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A B S T R A C T

The integration of high-performance computing with machine learning (ML) has established a transformative 
scientific paradigm that significantly enhances the efficiency of material discovery, particularly in the search for 
catalysts in alternative energy research. However, significant challenges remain in the utilization of available 
computational resources to accelerate the screening of catalyst materials. In this study, we implement a high- 
throughput framework on the new-generation Tianhe supercomputer, featuring the development of a Ping- 
Fault Recovery algorithm, single-task optimization for Density Functional Theory (DFT) to maximize effi-
ciency, and enhanced task scheduling using a two-level scheduling strategy to ensure efficient utilization of the 
abundant computational resources of the supercomputer. This framework facilitates the identification of 2,028 
candidate surfaces across 868 intermetallics from 2,713,897 unique adsorption sites, achieving a screening speed 
193 times faster than traditional methods. Alloys composed of Mo, Nb, and V are used as case studies to provide a 
detailed elucidation of the process of identifying the most effective catalytic surfaces. The framework achieved 
the best single-day candidate hit performance on 18,106 nodes, completing in one day what previously took a 
year. This supercomputer-based framework optimizes the use of computational resources, driving innovation in 
catalyst material discovery.

1. Introduction

Earthshaking changes in human society are inextricably linked to the 
exploration of nature [1–6]. With the development of various tools and 
cutting-edge methods, natural exploration––particularlyin materials 
science––has become a popular research topic, directly influencing so-
cietal development [7–12]. Recently, the growth of high-performance 
computing (HPC), combined with the rapid rise of artificial intelli-
gence (AI) and machine learning (ML), has driven significant advance-
ments in materials science. These developments are characterized by 
data-driven approaches to processing increasingly large-scale material 
datasets, either computationally or experimentally through innovative 
technologies [13–15]. As the scale of data-driven processing in 

computational and experimental materials research continues to 
expand, the design and optimization of innovative technologies have 
become critical challenges, essential for further advancing materials 
science.

The ongoing transformation towards high-throughput research in 
materials science is predominantly driven by advancements in infor-
matics tools and ML techniques [16–21], which build upon the foun-
dational work of traditional computational methods such as Density 
Functional Theory (DFT). Although DFT remains essential for accurate 
quantum–mechanical atomistic simulations, it is time-consuming and 
computationally expensive [22]. Python-based informatics tools such as 
Luigi, FireWorks (FWS), and Python Materials Genomics (Pymatgen) are 
essential for managing and processing compute-intensive tasks [22–25], 
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a necessity for high-throughput screening of materials such as cata-
lysts—substances that lower energy barriers in chemical reactions to 
guide the formation of desired products. The Open Quantum Materials 
Database (OQMD), developed by Wolverton et al., exemplifies how 
high-throughput DFT-calculated crystal structures can be integrated 
with advanced informatics tools, thereby overcoming the limitations of 
traditional methods. This enhances research capabilities and facilitates 
the exploration of complex applications such as battery combination 
catalysts [26]. Furthermore, general AI frameworks including Scikit- 
learn, TensorFlow, and PyTorch have been extensively utilized in data 
classification, regression, clustering, and the development of complex 
neural networks to predict material properties, which are critical for 
optimizing experimental outcomes [26–35]. Similarly, AFLOW-ML of-
fers a RESTful API for ML predictions of material properties, further 
advancing the integration of ML techniques with high-throughput data 
processing to accelerate material discovery and optimization [36]. This 
integration not only addresses the limitations of traditional DFT 
methods but also fosters innovative research paradigms, enhancing the 
scope of materials science investigations.

