
1

Bargaining Game-Based Scheduling for Performance

Guarantees in Cloud Computing

CHUBO LIU, KENLI LI, and ZHUO TANG, Hunan University

KEQIN LI, State University of New York

In this article, we focus on request scheduling with performance guarantees of all users in cloud computing.

Each cloud user submits requests with average response time requirement, and the cloud provider tries to

find a scheduling scheme, i.e., allocating user requests to limited servers, such that the average response times

of all cloud users can be guaranteed. We formulate the considered scenario into a cooperative game among

multiple users and try to find a Nash bargaining solution (NBS), which can simultaneously satisfy all users’

performance demands. We first prove the existence of NBS and then analyze its computation. Specifically,

for the situation when all allocating substreams are strictly positive, we propose a computational algorithm

(CA), which can find the NBS very efficiently. For the more general case, we propose an iterative algorithm

(IA), which is based on duality theory. The convergence of our proposed IA algorithm is also analyzed.

Finally, we conduct some numerical calculations. The experimental results show that our IA algorithm can

find an appropriate scheduling strategy and converges to a stable state very quickly.

CCS Concepts: • Computing methodologies → Modeling methodologies;

Additional Key Words and Phrases: Cloud computing, cooperative game, Nash bargaining solution, perfor-

mance guarantees

ACM Reference format:

Chubo Liu, Kenli Li, Zhuo Tang, and Keqin Li. 2018. Bargaining Game-Based Scheduling for Performance

Guarantees in Cloud Computing. ACM Trans. Model. Perform. Eval. Comput. Syst. 3, 1, Article 1 (February

2018), 25 pages.

https://doi.org/10.1145/3141233

The research was partially funded by the National Key R&D Program of China (Grant No. 2016YFB0201402), the National

Natural Science Foundation of China (Grant Nos. 61702170, 61602350, 61602170, 61402400, 61370098, 61672219, 61772182,

61572176, and L1624040), the Key Program of National Natural Science Foundation of China (Grant No. 61432005), the

National Outstanding Youth Science Program of National Natural Science Foundation of China (Grant No. 61625202), the

National High-tech R&D Program of China (2015AA015305), the Key Technology Research and Development Programs

of Guangdong Province (2015B010108006), the International S&T Cooperation Program of China (2015DFA11240), and the

Chinese Postdoctoral Science Foundation (Grant Nos. 2016M602409 and 2016M602410).

Authors’ addresses: C. Liu, K. Li, and Z. Tang, College of Information Science and Engineering, Hunan University, and Na-

tional Supercomputing Center in Changsha, Changsha, Hunan 410082, China; K. Li, Department of Computer Science, State

University of New York, New Paltz, New York 12561; emails: liuchubo@hnu.edu.cn, lkl@hnu.edu.cn, ztang@hnu.edu.cn,

lik@newpaltz.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 2376-3639/2018/02-ART1 $15.00

https://doi.org/10.1145/3141233

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

https://doi.org/10.1145/3141233
mailto:permissions@acm.org
https://doi.org/10.1145/3141233

1:2 C. Liu et al.

1 INTRODUCTION

1.1 Motivation

Cloud computing is a large-scale distributed computing paradigm in which a pool of computing

resources is available to users via the Internet (Chaisiri et al. 2012). With the scalability, cost-

effectiveness, and many other advantages of cloud computing, more and more user applications

are moved from local to cloud centers (Khazaei et al. 2013). However, the increasing resource

demands with different computation requirements from such applications also raise some issues

such as server underutilization and poor service quality (Kang et al. 2014b). Hence, it is important

for a cloud provider to configure an appropriate scheduling scheme, which significantly impacts

the aggregated performance and resource utilization of a cloud center.

Cloud-based applications depend even more heavily on scheduling than traditional enterprise

applications (Cao et al. 2014). For end users, scheduling will be seriously considered when they se-

lect a cloud computing provider. For a cloud provider, an appropriate scheduling scheme becomes

particularly important (Mei et al. 2015). The reason behind this lies in that a scheduling scheme is

directly related to service quality and profit of a cloud provider. Specifically, a proper scheduling

scheme helps in making use of the available resources most favorably. This implies that a cloud

provider can use less computing resources to provide quality services and thus decrease its cost.

On the other hand, an appropriate scheduling scheme improves the aggregated performance (e.g.,

task response time). This will satisfy users and appeal to more potential users in the market to use

cloud servics.

Many works have been done on request scheduling for various considerations in the literature

(Singh et al. 2015; Rana et al. 2014; Mashaly and Kühn 2012; Renda et al. 2012). However, few

works can be found for scheduling schemes which simultaneously guarantee the performance

requirements of all cloud users. In this work, although we only consider an average response time

metric, we try to find a scheduling scheme which satisfies the average response time requirements

of all cloud users at the same time.

1.2 Our Contributions

We focus on request scheduling with performance guarantees of all users in cloud computing.

Each cloud user submits requests with an average response time requirement. The cloud provider

tries to find a scheduling scheme, i.e., allocating requests to multiple servers, such that the average

response time requirements of all cloud users can be guaranteed. In our work, we formulate the

considered scenario into a cooperative game among multiple cloud users. We study the cooperative

relationships and propose algorithms to configure an appropriate request allocation strategy for

each of the users.

In summary, the main contributions of this work can be listed as follows:

—We formulate the scheduling problem into a cooperative game and try to find a Nash bar-

gaining solution (NBS) which can satisfy the average response time requirements of all

cloud users at the same time.

—For the situation in which each allocating substream is strictly positive, we propose a com-

putational algorithm (CA) which can efficiently find the NBS.

—For the general case, after some observations and analyses, we propose an iterative algo-

rithm (IA) which is based on duality theory.

We also perform extensive experiments. The results show that our proposed methods are feasi-

ble and effective.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

Bargaining Game-Based Scheduling for Performance Guarantees in Cloud Computing 1:3

The rest of the article is organized as follows. Section 2 presents the relevant works. Section 3

describes the models of the system and presents the problem to be solved. Section 4 presents the

bargaining game-based method. Many analyses are also presented in this section. Section 5 is

developed to verify our theoretical analysis and show the feasibility of our proposed algorithm.

We conclude the article with future work in Section 6.

2 RELATED WORK

Many works have been done on task scheduling in the literature (Cao et al. 2014; Penmatsa and

Chronopoulos 2011; Dong et al. 2012; Singh et al. 2015; Xu et al. 2012; Mc Evoy and Schulze 2011;

Kang et al. 2014a). In Cao et al. (2014), Cao et al. studied the tradeoff between the aggregated

performance and energy constraint in cloud. Specifically, they studied scheduling schemes with the

situation when energy consumption is limited. Dong et al. (2012) presented a dynamic and adaptive

scheduling algorithm, which is based on a distributed architecture, to address the prohibitively

inefficient problem in large-scale parallel file systems. In Singh et al. (2015), the authors proposed

an autonomous agent-based load balancing algorithm, which is dynamic to cater the requirements

in cloud computing environment. More relevantly, Penmatsa and Chronopoulos (2011) proposed a

cooperative game-based CCOOP algorithm, in which they tried to minimize the average response

times of servers. More works can be found in Xu et al. (2012), Mc Evoy and Schulze (2011), and Kang

et al. (2014a). Different from their considerations, we focus on service quality guided scheduling.

We try to find a scheduling scheme such that the average response time requirements of all cloud

users can be guaranteed.

When considering a scheduling which guarantees the performance requirements of all cloud

users, the problem becomes more complex. Few works can be found for this in the literature.

In Subrata et al. (2008), Subrata et al. used cooperative game to allocate tasks among multiple

cloud providers. In this work, we also use the cooperative game method. However, the models and

objectives are entirely different. The analyzing methods and solving strategies are also different.

Game theory is a field of applied mathematics that describes and analyzes scenarios with inter-

active decisions (Scutari et al. 2010; Osborne and Rubinstein 1994; Aubin 2007). It is a formal study

of conflicts and cooperations among multiple competitive users (Aote and Kharat 2009) and a pow-

erful tool for the design and control of multiagent systems (Li and Marden 2011). There has been

a growing interest in adopting cooperative and non-cooperative game approaches to modeling

many problems (Rao et al. 2012; Xu and Yu 2014; Künsemöller and Karl 2012). In Rao et al. (2012),

the authors presented a game-theoretic approach for the provisioning of the infrastructure under

uniform cost models. Xu and Yu (2014) proposed a game-theoretic resource allocation algorithm

which considers resource utilization. In Gao et al. (2012), the authors employed indirect reciprocity

game to study the incentives for cooperative communications among multiple users. Musku et al.

(2010) also studied communication problems. More specifically, they used non-cooperative game

to analyze the joint transmission rate and power control for the uplink of a single cell CDMA

system. In their work, the authors analyzed the existence of the Nash equilibrium solution and

proposed an algorithm to compute an equilibrium solution. In our previous work (Liu et al. 2016),

we used non-cooperative game theory to analyze the utility optimization strategy for each of the

cloud users. Specifically, we try to obtain a Nash equilibrium to optimize all users’ utilities. For

more works on game theory, the reader is referred to Grossi and Turrini (2010), Blum et al. (2015),

Thompson and Leyton-Brown (2013), Kilcioglu and Rao (2016), Li et al. (2014), and Fiat et al. (2013).

