
IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 5, SEPTEMBER/OCTOBER 2024 2959

Traffic Prediction-Based VNF Auto-Scaling and
Deployment Mechanism for Flexible and Elastic

Service Provision
Bo Yi , Member, IEEE, Jiacheng Wang , Qiang He , Xingwei Wang , Min Huang ,

Sajal k. Das , Fellow, IEEE, and Keqin Li , Fellow, IEEE

Abstract—Network Function Virtualization (NFV) provides a
flexible way to provision new services by decoupling network func-
tions from hardware and implementing them as Virtual Network
Functions (VNFs). However, the rapid development of technologies
greatly promotes the explosion of diverse services, which directly
results in the exponential increase of heterogeneous traffic. In
addition, such a tremendous amount of heterogeneous traffic will
generate bursts in a more dynamic and unexpected manner, so it
becomes extremely hard to satisfy the customer demands. Aiming
at addressing these challenges, this work proposes a positive and
elastic VNF deployment mechanism for service provisioning, which
introduces three novelties: 1) a Gated Recurrent Unit (GRU) based
traffic prediction model is established to predict the unexpected and
dynamically changing traffic behaviors in advance with the accu-
racy over 98%; 2) a closed-loop system is formed, in which the
prediction model can learn and evolve continuously to respond to
more complex scenarios; 3) different states of VNF are introduced
and dynamically switched to deal with the current demands with
reduced cost by avoiding frequent VNF initialization and destroy.
The experimental results indicate that the proposed mechanism
outperforms the state-of-the-art methods, which include achieving
over 98% prediction accuracy, improving the service acceptance
rate by more than 18%, and reducing the overall cost by more
than 20%.

Index Terms—Elastic VNF deployment, gate recurrent unit,
network burst, traffic prediction, VNF cache.
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I. INTRODUCTION

THE rapid development of new technologies such as meta-
universe, autopilot, quantum computation, and 6G greatly

promotes the appearance of many immersive applications which
demand ultra-high bandwidth and low delay to guarantee the
service quality. Besides, with over billions of terminals accessing
the network, the required service is becoming more and more
diverse and complex [1]. In this way, the traditional middlebox-
based service provisioning is no longer flexible and efficient
enough to handle these new situations. Network Function Vir-
tualization (NFV) [2] appears as a novel network paradigm
that decouples the network functionalities from hardware and
implements them as Virtual Network Functions (VNFs). Then,
NFV provides a more flexible service provisioning way by
combining and chaining VNFs with different required functions
on-demand [3], which are then referred to as the Service Func-
tion Chain (SFC). In particular, an illustration example is given
in Fig. 1(a), where the initial SFC is composed of two VNFs of
firewall and gateway in sequence.

In fact, there is already a lot of research proposed to study
the VNF deployment problem. However, it is aware that most
of these work mainly focused on determining where to deploy
VNFs and they usually ignored a practical fact that the service
provisioning flexibility is achieved by frequently creating newly
required and deleting expired VNF instances on demand [4].
The more the number of services, the higher the VNF changing
frequency, which then leads to extremely high maintenance
costs. Besides, the manual initialization process of VNF instance
also takes a long time, which further increases the cost [5].

Taking the above analysis into consideration, we refine the
VNF deployment problem and propose a more critical one
which we refer to as the VNF auto-scaling problem. Specifically,
VNF auto-scaling [6] intends to better optimize the service
provisioning process by dynamically scaling out or scaling in
the number of VNF instances. For example, the number of VNF
instances can be either scaled in to avoid resource waste when
the network traffic becomes less or scaled out to quickly respond
to sudden bursts in case the network load becomes extremely
heavy. However, the problem is that excessive VNF scaling out
would increase the maintenance cost and excessive VNF scaling
in would interrupt many services and lead to Service Level
Agreement (SLA) conflicts. Therefore, 1) how many VNFs

1939-1374 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on March 20,2025 at 01:40:14 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-8073-8202
https://orcid.org/0000-0002-6125-0869
https://orcid.org/0000-0002-1820-6141
https://orcid.org/0000-0003-2856-4716
https://orcid.org/0000-0003-3793-968X
https://orcid.org/0000-0002-9471-0868
https://orcid.org/0000-0001-5224-4048
mailto:yibobooscar@gmail.com
mailto:wangxw@mail.neu.edu.cn
mailto:heqiangpenalty -@M cai@gmail.com
mailto:heqiangpenalty -@M cai@gmail.com
mailto:mhuang@mail.penalty -@M neu.edu.cn
mailto:mhuang@mail.penalty -@M neu.edu.cn
mailto:sdas@mst.edu
mailto:lik@newpaltz.edu


2960 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 5, SEPTEMBER/OCTOBER 2024

Fig. 1. Illustration of service function chain scenarios.

should be scaled out/in; 2) when to scale out/in; 3) where to
scale out/in, become vital important to implement the VNF
auto-scaling and deployment mechanism for flexible service
provision.

For instance, due to the dynamic requirements of the cus-
tomer, two cases may happen to the service chain, as shown
in Fig. 1. The first one is that customers may no longer need
the gateway VNF, such that the gateway VNF is removed from
this service chain, which has been illustrated in Fig. 1(b), where
only firewall is remained. This is the case of service function
chain scale-in. The second one is that customers may need a
new VNF of Deep Packet Inspector (DPI) to perform the deep
packet inspection function, so that it is added behind the firewall
function as shown in Fig. 1(c). This is the case of service function
chain scale-out.

Existing solutions addressing the VNF auto-scaling and de-
ployment problem can be separated into two categories, namely,
the threshold based reactive VNF scaling [7], [8], [9], [10],
[11], [12], [13], [14], [15] and the prediction-based proactive
VNF scaling [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25]. The former method initiates the VNF scaling operation
upon detecting certain performance indicators, which can result
in a delayed response to traffic surges. Moreover, determining
the most suitable threshold is challenging, often necessitating
dynamic adjustments. Consequently, the reactive approach may
introduce a lag between the actual event and the scaling action.
In contrast, prediction-based VNF scaling strategies are more
adept at addressing traffic bursts proactively. They can preemp-
tively allocate resources to scale out VNFs based on predictive
analytics. However, it is important to note that these predictive
models are typically executed offline and are decoupled from
the real-time VNF scaling environment, potentially diminishing
the accuracy and effectiveness of their forecasts. Additionally,
the convergence time for these models can be quite lengthy.

Targetting on the above challenges, we propose a traffic
prediction-based VNF auto-scaling and deployment mechanism
with the following contributions:
� We design a Gate Recurrent Unit (GRU) based traffic pre-

diction model which can be used to predict the unexpected
and dynamically changing traffic behaviors in advance with
high accuracy. Then, the prediction results are used to guide
the VNF auto-scaling and deployment process.

� We build a closed-loop VNF auto-scaling and deploy-
ment system framework that integrates the GRU based
prediction model. In this closed-loop system, the prediction

model is able to learn and evolve continuously to respond
to more complex scenarios.

� We introduce different VNF states to further optimize the
VNF re-deployment cost. By switching the state of the pop-
ular and unused VNFs to ready instead of termination for
a longer time, a great deal of VNF creation and destruction
operation could be avoided and the cost is naturally saved.

