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Holistic Energy Optimization of Sustainable

Cloud Data Centers
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Abstract—The widespread adoption of cloud data centers has led
to a rise in energy consumption, with the associated carbon emis-
sions posing a further threat to the environment. Cloud providers
are increasingly moving towards sustainable data centers powered
by renewable energy sources (RES). The existing approaches fail
to efficiently coordinate IT and cooling resources in such data
centers due to the intermittent nature of RES and the complex-
ity of state and action spaces among different devices, resulting
in poor holistic energy efficiency. In this paper, a reinforcement
learning (RL) based framework is proposed to optimize the holistic
energy consumption of sustainable cloud data centers. First, a
joint prediction method MTL-LSTM is developed to accurately
evaluate both energy consumption and thermal status of each
physical machine (PM) under different optimization scenarios to
improve the state space information of the RL algorithm. Then,
this framework designs a novel energy-aware approach named
BayesDDQN, which leverages Bayesian optimization to synchro-
nize the adjustments of VM migration and cooling parameter
within the hybrid action space of the Double Deep Q-Network
(DDQN) for achieving the holistic energy optimization. Moverover,
the pre-cooling technology is integrated to further alleviate hotspot
by making full use of RES. Experimental results demonstrate that
the proposed RL-based framework achieves an average reduction
of 2.83% in holistic energy consumption and 4.74% in brown
energy, which also reduces cooling energy consumption by 13.48%
with minimal occurrences of hotspots. Furthermore, the proposed
MTL-LSTM method reduces the root mean square error (RMSE)
of energy consumption and inlet temperature predictions by nearly
half compared to LSTM and XGBoost.

Index Terms—Cloud data center, energy optimization, rein-
forcement learning, renewable energy.
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I. INTRODUCTION

THE rapid expansion of cloud data centers has brought
attention to the issue of energy consumption. In recent

times, the energy consumption of a single server rack has surged
from less than 3 kW to 30 kW [1]. The main components of
energy consumption have also changed. Besides IT devices,
around 40% of the energy consumed by these data centers can
be attributed to the Computer Room Air Conditioning (CRAC)
systems [2]. This trend will also exacerbate the impact on the
environment, and it is estimated that cloud data centers will
contribute up to 8% of global carbon emissions by 2030 [3].
Therefore, major cloud providers (such as Google and Amazon)
are prioritizing the use of renewable energy sources (RES) like
solar and wind energy to build sustainable cloud data centers.
Although promising, the energy requirements of these data
centers cannot always be satisfied due to the intermittent nature
of RES, leading to increased reliance on non-renewable (brown)
energy sources. In this context, the energy consumption should
be further optimized according to the RES availability.

Recent studies are focusing on predicting energy consumption
and thermal status. By proactively understanding the impact
of computing resource consolidation and cooling parameters
adjustments on the holistic energy efficiency, cloud data cen-
ter providers can make well-informed decisions. Current ap-
proaches primarily adopts mathematics models, computational
fluid dynamic (CFD) technology [4] and thermodynamics meth-
ods [5], causing substantial computational overhead. Although
data-driven solutions is promising [6], they often separately
estimate energy consumption and inlet temperature without ex-
ploring shared characteristics, resulting in limited generalization
capabilities and inaccuracies that contribute to additional energy
consumption.

For holistic energy consumption optimization, energy-aware
and thermal-aware approaches have indeed achieved significant
reductions in both computing and cooling energy consump-
tion. However, these strategies often encounter difficulties in
reconciling the inherent conflict between these two systems,
resulting in 4% to 30% holistic energy wastage [7]. Considering
an example that a large-scale cloud data center consumes about
100 megawatts (MW) of power continuously, and the average
U.S. household consumes about 10715 kWh per year [8], the
energy consumption from just a 4% reduction could power
approximately 3000 households. The primary issue arises from
the aggressive consolidation of virtual machines (VMs) onto
fewer active physical machines (PMs) to transition others into
low-power states, inadvertently creating “hotspots” by local-
ized temperature increases. Consequently, although IT energy
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consumption is effectively optimized, the cooling systems have
to set lower Computer Room Air Conditioning (CRAC) temper-
ature, resulting in poor holistic energy efficiency.

This problem will become further challenging in RES-
powered data centers [9]. Current solutions attempt to postpone
batch workloads until RES is available [10], yet uncertainties
such as resource requests, thermal status, and RES availability
will introduce high-dimensional state and action spaces that need
frequent reconfiguration and manual intervention. In contrast to
traditional algorithms [11], reinforcement learning (RL) offers a
more flexible and efficient solution by making real-time energy-
aware scheduling decisions through adaptive interactions with
the environment once trained [12]. Information about the cloud
system’s status is seamlessly integrated into the action value
function estimates, enabling an RL agent to continuously en-
hance its decision-making capabilities. However, most existing
RL methods are limited to handling either discrete action space
(e.g., VM consolidation for reducing computing energy con-
sumption) or continuous action space (e.g., CRAC adjustment
for alleviating hotspots) separately. It is still intractable for the
RL-based methods to synchronize control across both systems
and hybrid action space to optimize holistic energy consumption.