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this article, we are concerned with a market with a cloud provider and n cloud users, who are

competing for using the computing resources provided by the cloud provider. We denote the set

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

1:4 C. Liu et al.

Table 1. Notations

Notation Description

n Number of cloud users

m Number of servers in the cloud center

N Set of the n cloud users

M Set of them servers in the cloud center

μ j The processing rate of a core of server j
c j The number of cores of server j
λi j Allocating substream of requests from user i to server j
λi Allocating strategy for requests of cloud user i
λj Allocating strategy for requests aggregated on server j
λ Allocating strategy for requests of all cloud users

Q Request allocation strategy set of all cloud users

Λi Arrival rate of requests of cloud user i
χj Aggregated requests on server j
Tj Average response time of server j
Ri Average response time of cloud user i
R Average response times of all cloud users

Ri,max Performance requirement of cloud user i
Rmax Performance requirements of all cloud users

U Set of achievable utility vectors of all cloud users

A Set of achievable utility vectors satisfying requirements

P Pair set of utility and performance requirements

S Mapping from P to�n

of users as N = {1, . . . ,n}. Each cloud user submits requests with an average response time re-

quirement. The arrival requests from cloud user i (i ∈ N) are assumed to follow a Poisson process.

The cloud provider consists ofm heterogeneous servers. Denote the server set asM = {1, . . . ,m}.
Each server j (j ∈ M) has c j identical cores and is modeled as an M/M/c queuing system, which

is commonly used in scheduling literature (Cao et al. 2014; Li 2013). The processing capacity of

a core of server j (j ∈ M) is presented by its service rate μ j . The cloud provider tries to find a

request scheduling scheme such that the average response time requirements of all cloud users

can be guaranteed.

We summarize all the notations throughout this article in Table 1.

3.1 Request Allocation Strategy Model

As mentioned above, the requests from each of the cloud users are assumed to follow a Poisson

process. Let λi j be the substream of requests from cloud user i (i ∈ N) allocated to server j (j ∈ M).

Then, user i’s (i ∈ N) request allocation profile is formulated as

λi = (λi1, . . . , λim)T , (1)

and it is subject to the constraint
∑m

j=1 λi j = Λi , where Λi denotes user i’s request arrival rate. We

can further obtain the request allocation strategy of all cloud users as

λ = (λ1, . . . ,λn). (2)

Notice that the aggregated requests on a server cannot exceed its processing capacity, i.e.,∑n
i=1 λi j < c jμ j , for all j ∈ M. In our work, we assume that

∑n
i=1 λi j ≤ c j μ̂ j , where μ̂ j = μ j − ϵ with

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

Bargaining Game-Based Scheduling for Performance Guarantees in Cloud Computing 1:5

ϵ denoting a very small positive constant. Therefore, the request allocation strategy set of all cloud

users, Q, is defined by the following constraints:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m∑
j=1

λi j = Λi ,∀i ∈ N ,
n∑

i=1
λi j ≤ c j μ̂ j ,∀j ∈ M,

λi j ≥ 0,∀i ∈ N ,∀j ∈ M .

(3)

3.2 Cloud Service Model

As mentioned in the beginning, each server j (j ∈ M) has c j identical cores and is modeled as an

M/M/c queuing system. The processing capacity of each core of server j (j ∈ M) is presented by

its service rate μ j . The requests from cloud user i (i ∈ N) are assumed to follow a Poisson process

with mean arrival rate Λi .

Let pjk be the probability that there are k service requests (waiting or being processed) and ρ j =∑n
i=1 λi j/(c jμ j) be the corresponding service utilization in the M/M/c queuing system on server j.

With reference to Cao et al. (2013), we obtain

pjk =

⎧⎪⎪⎨⎪⎪⎩
1
k ! (c jρ j)

kpj0, k < c j ;
c

cj
j ρk

j

c j ! pj0, k ≥ c j ;
(4)

where

pj0 =

⎧⎪⎪⎨⎪⎪⎩
c j−1∑
l=0

1

l !
(c jρ j)

l +
1

c j !
·

(c jρ j)
c j

1 − ρ j

⎫⎪⎪⎬⎪⎪⎭
−1

. (5)

The average number of service requests (in waiting or in execution) on server j is

N̄j =

∞∑
k=0

kpjk =
pjc j

1 − ρi
= c jρ j +

ρ j

1 − ρ j
Pj , (6)

where Pj represents the probability that the incoming requests on server j (j ∈ M) need to wait

in queue.

Applying Little’s result, we get the average response time of server j as

Tj =
N̄j

χj
=

1

χj

(
c jρ j +

ρ j

1 − ρ j
Pj

)
, (7)

where χj denotes the aggregated requests on server j, i.e., χj =
∑n

i=1 λi j . We assume that each of

the servers will likely keep busy, because if not, we can shut down some servers to reduce cost.

Hence, Pj is equal to 1, and we obtain

Tj =
N̄j

χj
=

1

χj

(
c jρ j +

ρ j

1 − ρ j

)
=

1

μ j
+

1

c jμ j − χj
. (8)

3.3 Architecture Model

As shown in Figure 1, each cloud user i (i ∈ N) is equipped with a request arrival rate (Λi) and the

average response time requirement (Ri,max), i.e., the maximum average response time the user can

tolerate. All requests enter a queue to be processed by the cloud center with first come first service

(FCFS) pattern. The cloud provider consists of m heterogeneous servers. Each server j (j ∈ M)

has c j identical cores with total processing capacity c jμ j , where μ j is the service rate of a core of

server j. When multiple users try to accomplish their requests in cloud, they submit their requests

with average response time requirements. The cloud provider collects the request arrival rates

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

1:6 C. Liu et al.

Fig. 1. Architecture model.

and requirement information of all users, and then makes appropriate scheduling decisions (λ) for

each of the users. As presented before, the scheduling strategy λ can be expressed as λ = (λi)i ∈N ,

where λi = (λi j)j ∈M with λi j denoting the substream of requests from cloud user i allocated to

server j. Let λj (j ∈ M) denote the scheduling strategy vector of all cloud users on server j, i.e.,

λj = (λi j)i ∈N , then the scheduling strategy can also be expressed as λ = (λj)j ∈M (see Figure 1).

The cloud provider tries to find a scheduling strategy (λ) such that the average response time

requirements of all cloud users can be guaranteed.

3.4 Problem Formulation

In Equation (8), we have presented the calculation of the average response time of a single server.

Therefore, for a given request allocation strategy λ of all cloud users, the average response time

of cloud user i (i ∈ N) can be expressed as

Ri (λ) =
1

Λi

m∑
j=1

λi jTj (λ)

=
1

Λi

m∑
j=1

(
λi j

μ j
+

λi j

c jμ j − χj (λ)

)
, (9)

where Λi is the request arrival rate of user i , and χj (λ) denotes the aggregated requests on server

j under request allocation strategy λ, i.e., χj (λ) =
∑n

i=1 λi j .

We consider the scenario where the average response time requirements of all cloud users are

guaranteed. Specifically, the cloud provider tries to find a request allocation strategy such that the

average response time of each cloud user i (i ∈ N) is less than his/her demand Ri,max, i.e., find an

allocation strategy λ satisfying the following condition:

Ri (λ) ≤ Ri,max,∀i ∈ N ,λ ∈ Q. (10)

Remark 3.1. A scheduling strategy (λ) satisfying Equation (10) guarantees that the average re-

sponse times of all cloud users are simultaneously less than their corresponding performance

demands.

4 BARGAINING GAME-BASED METHOD

To obtain a scheduling strategy such that the performance requirements of all cloud users are

guaranteed, we try to obtain a NBS which can satisfy the performance requirements of all users

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

Bargaining Game-Based Scheduling for Performance Guarantees in Cloud Computing 1:7

by appropriately modeling. We first prove the existence of NBS and then analyze its computing

method. For the situation when all allocating substreams are strictly positive, we propose a CA,

which can find the NBS very efficiently. For the more general case, we propose an IA, which is

based on duality theory.

4.1 Game Formulation

Game theory studies the problems in which players try to maximize their utilities or minimize

their disutilities. As described in Penmatsa and Chronopoulos (2011), a cooperative game consists

of a set of players, a set of utility functions, and a set of strategies. In this article, each cloud user

is regarded as a player, i.e., the set of players is the n cloud users. The utility function of player i
(i ∈ N) is his/her average response time, i.e., Ri , and the joint strategy set of all players is given

by Q, which is defined by the constraints in Equation (3).

The above formulated game can be formally defined by a tuple G = 〈Q,R〉, where R =
(R1, . . . ,Rn). The optimization goal is to determine a request allocation strategy which guarantees

the average response time requirements of all cloud users. Let U ⊂ �n be the set of achievable

utility vectors and Rmax be the corresponding average response time requirements of all cloud

users, i.e., Rmax =
(
Ri,max

)
i ∈N . Then, the pair (U ,Rmax) is called an n-player bargaining problem.