The rest of this work is summarized as follows: Section II
summarizes the related work. Section III introduces the system
framework and problem model. Section IV proposes the traf-
fic prediction-based VNF auto-scaling and deployment mecha-
nism. Section V analyzes the experimental results and Section VI
concludes this work.

II. RELATED WORK

Currently, the VNF scaling and deployment problem has
been widely studied. Among these state-of-the-art researches,
we can divide them into two main categories according to the
strategy they adopt, which are the traditional VNF deployment
and intelligent VNF deployment.

A. Traditional VNF Scaling and Deployment

Extensive research has addressed the VNF deployment prob-
lem. Zhao et al. [7] introduced a delay-aware method for a
balanced trade-off between reliability and low delay. Qi et al. [8]
transformed VNF deployment into a combinational problem.
Recognizing the scale of services, Luo et al. [9] transitioned
to parallel deployment, addressing challenges with a Viterbi-
based algorithm. This concept was further explored in [10],
implementing the model by breaking down large flows. Wang
et al. [11] proposed a comprehensive solution addressing VNF
deployment and service chaining, acknowledging the trade-
off’s impact on performance. Moving beyond traditional ap-
proaches, [12] advocates for a marketplace-based distribution,
execution, and lifecycle management of VNFs, enhancing flex-
ibility and efficiency. Similarly, [13] establishes a marketplace
dedicated to VNFs, fostering rapid deployment and scalabil-
ity, promoting flexibility to meet dynamic network service
demands, while [14] addresses delay-aware virtual network
function placement and routing in edge clouds, emphasizing
strategies for minimizing delays.

The VNF deployment is also prevalent in emerging scenarios
such as 5G/6G and edge computing. To illustrate, Yang et al. [15]
approached VNF deployment in the edge network as a Markov
decision process, employing the Behrman iteration strategy to
maximize deployment utility. Carlinet et al. [16] revisited this
challenge within a 5G/6G environment, simplifying it to the
knapsack problem and leveraging traditional solutions. How-
ever, with increasing scenario complexity, the demand for intel-
ligence rises. Intelligent VNF deployment is emerging as a trend
in response to this. For instance, Lorido et al. [17] employed deep
reinforcement learning to tackle the VNF deployment problem,
while Sun et al. [18] utilized graph neural learning methods for
the same purpose. Nevertheless, it is crucial to acknowledge that
these machine learning-based approaches may face challenges
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in adapting to diverse environments, such as varying topologies,
and might exhibit long convergence times.

Traditional VNF deployment is relatively static, but recent
efforts focus on elastic VNF deployment, addressing the auto-
scaling challenge. Tang et al. [19] used dynamic programming
for service chain scaling, while Sun et al. [20] established
relationships between new and original VNFs, optimizing de-
ployment. Ma et al. [21] proposed a two-stage process, deter-
mining VNF locations in the first stage and chaining them into
a service in the second. Additionally, [11] integrates Service
Function Chains (SFC) composition, deployment, and allocation
to enhance resource usage. [22] introduces an SFC deployment
scheme for load balancing and reallocation, improving network
service acceptance rates and reducing latency. However, achiev-
ing true elastic VNF deployment remains a distant goal.

B. Intelligent VNF Scaling and Deployment

In prior research within the domain of intelligent VNF (Virtual
Network Function) deployment, one category has focused on
optimizing VNF placement using common machine learning
algorithms. For instance, Xu et al. [23] introduced a solution
to address VNF deployment using LSTM and DNN. N. Seo
et al. [24] discussed methods for updating VNF deployment
using reinforcement learning algorithms, emphasizing the use of
scaling actions for updates. Besides, S. Park et al. [25] proposed
an optimal VNF deployment method based on machine learning,
leveraging machine learning techniques for automation and opti-
mization in the VNF deployment process. Some have tried other
unconventional networks as well, Kim el al. [26] further explored
the optimization of virtual network function deployment based
on graph neural networks, emphasizing the importance of intel-
ligent decision-making using graph-structured data, while [27]
delves into the application of machine learning techniques for
predicting and optimizing Virtual Network Function (VNF)
deployment decisions, particularly in the context of dynamically
changing network conditions.

Another category of research focuses on optimizing VNF
deployment in virtual networks using graph convolution and
deep reinforcement learning. Such as Qiu et al. [28] proposed
a deployment algorithm for virtual network functions based
on graph convolution deep reinforcement learning to optimize
VNF deployment in networks and Qu et al. [29] discussed a
reliable service function chain deployment method based on
deep reinforcement learning aimed at enhancing the reliability
of network functions. There are also some of them concentrate
on practice usage, [30] emphasized the dynamic deployment
of service function chains in SDN/NFV-enabled cloud manage-
ment systems based on forecasts to achieve efficient resource
utilization. Similarly, He et al. [31] explores the integration
of deep reinforcement learning and attention mechanisms to
optimize virtual network function placement and routing while,
Kun et al. [32] explored methods for deploying service function
chains with parallelized VNFs under conditions of resource
demand uncertainty in mobile edge computing environments.
However, in order to fully realize intelligent VNF deployment,
much additional research is still needed.

C. Discussion

Although extensive research has been conducted on VNF de-
ployment and auto-scaling by using the traditional or the proac-
tive prediction-based methods, we should be aware that these
work either require long-time offline model training or suffer
from low VNF utilization. Additionally, they have not taken into
consideration the resource fragments that may occur frequently
during the dynamic VNF deployment process, thus causing huge
resource waste and extremely low resource utilization. All these
issues directly leads to high cost and complex operation for VNF
constituted service provision. Therefore, we refine the VNF
scaling and deployment problem, aiming at which we propose
the following VNF auto-scaling and deployment solution.

III. SYSTEM ARCHITECTURE AND PROBLEM MODEL

A. System Architecture

In this work, we design an elastic VNF auto-scaling and
deployment architecture for flexible service provisioning, which
is designed based on three-layer architecture shown in Fig. 2.
In particular, we can see that there are three layers in this
architecture from bottom up, that is, the infrastructure layer
(i.e., NFV infrastructure, NFVI [22]), the management layer
and the control layer. Our major contributions are carried out
in the control layer so as most of state-of-art work including
our benchmark algorithm, where the decisions are made and
executed via the REST API to the management layer to finally
manage the underlying resources.

Specifically, for the bottom infrastructure layer, it is con-
structed by virtualizing the discrete physical resource and form-
ing virtual resource pools for isolated and secure resource allo-
cation for flexible service provision. For the middle management
layer, it connects the other two layers via the north-bound and
south-bound interfaces respectively. After receiving the decision
from the control layer, it will first transfer the decision to
instructions that can be recognized by the infrastructure layer
and then forward these instructions to the bottom layer. To
fulfill such function, it is composed of several components in-
cluding the Resource-Server module for periodic resource state
synchronization, the Registry-Service module for VNF image
management, the Metrics module for performance monitor, the
Prometheus and Alarm modules for data visualization and the
Engine module for VNF auto-scaling. As for the top control
layer, it first needs to obtain the status of VNF and traffic in the
cluster from the engine module, which are then used to train the
prediction model. According to the prediction results, we can
then deploy the corresponding VNFs reasonably the subsequent
VNF elastic deployment module.