In this paper, a novel reinforcement learning based framework
is proposed, which considers RES availability to coordinate
VM migrations and CRAC adjustments to improve the holistic
energy efficiency of sustainable cloud data centers.

The main contributions are as follows:
� Propose an energy-efficient framework based on reinforce-

ment learning, where a prediction approach is implemented
to improve the accuracy of energy consumption and ther-
mal status estimates within the state space, and a scheduling
strategy is designed to avoid IT and cooling resources’
asynchronous allocations in the action space, thereby op-
timizing the energy consumption.

� Propose a new joint prediction method named MTL-
LSTM, where the LSTM component is utilized as the
parameter-sharing layer within the MTL model, effectively
leveraging shared representations across energy-related
tasks. This combination enables the creation of a more de-
tailed and informative state space by simultaneously mod-
eling both energy consumption and temperature dynamics,
while further improving the accuracy of predictions.

� Propose a novel energy-aware approach named Bayes-
DDQN1 to tackle conflicts of energy consumption opti-
mization. In BayesDDQN, the discrete CRAC parame-
ters within the hybrid action space are explored by the
Bayesian optimization, which will be provided to DDQN
to refine the decision-making policy for dynamic VM mi-
gration based on real-time resource requirements and RES
availability.

� Propose an innovative hotspots mitigation strategy where
the pre-cooling technology is employed to lower the sup-
plied CRAC temperature when sufficient RES is available
to satisfy the increased cooling energy demand. This proac-
tive adjustment stabilizes temperatures without falling into
coordinating extra VM migrations within the hybrid action
space to satisfy thermal constraints, and the improved RES
utilization will reduce significant brown energy consump-
tion accordingly.

1Code is open-source at https://github.com/cszdm/BayesDDQN

The rest of this paper is organized as follows. Section II dis-
cusses the related works and highlights their limitations. System
models are defined and formulated in Section III. Section IV
describes the proposed RL-based framework. Section V shows
the experimental results and compares them with the state-of-art
approaches. Section VI concludes the paper.

II. RELATED WORK

In recent years, there has been extensive attention towards the
holistic energy optimization of cloud data centers, especially
highlighting the impact of hotspots caused by excessive VM
migrations. This section introduces the research of predicting
system status and optimizing energy-related management strate-
gies.

Accurate energy consumption and thermal status evaluation
are becoming indispensable in the holistic energy consump-
tion optimization process. Compared with energy consumption
which can be induced by popular linear mathematical model [13]
or SPECpower benchmark,2 temperature estimation is a non-
trivial problem. Existing solutions are not efficient due to com-
putational complexity and imprecision. The theoretical model
makes predictions based on the thermodynamic characteristics
of heat and the physical properties of the data center [28], which
may struggle to capture the intricate relationships known as
heat recirculation matrix (HRM) while lacking the scalability
as the HRM has to be changed to adapt to different data centers.
Computational fluid dynamics (CFD) [14] provides detailed
and accurate airflow patterns, temperature distributions, and
heat transfer mechanisms within a data center. However, CFD
is highly specialized, which needs substantial computational
resources and time, making real-time predictions challenging.
Data-driven approaches utilize large-scale historical data, which
is suitable for dynamic workload variations and ambient temper-
ature behaviors [15]. Nevertheless, the aforementioned methods
never consider the correlation between energy consumption and
inlet temperature jointly, parameter changes in one model can
affect the other and hence requiring more accuracy predictions
to avoid worse energy efficiency or more hotspots.

For saving computing energy consumption, existing ap-
proaches target consolidating VMs to deactivate more PMs. Wu
et al. [16] proposed a cyclic usage prediction for one-day VM
usage based on the ordinary least squares (OLS). The VMs with
obviously fluctuation patterns are then consolidated to reduce
unnecessary migrations, and hence minimizing associated en-
ergy consumption. Yao et al. [17] designed an energy-efficient
load balance strategy, which considers PM fragmentation caused
by imbalanced resource utilization and predict load fluctuations
during VM consolidation with exponential smoothing, hence
reducing energy consumption within the acceptable service
level agreement (SLA) violations. Such methods might struggle
to operate with fluctuating scenarios where resource requests
change rapidly, whereas RL-based methods excel in adapting
to dynamic conditions by continuously learning and updating
VM consolidation policies based on real-time feedback. Shaw
et al. [18] presented a RL-based autonomous model capable of
optimizing the distribution of VMs to achieve greater energy
efficiency while guaranteeing the delivered quality of service,
which improves energy efficiency by 25% over the power-aware
heuristic algorithm. Wei et al. [19] proposed an asynchronous

2https://www.spec.org/power_ssj2008/results
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TABLE I
COMPARISON OF RELATED WORK

advantage actor-critic strategy, the workload distribution and
active PMs are considered in the reward function for updating
the optimal VM migration mapping. However, these methods
may suffer a higher possibility of hotspots due to aggressive
VM consolidation, resulting in increased cooling energy con-
sumption.