Before addressing the bargaining problem, we first define the notation of Pareto optimality in the

context of multiple objectives within the feasible setU .

Definition 4.1 (Pareto Optimality). The utility vector R ∈ U is said to be Pareto optimal if and

only if there is no other utility vector R
′ ∈ U (R

′
� R) such that R

′
i ≤ Ri , ∀i ∈ N .

That is to say, there is no other utility vector that leads to superior performances for some

players without causing inferior performances for other players.

In our work, we assume that the utility vectors which satisfy the performance requirements of

all cloud users exist, i.e., the set

A = {
R 		R ∈ U and Ri ≤ Ri,max,∀i ∈ N

}
(11)

is nonempty. LetP = {
(U ,Rmax) 		U ⊂ �n }

be the pair set of achievable performance with respect

to the initial performance requirements and S be a mapping from P to�n , i.e., S : P → �n . Then,

with reference to Penmatsa and Chronopoulos (2011) and Yaïche et al. (2000), we get the definition

of Nash bargaining solution as follows.

Definition 4.2 (Nash Bargaining Solution). S (U ,Rmax) ((U ,Rmax) ∈ P) is said to be a Nash bar-

gaining solution if S (U ,Rmax) ∈ A, S (U ,Rmax) is Pareto optimal and satisfies three axioms, i.e.,

linear axiom, irrelevant alternatives axiom, and symmetry axiom.

4.2 NBS Existence Analysis

In this subsection, we analyze the existence of NBS for the formulated game G = 〈Q,R〉. Before

addressing the bargaining solution existence analysis, we first show a property presented in The-

orem 3.1, which is helpful to prove the existence of NBS for the game G.

Theorem 4.3. Given a fixed λ−i (i ∈ N), which is the request allocation strategies of all users

except that of user i , i.e., λ−i = (λk)n
k=1,k�i , then the utility function Ri (λ) is convex in λi , where

λ = (λi ,λ−i) ∈ Q with Q defined by the constraints in Equation (3).

Proof. According to the results in Liu et al. (2014) and Scutari et al. (2012), we know that the

proof of the above theorem follows if we can show that the Hessian matrix of the utility function

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

1:8 C. Liu et al.

Ri (λ) is positive semidefinite. Since

Ri (λ) =
1

Λi

m∑
j=1

(
λi j

μ j
+

λi j

c jμ j − χj

)
,

with χj denoting the aggregated requests on server j (j ∈ M), i.e., χj =
∑n

k=1
λk j , we have

∂Ri (λ)

∂λi j
=
∂

∂λi j

(
λi jTj (λ)

)

=
1

Λi

��
1

μ j
+

c jμ j − χ−i
j(

c jμ j − χj

)2

�� ,
where χ−i

j denotes the aggregated requests on server j except that of user i , i.e., χ−i
j =

∑n
k=1,k�i

λk j .

We can further obtain

∂2Ri (λ)

∂λ2
i j

=
2
(
c jμ j − χ−i

j

)
Λi

(
c jμ j − χj

)3
,

and
∂2Ri (λ)

∂λi j∂λik
= 0,

where j,k ∈ M and j � k . Then we have

∇λi
Ri (λ) =

[
∂Ri (λ)

∂λi j

]m

j=1

=

(
∂Ri (λ)

∂λi1
, . . . ,

∂Ri (λ)

∂λim

)
,

and the Hessian matrix is expressed as

∇2
λi
Ri (λ) = diag

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎢⎢⎣∂

2Ri (λ)

∂λ2
i j

⎤⎥⎥⎥⎥⎦
m

j=1

⎫⎪⎪⎬⎪⎪⎭
= diag

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

2
(
c jμ j − χ−i

j

)
Λi

(
c jμ j − χj

)3

⎤⎥⎥⎥⎥⎥⎦
m

j=1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (12)

Obviously, the diagonal matrix in Equation (12) has all diagonal elements being positive. Thus, the

Hessian matrix of Ri (λ) is positive semidefinite. This completes the proof and the result follows.

Theorem 4.4. There exists a NBS for the formulated cooperative game G = 〈Q,R〉.

Proof. According to the Theorem 2.1 in Yaïche et al. (2000), we know that the above claim

follows if two conditions are satisfied. First, each utility function Ri (λ) (i ∈ N) is convex on Q.

Second, the request allocation strategy set Q is convex and compact. Obviously, the strategy set Q
is compact. By Theorem 4.3, we also know that the first condition is satisfied. Therefore, we only

need to show the convexity of the strategy set Q.

To prove the convexity of the strategy set Q, it suffices to show that ∀λ, s ∈ Q, the vector t =
θλ + (1 − θ) s ∈ Q, where θ ∈ [0, 1]. Since λ, s ∈ Q, we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m∑
j=1

λi j = Λi ,∀i ∈ N ,
n∑

i=1
λi j ≤ c j μ̂ j ,∀j ∈ M,

λi j ≥ 0,∀i ∈ N ,∀j ∈ M,

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

Bargaining Game-Based Scheduling for Performance Guarantees in Cloud Computing 1:9

and ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m∑
j=1

si j = Λi ,∀i ∈ N ,
n∑

i=1
si j ≤ c j μ̂ j ,∀j ∈ M,

si j ≥ 0,∀i ∈ N ,∀j ∈ M,

where μ̂ j = μ j − ϵ with ϵ denoting a very small positive constant. Hence, we obtain

m∑
j=1

ti j =

m∑
j=1

(
θλi j + (1 − θ) si j

)

= θ
m∑
j=1

λi j + (1 − θ)
m∑
j=1

si j

= θΛi + (1 − θ) Λi = Λi ,

for all i ∈ N , and

n∑
i=1

ti j =

n∑
i=1

(θλi j + (1 − θ) si j)

= θ
n∑

i=1

λi j + (1 − θ)
n∑

i=1

si j

≤ θc j μ̂ j + (1 − θ) c j μ̂ j = c j μ̂ j ,

for all j ∈ M. In addition, ti j ≥ 0,∀i ∈ N ,∀j ∈ M. Therefore, t = θλ + (1 − θ) s is also in Q. This

completes the proof and the result follows. �

4.3 NBS Computation Analysis

Once we have established the existence of NBS for the formulated game G = 〈Q,R〉, we are inter-

ested in obtaining a suitable algorithm to compute the NBS.

Motivated by Yaïche et al. (2000) and Guo et al. (2013), we know that we can compute the NBS

of game G by solving the following optimization problem:

maximize GΠ (λ) =
n∏

i=1

(
Ri,max − Ri (λ)

)
,

s.t. λ ∈ Q. (13)

In the bargaining game, multiple players enter the game with initial performance requirements as

well as a utility function. They cooperate to achieve a win-win situation, in which the social gains

(represented by the product in Equation (13)) are maximized. This corresponds to the scheduling

strategy in cloud computing, with respect to guaranteeing the average response time demands

for all players. By taking the logarithm of the objective, we can derive an equivalent optimization

problem (Pr):

maximize GΣ (λ) =
n∑

i=1

ln
(
Ri,max − Ri (λ)

)
,

s.t. λ ∈ Q. (14)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

1:10 C. Liu et al.

Namely,

maximize GΣ (λ) =
n∑

i=1

ln
(
Ri,max − Ri (λ)

)
,

s.t.

m∑
j=1

λi j = Λi ,∀i ∈ N ,

n∑
i=1

λi j ≤ c j μ̂ j ,∀j ∈ M,

λi j ≥ 0,∀i ∈ N ,∀j ∈ M, (15)

where μ̂ j = μ j − ϵ , with ϵ denoting a very small positive constant.

Theorem 4.5. There exist αi > 0 and γi j ≥ 0 (i ∈ N , j ∈ M) such that

1

Ri,max − Ri (λ)

�−∂Ri (λ)

∂λj
i

� = −αi + γi j , (16)

for all i ∈ N , j ∈ M, and ⎧⎪⎪⎨⎪⎪⎩
m∑
j=1

λi j − Λi = 0,∀i ∈ N ,

γ j
i λ

j
i = 0,∀i ∈ N ,∀j ∈ M,

(17)

where λ is a Nash bargaining solution for the optimization problem (Pr).

Proof. We can maximize GΣ (λ) in Equation (15) by using the method of Lagrange multiplier.