Generally, the service requests will arrive continuously. In
this condition, the designed system will periodically collect the
network information by the Resource-Server module. Then, the
raw data, which includes the port, packet received, etc, is sent to
the Engine module, where the traffic features are extracted and
clustered to train the prediction model. After that, the prediction
results are used to guide the VNF auto-scaling process. In this
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Fig. 2. System architecture.

way, a closed-loop is formed, where the prediction model can
learn and evolve continuously.

It is noted that the engine module is the core part of this work
since it involves the proposed VNF auto-scaling mechanism. In
particular, we can observe that the collected traffic data will go
through four stages until the deployment policy is determined
and sent back to the Engine to execute.

B. Problem Model

The underlying physical network is defined as an undirected
graph G(V,E,M), where V is the set of nodes, E is the set of
underlying physical links, and M is the set of VNF instances.
Given any nodeu ∈ V , its memory and CPU core can be denoted
by Cmem

u , Ccore
u . The processing delay of this node is du. The

bandwidth resource of the link (u, v) is denoted by Cbw
uv and the

corresponding link delay is denoted by duv . Assuming there are
P types of VNFs, so that given any VNF m ∈ M , it belongs to
one specific type, that is, typemp = {0, 1}}, where typemp = 1
means m is the p-type VNF, otherwise not. In addition, the CPU

resource of this VNF is denoted by Ccpu
m and the processing

delay of this VNF is dm which is different in unique VNFs.
Then, a directed graph Gf = (Vf , Ef ) is used to represent

the VNF forwarding graph, where Vf is the set of VNFs and
Ef is the set of logical links between VNFs. Given any service
f , its required bandwidth, memory, CPU, and core resource are
denoted byϕbw

f , ϕmem
f , ϕcpu

f,p , ϕ
core
p respectively. The maximum

tolerable delay of f is ϕdelay
f . Hence, for any service f that

exists in the network, all the physical links traversed by it are
connected, so that

∑
v∈V

∑
vfuf∈Ef

(
z
ufvf
uv − z

ufvf
vu

)
=

⎧⎪⎨
⎪⎩

1, u is the entrance

−1, v is the exit

0, other
(1)

where z
ufvf
uv , z

ufvf
vu ∈ {0, 1} mean whether f using the logical

link (uf , vf ) traverses the physical link (u, v) or (v, u).
In addition, once a physical link (u, v) is traversed by a

service, the two end-nodes of this link are also traversed, and
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it follows that

z
ufvf
u z

ufvf
v =

{
1, if zufvf

uv = 1

0, otherwise
∀uf , vf ∈ Ef (2)

where z
ufvf
u , z

ufvf
v ∈ {0, 1} indicate whether f is using the

logical link (uf , vf ) that traverses the physical node u or v.
In order to formulate the object, another two binary variables

are defined as follows:

z
uf
m , ymu ∈ {0, 1}, ∀m ∈ M,u ∈ V, uf ∈ Vf . (3)

where z
uf
m , ymu = 1 mean uf provides resource for the VNF m

and m is deployed on u, otherwise not.
The objective of this work is to minimize the overall cost

which is composed of three parts, that is, the deployment cost
(denoted by D), the maintenance cost (denoted by F) and the
penalty cost by rejecting service requests (denoted by U). In
particular, the three kinds of cost can be calculated as follows:

D = cplace
∑
u∈V

∑
m∈M

max {ymu − ŷmu , 0}

F = Δt
∑
u∈V

∑
m∈M

ymu

U =
∑

f∈ϑ∪R
cpenalty

(
1− Φ

(∑
u∈V

z
ufvf
u > 0

))
(4)

where cplace is cost of deploying one single VNF. cpenalty is the
penalty factor of rejecting service requests. Δt is any given time
period andΦ(∗) = {0, 1} indicates whether the service has been
successfully provided. In particular, to improve the readability
of this work, we summarize all the notations in Table I.

Then, denoting the services arriving, ending and living in
the network during the next time period Δt as ϑ, L and R
respectively, the object of minimizing the overall cost during
Δt is formulated as follows:

min
z
ufvf
uv ,z

ufvf
u ,z

uf
m

η1D+ η2F+ η3U

s.t.
∑

ufvf∈Ef

∑
f∈ϑ∪L∪R

ϕbw
f (z

ufvf
uv − ẑ

ufvf
uv ) ≤ Cbw

uv

∑
ufvf∈Ef

∑
f∈ϑ∪L∪R

ϕmem
f (z

ufvf
u − ẑ

ufvf
u ) ≤ Cmem

u

∑
uf∈Ef

∑
f∈ϑ∪L∪R

ϕcpu
f,p (z

uf
m − ẑ

uf
m ) ≤ Ccpu

m

∑
m∈M

ncore
p ymu ≤ Ccore

u , ∀p ∈ P, u ∈ V

∑
uv∈E

∑
ufvf∈Ef

duvz
ufvf
uv +

∑
u∈V

∑
ufvf∈Ef

duz
ufvf
u

+
∑
m∈M

∑
uf∈Vf

dmz
uf
m ≤ ϕdelay

f

∑
m∈M

∑
uf∈Vf

z
uf
m ymu ≤ z

ufvf
uv , ∀u ∈ V,

TABLE I
NOTATIONS

uf , vf ∈ Ef , f ∈ ϑ ∪R∑
p∈P

qmp = 1, ∀m ∈ M

(1), (2), (3) (5)

where η1 + η2 + η3 = 1 are weighting coefficients. ncore
p rep-

resents the total number of CPU cores required for the VNF
instance. ẑufvf

uv , ẑufvf
u and ẑ

uf
m are the binary variables in the

previous time period before z
ufvf
uv , z

ufvf
u , z

uf
m .

Specifically, the first three constraints stipulate that the band-
width, memory, and CPU resources allocated during the time
interval Δt must not surpass the total available resources. It
is important to note that the memory and CPU constraints are
node-specific, whereas the bandwidth constraint pertains to the
links. The fourth constraint dictates that the number of CPU
cores allocated to the VNFs must not exceed the cores available
on the respective nodes. The fifth constraint ensures that the
actual end-to-end delay for each service does not surpass its
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maximum tolerable threshold. The sixth constraint mandates
the existence of a planned path for each service chain, ensuring
that traffic traverses all related VNFs in the correct sequence.
Lastly, the seventh constraint specifies that each VNF must
belong exclusively to one category.

Nevertheless, the VNF deployment problem has already been
proved to be NP-hard [35], which means that it cannot be
solved in polynomial time. In this work, the VNF deployment
has been developed to jointly consider the VNF auto-scaling,
which introduces more constraints and variables under the main
considerations of: 1) How many VNF are required; 2) Where
to deploy these VNFs; 3) When to deploy the VNFs. With such
complex considerations and constraints, solving this ILP model
in acceptable time becomes not even possible, such that we
propose a more efficient mechanism to jointly address the VNF
auto-scaling and deployment problem.