Despite these advancements, challenges persist, particularly the 
limited availability of material data, which stems from the high costs 
and time demands associated with empirical data collection. Addition-
ally, ML is hindered by the scarcity of robust datasets. There is sub-
stantial opportunity for optimizing AI utilization with high-throughput 
computing (HTC) using large-scale resources in HPC systems. For 
example, the combination of HTC and ML on platforms such as the 
Materials Artificial Technology Cloud (Matcloud) has been applied to 
the development of next-generation batteries. However, there remains 
considerable opportunity for improving the speed of this process [37]. 
Similarly, Ulissi et al. developed a Generalized Adsorption Simulation 
(GASpy) platform, which integrates ML with HTC and DFT calculations 
to design advanced electrocatalytic materials. Although the platform is 
capable of screening hundreds of candidates annually [38,39], it has the 
potential to screen more candidates with enhanced processing capabil-
ities and further optimization. Addressing the speed limitations in 
candidate material screening and accelerating the generation of effec-
tive datasets are crucial for overcoming the challenges in traditional 
experimental methods and mitigating the constraints of ML due to 
insufficient data [26,38–40]. Therefore, optimizing AI-based HPC sys-
tems such as the new-generation Tianhe supercomputer presents an 
appealing solution. As illustrated in Fig. 1, HTC processes that rely on 
extensive computational resources encounter several challenges, 
including dataset management, fault tolerance, scheduling, and task 
optimization. These issues affect the efficiency of utilizing large-scale 
computing resources in supercomputing systems, thereby impacting 
both the accumulation of effective datasets and the progress of candi-
date material screening. In summary, the efficient integration of HTC 
with AI to accelerate catalyst material screening using abundant 

computational resources remains a major challenge.
In this study, we constructed a fully automated high-throughput 

computational supercompter-based framework for catalytic material 
screening. By developing several advanced methods, we optimized the 
utilization of the abundant computational resources available on the 
new-generation Tianhe supercomputer to validate the efficiency of the 
material-screening process. This framework enables the efficient 
screening process of millions of catalytic materials and is demonstrated 
through specific alloy examples to elucidate the identification of high- 
performance catalytic materials. Our research revealed an exceptional 
screening efficiency and produced significant results, highlighting the 
compelling potential of large-scale computing resources.

The remainder of this study is organized as follows. First, we provide 
an overview of the framework techniques and computational details. 
Next, the workflow and specific screening cases are elaborated. Finally, 
we conclude with a summary of the findings and their implications.

2. Framework techniques and computational details overview

2.1. Informatics tools of the framework and automated material 
construction approaches

The functionality of the framework is supported by a suite of infor-
matics tools and Python packages, such as Pymatgen, Atomic Simulation 
Environment (ASE), FWS, Luigi, and MongoDB. These form the core 
infrastructure of the framework [41,42], as detailed in our previous 
study [2]. Pymatgen facilitates high-throughput material calculations, 
ASE manages atomistic simulations, FWS manages HTC jobs, and Luigi 
orchestrates complex streaming batch tasks. MongoDB, which supports 
the JavaScript Object Notation (JSON) format, serves as a flexible data 
storage solution. Supercomputers often employ the Lustre file system for 
storage [43].

DFT is widely used in quantum–mechanical simulations to predict 
atomic properties and serves as a bridge between experimental data and 
theoretical models [22]. Automated DFT calculations over large search 
spaces are streamlined through Luigi for task management and FWS for 
job execution. Adsorption energy calculations composed of DFT tasks, 
such as bulk retrieval and relaxation, bulk expansion, surface cutting, 
bare slab preparation and relaxation, and adsorbate slab preparation 
and relaxation, are managed by Luigi. Automatic structure construction 
is achieved using the Luigi outputs, whereas DFT-related workflows are 
managed by FWS. These workflows generate computing tasks and 
monitor their progress through the SLURM scheduler [44]. The results 
are continuously updated in the database and utilized in subsequent 
tasks to ensure both efficiency and fault tolerance. Upon job completion, 
the LaunchPad of the MongoDB pings the “heartbeat” thread via FWS to 
verify task status, extracts results, and updates the materials database. 
This process ensures a self-consistent closed-loop system, maintaining 

Fig. 1. HTC process composed of DFT + ML iteration in the new-generation Tianhe Supercomputer.
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an efficient research workflow.