Let αi (∀i ∈ N), βj (∀j ∈ M), and γi j (∀i ∈ N ,∀j ∈ M) be the Lagrange multipliers for the indi-

vidual request constraint, server processing capacity constraint, and lower bound allocation con-

straint in Equation (15), respectively. Then, the Lagrangian of the optimization problem in Equation

(15) is

L
(
λ,α , β ,γ

)
=

n∑
i=1

ln
(
Ri,max − Ri (λ)

)

+

n∑
i=1

αi

��

m∑
j=1

λi j − Λi
�� +

m∑
j=1

βj

�

n∑
i=1

λi j − c j μ̂ j
� −

n∑
i=1

m∑
j=1

γi jλi j ,

where α = (αi)i ∈N , β = (βj)j ∈M , and γ = (γi j)i ∈N , j ∈M . The optimal solution satisfies the follow-

ing Kuhn-Tucker conditions:

∂L

∂λi j
=

1

Ri,max − Ri (λ)

(
−∂Ri (λ)

∂λi j

)
+ αi + βj − γi j = 0,

for all i ∈ N , j ∈ M, and ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

m∑
j=1

λi j − Λi = 0,∀i ∈ N ,

βj

(
n∑

i=1
λi j − c j μ̂ j

)
= 0,∀j ∈ M,

γi jλi j = 0,∀i ∈ N ,∀j ∈ M,
where μ̂ j = μ j − ϵ , with ϵ denoting a very small positive constant.

Notice that, if the aggregated requests on server j (j ∈ M) reach its upper bound constraint, i.e.,∑n
i=1 λi j = c j μ̂ j , then the average response time of server j is very large. This can cause two results.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

Bargaining Game-Based Scheduling for Performance Guarantees in Cloud Computing 1:11

First, the average response times of some players exceed their performance requirements. Second,

the average response times of some players are very close to their performance requirements,

which obviously cannot maximize the value ofGΣ (λ). Therefore, at a NBS, the aggregated requests

on each machine are strictly less than the processing capacity of the server, i.e.,
∑n

i=1 λi j < c j μ̂ j

(∀j ∈ M). This implies that βj = 0 (∀j ∈ M), and the above Kuhn-Tucker conditions are equivalent

to the following constraints:

∂L

∂λj
i

=
1

Ri,max − Ri (λ)

(
−∂Ri (λ)

∂λi j

)
= −αi + γi j ,

for all i ∈ N , j ∈ M, and ⎧⎪⎪⎨⎪⎪⎩
m∑
j=1

λi j − Λi = 0,∀i ∈ N ,

γi jλi j = 0,∀i ∈ N ,∀j ∈ M .

This complements the proof and the result follows. �

So far, to obtain the optimal solution, i.e., obtain the NBS, we have shown how to achieve our

scheduling goal. We have to solve the equations presented by Equations (16) and (17) with (2nm +
n) variables, whose computation is very complex. In Section 4.4, we consider a special situation, in

which all allocating substreams, i.e., λi j (∀i ∈ N ,∀j ∈ M), are strictly positive. For this situation,

we propose a CA, which can find the NBS very efficiently. In Section 4.5, we consider the more

general case, and propose an IA, which is based on duality theory.

4.4 A Special Situation

In this section, we focus on the calculation for the NBS when all allocating substreams are strictly

positive, i.e., λi j > 0 (∀i ∈ N , ∀j ∈ M). By Equations (16) and (17) in Theorem 4.5, we know that

if λi j > 0 for all i ∈ N , j ∈ M, then we have γi j = 0 (∀i ∈ N , ∀j ∈ M), and we can obtain

∂L

∂λi j
=

1

Ri,max − Ri (λ)

(
−∂Ri (λ)

∂λi j

)
= −αi , (18)

for all i ∈ N , j ∈ M. That is,

∂Ri (λ)

∂λi j
=

1

Λi

� 1

μ j
+

c jμ j − χ−i
j

(c jμ j − χj)
2
�

= αi
(
Ri,max − Ri (λ)

)
, (19)

for all i ∈ N , j ∈ M, where χj denotes the aggregated requests on server j, i.e., χj =
∑n

k=1
λk j , and

χ−i
j denotes the aggregated requests on server j except that of user i , i.e., χ−i

j =
∑n

k=1,k�i
λi j . We

can further obtain

1

μ j
+

c jμ j − χ−i
j

(c jμ j − χj)
2
= ϕi , (20)

for all i ∈ N , j ∈ M, with ϕi = αi Λi
(
Ri,max − Ri (λ)

)
.

Add up the left hand and right hand of Equation (20) of all cloud users, respectively. We get

n

μ j
+
nc jμ j −

∑n
i=1 χ

−i
j

(c jμ j − χj)
2
= ϕΣ, (21)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

1:12 C. Liu et al.

for all j ∈ M, where ϕΣ =
∑n

i=1 ϕi , χj =
∑n

i=1 λi j , and χ−i
j = χj − λi j . Namely,

n

μ j
+
nc jμ j − (n − 1) χj

(c jμ j − χj)
2
= ϕΣ, (22)

for all j ∈ M. We have

χj = c jμ j −
(n − 1) +

√
(n − 1)2 + 4

(
ϕΣ − n

μ j

)
c jμ j

2
(
ϕΣ − n

μ j

) , (23)

for all j ∈ M. Since the summation of the aggregated requests on all servers is equal to the total

arrival requests of all cloud users, i.e.,
∑m

j=1 χj =
∑n

i=1 Λi , we obtain

m∑
j=1

���
(n − 1) +

√
(n − 1)2 + 4

(
ϕΣ − n

μ j

)
c jμ j

2
(
ϕΣ − n

μ j

) ��� = PM , (24)

with

PM =
m∑
j=1

c jμ j −
n∑

i=1

Λi . (25)

Obviously, it is hard to directly derive the value of ϕΣ according to Equation (24).

However, in view of Equation (24), we can rewrite the equation as the following:

m∑
j=1

���
(n − 1)

2
(
ϕΣ − n

μ j

) +
√√√

(n − 1)2

4
(
ϕΣ − n

μ j

)2
+

c jμ j(
ϕΣ − n

μ j

) ��� = PM . (26)

It is easy to observe that the left-hand side of Equation (26) decreases with the increase of ϕΣ. Let

f (ϕΣ) =
m∑
j=1

���
(n − 1) +

√
(n − 1)2 + 4

(
ϕΣ − n

μ j

)
c jμ j

2
(
ϕΣ − n

μ j

) ���. (27)

We can conclude that f (ϕΣ) decreases with the increase of ϕΣ. Hence, we can use a binary search

method to calculate the value of ϕΣ, which satisfies Equation (24).

AfterϕΣ is calculated, we can calculate the aggregated requests on each server j as Equation (23),

i.e., χj (∀j ∈ M). Then, we can calculate the request allocation strategy of each user i (i ∈ N)

according to Equation (20). Since χ−i
j = χj − λi j , we have

1

μ j
+
c jμ j − χj + λi j

(c jμ j − χj)
2
= ϕi , (28)

and

λi j =

(
ϕi −

1

μ j

)
(c jμ j − χj)

2 − (c jμ j − χj), (29)

for all j ∈ M. Since
∑m

j=1 λi j = Λi , we obtain

ϕi =

Λi +
∑m

j=1

(
(c jμ j − χj)

(
c j μ j−χj

μ j
+ 1

))
∑m

j=1 (c jμ j − χj)
2

. (30)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

Bargaining Game-Based Scheduling for Performance Guarantees in Cloud Computing 1:13

ALGORITHM 1: Computational Algorithm (CA)

Require: Λ, Rmax, ϵ .

Ensure: λ.

1: //Find a proper upper bound for ϕΣ

2: Set lb ← maxj ∈M (n/μ j), and ϕΣ ← lb + inc .

3: while (f (ϕΣ) > PM) do

4: Set inc ← 2 × inc , lb ← ϕΣ, and ϕΣ ← maxj ∈M (n/μ j) + inc .

5: end while

6: Set ub ← maxj ∈M (n/μ j) + inc .

7: //Using binary search method search ϕΣ

8: while (ub − lb > ϵ) do

9: Setmid ← (ub + lb) /2, and ϕΣ ←mid .

10: if (f (ϕΣ) > PM) then

11: Set lb ←mid .

12: else

13: Set ub ←mid .

14: end if

15: end while

16: Set ϕΣ ← (ub + lb) /2.

17: //Calculate the allocation strategy λ
18: for (j ← 1 tom) do

19: Calculate χj as Equation (23).

20: end for

21: for (i ← 1 to n) do

22: Calculate ϕi as Equation (30).

23: end for

24: for (i ← 1 to n) do

25: for (j ← 1 tom) do

26: Calculate λi j as Equation (29).

27: end for

28: end for

29: return λ.

Substituting the above equation to Equation (29), we get the request allocation strategy for cloud

user i on server j, i.e., λi j . Then, we can obtain the request allocation strategies λ of all cloud users,

where λ = (λi)n
i=1 with λi = (λi j)

m
j=1. The idea is formalized in Algorithm 1.