IV. TRAFFIC PREDICTION-BASED VNF AUTO-SCALING AND

DEPLOYMENT MECHANISM

A. Traffic Data Collection and Pre-Processing

The core of the proposed mechanism is the prediction
model which relies heavily on the dataset used to train this
model. Hence, to guarantee the prediction performance of this
model, we need to continuously collect the most updated traf-
fic data from network and use them to train the prediction
model. The collected traffic data are denoted by a three-tuple
(port, txbytes, t), where port is the port monitored, txbytes is
the bytes sent out and t is the time. Hence, given any two
times t1, t2(t1 < t2), the traffic rate during this period can be

calculated as frate =
tx2

bytes−tx1
bytes

t2−t1
.

Generally, the typical way to collect the network traffic relies
on using the network monitors which inspect the network in dif-
ferent granularities (e.g., flow-level and packet-level). However,
a common way is to minitor the network status periodically,
which may easily miss the important traffic feature data, due
to the fixed periods. In this regard, we dynamically change the
monitoring period according to the current traffic rate in network,
in case of missing some important data samples. Then, denoting
the average traffic rate by favg and the max/min monitoring
cycle by Tmax, Tmin, the current monitoring cycle should be

Tmonitor = min

{ |favg|
|frate|Tmin, Tmax

}
(6)

After network monitor, we can get the original data which are
then used for model training. However, these raw data need to
be pre-processed before using. In this way, we first transform
the collected traffic data into the matrix format. Namely, we first
denote that the traffic rate frate from node i to j at time t by f t

ij .
Then, the traffic matrix is expressed as TM t = (f t

ij)n∗n where
n ∈ [1, |V |] is the number of nodes used.

However, the traffic between different sources and destina-
tions varies greatly. In order to avoid the deviation caused
by such difference and improve the generalization ability of
the prediction model, the following normalization process is

Fig. 3. Structure comparison between LSTM and GRU.

executed on the traffic data matrix.

f t′
ij =

f t
ij −min{f t

ij |i, j ∈ [1, n]}
max{f t

ij |i, j ∈ [1, n]} −min{f t
ij |i, j ∈ [1, n]} . (7)

where f t′
ij ∈ [0, 1].

Executing the above equation for every element in TM t,
we obtain the normalized traffic matrix denoted by TM t′ =
(f t′

ij)n∗n.

B. Traffic Prediction Model Establishment

The traffic prediction model is built upon the Gated Recurrent
Unit (GRU) model, a specialized form of deep learning Recur-
rent Neural Networks (RNNs). The GRU model is designed to
enhance the capture of dependencies across various time scales.
When compared with the Long Short-Term Memory (LSTM)
model, another variant of RNN, the GRU model simplifies the
gating mechanism and neuron state, leading to a significant
reduction in the training time required for the network. LSTM
networks are known for their inclusion of an input gate, a forget
gate, and an output gate. These gates regulate the flow of infor-
mation, enabling the network to selectively retain or discard past
information. In contrast, the GRU model, recognized as one of
the most potent deep learning models for time series prediction,
streamlines the LSTM’s structure by replacing the input and
forget gates with a single update gate. This modification results
in a more straightforward architecture. For ease of comparison,
the structures of both models are illustrated and contrasted in
Fig. 3.

Since the input data for the prediction model are already
obtained (i.e., TM t′ ), we next define the time series model
to train and adjust the prediction parameters. According to the
structure of GRU, the relationship between its input and output
is expressed as follows:

hl = σ
(
W lhl−1 + bl

)
, (8)

where hl,W l, bl represent the hidden state output, weight, and
bias of the l-th layer in GRU, σ is the activation function.

Then, we denote the training parameter set of GRU by Γ =
(Wr,Wz,Wh, br, bz, bh), where the subscripts r, z, h represent
the reset gate, update gate and output gate in GRU respectively.
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Now, the training objective is to minimize the Mean Square Error
(MSE) of this model to obtain the optimal parameter set Γ . To
fulfill this target, the MSE function is defined based on the loss
function in the back propagation, as follows:

MSE =
1

n

n∑
i=1

n∑
j=i+1

(
f̃ t
ij − f t

ij

)2
. (9)

By calculating all the loss, we obtain the training cost as
follows:

Cost =
1

k

k∑
q=1

MSEq, (10)

where q is the number of iterations.
However, the back propagation in GRU needs to calculate the

mapping between the model training cost to the gradient of each
layer, so that we formulate the relationship between the training
cost and the training parameter vector as follows:

Cost =

N∑
i=1

(yi − (wxi + b))2 , (11)

where xi, yi are the input and output of this model in each layer.
Next, we define the gradient vector as follows:

∇Cost =

(
∂Cost

∂w1
,
∂Cost

∂w2
, . . . ,

∂Cost

∂wN

)T

(12)

where W = w1, w2, . . . , wN is the weight of each layer of
the model training cost Cost, and the corresponding gradient
calculation is as follows:

δl =
∂Cost

∂al
	 σ′ (zl) (13)

δl =
((

wl+1
)T

δl+1
)
	 σ′ (zl) (14)

∂Cost

∂wl
jk

= al−1
k δlj (15)

∂Cost

∂blj
= δij (16)

where δl is the output error. (14) shows the detailed back
propagation process of the output error calculation. (15) and
(16) represent the gradient of the cost function Cost.

By continuously applying the chain derivation rule to the
above calculation, the model learns all optimal parameters,
which are expressed as follows:

Γ̂ = argΓ min
1

n2

n∑
i=1

n∑
j=i+1

(
f̃ t
ij − f t

ij

)2
(17)

Moreover, we use the Adam optimizer to optimize the training
cost, since it can efficiently and automatically adjust the training
step size. This optimization process is shown as follows:

∇Costt = ∇Γ ft(Γt−1) (18)

mt = β1 ·mt−1 + (1− β1) · ∇Costt (19)

vt = β2 · vt−1 + (1− β2) · ∇Cost2t (20)

Fig. 4. Prediction sliding window.

m̂t =
mt

1− βt
1

(21)

v̂t =
vt

1− βt
2

(22)

Γ̂t = Γ̂t−1 − η√
v̂t + ε

m̂t (23)

where∇Costt represents the gradient vector of the cost function
Cost. ft(Γ ) represents the stochastic optimization objective
function of the parameters.mt, vt represent the mean and square
values of the gradient. β1, β2in[0, 1) represent the exponential
decay rates. η, ε are the learning rate and a constant.

Based on the above process, we can obtain the prediction
model. However, if the error between the prediction result and
the actual result is large, we go back to (8) to continue the training
until a high prediction accuracy is achieved.

C. Traffic Prediction

According to the established prediction model, for any net-
work with n nodes, the traffic in this network at time t can be
expressed by the traffic matrixTM t = (f t

ij), wheref t
ij indicates

the traffic from the node i to the node j at the time t. Hence, given
T time periods before t, we can get the history traffic matrixes,
that is, TMT = (TM t, TM t−1, TM t−2, . . . , TM t−T ), where
TMT is the set of history traffic.