2.2. ML and DFT computational details

To accelerate computational screening, mutual feedback between 
ML and DFT calculation are used by compensating for the lack of sam-
ples in machine learning and replacing some numerical calculations 
caused by insufficient computing resources. For the ML process, we 
combined surrogate-based optimization with active learning. Surrogate- 
based optimization employs a surrogate model (SSM) to approximate 
the objective function, reducing the computational cost by optimizing 
the surrogate instead of a more expensive model. This approach is 
particularly well-suited to time-consuming objective functions [45,46]. 
Active learning, a type of ML, efficiently interacts with a small amount of 
existing labeled data to select the most valuable samples for further la-
beling [47]. The criterion for evaluating samples is based on the volcano 
scaling relationships, a classical standard traditionally used to assess the 
performance of catalytic materials [48–50]. In the active learning pro-
cess, this standard is incorporated by applying a Gaussian distribution 
around the optimal values to prioritize the labeling of samples with 
higher uncertainty. These uncertain materials are selected for DFT cal-
culations, labeled, and subsequently used to retrain the model, enabling 
iterative exploration of the surrogate model’s optimal space.

During the ML process, the fingerprints of the adsorption site envi-
ronment obtained via DFT, consist of vectors such as: ([Z1, Х1, CN1, ΔE], 
[Z1, Х1, NCN1, ΔE], …, [Zi+1, Х i+1, CNi+1, ΔE], [Zi+1, Х i+1, NCNi+1, ΔE]), 
as depicted in Table 1. The labeled features are used to create surrogate 
models, which predict unlabeled fingerprints. These predictions are then 
used in active learning to select valuable samples for further DFT cal-
culations, significantly accelerating the screening process. By continu-
ously enhancing the surrogate model through iterative feedback from 
active learning based on DFT calculations, this approach reduces the 
amount of labeled data required.

In catalyst material research, the physicochemical properties of 
structures––particularly the adsorption sites where adsorbates 
attach––are critical for evaluating catalytic efficiency. The key metric, 
referred to as “candidate hit performance,” compares the time required 
for catalyst screening using the framework against traditional calcula-
tion methods. As defined in Equation (1), the percentage Pall represents 
the proportion of materials filtered out using active learning, relative to 
the total number of raw materials Nr. Nf denotes the number of materials 
screened using the ML method. The number of candidate materials 
identified through the iterative feedback between ML and DFT calcu-
lations is represented by Nh. Thus, the “candidate hit performance” can 
be defined using Equation (2). 

Pall =
Nr − Nf

Nr
(1) 

S =

Nh
Nf
Nh
Nr

=
Nr

Nf
(2) 

Catalysts that adhere to volcano scaling relationships and fall within 
the optimal adsorption energy range are considered ideal candidates. 
This study analyzed a wide range of elements, as depicted in Fig. 2, 
covering 2,771 crystal structures, which led to 205,046 unique surfaces 
and 2,713,897 unique adsorption sites. These surface-adsorbed gases 
include H, O, OH, OOH, and CO (Fig. 2), with hydrogen adsorption 
being the most extensively studied DFT calculation. Each adsorption site 
on a surface represents a potential catalytic material. For the DFT 
calculation configuration, we used revised Perdew–Burke–Ernzerhof 
(PBE) functionals for pseudopotentials [49]. For selected materials, 
adsorption energy was calculated using DFT to evaluate catalytic effi-
ciency using three relaxation types: bulk/gas relaxation (Ebulk/Egas) and 
slab relaxation with and without adsorbates (Eadslab and Ebare_slab). The 
adsorption energy, Eads, was determined as Eadslab − Ebare_slab − Egas. This 

study focuses on screening catalytic materials for the adsorption of 
renewable and environmentally friendly gases, particularly those used 
in hydrogen evolution reaction (HER) catalysts. Optimal adsorption 
energies for different chemical element combinations are determined by 
volcano scaling relationships, with the ideal ΔEH for HER being − 0.27 
eV [50–52]. The optimal range for adsorption energy fluctuations is 
defined as [-0.37, − 0.17] eV, and materials within ± 0.1 eV of this 
optimal value are considered ideal candidates.