Given Λ, Rmax, and ϵ , where Λ is the request arrival rate vector, i.e., Λ = (Λi)n
i=1, Rmax is the

average response time requirement vector of all cloud users, i.e., Rmax =
(
Ri,max

)n
i=1, and ϵ is a very

small constant. The CA finds the NBS, which can simultaneously satisfy the average response time

demands of all users. The value of ϕΣ can be found by using the binary search method (Steps 8–

16). The search interval [lb,ub] for ϕΣ is determined as follows. For ub, we notice that the left-

hand side of Equation (24) is an increasing function of ϕΣ (see Equation (27)). Then, we set an

increment variable inc , which is initialized as a relative small positive constant and repeatedly

doubled (Step 4). The value of inc is added to maxj ∈M (n/μ j) until the function value f (ϕΣ) is at

least PM (Steps 3–5). As for lb, notice that it must be greater than maxj ∈M (n/μ j). Therefore, we

set lb as (maxj ∈M (n/μ j) + inc) (Step 2). Once [lb,ub] is decided, ϕΣ can be searched based on the

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

1:14 C. Liu et al.

fact that f (ϕΣ) is an increasing function of ϕΣ. After ϕΣ is determined, the aggregated requests on

each server j, i.e., χj (j ∈ M), can be computed (Steps 18–20). Then, the value ϕi (i ∈ N) for each

cloud user i can be calculated (Steps 21–23). Finally, the scheduling strategy of all cloud users can

be computed based on previous calculations (Steps 24–28).

By Algorithm 1 (CA algorithm), we note that the most time-consuming process is the two

while loops (Steps 3–5 and Steps 8–15). The fist while loop (Steps 3–5) requires time complexity

Θ(log ub−lb
inc

), where inc is the presented relative small constant, lb = maxj ∈M (n/μ j), and ub is

the obtained value which satisfies f (ub) < PM . The second while loop (Steps 8–15) requires time

complexity Θ(log ub−lb
ϵ

), where ϵ is the tolerated error. Since ϵ is usually smaller than inc , the time

complexity of the CA algorithm is Θ(log ub−lb
ϵ

), and if we can evaluate the value of ub, we obtain

the time complexity. From Equation (22), we have

ϕΣ =
n

μ j
+
nc jμ j − (n − 1) χj

(c jμ j − χj)
2
<

n

μ j
+

nc jμ j

(c jμ j − χj)
2
<

n

μ j
+
nc jμ j

ϵ2
. (31)

Let cmax = maxj ∈M (c j), μmin = minj ∈M (μ j), and μmax = maxj ∈M (μ j). Then, lb = n/μmin, and

ub is bounded by (n
μmin
+

ncmax μmax

ϵ 2). Therefore, the time complexity of the CA algorithm is

Θ(log
ncmaxμmax

ϵ 3).

4.5 An Iterative Algorithm

In this section, we consider the NBS computation for the general case, i.e., we consider boundaries.

We propose an IA, which is based on duality theory. The convergency of our proposed algorithm

is also analyzed.

4.5.1 Dual-Based Decomposition. We first define a primal problem that has the same optimal

solution as Equation (15) and then obtain the dual problem corresponding to the primal problem

with no duality gap. In view of Equation (15), we can rewrite it as follows:

minimize G−Σ (λ) = −
n∑

i=1

ln
(
Ri,max − Ri (λ)

)
,

s.t.

m∑
j=1

λi j = Λi ,∀i ∈ N ,

n∑
i=1

λi j ≤ c j μ̂ j ,∀j ∈ M,

λi j ≥ 0,∀i ∈ N ,∀j ∈ M . (32)

The Lagrangian function associated with the primal problem (32) is defined as

L
(
λ,α ,γ

)
= −

n∑
i=1

ln
(
Ri,max − Ri (λ)

)

−
n∑

i=1

αi

��

m∑
j=1

λi j − Λi
�� +

n∑
i=1

m∑
j=1

γi jλi j , (33)

where α = (αi)i ∈N , and γ = (γi j)i ∈N , j ∈M are the Lagrange multipliers.

Notice that α and γ are also the dual variables associated with the primal problem. The dual

function d : �n ×�n×m →� corresponding to L
(
λ,α ,γ

)
is expressed as

d
(
α ,γ

)
= inf

λ∈�n×m
L(λ,α ,γ). (34)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

Bargaining Game-Based Scheduling for Performance Guarantees in Cloud Computing 1:15

Since the primal problem has a unique optimal solution, the dual function yields lower bound

on the optimal λ∗ which solves Equation (34). For any α ∈ �n , γ ∈ �n×m , we have d
(
α ,γ

) ≤
L

(
λ∗,α ,γ

)
. Because Q is convex and G−Σ is convex over Q, the Slater’s condition holds, which is

a sufficient condition for strong duality (Boyd and Vandenberghe 2004). Hence, there is no duality

gap, and there exist α and γ satisfying d
(
α ,γ

)
= L

(
λ∗,α ,γ

)
.

To conclude, we obtain the dual problem corresponding to the primal problem with no duality

gap. The dual problem (Pd) is described as follows:

max
α ∈�n,γ ∈�n×m

d
(
α ,γ

)
= L(λ∗,α ,γ), (35)

where d
(
α ,γ

)
is the dual function and L

(
λ,α ,γ

)
is the Lagrangian of the primal problem.

4.5.2 Gradient Method for the Dual Problem. To solve the primal problem, we first obtain the

solution to the dual problem. By using a suitable step size, we design an iterative algorithm and

update the variables α andγ by applying the subgradient method (Boyd and Vandenberghe 2004).

We define the following recursion:

α (k+1)
i = α (k)

i + ξα
∂d

∂αi
, (36)

for all i ∈ N , and

γ (k+1)
i j = max

(
0,γ (k)

i j + ξγ
∂d

∂γi j

)
, (37)

for all i ∈ N , j ∈ M, where ξα and ξγ are the step sizes. Obviously,

∂d

∂αi
=

m∑
j=1

λ̄i j − Λi , (38)

and
∂d

∂γi j
= −λ̄i j , (39)

where λ̄ denotes the optimal scheduling strategy which minimizes the Lagrangian L(λ̄,α ,γ).
Motivated by Boyd and Vandenberghe (2004), we choose step sizes according to the diminishing

step size rules, i.e.,
∞∑

k=1

ξ (k)
l
= ∞, lim

k→∞
ξ (k)

l
= 0,∀l ∈ {α ,γ }. (40)

At each iteration k , if the variables α and γ are determined, then we can find the scheduling

strategy λ corresponding to the dual function:

d
(
α ,γ

)
= inf

λ∈�n×m
L(λ,α ,γ). (41)

Namely, find a strategy

λ ∈ arg min
λ′ ∈�n×m

L(λ
′
,α ,γ). (42)

Then, we have
∂L

∂λi j
= − 1

Ri,max − Ri (λ)
·
(
−∂Ri (λ)

∂λi j

)
− αi + γi j = 0, (43)

for all i ∈ N , j ∈ M. We obtain

1

Ri,max − Ri (λ)
· ∂Ri (λ)

∂λi j
= ϕi j , (44)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

1:16 C. Liu et al.

for all i ∈ N , j ∈ M, where ϕi j = αi − γi j . That is,

1

Λi

� 1

μ j
+
c jμ j − χj + λi j

(c jμ j − χj)
2

� = ϕi j
(
Ri,max − Ri (λ)

)

= ϕi j

�Ri,max −

1

Λi

m∑
l=1

(
λil

μl
+

λil

cl μl − χl

)� , (45)

for all i ∈ N , j ∈ M.

Notice that the nonlinear equation set (45) has nm variables, which is very hard to solve when

the size of nm is somewhat large. To solve the equation set, we first find an equivalent form, which

has only m variables, and then try to solve it. Specifically, denote r j as the remaining processing

capacity of server j, i.e., r j = c jμ j − χj (j ∈ M), then we find an equivalent form of Equation (45),

which has only them variables r j (j ∈ M).

Theorem 4.6. The solution to equation set (45) is equivalent to that of the equation set F (r) = 0,

where

F(r) = (Fj (r j ,r−j))
m
j=1, (46)

with

Fj (r j ,r−j) = c jμ j −
n∑

i=1

fi j (r j ,r−j)

hi j (r j ,r−j)
− r j , (47)

and

fi j (r j ,r−j) = ϕi j ΛiRi,max −
(

1

μ j
+

1

r j

)

− ϕi j

m∑
l=1,l�j

[
r 2

l

(
ϕil

ϕi jμ j
+

ϕil

ϕi jr j
− 1

μl
− 1

rl

) (
1

μl
+

1

rl

)]
, (48)

and

hi j (r j ,r−j) =
1

r 2
j

+
ϕi j

r j
+
ϕi j

μ j
+ ϕi j

m∑
l=1,l�j

ϕilr
2
l

ϕi jr
2
j

(
1

μl
+

1

rl

)
, (49)

where r−j denotes the remaining processing capacities of all servers except that of server j, i.e., r−j =

(rl)m
l=1,l�j

.

Proof. Since r j is the remaining processing capacity of server j, i.e., r j = c jμ j − χj (∀j ∈ M),

then, from Equation (45), we obtain

1

μ j
+

1

r j
+
λi j

r 2
j

= ϕi j Λi
(
Ri,max − Ri (λ)

)
.