Towards mitigating hotspots, thermal-aware methods have
emerged, which considers the impact of cooling devices on holis-
tic energy consumption. In this context, Li et al. [20] proposed a
thermal-friendly workload distribution scheme based on genetic
algorithm (GA) and simulated annealing algorithm (SA), which
seeks to improve the holistic energy efficiency by minimizing
the maximum inlet temperatures of computing nodes. Aghasi
et al. [5] designed a self-adaptive mechanism based on fuzzy
logic to guide the gravitational search algorithm for IT and
cooling energy optimization. Tuli et al. [21] presented a com-
prehensive resource management approach, employing the gated
graph convolution network to capture the thermal dependencies
of PMs. This method establishes a performance-to-power ratio
to intelligently balance the workload across cloud PMs. Ran
et al. [22] devised a framework that parametrizes the action
space of job scheduling and airflow rate adjustment based on
a Deep Q-Network (DQN) to minimize energy consumption,
which saves up to 10% energy compared to heuristic-based joint
control optimization algorithm. Nevertheless, these mentioned
approaches unavoidably encounter challenges related to carbon
emissions and asynchronous issues when concurrently schedul-
ing IT and cooling resources.

To make data centers greener, transitioning from coal-based
fuels to renewable energy is essential. Li et al. [23] presented a
pre-cooling strategy which utilizes redundant renewable energy
to provide lower CRAC temperature to transfer the heat gen-
erated by hotspots without introducing extra VM migrations.
Renugadevi et al. [24] proposed a renewable-aware algorithm
to schedule the workload to the cloud data centers with suffi-
cient renewable energy, which also performs on-demand Dy-
namic Voltage Frequency Scaling (DVFS) to eliminate hotspots
caused by high processor utilization. Meanwhile, RL algorithms
are well-suited for optimizing policies over extended periods
and managing large state and action spaces, making them
ideal for handling the uncertain relationship between energy
consumption and RES generation in large-scale deployments.
Wang et al. [25] designed a multi-agent reinforcement learning
(MARL) based method to postpone unurgent requests upon
insufficient renewable energy supply so that carbon emission
can be reduced. Jayanetti et al. [26] proposed a hierarchical
MARL-based framework where the global and local RL agents
cooperate to determine the optimal destination data centers

and VM mappings strategy through workflow scheduling. Zhao
et al. [27] devised a model-free proximal policy optimization
(PPO) algorithm, which automatically shifts workload between
public and private clouds according to the RES availability and
reduces energy consumption by 34.61% compared to heuristic-
based maximum renewable least utilization first approach. Al-
though promising, none of them simultaneously proceed VM
consolidation and CRAC parameters adjustment for improving
holistic energy efficiency while making full use of RES.

Table I presents a comparative overview between the pro-
posed method and relevant researches. The proposed RL-based
framework is holistic energy-effective in sustainable cloud data
centers since it can explore VM migration and CRAC adjustment
through jointly evaluate energy consumption and thermal to
proactively avoid energy consumption optimization conflicts. In
such dynamic scenarios, it use DDQN and pre-cooling technol-
ogy to lower cooling temperature with enlarged RES utilization
without introducing extra VM migrations, which is not consid-
ered in other literature.

III. SYSTEM MODEL

A. Overview of Holistic Energy Optimization Framework

The holistic energy-aware framework of sustainable cloud
data centers powered by a combination of the traditional elec-
tricity grid and renewable energy sources is shown in Fig. 1. The
system models of this framework follow the MAPE principle
where the Monitor module collects user requests and system in-
formation. The Analyze module then employs the MTL-LSTM
method to jointly predicts energy and thermal status. In this con-
text, the BayesDDQN algorithm in the Plan module will output
the optimal IT and cooling resources scheduling strategy. At last,
the corresponding VM migrations and CRAC adjustments are
carried out in the Execute module.

B. The Holistic Energy Consumption Model

In recent researches, the holistic energy consumption of a
cloud data center is deemed to be contributed by PMs and CRAC
devices [29].