Usually, the prediction is carried out based on historical data.
In this work, the traffic prediction is also implemented based
on the history traffic, i.e., TMT . Therefore, we introduce the
prediction sliding window in this work. For example, as shown
in Fig. 4, the size of the prediction sliding window is 10, so that
the traffic in the latest 10 cycles (i.e., from X3 to X12) are used
to predict the traffic in the next cycle (e.g., X13). It is easy to
note that the history data of X1 and X2 are not used to train
the prediction model, because it has been used before and not
in the currently sliding window. Training the prediction model
withX1 andX2 will not achieve much progress, but the training
time and computing resource consumption are inevitable.

Apparently, the size of the sliding window may affect the
overall performance greatly. In this way, we set the prediction
sliding window to T accordingly and the value of T becomes vi-
tal important. However, too large window size can easily lead to
extremely long training time, while too small window size would
also lead to low prediction accuracy performance. Therefore, we
determine the size of this prediction sliding window according
to the following evaluating results. Next, we introduce the vector
function to transform the traffic matrix into a vector as the input
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of the prediction model, so that given any TM t, we have

V ector(TM t) =
(
f t
11, f

t
12, . . . , f

t
ij , . . . , f

t
n(n−1), f

t
nn

)
,

(24)
where the position of f t

ij in this vetor is calculated according to
the expression (i ∗ n+ j).

In this way, TMT is changed into the expression of
(V ector(TM t), V ector(TM t−1), . . . , V ector(TM t−T ))
which is then regarded as the input of the GRU based prediction
model to predict the traffic (i.e., TM t+1) of the next cycle.
Besides, we should be aware that the obtained prediction results
are also saved as the history training data.

Then, based on the above definition, the traf-
fic prediction can be simplified as: given the input
(V ector(TM t), V ector(TM t−1), . . . , V ector(TM t−T ))
and the GRU based traffic prediction model, we can output
V ector(TM t+1) for the next cycle.

D. VNF Deployment and Auto-Scaling

Based on the prediction model, we can estimate the traffic
condition in the near future, which can be transformed into
conclusions that 1) what types of VNFs are required in the
network; 2) how many the VNFs of the types are required to carry
the load in the next time period; 3) where to deploy these VNFs.
Specifically, given any VNF to be deployed, we first need to
determine the potential candidate host nodes which must satisfy
the following basic constraints:
� The state of this node must be “ready” so that it can be

used to provide the VNF service. In addition, we should be
aware that there are also other states such as pending and
termination in case of different situations.

� The CPU/memory resource of this node should exceed the
required amount of resource to deploy the VNF, so as to
guarantee the service quality provided.

� The end-to-end delay should not exceed the maximum
tolerable value when using this node to deploy the required
VNF, since processing delay will be generated on this node,
which contributes to the final end-to-end delay.

Since the VNF deployment usually needs multiple kinds of
resources (e.g., CPU and memory), we next score the candidate
nodes to create the priority. In this work, the score of each
node is calculated based on the linear combination of different
resources’ utilization. The object is to minimize the cost and
maximize the accepted services, so that the smaller the resource
utilization of this node, the higher the probability this node would
be selected. Similarly, the score is calculated based on resource
utilization, so the smaller the value of the score, the higher the
node priority.

However, the linear combination is a common method used
to cluster different parameters, which leads to the fact that the
aggregation policy should be carefully designed. In this work,
we try to calculate the score for each node by using the weighted
aggregation of resource states. Then, it follows that

As explained, these decisions are given to the Engine
to execute automatically, so that the VNF auto-scaling is

implemented.

score =

|P |∑
i=1

piwi, (25)

where score is the weighted score. P is the set of resource
parameters and pi is the state parameters of the i-th kind of
resource. wi is the weight of the i-th kind of resource, which
determines the importance of this kind of resource.

Actually, to accept more services, the distribution of network
load should be fair and the VNF deployment should also be fair
among different nodes to avoid large fluctuations of resource
utilization. In this way, the weights attached to the different
resources are not static, but dynamically change after each VNF
deployment. In this case, the weight parameters can reflect the
distribution of resources when the node is running. The greater
the fluctuation of the weight, the higher the probability that the
corresponding resource will contribute more to the final score.
However, this situation will destroy the balance among these
resources and reduce the opportunity for this node to accept
more requests. Therefore, given the parameter pi, it includes θ
states, then the corresponding weight is calculated as follows:

wi =
σ2
i

μi,θ

where μi,θ =
1

θ

θ∑
k=1

xk

σ2
i,θ =

1

θ

θ∑
k=1

(xk − μi,θ)
2, (26)

where xk indicates the k-th state of pi. μi,θ, σ
2
i,θ are the mean

and variance values of the θ states.
Since the size of the historical data set grows at a constant

rate, the amount of calculation is also increasing with a much
more fast speed (i.e., O(p · n2)). The typical challenge is that
when some new traffic data arrive, traditional methods need
to carry out the repeated calculation for all the historical data,
which is time-consuming and meaningless. In order to solve this
challenge, all the calculation is performed online in this work and
we introduce the mean recursive estimation method to calculate
the mean and variance for new traffic data incrementally, as
follows:

Since the size of the historical traffic data grows at a constant
rate, the amount of calculation to get the parameter in equa-
tion (27) is also increasing with a much more fast speed (i.e.,
O(p · n2)). The typical challenge is that when some new traffic
data arrive, traditional methods need to carry out the repeated
calculation for all the historical data, which is time-consuming
and meaningless. In order to solve this challenge, all the calcula-
tion is performed online in this work and we introduce the mean
recursive estimation method to calculate the mean and variance
for new traffic data incrementally, as follows:

μi,θ = μi,θ−1 +
(xθ − μi,θ−1)

θ
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σ2
i,θ =

σ2
i,θ−1(θ − 1) + (xθ − μi,θ−1)(xθ − μi,θ)

θ
. (27)

Combining (25) and (26), we can update the parameter
weights dynamically. In particular, it is aware that the parameter
weights are updated in the runtime and we only need to do
calculations for the new traffic data, so that the computing power
is saved and the efficiency is improved. In addition, one more
advantage is that we can keep the amount of calculation almost
the same during the system running time so that the influence
that the parameter weights updating process has on the VNF
deployment is stable. Based on the above process, the node
having the highest score will be selected as the node to deploy
the corresponding VNF.

Due to the situation that the network environment changes
dynamically, we need to take the VNF auto-scaling into con-
sideration so as to adapt to such changing environments and
requirements. Typically, the VNF auto-scaling includes the ver-
tical scaling (i.e., increase or decrease the VNF resource) and
the horizontal-scaling (increase or decrease the number of VNF
instances). However, the vertical scaling will inevitably lead to
the reboot of VNF instances and cause SLA violation, so that
we mainly focus on implementing the VNF auto-scaling in the
horizontal direction.