Since ∀l , j ∈ M, the values of (Ri,max − Ri (λ)) are the same for a specific user i (i ∈ N), we have

1

μl
+

1

rl
+
λil

r 2
l

=
ϕil

ϕi j

� 1

μ j
+

1

r j
+
λi j

r 2
j

� ,
and

λil =
ϕilr

2
l

ϕi jr
2
j

λi j + r
2
l

(
ϕil

ϕi jμ j
+

ϕil

ϕi jr j
− 1

μl
− 1

rl

)
.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

Bargaining Game-Based Scheduling for Performance Guarantees in Cloud Computing 1:17

Substituting the above equation into Equation (45), we get

��
1

r 2
j

+
ϕi j

r j
+
ϕi j

μ j
+ ϕi j

m∑
l=1,l�j

ϕilr
2
l

ϕi jr
2
j

(
1

μl
+

1

rl

)�� λi j

+ ϕi j

m∑
l=1,l�j

[
r 2

l

(
ϕil

ϕi jμ j
+

ϕil

ϕi jr j
− 1

μl
− 1

rl

) (
1

μl
+

1

rl

)]
= ϕi j ΛiRi,max −

(
1

μ j
+

1

r j

)
.

We can further obtain

λi j =
fi j (r j ,r−j)

hi j (r j ,r−j)
,

where

fi j (r j ,r−j) = ϕi j ΛiRi,max −
(

1

μ j
+

1

r j

)

− ϕi j

m∑
l=1,l�j

[
r 2

l

(
ϕil

ϕi jμ j
+

ϕil

ϕi jr j
− 1

μl
− 1

rl

) (
1

μl
+

1

rl

)]
,

and

hi j (r j ,r−j) =
1

r 2
j

+
ϕi j

r j
+
ϕi j

μ j
+ ϕi j

m∑
l=1,l�j

ϕilr
2
l

ϕi jr
2
j

(
1

μl
+

1

rl

)
.

On the other hand, since the aggregated request on each server is equivalent to its total pro-

cessing capacity minus its remaining processing capacity, i.e., χj = c jμ j − r j =
∑n

i=1 λi j (j ∈ M),

we have

c jμ j − r j =

n∑
i=1

fi j (r j ,r−j)

hi j (r j ,r−j)
.

Namely,

c jμ j −
n∑

i=1

fi j (r j ,r−j)

hi j (r j ,r−j)
− r j = 0,

for all j ∈ M. This completes the proof and the result follows. �

If the remaining capacities of servers, i.e., r = (r j)j ∈M , are calculated, we can calculate each

allocating substream as λi j = fi j (r) /hi j (r) (∀i ∈ N ,∀j ∈ M) according to the derivations in

Theorem 4.6, where fi j (r) and hi j (r) are presented in Equations (48) and (49), respectively. The

idea is formalized in Algorithm 2.

Given Λ, Rmax, and ϵ , where Λ is the request arrival rate vector, i.e., Λ = (Λi)n
i=1, Rmax is the

average response time requirement vector of all cloud users, i.e., Rmax = (Ri,max)n
i=1, and ϵ is a

very small constant. The IA tries to find a NBS. At the beginning of the iterations, the Lagrange

multipliers are randomly chosen from the positive real set. We use a variable k to index each of

the iterations, which is initialized as zero. At the beginning of the iteration k , the algorithm uses

another subalgorithm Calculate_r described in Algorithm 3, which, given Λ, Rmax, ϕ, and ϵ , finds

the remaining processing capacities of all servers, where ϕ = (ϕi j)i ∈N , j ∈M with ϕi j = αi − γi j .

Notice that the computation for the equation set in Theorem 4.6 is still complex even though

the number of variables is reduced tom. The algorithm (Algorithm 3) is used to solve the equation

set F(r) = 0, which is presented in Theorem 4.6. We also use an iterative process to obtain results

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

1:18 C. Liu et al.

in this algorithm. The key motivation is that when given the remaining processing capacities of

all other servers r−j (j ∈ M), the function Fj (r j ,r−j) decreases with the increase of r j . At the

beginning of the iterations, the remaining processing capacities of all servers are initialized as

small positive values. We use a variable k to index each of the iterations, which is initialized as

zero. At the beginning of the iteration k , we update the remaining processing capacities for all

servers sequentially (Steps 5–16). When given the remaining processing capacities of other servers

r−j , we can find r j by using the binary search method in certain interval [lb,ub] (Steps 7–15 in

Algorithm 3). We set lb as a relative small constant, and ub as c j μ̂ j . Once [lb,ub] is decided, r j

can be searched based on the fact that Fj (r j ,r−j) is a decreasing function of r j (Steps 7–15). The

algorithm terminates when the remaining processing capacities of all servers are kept unchanged,

i.e., ‖r (k) − r (k−1) ‖ ≤ ϵ .

At each iteration k of Algorithm 2, after the remaining processing capacities of all servers (r) are

obtained, we can compute each allocating substream (Step 7) and then update the dual variables

α and γ by using a gradient method (Steps 10–15). The algorithm (Algorithm 2) terminates when

the number of iterations reaches the pre-set maximum value.

ALGORITHM 2: Iterative Algorithm (IA)

Require: Λ, Rmax, ϵ .

Ensure: λ.

1: //Initialization

2: Choose α (0),γ (0) ∈ �+, calculate ϕ, and set k ← 0.

3: while (k ≤ Kmax) do

4: Set r (k) ← Calculate_r (Λ,Rmax,ϕ, ϵ).
5: for (each user i ∈ N) do

6: for (each server j ∈ M) do

7: Calculate fi j (r (k)
j ,r

(k)
−j), hi j (r (k)

j ,r
(k)
−j), and set λ(k)

i j ← fi j (r (k)
j ,r

(k)
−j)

/
hi j (r (k)

j ,r
(k)
−j).

8: end for

9: end for

10: for (each cloud user i ∈ N) do

11: Set α (k+1)
i ← α (k)

i + ξ (k)
α (

m∑
j=1

λ(k)
i j − Λi).

12: for (each server j ∈ M) do

13: Set γ (k+1)
i j ← max

(
0,γ (k)

i j − ξ
(k)
γ λ(k)

i j

)
.

14: end for

15: end for

16: Set k ← k + 1.

17: end while

18: return λ (k) .

Calculate_r is an iterative algorithm, in which a for loop (Steps 5–16) is nested in an outer

while loop (Steps 3–18). The for loop hasm iterations and in each iteration, the main operation is

the binary search process (Steps 7–15), which requires time complexity Θ(log
cmax μmax−inc

ϵ
), where

cmax is the maximal number of cores of a server inM, i.e., cmax = maxj ∈M (c j), μmax is the maximal

processing capacity of a core of a server inM, i.e., μmax = maxj ∈M (μ j), and inc is an initialized

relative small constant. Hence, the for loop requires Θ(m log
cmaxμmax−inc

ϵ
). Since the number of

iterations of the outer while loop (Steps 3–18) cannot be evaluated, we cannot determine the time

complexity of Calculate_r . However, we have analyzed its convergence in Theorem 4.7.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

Bargaining Game-Based Scheduling for Performance Guarantees in Cloud Computing 1:19

ALGORITHM 3: Calculate_r (Λ, Rmax, ϕ, ϵ)

Require: Λ, Rmax, ϕ, ϵ .

Ensure: r .

1: //Initialization

2: Let inc be a relative small positive constant. Set r (0)
j ← inc (∀j ∈ M), lb ← inc , and k ← 0.

3: while (‖r (k) − r (k−1) ‖ > ϵ) do

4: Set r (c) ← r (k) .

5: for (each server j ∈ M) do

6: Set r (c)
j ← lb + inc , and ub ← c j μ̂ j .

7: while (ub − lb > ϵ) do

8: Setmid ← (ub + lb)/2, and r (c)
j ←mid .

9: if (Fj (r (c)
j ,r

(c)
−j) > 0) then

10: Set lb ←mid .

11: else

12: Set ub ←mid .

13: end if

14: Set r (c)
j ← (ub + lb)/2.

15: end while

16: end for

17: Set r (k) ← r (c) , and k ← k + 1.

18: end while

19: return r (k) .

Theorem 4.7. The Calculate_r algorithm (Algorithm 3) converges to a stable state if the following

condition is satisfied:

ϕil

ϕi jμ j
+

ϕil

ϕi jr j
− 1

μl
− 1

rl
≥ 0, (50)

for all i ∈ N , j, l ∈ M, and j � l .

Proof. Let

дi j (r j , rl) =
ϕil

ϕi jμ j
+

ϕil

ϕi jr j
− 1

μl
− 1

rl
.

Then, we have

fi j (r) = ϕi j ΛiRi,max −
(

1

μ j
+

1

r j

)
− ϕi j

m∑
l=1,l�j

⎡⎢⎢⎢⎢⎣дi j

(
r j , rl

)
�
r 2

l

μl
+ rl

�
⎤⎥⎥⎥⎥⎦ .

If д(r j , rl) ≥ 0, then it is easy to observe that fi j (r) decreases with the increase of rl . Since hi j (r)
(see Equation 49) increases with the increase of rl , we can conclude that Fj (r) (see Equation (47))

increases with the increase of rl .

On the other hand, since fi j (r) increases with the increase of r j and дi j (r) decreases with the

increase of r j , Fj (r) decreases with the increase of r j .