2.3. HTC system and environment

We used a new-generation Tianhe supercomputer equipped with 
domestic high-performance heterogeneous multicore processors (MT- 
SQ) and connected via a proprietary high-speed network (TH-E3). 
Approximately 160,000 DFT tasks were executed with execution times 
ranging from a few seconds to two days. These tasks were distributed 
across 18,016 compute nodes and performed using the VASP software 
(version 5.4.4) [53]. An AutoML tree-based pipeline optimization tool 
(TPOT) was used during the ML process [54].

Table 1 
Details of the fingerprints. Z represents the atomic number, Х represents the 
atomic Pauling electronegativity, CN/NCN represents the number of atoms 
coordinated/neighbor-coordinated to the adsorbate, and the target is repre-
sented by the adsorption energy ΔE. The variable i is related to the maximum 
number of material components. For atoms without coordination, a dummy 
value is used (Z = 0, and the other features are averages).

No. feature Definition (Physical meaning) Independent

1 Z1 Atomic number of the first atom 
in the material composition

Y

Х1 Pauling electronegativity of the 
first atom in the material 
composition

Y

CN1 Number of atoms to which the 
first atom in the material 
composition is coordinated to 
the adsorbate

Y

ΔE Adsorption energy N
2 Z1 Atomic number of the first atom 

in the material composition
Y

Х1 Pauling electronegativity of the 
first atom in the material 
composition

Y

NCN1 Number of the neighbor atoms to 
which the first atom in a material 
composition is coordinated to 
the adsorbate

Y

ΔE Adsorption energy N
i Zi+1 Atomic number of the (i + 1)th 

atom in the material composition
Y

Х i+1 Pauling electronegativity of the 
(i + 1)th atom in the material 
composition

Y

CNi+1 Number of atoms to which the (i 
+ 1)th atom in the material 
composition is coordinated to 
the adsorbate

Y

ΔE Adsorption energy N
i +

1
Zi+1 Atomic number of the (i + 1)th 

atom in the material composition
Y

Х i+1 Pauling electronegativity of the 
(i + 1)th atom in the material 
composition

Y

NCNi+1 Number of the neighbor atoms to 
which the (i + 1)th atom in the 
material composition is 
coordinated to the adsorbate

Y

ΔE Adsorption energy N([Z1, Х1, CN1], [Z1, Х1, 
NCN1], …, [Zi+1, Х i+1, 
CNi+1], [Zi+1, Х i+1, NCNi+1], 
…) i > 0, i ∈ Z
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3. Results and Discussion

3.1. Workflow

The integration of informatics tools and supercomputing system ar-
chitecture enabled high-throughput job generation in the super-
computing environment, data processing from first-principles DFT 

calculation results, ML, and interactive feedback to screen electro-
catalytic material efficiently, as shown in Fig. 3. The DFT calculations 
provide an effective dataset and machine learning predictions of 
adsorption capabilities accelerate the computational process. The pro-
cess includes the extraction of raw data and task scheduling manage-
ment functions to support comprehensive screening of candidate 
catalysts on the supercomputer. The screening process began with 

Fig. 2. Morphology and elemental distribution of catalyst materials considered in this screening. The gray elements in the periodic table represent those 
covered by the catalytic material screening process.

Fig. 3. Overview of the framework. It includes components for data extraction (POSCAR files), high-throughput task generation, monitoring and scheduling, data 
processing, machine learning, and catalyst screening.
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extracting numerous material structures (POSCAR files) from the Ma-
terials Project or other experimental results provided by researchers 
[55,56]. These structures were then transferred to the supercomputer 
and divided into two parts: a smaller subset for task generation and a 
larger subset for data processing. Luigi managed the output de-
pendencies of the physical structure, creating a pipelined task for 
structure generation. These structures were first optimized using VASP 
calculations managed by FWS.

