. Deep learning in IoT intrusion detection. J. Netw. Syst. Manag. 2022, 30, 8. [CrossRef]
15. Wu, P.; Moustafa, N.; Yang, S.; Guo, H. Densely connected residual network for attack recognition. In Proceedings of the 2020

IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Guangzhou,
China, 29 December 2020–1 January 2021; IEEE: Piscataway, NJ, USA, 2020; pp. 233–242.

16. Hasan, M.; Islam, M.M.; Zarif, M.I.I.; Hashem, M.M.A. Attack and anomaly detection in IoT sensors in IoT sites using machine
learning approaches. Internet Things 2019, 7, 100059. [CrossRef]

17. Ravi, N.; Shalinie, S.M. Learning-driven detection and mitigation of DDoS attack in IoT via SDN-cloud architecture. IEEE Internet
Things J. 2020, 7, 3559–3570. [CrossRef]

18. Zhang, B.; Liu, Z.; Jia, Y.; Ren, J.; Zhao, X. Network intrusion detection method based on PCA and Bayes algorithm. Secur.
Commun. Netw. 2018, 2018, 1914980. [CrossRef]

19. Abdel-Basset, M.; Chang, V.; Hawash, H.; Chakrabortty, R.K.; Ryan, M. Deep-IFS: Intrusion detection approach for industrial
internet of things traffic in fog environment. IEEE Trans. Ind. Inform. 2020, 17, 7704–7715. [CrossRef]

20. Liu, Y.; Garg, S.; Nie, J.; Zhang, Y.; Xiong, Z.; Kang, J.; Hossain, M.S. Deep anomaly detection for time-series data in industrial IoT:
A communication-efficient on-device federated learning approach. IEEE Internet Things J. 2020, 8, 6348–6358. [CrossRef]

21. Li, L.; Yan, J.; Wang, H.; Jin, Y. Anomaly detection of time series with smoothness-inducing sequential variational auto-encoder.
IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 1177–1191. [CrossRef] [PubMed]

22. Gao, J.; Gan, L.; Buschendorf, F.; Zhang, L.; Liu, H.; Li, P.; Dong, X.; Lu, T. Omni SCADA intrusion detection using deep learning
algorithms. IEEE Internet Things J. 2020, 8, 951–961. [CrossRef]

23. Parra, G.D.L.T.; Rad, P.; Choo, K.K.R.; Beebe, N. Detecting internet of things attacks using distributed deep learning. J. Netw.
Comput. Appl. 2020, 163, 102662.

24. Khan, I.A.; Moustafa, N.; Razzak, I.; Tanveer, M.; Pi, D.; Pan, Y.; Ali, B.S. XSRU-IoMT: Explainable simple recurrent units for
threat detection in internet of medical things networks. Future Gener. Comput. Syst. 2020, 127, 181–193. [CrossRef]

25. Wu, P.; Guo, H. LuNET: A deep neural network for network intrusion detection. In Proceedings of the 2019 IEEE Symposium
Series on Computational Intelligence (SSCI), Xiamen, China, 6–9 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 617–624.

26. Latif, S.; e Huma, Z.; Jamal, S.S.; Ahmed, F.; Ahmad, J.; Zahid, A.; Dashtipour, K.; Aftab, M.U.; Ahmad, M.; Abbasi, Q.H. Intrusion
detection framework for the internet of things using a dense random neural network. IEEE Trans. Ind. Inform. 2021, 18, 6435–6444.
[CrossRef]

27. Ferrag, M.A.; Maglaras, L.; Moschoyiannis, S.; Janicke, H. Deep learning for cyber security intrusion detection: Approaches,
datasets, and comparative study. J. Inf. Secur. Appl. 2020, 50, 102419. [CrossRef]

28. Guo, M.H.; Xu, T.; Liu, J.J.; Liu, Z.N.; Jiang, P.T.; Mu, T.J.; Zhang, S.H.; Martin, R.; Cheng, M.M.; Hu, S.M. Attention mechanisms
in computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [CrossRef]

29. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 770–778.

http://dx.doi.org/10.1007/s11831-020-09496-0
http://dx.doi.org/10.1109/COMST.2020.2988293
http://dx.doi.org/10.1109/TSE.1987.232894
http://dx.doi.org/10.1109/COMST.2019.2896380
http://dx.doi.org/10.3390/app11188383
http://dx.doi.org/10.1007/s10515-021-00298-7
http://dx.doi.org/10.32604/cmc.2020.013910
http://dx.doi.org/10.1109/JIOT.2021.3085194
http://dx.doi.org/10.1007/s10922-021-09621-9
http://dx.doi.org/10.1016/j.iot.2019.100059
http://dx.doi.org/10.1109/JIOT.2020.2973176
http://dx.doi.org/10.1155/2018/1914980
http://dx.doi.org/10.1109/TII.2020.3025755
http://dx.doi.org/10.1109/JIOT.2020.3011726
http://dx.doi.org/10.1109/TNNLS.2020.2980749
http://www.ncbi.nlm.nih.gov/pubmed/32287020
http://dx.doi.org/10.1109/JIOT.2020.3009180
http://dx.doi.org/10.1016/j.future.2021.09.010
http://dx.doi.org/10.1109/TII.2021.3130248
http://dx.doi.org/10.1016/j.jisa.2019.102419
http://dx.doi.org/10.1007/s41095-022-0271-y


Future Internet 2024, 16, 255 15 of 15

30. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the 2018 European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Springer: Berlin/Heidelberg, Germany, 2018;
pp. 3–19.

31. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network
data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, Australia,
10–12 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Related Work
	Proposed Model
	Residual Network Architecture
	Convolutional Block Attention Mechanism
	Model Evaluation and Discussions
	Dataset Description
	Hyperparameter Settings
	Comparison with State-of-the-Art Methods

	Conclusions
	References