Hence, ∀l ∈ M, if rl increases, the value of Fj (r) increases. To maintain the equation Fj (r) = 0,

r j also increases. In addition, all the values in r are bounded. Therefore, we conclude the result in

Theorem 4.7. This completes the proof and the result follows. �

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

1:20 C. Liu et al.

Table 2. System Configurations

System parameters Varied range

The number of cores for each server (c j) {2, 4, 8, 12}

Processing capacity of each core (μ j) [220, 480]

Request arrival rates of each user (Λi) [10, 240]

Other parameters (ϵ,n,m) (10−5, 100, 300)

Table 3. Performance Requirements (Data I)

Performance requirements Low Medium High

Performance requirements (Ri,max) [150, 300] [80, 120] [5, 50]

5 PERFORMANCE EVALUATION

In this section, we provide some numerical results to validate our analyses and illustrate the fea-

sibility and effectiveness of our proposed IA algorithm.

In the simulation environment, we consider a cloud provider consisting of 300 servers. Each

server has multiple identical cores. As shown in Table 2, the number of cores for each server is

randomly and uniformly chosen from 2, 4, 8, and 12, and the processing rate (μ j) of a core is

randomly and uniformly chosen from 220 to 480. We assume that the request arrival rate (Λi) of

each cloud user can vary from 10 to 240, and we randomly and uniformly select a value from the

interval for each cloud user. The number of cloud users n is set as a constant 100, and ϵ is set

as 10−5. In Table 3, we show the varied ranges of average response time requirements (Ri,max) of

all cloud users. Specifically, we choose the average response time requirement values with three

levels, i.e., the low quality level, medium quality level, and high quality level. Since the smaller

value means higher quality requirement, the requirement values are varied from 150 to 300 with

low quality level, from 80 to 120 with medium quality level, and from 5 to 50 with high quality

level, respectively.

Figures 2(a) and 2(d) show an instance with low performance requirements. Specifically,

Figure 2(a) presents the average response time results of six randomly selected cloud users (users

11, 33, 55, 68, 83, and 100) with the performance requirements of all users randomly and uniformly

chosen from low quality service interval. We can observe that the average response times of all

users seem to decrease with the increase of iteration number and finally reach a relatively stable

state. That is, the average response times of all cloud users remain unchanged, i.e., reach a NBS

after several iterations. It can also be seen that the developed algorithm converges to a NBS very

quickly. Specifically, the average response time of each user has already achieved a relatively sta-

ble state after two iterations. Notice that, in each iteration of the IA algorithm, we use another

subalgorithm (Calculate_r) to calculate the remaining processing capacities of all servers first,

which also has an iterative process. Hence, the efficiency of the IA algorithm is also impacted by

the efficiency of the Calculate_r algorithm. In view of this, in Figure 2(d), we show the instance

for the convergency of the Calculate_r algorithm. We can observe that the remaining processing

capacities of all servers tend to increase with the increase of iteration number and also reach a

relative stable state. Namely, the aggregated requests on all servers are kept unchanged, which

verifies the validness of Theorem 4.7. Furthermore, it can also be seen that the Calculate_r algo-

rithm converges very quickly. Specifically, the remaining processing capacities of all servers have

already achieved a relatively stable state after 13 iterations. Therefore, our proposedIA algorithm

can find a NBS in around 26 total iterations, which is very efficient.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

Bargaining Game-Based Scheduling for Performance Guarantees in Cloud Computing 1:21

Fig. 2. Convergency illustrations with Data I.

Similar to Figure 2(a) and (d), we show the results with medium performance requirements in

Figure 2(b) and (e), and the results with high performance requirements in Figure 2(c) and (f).

From Figure 2(a)–(c), we can observe that the quality level of performance requirements has

little impact on the efficiency of our proposed IA algorithm, i.e., no matter what the performance

requirements of all cloud users are, the IA algorithm converges to a NBS very quickly (in around

two iterations). However, the performance requirement levels impact the average response times

of cloud users. Specifically, when the increase of performance requirement level is not very large

(from low level to medium level), the average response times of some users (users 83, 55, 33, and

11) tend to increase while the average response times of some users (users 100 and 68) tend to

decrease. On the other hand, when the performance requirements of cloud users are high enough,

most of the cloud users tend to increase (see Figure 2(c)).

Figure 2(d)–(f) show the convergency of our proposed Calculate_r algorithm. Since it is called

by our proposed IA algorithm to calculate the remaining processing capacities of all servers in

each iteration, it significantly impacts the efficiency of the IA algorithm. We can observe that

the quality level of performance requirements of all cloud users also have little impact on the

efficiency of the Calculate_r algorithm. That is, no matter what the performance requirements

are, the Calculate_r algorithm converges to a relatively stable state very quickly (in around 13

iterations). However, on the other hand, the performance requirement levels impact the remaining

processing capacities (the aggregated requests) of all servers. Specifically, the processing capacities

of most servers tend to increase. This means that the aggregated requests on some servers tend to

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

1:22 C. Liu et al.

Table 4. Performance Requirements (Data II)

Performance requirements Low Medium High

Performance requirements (Ri,max) [0.2, 1.0] [0.2, 0.6] [0.2, 0.4]

Fig. 3. Performance illustrations with Data II.

decrease with the increase of performance requirement level. The reason behind this lies in that

with the increase of performance requirement level, the performance requirements of all cloud

users cannot be guaranteed by just using faster servers, which can also partly validate the results

shown in Figure 2(a)–(c).

Notice that, as shown in Table 3, even the interval with the high performance requirement is

also from 5 to 50, while the final reached average response times of the randomly selected users

are all less than 1 (see Figure 2(a)–(c)). That is to say, the average response requirements are far

greater than the actual reached average response times. Hence, to further investigate our scheme,

we conduct experiments on other tighter parameter configurations, which are shown in Table 4.

The performance requirement values of users are varied from 0.2 to 1.0 with low quality level,

from 0.2 to 0.6 with medium quality level, and from 0.2 to 0.4 with high quality level, respectively.

Figure 3(a)–(c) show the remaining processing capacities (ri) of servers with the increase of

iterations. Specifically, we randomly and uniformly select some servers (servers 296, 231, 173,

109, 56, and 10) and track their remaining processing capacities. We can observe that similar to

Figure 2(d)–(f), the Calculate_r algorithm converges to a relatively stable state very quickly

(around 13 iterations), which shows the feasibility and stability of our proposed Calculate_r al-

gorithm. In addition, with the increase of the performance requirement level (from low to medium

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

Bargaining Game-Based Scheduling for Performance Guarantees in Cloud Computing 1:23

to high), the final remaining processing capacities of some servers (servers 56 and 10) tend to in-

crease, while those of some other servers (servers 296, 231, 173, and 109) tend to decrease. The

reason behind this lies in that with the increase of performance requirement level, to minimize

the average response times of users, some slower servers tend to migrate their requests to faster

servers. This results in the increase of requests on some servers (servers 296, 231, 173, and 109)

and decrease on some other servers (servers 56 and 10).

Figure 3(d)–(f) show the actual average response times of users and their corresponding perfor-

mance requirements. We can observe that with the increase of the performance requirement level,

the actual average response times of some users (users 84, 78, 59, and 5) decrease, while those of

some other users increase (users 93 and 38). The reason behind this lies in that with the increase

of performance requirement level, some requests on slower servers have to be migrated to faster

servers to decrease the average response times of some users. Obviously, these migrations can also

result in an increase of the average response times of some other users. We can also observe that

the obtained average response times of all users are less than their corresponding performance

requirements, which caters to our scheduling problem.

6 CONCLUSIONS

With the popularization of cloud computing and its many advantages such as cost-effectiveness,

flexibility, and scalability, more and more applications are moved from local to cloud. However,

most cloud providers cannot make use of the limited resources and guarantee performances of all

cloud users simultaneously. We do this work to find a scheduling scheme which simultaneously

guarantees the average response time requirements of all users, although we only consider an

average response time metric.

Each cloud user submits requests with an average response time requirement. The cloud

provider tries to find a scheduling scheme, i.e., allocating requests to multiple servers, such that

the requirements of all cloud users can be guaranteed. We formulate the scheduling problem into

cooperative game and try to find a NBS which can satisfy the average response time demands of all

users at the same time. We first prove the existence of NBS and then analyze its computation. For

the situation when all allocating substreams are strictly positive, we propose a CA, which can find

the NBS very efficiently. For the general case, we propose an IA which is based on duality the-

ory. The convergence of the IA algorithm is also analyzed. Finally, we conduct some numerical

calculations. The results show the feasibility and effectiveness of our proposed IA algorithm.

As part of future directions, we will dynamically configure the multiple servers in cloud and

study the relationship between the cloud provider and multiple users. Another direction is to study

the cloud choice among multiple different cloud providers or determine a proper mixed choosing

strategy.

ACKNOWLEDGMENTS

The authors would like to express their sincere gratitude to the editor(s) and anonymous reviewers

for their comments and suggestions, which have greatly helped to improve the quality of the

manuscript.