Automatic adsorption structure generation followed, producing 
various adsorption structures with different Miller indices for FireTasks. 
FSW handled task management, setting up VASP input files, checking 
task requirements, and determining whether VASP should run. The re-
sults were stored in MongoDB in JSON format, allowing efficient man-
agement of large-scale workloads. For ML, fingerprints extracted from 
the raw data were used to train a pipeline model using TPOT, which 
predicted the properties of materials after pre-processing. Combined 
with volcano scaling relationships, the best candidates were determined 
using robust relaxation schemes to assess the stability of the structures. 
By leveraging machine learning, this approach significantly accelerated 
the material screening process. Instead of performing exhaustive DFT 
calculations on all materials, the model was able to predict key material 
properties with high accuracy, allowing for the efficient selection of 
promising candidates for further analysis. This reduced the computa-
tional cost and time required for the material screening, facilitating a 
more rapid identification of optimal materials. HTC jobs were monitored 
by a security system deployed on the cluster to ensure only the most 
promising materials, based on their lowest energy configurations, 
progressed.

The supercomputer system provided VASP and Python environments 
and monitored and scheduled jobs created by FWS through the SLURM 
resource manager. SLURM managed the specific VASP jobs, and FWS 
recorded their runtime status as ‘RUN,’ ‘COMPETED,’ ‘FIZZLED,’ or 
other states. All results were queried and stored in the MongoDB data-
base. The DFT results stored in MongoDB were also used to connect 
VASP calculations with the ML process.

3.2. Fault tolerance recovery

Task failures are common during execution due to various faults. 
Typically, a failure occurs when the “heartbeat” signal from LaunchPad 
stops, causing the task to be marked as “FIZZLED” after being in the 
“RUNNING” state in FWS. System faults, such as supercomputer main-
tenance leading to ping failures, or situations where the “heartbeat” 
thread continues to send pings while the actual task itself is in a “dead” 
state in FWS, can exacerbate the issue. In both cases, the tasks submitted 
to supercomputer computing nodes continued to be executed normally; 
however, upon completion, the results could not be updated in the 
database. This prevents the initiation of subsequent tasks within the 
high-throughput material computation framework. To address these 
issues and minimize computational losses from ping failures or tasks in a 
“dead” state despite normal pings, we have developed a Ping-Fault Re-
covery algorithm, outlined in Algorithm 1. The algorithm operates as 
follows.

Algorithm 1: Ping-Fault Recovery

Input: SLURM id (S_IDs), and the FWS id (F_IDs)
Output: Completed calculation task (Comp_task)
FW.json: Documentation that collects the information of tasks in FWS
1: for each SLURM_ID in S_IDs do
2: Retrieve the directory associated with SLURM_ID
3: Extract the fwid from FW.json in the directory
4: match_found = False
5: for each FWS_ID in F_IDs do
6: if fwid == FWS_ID then
7: if status of FWS_ID is FIZZLED then
8: Kill the SLURM_ID
9: Rerestart the task

(continued on next column)

(continued )

Algorithm 1: Ping-Fault Recovery

10: end if
11: if status of FWS_ID is RUNNING then
12: match_found = True
13: end if
14: break
15: end if
16: end for
17: if not match_found and status of FWS_ID is RUNNING then
18: Change the status of FWS_ID to FIZZLED
19: Restart the task
20: end if
21: end for
22: return Comp_task

When SLURM assigns high-throughput tasks to compute nodes, the al-
gorithm traverses all submitted SLURM IDs, locates their respective di-
rectories, and retrieves the associated forward IDs. It then initializes 
match_found to false and compares the SLURM IDs with all fwid IDs, 
which are marked either as “FIZZLED” or “RUNNING.” For tasks marked 
as FIZZLED, which are presumed interrupted due to system mainte-
nance, the algorithm promptly terminates the matched SLURM ID and 
restarts it to resume the task. For the tasks marked as “RUNNING,” 
match_found is set to true. If match_found remains false even though the 
task is “RUNNING,” the task is considered “dead” despite normal pings. 
These tasks are marked as “FIZZLED” and immediately resubmitted. This 
approach effectively identifies and addresses tasks that cannot be 
updated, thereby reducing computational resource waste and ensuring 
smooth progression of dependent tasks.