In addition, as explained, the threshold based VNF scaling
may fail to serve the short-term services, so the prediction-
based proactive VNF auto-scaling is carried out. Now, given
the predicted result TM t+1, we first need to extract two critical
factors which are 1) what types of VNFs are required; 2) how
many of these VNFs are required. By analyzing the statistics of
the prediction traffic, we can easily obtain the traffic processing
capacity required for any type of VNF at time t+1. Let’s denote
one type of the required VNFs by fj with the rate denoted by
fj,rate, and the total required number is H , so that we have

P j(t+ 1) =

H∑
i=1

f i
j,rate, (28)

where P j(t+ 1) indicates the processing capacity required by
the j-th type of VNF at the time t+1.

Based on the above equation, the number of the new added
j-th type of VNF is expressed as follows:

qnewj (t+ 1) =

{⌈
P j(t+1)−P j(t)

Cj

⌉
, if P j(t+ 1) > P j(t)

0, otherwise.
(29)

where qnewj (t+ 1) indicates how many new j-th type of VNF
should be deployed and Cj indicates the average processing
capability of fj .P j(t) indicates the processing capacity required
by the j-th type of VNF at the time t.

There are two cases in (28) should be noted, that is: 1) when
P j(t+ 1) > P j(t), we should deploy qnewj (t+ 1) new VNFs
to handle the extra traffic load. 2) when P j(t+ 1) ≤ P j(t), the
number of the j-th type of VNFs in network is enough to process
the traffic arriving at the time t+1.

Despite this, when P j(t+ 1) << P j(t), it means that the
existing VNFs are excessive redundant. Directly deleting these

VNFs will lead to high deployment costs, since some deleted
VNFs may be demanded after that. In this case, we propose a dy-
namic VNF state switching strategy to maximize the utilization
of VNFs. For example, some temporarily unused but popular
VNFs can be set to ready state for a relative long time instead
of terminating them directly. Due to its popular characteristics,
it may be used shortly, such that frequent creation and destroy
of the VNFs could be avoided, which then reduce the cost and
improve the resource utilization. Since P j(t+ 1) is far smaller
than P j(t), we define the number of the redundant VNFs as
follows:

qdelj (t+ 1) =
∣∣P j(t+ 1)− P j(t)

∣∣ . (30)

Instead of deleting all the qdelj (t+ 1) VNFs immediately, we
first set their states to “waiting” with a waiting time threshold
(denoted by threholdtime

j ), so as to cache them for a period of
time. In this state, these VNFs will consume very little resource.
Then, if the redundant VNFs are needed again, their states will be
set to “running” from “waiting” and the threholdtime

j is ignored.
Otherwise, the corresponding VNF will be deleted. Apart from
reducing the cost, this dynamic VNF state switching strategy can
also reduce the service delay, because the new VNF deployment
also consumes time.

V. PERFORMANCE EVALUATION

A. Setup

The experiments are carried out using the Python language on
a high-performance server PowerEdge R740 with the Ubuntu
18.04 with kernel 5.15.0. We create five Virtual Machines (VM)
to simulate the server cluster environment, where one VM is
used as the master node to execute the algorithm and the rest four
VMs are used as working nodes to provide physical resources. In
particular, Kubernetes v1.25.2 [36], [37] with docker v20.10.23
is deployed as the service provisioning kernel on the master
node and Python 3.8 is used to host the traffic prediction model.
The experimental section of the paper is based on the CERNET
backbone network.

Taking the practical scenarios into consideration, we set the
number of VNF types to 15, which can almost cover all the
common network function requirements in real-world scenar-
ios, which include the Firewall, Deep Packet Inspector (DPI),
Intrusion Detection System (IDS), Intrusion Prevention System
(IPS), Network Address Translation (NAT), Domain Name Sys-
tem (DNS), Broadband Network Gateway (BNG), Web Proxy
(WP), 4K/8K video server, Content Delivery Network (CDN),
IP Multimedia Subsystem (IMS), coding and decoding server,
Load Balancer (LB), Dynamic Host Configuration Protocol
(DHCP) server and OpenVSwitch (OVS). We use these VNF
as individual service instead of SFC. Since each VNF is im-
plemented in a container, we set the required memory and
CPU to [1, 200]M and [1, 200]MHz respectively, following
the uniform distribution, where the number of VNF that may
increase or decrease with the rate that is set between [0.5, 3]
following the uniform distribution. As for each of the VNF
constituted service funtion chains, it demands the CPU resource
between [1, 40]MHz following the uniform distribution and the
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TABLE II
PARAMETERS

bandwidth resource between [1, 30]Mbps following the uniform
distribution as well. The service requests are generated following
the Possion distribution with a mean speed of 50 requests per
100 time units. Besides, the life cycle of each service follows an
exponential distribution with a mean value of 1000 time units.
The maximum tolerable delay of each service is set to 1000 time
units. Finally, the CPU resource of each node is set to 32GHz and
the memory resource is set to 64G. These important parameters
are summarized and shown in Table II.

B. Benchmarks and Metrics

In order to verify the performance of our work, we select
1) LSTM, CNN-LSTM, Bi-LSTM to compare with the de-
signed GRU prediction model; 2) two state-of-the-art methods
to compare with the proposed VNF auto-scaling and deployment
mechanism, which are the one proposed by Takaya et al. [34]
(Threshold-based VNF elastic deployment mechanism, TVD)
and the one proposed by Tang et al. [19] (Dynamic network
function instance scaling mechanism based on traffic forecasting
and VNF Placement, DTVP). In particular, the first one is a
reactive VNF scaling method which will execute the scaling
operation only when detecting the situation which the load
threshold is exceeded. On the other hand, the second one uses
a sliding window linear regression model taking the historical
traffic data as input. This regression model fits the historical
traffic data to generate a linear equation, which is then used to
predict future traffic trends. Additionally, to ensure high service
availability, DTVP accounts for prediction errors by incorporat-
ing a standard deviation adjustment factor based on recent traffic
fluctuations and calculating an upper bound for traffic forecasts.
This approach not only adapts to dynamic traffic changes, but
also optimizes resource utilization while maintaining service
quality. For simplicity, the proposed method is referred to as the
Prediction-based VNF Auto-Scaling (PVAS).

Fig. 5. RMSE and training time.

Fig. 6. Traffic prediction.

The performance metrics include 1) the Root Mean Square
Error (RMSE) and the training time for prediction performance
comparison; 2) the average network utilization, CPU utilization,
delay, VNF load strength, service acceptance rate, and number
of active VNFs for network performance comparison.

C. Results

1) Prediction Results: We first evaluate the performance of
the proposed traffic prediction model and the corresponding
results are shown in Figs. 5 and 6. In particular, Fig. 5 provides
the results of RMSE and the training time with 50 epochs against
different sizes of sliding windows. Apparently, it is easy to
note that 1) the RMSE increases first and then decreases for
the two prediction models,it is because initially, due to the
increase in window size, the model is able to see longer historical
information, resulting in a decrease in RMSE. However, as the
window size continues to increase, it may introduce too much
redundant information during training, which can interfere with
the model, and so the sliding window size for achieving the best
RMSE is the turning point, that is, 20; 2) the training time per
epoch grows with the increase of the sliding window size; 3)
PVAS-GRU outperforms LSTM in terms of both the RMSE and
the training time. 4) Although CNN-LSTM has a faster training
time compared to GRU, both of them could be accepted in our
actual demand, besides, its RMSE (Root Mean Square Error) is
higher than GRU, which is more important in our experiment.
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Fig. 7. Overall cost.