Definition 1: Let EDC(t) be the holistic energy consumption
of the cloud data center at time t, which is contributed by
each PM’s computing energy EIT

i (t) and the cooling energy
consumed by CRAC ECRAC

i (t). EDC(t) can be defined as:

EDC(t) =
N∑
i=1

EIT
i (t) + ECRAC(t) (1)
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Fig. 1. The framework for holistic energy optimization of sustainable cloud
data centers.

where N is the number of PMs in a cloud data center. The
computation of EIT

i (t) will be explained in the following sec-
tion. ECRAC(t) is derived as the ratio of computing energy
consumption to the Coefficient of Performance (CoP) of the
cloud data center, which is formulated as:

ECRAC(t) =

∑N
i=1 E

IT
i (t)

CoP (T sup(t))
(2)

where the value of CoP varies with the supplied CRAC temper-
ature T sup(t). Given that accurately modeling the CoP model
requires specialized and time-intensive CFD tools, which are
currently only applicable to specific rack deployments. This
paper references established research findings from the HP
Utility Laboratory [30], which have also been utilized in current
studies [5], [20] as:

CoP (T sup(t))=0.0068 (T sup(t))2 + 0.0008T sup(t)+0.458
(3)

where the decrement of CRAC temperature T sup(t) will result
in a lower CoP value, leading to more cooling and DC energy
consumption as depicted in (1) and (2), and vice versa.

For sustainable cloud data centers, RES is employed to mit-
igate the carbon emissions associated with increased compu-
tational and cooling energy demands. This paper intentionally
opted wind energy for ensuring that the findings can effectively
guide the practical deployment of local wind-powered cloud
data centers situated in approximately 40°N latitude and 111°E
longitude. This area is characterized by its strong and favorable
wind conditions, making it suitable for wind energy generation.
Moreover, wind energy has minimal carbon footprints among

renewable sources [31], and the energy generated by wind
turbines can be modeled as a function of wind speed [32].

Definition 2: Let RES(t) be the generated renewable energy
by the wind turbines at time t, which is decided by the actual
wind speed v(t) and the number of wind turbines W . RES(t)
can be defined as:

RES(t) = Wind (v(t))×W (4)

Wind (v(t)) =

⎧⎨
⎩
0 v(t) < vin, v(t) > vout
Pr × v(t)−vin

vr−vin
vin < v(t) < vr

Pr vr < v(t) < vout
(5)

where Wind(v(t)) is the generated wind energy of a wind
turbine. Pr is the rated power of a wind turbine.

It can be found from (5) that when the wind speed is lower
than the cut-in speed vin or higher than the cut-out speed vout,
the wind turbine will not generate energy. If the actual wind
speed is between cut-in and rated, the wind power will increase
as the wind speed increases. If the wind speed is higher than
the rated wind speed and lower than the cut-out speed, the wind
turbine will output the rated power.

Based on the aforementioned definitions, brown energy con-
sumption is characterized as the actual electricity acquired from
the grid.

Definition 3: LetEBrown(t) be the brown energy of the cloud
data center, which is resulted by the consumed energy EDC(t)
and generated renewable energy RES(t). EBrown(t) is defined
as:

EBrown(t) = max
(
0, EDC(t)−RES(t)

)
(6)

Therefore, if the generated renewable energy is insufficient to
meet the energy consumption of the cloud data center, the cloud
providers have to purchase the required electricity from the tradi-
tional grid, resulting in brown energy consumption. Conversely,
the cloud data center will entirely depend on renewable energy.

C. Inlet Temperature Model

During the holistic energy optimization, it is also necessary to
address the hotspots caused by the air heat recirculation within
the cloud data center. The inlet temperature is selected to esti-
mate the cloud data center’s thermal status, which considers the
entire cooling process and workload variations. Cloud providers
can then adjust CRAC parameters to adapt to the current thermal
status of the data center [33].

Definition 4: Let T in
i (t) be the inlet temperature of PM i at

time t. Its value should be limited under the peak inlet tem-
perature Tred to avoid hotspots and decrease the device failure
possibility, which can be defined as:

max
{
T in
i (t)

} ≤ Tred (7)

In this context, T sup(t) can be adjusted with the help of pre-
cooling technology if the generated RES is sufficient to satisfy
the energy consumption. This method can be applied in the Plan
module, and the supplied temperature after adjustment can be
calculated as:

T sup′
(t) = T sup(t) + Tred −max

{
T in
i (t)

}
(8)

This paper also considers PMs’ CPU temperature to further
ensure the reliable operation of the cloud data center. According
to the research conclusions from the widely used RC model [34],
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the CPU temperature of a PM is primarily influenced by factors
such as its thermal resistance, heat capacity and inlet tempera-
ture.

Definition 5: Let Ti(t) be the CPU temperature of the ith PM
at time t, R and C are the thermal resistance and heat capacity
of this PM. Ti(t) can be defined as:

Ti(t) = EIT
i (t)×R+ T in

i (t) + T ′ × e−
1

R×C (9)

T ′ = Tinitial − EIT
i (t)×R− T in

i (t) (10)

Likewise, the CPU temperature should also not violate its max-
imum temperature Tmax, which can be expressed as:

Ti(t) ≤ Tmax (11)

D. Problem Formulation

Suppose that there is a cloud data center supplied with the
electricity grid and renewable energy. The resource requests
arrive at PMs in the form of VMs. The proposed BayesDDQN
method aims to synchronously adjust computing and cooling
resources based on available RES within [t1, t2], so as to mini-
mize the brown energy consumption. In this case, the objective
function can be expressed as:
Minimize:

EBrown
t1→t2

=

∫ t2

t1

EBrown(t)dt (12)

S.t. :

Mi∑
j=1

μvm
i,j × Cvm

i,j ≤ Ci (13)

(7), (11) (14)

where Mi is the VMs hosted on PM i. μvm
i,j is the utilization of

VM j on the ith PM and Cvm
i,j is the capacity of this VM, which

are summed to restrict the actual resource usage not exceed the
capacity of the ith PM. Besides, the constraints in (14) prevent
PMs from being hotspots.