3.3. Time to solution for DFT calculations and high-throughput task 
execution

To optimize the efficiency of the DFT calculations, several perfor-
mance tests were conducted on the most frequent slab computation tasks 
to identify the optimal number of processes and threads. As shown in 
Fig. 4, speedup was achieved by comparing computation times across 
multiple nodes relative to a single compute node. Initially, as the 
number of processes increased, speedup improved, reaching a factor of 
60 with 32 computing nodes. This performance level was maintained as 
the number of nodes increased to 128, with speedup peaking at 78. 
However, beyond this point, further increases in node count led to 
diminished efficiency, with speedup dropping to 2.5 when scaling up to 
4096 compute nodes due to increased communication costs. Therefore, 

Fig. 4. Speedup on multiple nodes compared to a single node.

C. Leng et al.                                                                                                                                                                                                                                     



Computational Materials Science 252 (2025) 113775

6

while the speedup ratio was satisfactory within 128 computing nodes, a 
four-fold increase in node count resulted in only a 1.3-fold increase in 
speedup, which was considered inefficient. As a result, 32 compute 
nodes were identified as the most effective choice for slab calculation 
tasks.

The task scheduling process for high-throughput material computing 
on the new-generation Tianhe supercomputer is illustrated in Fig. 5. In 
this system, tasks managed by FWS are submitted to SLURM for 
scheduling purposes. Once SLURM completes scheduling and calcula-
tions, the results are sent back to FWS, which stores the completed task 
results in a material database. Subsequently, additional tasks generated 
from the ML processes are submitted to SLURM for further scheduling. 
This system ensures consistency between the statuses of tasks managed 
by FWS and those submitted to SLURM, thereby embodying the two- 
level scheduling strategy. A total of 18,016 compute nodes were uti-
lized for high-throughput task execution, whereas the remaining nodes 
were dedicated to ML tasks.

3.4. Accelerating catalysts screening

To efficiently screen a vast number of catalytic materials for the HER, 

we analyzed the relaxation numbers on a new-generation Tianhe su-
percomputer, covering 5367 bulk/gas relaxations from crystal structure 
expansion and 155,467 bare and adsorbate slab relaxations, as shown in 
Table 2. For an adsorption site not previously studied for any adsorbate, 
two DFT calculations (bare and adsorbate slabs) were required. When 
different adsorbates are adsorbed at the same site, only one additional 
DFT calculation is required, as the bare slab had already been calculated. 
Although bulk relaxation requires more time, the number of slab cal-
culations is three times higher, making slab relaxation the predominant 
DFT computational task.

In the context of HER, this study involved 2,446 distinct bulk 
structures out of 2,771 crystal structures, resulting in 104,251 

Fig. 5. Hybrid high-throughput computing task management system.

Table 2 
Relaxation types of high-throughput tasks, DFT calculation numbers, and 
average time per task.

relaxation Bulk/Gas Slab

DFT calculation numbers 5367 155467
Average time per task ( s) 6470 3894

C. Leng et al.                                                                                                                                                                                                                                     
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adsorption-energy calculations and encompassing 160,837 DFT calcu-
lations. The maximum Miller indices of 2 produced 50 irreducible 
crystal surfaces, yielding a dataset of 2,098,299 unique adsorption sites. 
TPOT distributed these adsorption energies, derived from 2,658,820 
sites, for ML analysis related to HER, as depicted in Fig. 6(a). The 
remaining predicted results pertain to adsorption energies beyond the 
HER. The training dataset included 55,077 different sites composed of 
48,704 different surfaces (one surface may have several sites) obtained 
from our DFT calculations, with the DFT results providing essential data 

points that form the foundation for machine learning models. Addi-
tionally, 22,675H adsorbate DFT results from Tran et al. were incorpo-
rated to enhance model training and predictions [38]. Over a period of 
20 d, eight surrogate models were generated, each optimizing 60 pipe-
lines. Only 353,441 ML results satisfied the volcano scaling relationship 
criteria, as shown in Fig. 6(b). Active learning was combined with 
surrogate-based optimization to enhance the screening process, utilizing 
active learning to select structures from each surface for DFT calcula-
tions. By selecting the most valuable adsorption sites for further labeling 