REFERENCES

Shailendra S. Aote and M. U. Kharat. 2009. A game-theoretic model for dynamic load balancing in distributed systems. In

Proceedings of the International Conference on Advances in Computing, Communication and Control. ACM, 235–238.

Jean-Pierre Aubin. 2007. Mathematical Methods of Game and Economic Theory. Courier Dover Publications.

Avrim Blum, Jamie Morgenstern, Ankit Sharma, and Adam Smith. 2015. Privacy-preserving public information for sequen-

tial games. In Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science. ACM, 173–180.

Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge University Press.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

1:24 C. Liu et al.

Junwei Cao, Kai Hwang, Keqin Li, and Albert Y. Zomaya. 2013. Optimal multiserver configuration for profit maximization

in cloud computing. IEEE Transactions on Parallel and Distributed Systems 24, 6 (2013), 1087–1096.

Junwei Cao, Keqin Li, and Ivan Stojmenovic. 2014. Optimal power allocation and load distribution for multiple heteroge-

neous multicore server processors across clouds and data centers. IEEE Transactions on Computers 63, 1 (2014), 45–58.

Sivadon Chaisiri, Bu-Sung Lee, and Dusit Niyato. 2012. Optimization of resource provisioning cost in cloud computing.

IEEE Transactions on Services Computing 5, 2 (2012), 164–177.

Bin Dong, Xiuqiao Li, Qimeng Wu, Limin Xiao, and Li Ruan. 2012. A dynamic and adaptive load balancing strategy for

parallel file system with large-scale I/O servers. Journal of Parallel and Distribed Computing 72, 10 (2012), 1254–1268.

Amos Fiat, Anna Karlin, Elias Koutsoupias, and Angelina Vidali. 2013. Approaching utopia: Strong truthfulness and

externality-resistant mechanisms. In Proceedings of the 4th Conference on Innovations in Theoretical Computer Science.

ACM, 221–230.

Y. Gao, Y. Chen, and K. J. R. Liu. 2012. Cooperation stimulation for multiuser cooperative communications using indirect

reciprocity game. IEEE Transactions on Communications 60, 12 (2012), 3650–3661.

Davide Grossi and Paolo Turrini. 2010. Dependence theory via game theory. In Proceedings of the 9th International Confer-

ence on Autonomous Agents and Multiagent Systems: Volume 1. International Foundation for Autonomous Agents and

Multiagent Systems, 1147–1154.

Jian Guo, Fangming Liu, Dan Zeng, John Lui, and Hai Jin. 2013. A cooperative game based allocation for sharing data center

networks. In INFOCOM, 2013 Proceedings IEEE. IEEE, 2139–2147.

Dong-Ki Kang, Seong-Hwan Kim, Chan-Hyun Youn, and Min Chen. 2014a. Cost adaptive workflow scheduling in cloud

computing. In Proceedings of the 8th International Conference on Ubiquitous Information Management and Communica-

tion. ACM, 65.

Seungmin Kang, Bharadwaj Veeravalli, and Khin Mi Mi Aung. 2014b. Scheduling multiple divisible loads in a multi-cloud

system. In Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing (UCC’14).

IEEE, 371–378.

Hamzeh Khazaei, Jelena Misic, and Vojislav Misic. 2013. A fine-grained performance model of cloud computing centers.

IEEE Transactions on Parallel and Distributed Systems 24, 11 (2013), 2138–2147.

Cinar Kilcioglu and Justin M Rao. 2016. Competition on price and quality in cloud computing. In Proceedings of the 25th

International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 1123–

1132.

Jörn Künsemöller and Holger Karl. 2012. A game-theoretical approach to the benefits of cloud computing. In Economics of

Grids, Clouds, Systems, and Services. Springer, 148–160.

Keqin Li. 2013. Optimal load distribution for multiple heterogeneous blade servers in a cloud computing environment.

Journal of Grid Computing 11, 1 (2013), 27–46.

Kenli Li, Chubo Liu, and Keqin Li. 2014. An approximation algorithm based on game theory for scheduling simple linear

deteriorating jobs. Theoretical Computer Science 543, 0 (2014), 46–51.

Na Li and J. R. Marden. 2011. Designing games for distributed optimization. In Proceedings of the 2011 50th IEEE Conference

on Decision and Control and European Control Conference (CDC-ECC’11). 2434–2440.

C. Liu, K. Li, C. Xu, and K. Li. 2016. Strategy configurations of multiple users competition for cloud service reservation.

IEEE Transactions on Parallel and Distributed Systems 27, 2 (2016), 508–520.

Dantong Liu, Yue Chen, Kok Keong Chai, and Tiankui Zhang. 2014. Nash bargaining solution based user association

optimization in HetNets. In Proceedings of the 2014 IEEE 11th Consumer Communications and Networking Conference

(CCNC’14). IEEE, 587–592.

Maggie Mashaly and Paul J. Kühn. 2012. Load balancing in cloud-based content delivery networks using adaptive server

activation/deactivation. In Proceedings of the 2012 International Conference on Engineering and Technology (ICET’12).

IEEE, 1–6.

G. Mc Evoy and Bruno Schulze. 2011. Understanding scheduling implications for scientific applications in clouds. In Pro-

ceedings of the 9th International Workshop on Middleware for Grids, Clouds and e-Science. ACM, 3.

J. Mei, K. Li, A. Ouyang, and K. Li. 2015. A profit maximization scheme with guaranteed quality of service in cloud com-

puting. IEEE Transactions on Computers PP, 99 (2015), 1–1.

M. R. Musku, A. T. Chronopoulos, D. C. Popescu, and A. Stefanescu. 2010. A game-theoretic approach to joint rate and

power control for uplink CDMA communications. IEEE Transactions on Communications 58, 3 (2010), 923–932.

Martin J. Osborne and Ariel Rubinstein. 1994. A Course in Game Theory. MIT Press.

Satish Penmatsa and Anthony T. Chronopoulos. 2011. Game-theoretic static load balancing for distributed systems. Journal

of Parallel and Distributed Computing 71, 4 (2011), 537–555.

M. M. Rana, Saurabh Bilgaiyan, and Utsav Kar. 2014. A study on load balancing in cloud computing environment using evo-

lutionary and swarm based algorithms. In Proceedings of the 2014 International Conference on Control, Instrumentation,

Communication and Computational Technologies (ICCICCT’14). IEEE, 245–250.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

Bargaining Game-Based Scheduling for Performance Guarantees in Cloud Computing 1:25

Nageswara S. V. Rao, Stephen W. Poole, Fei He, Jun Zhuang, Chris Y. T. Ma, and David K. Y. Yau. 2012. Cloud computing

infrastructure robustness: A game theory approach. In Proceedings of the 2012 International Conference on Computing,

Networking and Communications (ICNC’12). IEEE, 34–38.

M. Elena Renda, Giovanni Resta, and Paolo Santi. 2012. Load balancing hashing in geographic hash tables. IEEE Transactions

on Parallel and Distributed Systems 23, 8 (2012), 1508–1519.

G. Scutari, D. P. Palomar, F. Facchinei, and Jong-Shi Pang. 2010. Convex optimization, game theory, and variational inequal-

ity theory. IEEE Signal Processing Magazine 27, 3 (May 2010), 35–49.

Gesualdo Scutari, Daniel P. Palomar, Francisco Facchinei, and Jong-Shi Pang. 2012. Monotone games for cognitive radio

systems. In Distributed Decision Making and Control, Rolf Johansson and Anders Rantzer (Eds.). Lecture Notes in Control

and Information Sciences, Vol. 417. Springer, London, 83–112.

Aarti Singh, Dimple Juneja, and Manisha Malhotra. 2015. Autonomous agent based load balancing algorithm in cloud

computing. Procedia Computer Science 45 (2015), 832–841.

R. Subrata, A. Y. Zomaya, and B. Landfeldt. 2008. A cooperative game framework for QoS guided job allocation schemes in

grids. IEEE Transactions on Computers 57, 10 (2008), 1413–1422.

David R. M. Thompson and Kevin Leyton-Brown. 2013. Revenue optimization in the generalized second-price auction. In

Proceedings of the 14th ACM Conference on Electronic Commerce. ACM, 837–852.

Cong Xu, Sahan Gamage, Pawan N. Rao, Ardalan Kangarlou, Ramana Rao Kompella, and Dongyan Xu. 2012. vSlicer:

Latency-aware virtual machine scheduling via differentiated-frequency CPU slicing. In Proceedings of the 21st Inter-

national Symposium on High-Performance Parallel and Distributed Computing. ACM, 3–14.

Xin Xu and Huiqun Yu. 2014. A game theory approach to fair and efficient resource allocation in cloud computing. Math-

ematical Problems in Engineering 2014 (2014).

Haïkel Yaïche, Ravi R. Mazumdar, and Catherine Rosenberg. 2000. A game theoretic framework for bandwidth allocation

and pricing in broadband networks. IEEE/ACM Transactions on Networking (TON) 8, 5 (2000), 667–678.

Received May 2016; revised May 2017; accepted September 2017

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 1, Article 1. Publication date: February 2018.