IV. THE PROPOSED RL-BASED FRAMEWORK FOR HOLISTIC

ENERGY OPTIMIZATION

In this section, a RL-based framework for holistic energy
optimization of sustainable cloud data centers is proposed. The
framework first designs a joint prediction method MTL-LSTM
to evaluate energy consumption and thermal status. Then, a novel
energy-aware approach BayesDDQN is presented. It explores
potential combinations of VM migration and CRAC adjustment
by integrating Bayesian optimization with DDQN to coordinate
IT and cooling energy consumption within such hybrid action
spaces. Moreover, this framework utilizes redundant RES to al-
leviate hotspots without migrating extra VMs. The framework’s
details are presented in the following.

A. MTL-LSTM Prediction Approach

The proposed MTL-LSTM energy-temperature prediction
algorithm, as illustrated in Fig. 2, treats energy consumption
and inlet temperature predictions as two subtasks with a shared
LSTM layer. The underlying rationale for this approach stems
from the fact that while improving CPU utilization through VM

Fig. 2. Structure of MTL-LSTM.

consolidation effectively reduces IT energy consumption, it can
also lead to localized hotspots. This, in turn, accelerates fan
speeds to maintain lower temperatures, resulting in a decline
in cooling energy efficiency. In this regard, MTL facilitates the
learning of shared representations across these tasks, optimizing
training time and exploring energy-related mutual relationships
compared to training separate models for each task. LSTM
complements MTL by capturing temporal and long-range de-
pendencies, thereby incorporating contextual information into
joint predictions. This integration enhances the generalization
and accuracy of the predictive model.

In MTL-LSTM, PM’s energy consumption and inlet temper-
ature from the previous L time points at time t are considered
as the original inputs, which can be depicted as:

xenergy(t) = [xenergy (t− L) , . . . , xenergy (t− 1)]

xinlet(t) = [xinlet (t− L) , . . . , xinlet (t− 1)] (15)

Then, VAE is proposed to perform feature extraction for reduc-
ing dimensionality while retaining relevant information, which
is a valuable choice compared to Random Forest and XG-
Boost, especially in scenarios where complex relationships need
to be captured [35]. The VAE-encoded features vaeenergy(t)
and vaeinlet(t) are transmitted as the input of a hard-sharing
mechanism, which divides the model into a parameter-sharing
layer and subtask learning layers. Specifically, the inputs of
these two subtasks are first concatenated and then passed to
the LSTM-based task-specific layers. The predicted values are
denoted as:

ŷenergy(t) = LSTM (vaeenergy(t)) (16)

ŷinlet(t) = LSTM (vaeinlet(t)) (17)

LSTM models are well-suited for time series data prediction
and have advantages in training efficiency with fewer parame-
ters [36]. Given the widespread adoption of LSTM in existing
literature, this paper will not provide further detailed definitions.
In this context, each prediction task is treated as a subtask
within MTL, trained by minimizing the mean squared error loss
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between the predicted and actual values of energy consumption
and inlet temperature over a training dataset. The loss function
Loss is given by:

Loss =
1

S

S∑
t=1

[(ŷenergy(t)− yenergy(t))
2

+ (ŷinlet(t)− yinlet(t))
2] (18)

where S is the total number of predicted data points.
Here, the training and inferencing energy consumption of the

MTL-LSTM is not considered. The reason is that the energy
consumption of such machine learning-based methods can vary
significantly depending on the complexity of the model, the
hardware used, and the scale of the dataset [37]. Consistent
with most related research [21], [25], this paper emphasizes
optimizing the improved energy efficiency of the scheduling
strategy based on resource predictions rather than addressing
the energy consumption of training these prediction models.

B. Overview of BayesDDQN

The producer of the BayesDDQN algorithm is depicted in
Algorithm 1. The MTL-LSTM prediction algorithm proposed
in the analyze module is initially employed to evaluate the PM
status with the collected information from the Monitor module
(Line 3). If overloaded or overheated PMs are identified based on
predefined static thresholds of CPU utilization or inlet temper-
ature (Line 4), the migrateServer function will add them into
the migrate PM list (Line 5). Accordingly, a list of VMs hosted
on these PMs is generated, which sorts VMs in descending order
of CPU utilization (Line 6). Line 7 calculates the brown energy
using (6). After that, this algorithm will consider two scenarios
according to the RES availability as illustrated in Lines 8-15.
In cases where RES is sufficient to accommodate the increased
cooling energy demand due to lowering CRAC temperature, the
pre-cooling technology is activated to adjust T sup′

(t) through
(8), which is the most direct and effective way to mitigate
hotspots without migrating any VMs (Line 9). Otherwise, the
Plan module will create a decision model for resource scheduling
based on the proposed BayesDDQN algorithm (Line 12). The
output action set will prompt the Execute module to consolidate
VMs and adjust CRAC temperature simultaneously (Lines 13-
14). At last, the optimal holistic energy-aware strategy will be
returned (Line 18).