Fig. 6. Catalyst screening process within the framework. The upper figure depicts the overall HER screening process, and the lower figure illustrates a specific 
case of MoNbV material screening.
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and DFT calculations, machine learning predictions guided the efficient 
selection of surfaces, thus optimizing the number of DFT calculations 
needed while maintaining high accuracy. This resulted in the generation 
of eight self-consistent closed loops, each comprising a surrogate model. 
This process screened 13,745 lowest-energy surfaces, as shown in Fig. 6
(c). The residuals between the DFT results and ML predictions were 
predominantly close to zero, demonstrating high prediction accuracy 
and alignment with expected normal deviation. Through robust relax-
ation strategies, 1,574 candidate surfaces across 868 intermetallics were 
selected, as shown in Fig. 6(d), with machine learning predictions 
significantly accelerating the identification of promising candidates, 
thus minimizing the number of DFT calculations required while main-
taining high prediction accuracy. To illustrate the capabilities of this 
framework, we focused on the HERs of materials composed of Mo, Nb, 
and V. For the MoNbV material, a maximum Miller index of 2 produced 
19 irreducible crystal surfaces, resulting in 16,250 adsorption structures 
for prediction, as shown in the lower part of Fig. 6(1) and (2). When 
combined with uncertainty data analysis, only 5956 ML results fell 
within the optimal range, as shown in Fig. 6(3). These selected surfaces 
were further screened, and the surface with the lowest adsorption en-
ergy was selected for DFT calculations. Fig. 6(4) shows that only three 
crystal surfaces, namely (1, 1, 1), (1, 1, 0), and (0, 0, 1), were selected, 
with a total of 54 adsorption structures subjected to DFT calculations. 
Fig. 6(5) shows the residuals between the DFT results and ML pre-
dictions, where most fall within the optimal range, indicating a normal 
deviation. The two adsorption structures with the best catalytic perfor-
mance were identified, as shown in Fig. 6(6) and (7).

3.5. Selection results and computational efficiency Evaluation

Based on the above workflow, we analyzed 13,745 DFT calculation 
results using the average adsorption energy values of pure elements, as 
depicted in Fig. 7. The average binding energy of hydrogen on Pt is 
− 0.31 eV, closely matching the ideal value of − 0.27 eV, indicating that 
Pt is among the most active elements for the HER. Pt was identified in 
four distinct regions: weak, weak, strong, weak, and strong. The most 
active binding occurred in the strong–weak region predicted by ML, 
followed by the weak-strong region determined by DFT calculations. 
The weak-weak region generally exhibited minimal element binding and 
was often inactive due to its weak binding ability.

However, Cu/Pd, Pd/Fe, and Ti/Co exhibited unexpected activity. 
Cu and Pd, both highly active elements after Pt, may exhibit higher 
average values due to calculation errors, which could explain their ac-
tivity in the weak-weak region. Despite their location in this region, 
these bimetallic combinations followed the volcano scaling relationship 
and exhibited significant activity. ML predictions identified more active 
bimetallic compounds than DFT calculations, consistent with Fig. 7, 
where the surrogate-based model identified more adsorption sites with 
near-optimal energy. Thus, combinations of the weak-strong and 
strong–weak regions provide valuable insights into the HER and can 
guide the synthesis of effective catalysts.

Furthermore, 2,028 surfaces across 868 intermetallics were identi-
fied for the HER from 2,713,897 unique adsorption sites, as illustrated in 
Fig. 8(a). Potential active bimetallic candidates are shown in Fig. 8 (b), 
based on 21,162 DFT adsorption energy calculations, including several 
outliers with abnormal values outside the optimal range.

Hundreds of effective catalytic materials are screened daily in Fig. 9. 
Compared to another study, which required over a year to screen 389 

Fig. 7. H2 evolution efficiency map for bimetallics. The colored shading represents possible efficiency for various enumerated surfaces; grey shading indicates 
bimetallics outside the ± 0.1 eV optimal range, and the white shading denotes surfaces not included in the analyzed dataset. The upper half of this figure shows 
adsorption energies calculated by DFT, whereas the lower half shows values generated by the surrogate model.
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candidate surfaces [38], our method completes this task in a single day. 
The low hit rate observed during large-scale material screening effec-
tively narrowed the research scope and conserved significant time, 
demonstrating the high efficiency of this approach.