As for Bi-LSTM, it has a low RMSE, but its training time is
too long to meet the requirement of early deployment in this
experiment. Therefore, it is also not applicable.

Generally, the time spent on training the prediction model
increases with the increase of the sliding window size, because
the larger the sliding window, the more data will be used to
train the model and the longer the training time. In addition,
observing the training time in detail, we can notice that it
increases linearly before the sliding window size exceeds 20
and then the increasing trend becomes slow after that. It has two
main reasons. 1) As training progresses, the model may start to
converge, meaning that the updates to the model’s parameters
become smaller. This can result in a slowdown in the rate of
increase of training time, as fewer computational resources are
needed for fine-tuning. 2) Larger windows may contain more
data redundancy, which could reduce the model’s need to learn
new information. This can lead to a decreased rate of growth in
training time, as the model becomes more efficient at handling
the increased data volume without significant additional com-
putational effort. Now, combined with the conclusion that the
best RMSE is achieved when the sliding window size is 20, we
set the size of the sliding window to 20 for the rest experiments
in this work.

For the results in Fig. 6, they are achieved based on the
normalized network traffic data. In particular, there are three
lines that indicate the actual network traffic and the predicted
traffic with 1 and 50 epoch-training respectively. From this
figure, we can see that the predicted traffic with 50 epoch
training is relatively closer to the actual network traffic. More
specifically, we calculate the similarity between the real traffic
and the predicted one according to the cosine similarity theory

ab
||a||||b|| , which actually reflects the prediction accuracy, that is,
99.6% with 50 epochs and 98.7% with 1 epoch. In this case,
we can see that there are still improvement from 1 epoch to 50
epochs. By comparing the quantified data, the predicted traffic
achieved by the model with 50-epoch training is much more
similar to the real traffic, which means that the 50-epoch training
based prediction model has a higher prediction accuracy.

Moreover, let’s review the results in Fig. 6, we can notice that
the predicted traffic of PVAS-50 epoch is exactly the same as

Fig. 8. Average cost and detailed sub-cost.

the practical traffic at the times of 2, 3, 6, 7, 8, 10, 17, 18, 20 and
22. Meanwhile, the predicted traffic of PVAS-50 epochs at other
times also approaches the real traffic. In this case, we observe
that the prediction accuracy will not increase greatly when the
number epoch exceeds 50, but the training time still increases.
Therefore, the training epochs are set to 50.

2) Performance Results: Now, based on the setting of the
sliding window size and the training epoch, we use the webbench
tool [38] to inject real service traffic into the network, which
follows the Possion distribution. As explained, the overall cost
consists of the VNF deployment cost, maintenance cost and
the penalty cost and the corresponding weights for the three
sub-costs are μ1, μ2, μ3 respectively. Then, we change their
weights to provide four testing cases, that is, case1, μ1 =
0.1, μ2 = 0.1, μ3 = 0.8; case2, μ1 = 0.1, μ2 = 0.8, μ3 = 0.1;
case3, μ1 = 0.8, μ2 = 0.1, μ3 = 0.1; case4, μ1 ≈ 0.33, μ2 ≈
0.33, μ3 ≈ 0.33.

The overall cost achieved under the four cases are shown in
Fig. 7, where we can see that 1) the cost does not increase or
decrease linearly, but follows the Possion distribution, which
is in accordance with the injected real traffic, so that this can
reflect the correctness of our experiments in a certain extent; 2)
given the same weight setting, the proposed method achieves
lower cost in any case; 3) the average cost achieved by different
methods is the lowest at case2, which means that the weight for
the maintenance cost is higher and this is exactly in accordance
with the practical situation.

In order to clearly observe the cost, we further show the details
in Fig. 8, where Fig. 8(a) summarizes the average cost in four
cases and Fig. 8(b) shows the detailed cost of D,F,U. For the
average results, we can see that 1) the proposed method has
the lowest cost in the four cases; 2) the proposed method has
very lower D,U and relatively higher F, which is due to the
case that the dynamic VNF state switching mechanism in this
work allows us to significantly reduce the deployment cost and
penalty cost with only a small increase in maintenance cost; 3)
the reduction of D,U achieved by PVAS is far more larger than
the increase ofF achieved by PVAS. Therefore, taking the above
into consideration, PVAS achieves the best performance in terms
of reducing the overall cost.

Next, we evaluate the service acceptance rate as well as the
number of active VNFs used to serve the traffic. The correspond-
ing results are summarized and shown in Fig. 9, where Fig. 9(a)
calculates the real-time service acceptance rate; Fig. 9(b) shows
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Fig. 9. Service acceptance rate and active VNFs.

the number of active VNFs that are used to carry these service
requests at the same time; and Fig. 9(c) shows the corresponding
traffic trend. From the overall perspective, we can see that the
service acceptance rate is on the opposite against the traffic
amount, while the number of active VNFs is proportional to the
amount of traffic. This is reasonable, because on one hand, more
traffic means the network is in a congestion situation, which
naturally prevents from accepting more services. On the other
hand, more traffic means that more VNF would be created to
support such demands.

Specifically, for the results in Fig. 9(a), it is easy to note that
the proposed method has the highest service acceptance rate.
Meanwhile, the proposed method keeps a stable and high service
acceptance rate which is almost 98%. Comparatively, the other
two benchmarks achieve about 80% (DTVP) and 60% (TVD)
service acceptance rates on average. Such a difference is due
to the response strategy provided by the three methods. On one
hand, the proposed PVAS has a very high prediction accuracy
and can provide the future traffic trend along the time, so that
we can deploy the required VNFs in the correct place in advance
in a very fine-grained way. However, for TVD, it can only react
when the traffic load exceeds the threshold. As for DTVP, it
predicts the average future traffic load which is actually a value
and may not be able to reflect the details at any time in the future.
In contrast, the neural network approach used in this paper can
achieve a higher resolution by adjusting the parameter T. In
addition, compared with the other two methods, we build the
system that can provide the proposed method with continuous
and updated data to learn and evolve in the long run. This is also
a very critical factor for the proposed method to achieve a higher
service acceptance rate.

In addition, let’s see the results of the active VNFs in Fig. 9(b),
where we can observe a similar trend as shown in Fig. 9(a).
Actually, the number of active VNFs can reflect the deployment
cost to a certain extent, because the more active VNFs, the higher
the deployment cost would be. During the time of [0,500], the
network traffic load is small (resource is enough), so the three
methods need almost the same VNFs to provide services. How-
ever, with the increase of traffic load between the time of [500,
1700], the number of active VNFs deployed by the three methods
becomes different. First, for DTVP, we can see that it creates a
lot of active VNFs compared with TVD and PVAS. Despite this,
DTVP does not take the VNF load balance into consideration,

so the service rejection would also happen especially when the
network load becomes high. On the other hand, the proposed
method is quite suitable for processing service requests in such
a high load environment, so that it can accept the arriving service
requests using a small number of active VNFs. During the time
of [1700,3500], the network traffic load begins to decrease and
we can see that the number of active VNFs deployed by the two
prediction-based method (i.e., PVAS and DTVP) also decreases,
while TVD still remains stable. When the time exceeds 4000, the
number of active VNFs deployed by PVAS and DTVP increases
obviously, because they need more VNFs to carry the upcoming
traffic. Although PVAS and DTVP can both adapt to the network
load, it is easy to note that PVAS can fulfill this target with less
number of active VNFs.