C. BayesDDQN-Based Holistic Energy Optimization Method

BayesDDQN-based energy optimization algorithm, as the
core component of the proposed framework, is a model-free
approach implemented by DDQN. This method employs two
parallel neural network models with identical architectures to
alleviate the overestimation challenge. The computationally in-
tensive training and learning process are carried out prior to
deployment by using extensive historical data, enabling real-
time handling of diverse scheduling scenarios. Additionally, to
effectively address the asynchrony issue while jointly executing
VM consolidation and cooling control, DDQN is combined with
Bayesian optimization to make optimal decisions. The following
are detailed definitions for the state space, action space, and
reward function of DDQN:
� State Space: The state space of DDQN includes the relevant

information about the IT and cooling devices, which can

Algorithm 1: DDQN-Based Algorithm.

be formulated as a tuple:

st =
(
sIT (t), sTemp(t)

)
(19)

where sIT (t) represents PMs’ CPU utilization that con-
tributes the most temperature and directly relates to energy
consumption as described in Section IV-A. Furthermore,
the possibility of PM overload can be predicted according
to changes in CPU utilization, thus enhancing the efficiency
of VM consolidation. sTemp(t) describes system’s thermal
status, which evaluates both inlet and CPU temperatures to
assess the efficiency of CRAC adjustment.

� Action Space: The agent should perform a series of actions
to change the IT and cooling resource distribution in the
cloud data center. In this paper, each discrete VM migration
action is matched with continuous CRAC temperature set-
tings. This combination forms a hybrid action space that
covers a wide range of potential action strategies, which
can be expressed as:

a = (k, xk) (20)

where k corresponds to a unique hash key that is mapped
to a specific target PM and its corresponding rack, which
is defined as k ∈ {0, 1, . . . , N − 1}. Considering a sim-
plified scenario with 12 PMs evenly distributed in 3 racks
(Rack A, Rack B, Rack C) as shown in Fig. 3, the order
of PMs is from PM0 to PM11. Assuming that PM1 in
Rack A is overloaded and 10 is returned as the hash
key of the maximal DDQN action value (Case 1). In this
context, PM10 is the returned target PM, and parts of
VMs on the overloaded PM1 are further migrated to the
third PM (PM10) of Rack C. After the VM migration
process, the workload on PM1 is reduced, while PM10’s
utilization and temperature may increase due to the mi-
grated VMs. Accordingly, the cooling temperature will be
adjusted to adapt to the new workload distribution, where
xk represents the supplied CRAC temperature that usually
ranges from 15 ◦C to 25 ◦C. To address the challenge posed
by the hybrid action space, this paper discretizes CRAC
temperature into 101 levels at 0.1 intervals as mentioned
in [38]. Each level corresponds to a potential adjustment
step for CRAC temperature, which can be described as
xk ∈ {15.0, 15.1, . . . , 24.9, 25.0}. Existing DDQN-based
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Fig. 3. Process of BayesDDQN.

methods often struggle to output both actions simultane-
ously, causing energy optimization conflicts in most cases.
To address this issue, Bayesian optimization is integrated,
exploring the influence of VM migration and CRAC ad-
justment combinations within the hybrid action space of
DDQN for holistic energy optimization. The specifics of
this combination will be elaborated in the following sub-
section.

� Reward Function: Reward r(t) is crucial for DDQN’s
learning process. It tries to replace the immediate rewards
with the maximized long-term rewards, which can reflect
the correct system state and the resource scheduling effi-
ciency at time t. As stated in (12), the main optimization
objective is to minimize brown energy by maximizing
RES utilization. If the agent consumes more energy than
the available renewable energy, the environment gives a
penalty. Besides, both inlet temperature and CPU temper-
ature are considered to avoid hotspots. Those values are
normalized to the same scale with min-max technology.
Therefore, the constraints defined in (14) are added to the
reward function which can be defined as:

r(t) = β − β1 × EBrown
t1→t2

− β2 × T in
i (t)− β3 × Ti(t) (21)

where the coefficients are the negatively weighted values
and the sum of them is 1. If the scheduling is feasible, β is
set large enough to obtain positive rewards. The maximized
reward value r(t) will be viewed as the candidate for the
next scheduling. Otherwise, if the allocated resources or the
thermal properties on a PM violate the defined constraints,
the reward r(t) will be presumed to be negative infinity.