Efficiency analysis evaluated the acceleration of the material 
screening process. As shown in Table 3, 2,658,820 adsorption sites 
(denoted as Nr) were generated. By applying the self-consistent closed 
loop, only 13,745 adsorption structures (represented by Nf) were 
deemed suitable for DFT calculations after ML prediction. Ultimately, 
DFT calculations identified 1,395 theoretically ideal intermetallics 
(represented by Nh), which are now being further investigated in 
collaboration with relevant laboratories [57]. This screening process 
filtered out 99.48 % of the structures, achieving a speedup factor of 193 
for identifying the best candidates using this framework.

The framework is designed to fully leverage high-performance 
distributed computing environments, enabling continuous distribution 
of multiple computational tasks across various nodes. It utilizes efficient 
database management systems, such as MongoDB, to meet the demands 
of processing large datasets, significantly improving the efficiency of 
catalytic material screening. Additionally, while the framework 
currently focuses on adsorption energy calculations for catalytic mate-
rials, its potential applications can be extended to other areas, such as 

battery theoretical capacity and charge transfer. The development of 
these applications can build upon the existing framework by modifying 
DFT calculations for different microscopic properties and constructing 
machine learning models based on datasets derived from these proper-
ties. This direction represents a key focus for future work, which will 
further expand upon the capabilities of the current framework.

4. Conclusion

In this study, we present a fully automated, high-throughput, com-
puter-based framework deployed on the new-generation Tianhe super-
computer. To effectively utilize its extensive computational resources, 
we developed a Ping-Fault Recovery algorithm to enhance fault toler-
ance, reducing computational resource waste and ensuring smooth 
progression of dependent tasks. We identified 32 compute nodes as the 
most effective configuration for slab calculations based on time-to- 
solution for DFT calculations. The task scheduling process for high- 
throughput material computing was enhanced using FWS and SLURM 
on a new-generation Tianhe supercomputer. By utilizing this method, 
the continuous computing capacity of the supercomputer enabled the 
identification of optimal candidate catalysts from a substantial number 
of materials by screening their adsorption properties for renewable and 
environmentally friendly gases, focusing on the HER. We demonstrated 
the framework using Mo, Nb, and V as case studies to provide a detailed 
elucidation of the process for identifying the most effective catalytic 
surfaces. In total, 2,028 candidate surfaces across 868 intermetallics 
were identified from 2,713,897 unique adsorption sites, achieving a 
speed-up factor of 193 in identifying the best candidates using this 
framework. The best single-d ay candidate hit performance using 18,106 
nodes allowed us to achieve in one day what previously required a year. 
These identified candidates hold significant potential for further in- 
depth research in catalytic materials, contributing to the advancement 
of more intelligent and high-precision materials research.

The supercomputer-based high-throughput screening framework, 
emphasizing an automated and uninterrupted computational process 
that integrates DFT calculations with machine learning feedback loops, 
serves as an exemplary case for high-throughput computing in complex 
distributed systems. The inclusion of Fault Tolerance Recovery and 
High-throughput Task Execution modules ensures the seamless and 
continuous submission of tasks. This framework, combined with 
supercomputing capabilities, highlights the crucial role of advanced 
computational tools in accelerating material screening processes, 
thereby significantly advancing the development of efficient and sus-
tainable energy solutions to address global energy challenges.

Fig. 8. Number of candidate surface hits and potential active bimetallic candidates in iterative and pure DFT calculations. (a) Total number of candidate 
surfaces. (b) Possible combinations of active bimetallic candidates in partial screening results. The colored shading indicates the potential efficiency of any 
enumerated surfaces; grey shading indicates bimetallics outside the ± 0.1 eV optimal range, and the white shading indicates enumerated surfaces not included in the 
analyzed dataset. All the values created by the adsorption energies were calculated using DFT.

Fig. 9. Number of candidate surface hits per day.

Table 3 
Efficiency of acceleration using ML in the high throughput framework.

Nr Nf Nh Pall S

Structure numbers 2658820 13745 1395 99.48 % 193
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