Next, we evaluate the average traffic rate (i.e., throughput),
CPU utilization, average delay and average VNF load against
different numbers of service requests in Fig. 10, where Fig. 10(a)
shows the average traffic rate, Fig. 10(b) shows the CPU utiliza-
tion, Fig. 10(c) shows the average delay and Fig. 10(d) shows
the VNF load. Let’s first look at the average traffic rate in 10(a),
we can see that PVAS achieves a higher traffic rates than TVD
and DTVP. Apparently, different numbers of service requests
have different impacts on the average traffic rate. In particular,
when the number of parallel requests reaches 3500, the average
traffic rate of PVAS approaches 500 Mbps, while TVD achieves
445 Mbps and DTVP achieves 460 Mbps. Although PVAS and
DTVP are both prediction-based proactive auto-scaling meth-
ods, DTVP predicts the average traffic rate in the future, which
may not be applied to the situation of large-scale service requests
(e.g., over 4000 requests). Besides, PVAS also introduces the
dynamic VNF state switching strategy to optimize the VNF
utilization and accept more requests. Thus, PVAS improves the
average traffic rate by about 5.64%∼8.41% than DTVP and about
9.84%∼18.49% than TVD.

For the CPU utilization in Fig. 10(b), the higher the better,
since it means less time to complete a task. By calculation,
the average CPU achieved by the three methods are 43.967%
(PVAS), 37.998% (TVD) and 40.554% (DTVP). Obviously,
PVAS has the highest CPU utilization and it achieves about
14.23%∼16%, 7.57%∼9.95% higher CPU utilization than TVD
and DTVP respectively.

In Fig. 10(c) and (d), it is clearly that average delay is increas-
ing first until the number of requests reach a threshold individual
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Fig. 10. Results of resource utilization, delay and VNF load.

Fig. 11. Detailed number of Pods and CPU utilization.

for three chosen algorithms, and decreasing until reaching a
more or less stable point, which is in the contrast for average
VNF load. This is because when the number of request streams
increases, the three algorithms will automatically scale up the
service VNFs to meet the demand of the request streams. As a
result, initially, when the number of request streams is not large,
the latency increases as the number of request streams grows.
However, when the number of request streams exceeds a certain
threshold, due to the scaling of the VNFs, both the latency and
the load on the VNFs actually decrease as the number of request
streams continues to increase.

For the average delay in Fig. 10(c), three types of algorithm
used in the experiments PVAS still outperforms the other meth-
ods. Another phenomenon is that the delay advantage achieved
by PVAS becomes bigger when the number of requests in-
creases. For example, when the number of requests is 1000, the
average delay of PVAS, DTVP and TVD are 5.07 ms, 5.06 ms
and 5.5 ms respectively, so the delay gap may be [0,0.43] ms.
However, when the number of service requests is 4000, the aver-
age delay of PVAS, DTVP and TVD are about 4.15 ms, 5.2 ms
and 6 ms respectively, so that the delay gap becomes [1.05, 1.85]
ms. For the average VNF load in Fig. 10(d), PVAS achieves the
largest VNF load. Reviewing the results in Fig. 10(b), we are
aware that PVAS has a smaller number of active VNFs. Jointly
taking the two conditions into consideration, we can come to
the conclusion that PVAS can maximize the VNF utilization to
carry more traffic with fewer VNFs.

Lastly, we inject a short-term burst of traffic into the network
to observe how PVAS, TVD and DTVP respond. The corre-
sponding results are summarized in Fig. 11, where Fig. 11(a) and
(b) include the relation between number of Pods, CPU utilization

and time respectively In particular, several phenomena can be
observed: 1) the CPU utilization achieved by PVAS does not
exceed 100% during the burst time, while that of TVD and
DTVP both exceed 100% (i.e., 175% and 126%), which means
that PVAS balances the network, while TVD and DTVP make
the network overloaded when the traffic burst arrives. Besides,
the overload time caused by TVD is much longer. 2) PVAS and
DTVP can scale the number of pods in advance to adapt to the
network traffic load based on the prediction results. Taking TVD
as the example, since it is a threshold based reactive method, the
time when the CPU utilization exceeds 100% is exactly the time
that network overload occurs, that is, 1 minute 45 seconds after
the burst. Let’s see the data of PVAS and DTVP, we can see that
they both scale the number of pods at the time of 45 seconds
and 30 seconds after the burst. 3) PVAS scale the number of
pods to 13 for the rest burst time, so that PVAS can process this
traffic burst with 13 pods and the maximum CPU utilization
is 62%. However, DTVP needs 20 pods to carry this burst
and the maximum CPU utilization is 126%. From the above
observations, we can conclude that PVAS can adapt to the burst
traffic easily, which makes it performing better than the other
benchmarks.

VI. CONCLUSION

A. Summary

The rapid development of new network technology promotes
the explosion of diverse services, which directly results in the
exponential increase of heterogeneous traffic. Thus, we propose
a traffic prediction-based VNF auto-scaling and deployment
mechanism for provisioning flexible services and meeting the
needs of the dynamically changing environment. In particular,
the GRU model is applied in the proposed solution, so as to form
a closed-loop system among the traffic collection, GRU training
and prediction, policy execution over network with the accuracy
over 98%. Experimental results indicate that the proposed mech-
anism outperforms the other state-of-the-art methods. Despite
this, we should be aware that the prediction accuracy is achieved
under the virtual environment, where the container is used to
provide VNF constituted services and virtual machine is used
as the host. In addition, the shortest path algorithm is used to
chain the traffic along different VNFs without optimization,
which means that the traffic may take longer time to traverse
the corresponding VNFs along this path, thus leading to larger
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probability of failures and costs. Nevertheless, the routing path
optimization is not the main focus of this work. Hence, the
future work include exploring the potential performance of the
proposed solution in real-world scenarios especially with the
optimization of the traffic routing path.

B. Threats to Validity

However, in this study, we also recognize the existence of
factors that may threat the validity of the results. The first is
related to some I/O components within the architecture proposed
in this paper, if they are stateful services, they will have a sig-
nificant impact on end-to-end latency, such as the database that
appears in the architecture. In the experiment part of our paper,
we use stateful service since our huge amount of data. However,
if it could be replaced with some simpler stateless services on
the actual experimental platform, it will make the end-to-end
latency more stable. In addition to this, most of the VNFs used
in the experiment of this paper are homogeneous services at the
L2/L3 layer because of some practical factors, which may limit
the generalizability of the experimental results when applied to
more complex network environments that include different types
of VNFs. In future experiments, a variety of VNFs of different
types and levels should be used to enhance the generalizability
of the results as much as possible.
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