D. Jointly Optimization by BayesDDQN

To solve most RL methods’ poor performance in the afore-
mentioned hybrid action space while jointly scheduling IT and
cooling resources, this paper proposes to combine Bayesian
optimization with DDQN and the main idea of BayesDDQN
is two-fold. On the one hand, BayesDDQN takes the reward
function of DDQN as BO’s objective function which could

explore the optimal VM migration action under the supplied
CRAC temperature range. On the other hand, Bayesian opti-
mization facilitates the sharing of parameters between differ-
ent types of actions. These features encompass aspects of the
data centers such as workload distribution and system tem-
peratures. This allows DDQN to adapt its policies based on
real-time feedback and to explore optimal energy optimization
strategies in dynamic environments with multiple variables and
dependencies.

The detailed process of BayesDDQN is shown in Fig. 3. Dur-
ing training, the DDQN algorithm learns the Q-values associated
with hybrid actions, and the reward function of DDQN serves as
the objective function for the Bayes optimizer that is fulfilled
by the bayes_opt function in the Python environment. The
integration of Bayesian optimization enhances the exploration
of the action space by providing estimates of the potential
outcomes for different action combinations, which takes the
supplied CRAC temperature T sup(t) ∈ xk as its hyperparam-
eter. Subsequently, the default Gaussian process regression and
expected improvement function are applied to obtain the op-
timal scheme. In particular, a hash table is designed to record
the optimal VM migration strategy with the supplied cooling
temperature as depicted in Fig. 3. Considering the important
influence of CRAC settings on holistic energy consumption as
discussed in (2), BayesDDQN will prioritize the highest CRAC
temperature (23.7 °C) and regard the associated PM5 as the
target PM. In this context, take the same example from the
previous subsection, VMs on an overloaded server (PM1) are
recommended to be migrated to the second PM (PM5) of Rack
B (Case 2). The updated VM distribution will be then transmit-
ted to the Bayes optimizer for achieving further optimization
strategy. In general, the feature space of the Bayes optimizer
outputs the optimal cooling temperature T sup′

(t), and its corre-
sponding VM migration strategy can be retrieved from the hash
table.

E. Example of the Proposed Framework

To illustrate the working of the proposed framework, a com-
plete (small-sized) instance of the problem is presented, includ-
ing all necessary inputs and definitions. The scenario involves
a RES-powered data center with four PMs dedicated to serving
user resource requests, which are collected by the Monitor and
the CRAC (T sup(t)) is set to 20 °C.

In Analyze, the energy consumption and inlet temperature
of these PMs are predicted using the MTL-LSTM method,
which are assumed as (60W, 24◦C), (70W, 25◦C), (90W, 29◦C),
(100W, 30◦C). The holistic energy consumption is evaluated by
the following steps:
� With Definition1: The sum of each PM’s IT energy

consumption
∑N

i=1 E
IT
i (t) is 320 Watts.

� According to (3) (Definition1): The CoP value
CoP (20◦C) is 3.2.

� In (2) (Definition1): The cooling energy consumption
ECRAC(t) is 100 Watts.

� Based on (1) (Definition1): The holistic energy con-
sumption EDC(t) is 420 Watts.

Then, the thermal status including inlet temperature and CPU
temperature are evaluated by the following steps:
� With Definition4: The maximized inlet temperature
max{T in

i (t)} of all PMs is 30◦C. Assuming that the peak
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inlet temperature Tred is 25 °C, the last two PMs in this
example are viewed as hotspots.

� With Definition5: The CPU temperature is simplified to
be satisfied with the peak constraint.

In Plan, the proposed BayesDDQN approach firstly considers
the gap between energy consumption and RES generation to de-
cide the optimal resource scheduling strategy. The optimization
process are designed by the following steps:
� With Definition2: Suppose there are five wind turbines,

each with a capacity of 100 Watts. The generated renewable
energy RES(t) is 500 Watts.

� With Definition3: The available RES (500 Watts) is
sufficient to power the data center (420 Watts) without
consuming brown energy (EBrown(t) = 0).

� Based on (8) (Definition4): The pre-cooling technology
is applicable, the supplied temperature (T sup′

(t)) can be
lowered to 15 °C. Ideally, this adjustment would eliminate
all hotspots. In such a scenario, the CoP value CoP (15◦C)
is 2. The cooling and holistic energy consumption will be
increased to 160 Watts and 480 Watts respectively, which
can still be fully powered by the RES.

� Otherwise, according to Algorithm 1, BayesDDQN is em-
ployed to achieve the optimal energy optimization strategy.

In Execute, the VM deployment and CRAC setting will be
adjusted accordingly as depicted in Sections IV-C and IV-D.

F. Overhead Analysis of BayesDDQN

The BayesDDQN algorithm is designed to optimize holistic
energy consumption by integrating Bayesian optimization with
the DDQN. For DDQN, its primary computational overhead
arises from the forward pass through the neural network for
Q-value estimation, which is typically O(P ), where P repre-
sents the number of neurons in the network. Additionally, the
training phase involves updating the network weights based on
the gradient descent algorithm, with a time complexity ofO(P 2)
due to matrix operations. For Bayesian optimization, it refines
its search for the optimal action iteratively. The time complexity
of such process depends on the number of iterations R and the
complexity of evaluating the reward function of DDQN at a set of
candidate points, which has a time complexity of O(Q), where
Q is the number of candidate points. The time complexity of
Bayesian optimization can be then approximated as O(R×Q).
Therefore, the overall time complexity of BayesDDQN is a
combination of the time complexities of its components, result-
ing in a time complexity of O(R×Q+ P 2) for the training
phase and O(P ) for the inference phase. In general, while the
training overhead is significant, it is typically performed offline
that allows for real-time holistic energy optimization decisions
without further training.

V. EXPERIMENTAL EVALUATION

This section first details the cloud data center configuration,
and renewable energy traces. Then, four state-of-art approaches
are introduced as baseline algorithms to evaluate the feasibility
and effectiveness of the proposed RL-based framework, which
are fulfilled by PyCharm 3.3 and simulated on a PC with Intel(R)
Core i7-8750H processor with 2.2 GHz CPU and 16 GB RAM.
Finally, the superior experimental performance of the proposed
framework is further analyzed.

TABLE II
VM TYPES AND CAPACITY

TABLE III
PARAMETERS OF WIND TURBINE

A. Experimental Setup

The simulation environment in this study is an expanded
version of previously published works [39], [40], which is de-
signed to emulate a data center environment with 10 racks, each
containing 5 PMs [6]. The setup includes four types of VMs with
different computational capabilities inspired by Amazon EC2
instance types,3 with the Million Instructions Per Second (MIPS)
value indicating the CPU performance as shown in Table II,
and CPU thresholds for PMs are set to 0.9 to identify overload
status. The simulator operates by generating resource requests
based on estimated daily active users from various regions, as
modeled on the Google cluster trace dataset [41]. This trace
includes diverse applications and users around the world and
collects workload data from a 12500-machine cluster over 29
days. Moreover, the simulator follows the proposed holistic
energy optimization framework in Sections III and IV to design
and execute the optimal IT and cooling resource scheduling
according to the analysis of varied requests’ effects on energy
and thermal conditions. As this paper focuses on scheduling
workloads viewed as VM requests with required resources, it
does not consider application types running within VMs.

To evaluate the RES availability, the RES data traces come
from the National Renewable Energy Laboratory (NREL) [42]
are adopted. This database provides time-series data from 30000
measurement points worldwide at 10-minute intervals, and the
Arizona wind speed traces on September 3rd in 2019 is adopted.
In experiments, the total experiment period is set to 24 hours and
the scheduling interval to 10 minutes. The cloud data center is
assumed to be equipped with the 5 NE-3000 wind turbines, the
parameters of the wind turbine are shown in Table III.

From the hotspots perspective, exceeding the device tempera-
ture threshold significantly raises the risk of device failure [33].
Therefore, in this paper and this example, the maximum allow-
able CPU temperature Tmax (11) and the peak inlet temperature
Tred (7) of a server are set to 105 °C and 25 °C according
to the American Society of Heating, Refrigerating and Air
Conditioning Engineers (ASHRAE) [43] advice. Furthermore,
the parameters of thermal resistance and the heat capacity in (9)
are set to 0.34K/W and 340J/K, respectively [34].

In addition, the data traces for MTL-LSTM training and
testing are sourced from the Melbourne Research Cloud
datasets [34], which collect resource utilization and cooling

3https://aws-pricing.com/instances.html
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parameters every 10 minutes, including CPU load, network
utilization, fan speeds, RAM utilization, running VMs, and
CPU cores. In experiments, the parameter L in (15) is set to
30, indicating that the last 5-hour data are used for predicting
energy consumption and thermal status at time t. To align with
the 24-hour scheduling period mentioned earlier, the parameter
S in (18) is set to 144, corresponding to 6 data points per hour
with 10-minute intervals.

B. Comparison Algorithms

Since recent studies have not proposed a RL-based approach
to coordinate IT and cooling resources for achieving the holistic
energy optimization of sustainable cloud data center, four most
related algorithms are introduced to evaluate the performance of
the proposed BayesDDQN algorithm.
� Thermal Prediction for Energy Management (TAS) [34]:

TAS considers hotspots detection in traditional data cen-
ters, which proposes a gradient-boosting machine learning
model for temperature prediction. Once a hotspot occurs,
VMs are migrated to the PM with the lowest temperature
for reducing the peak temperature. The reduced cooling
costs contribute to significant energy optimization.

� Thermal-Aware Scheduling (TA) [11]: TA considers ther-
mal imbalance in traditional data centers, which designs
a deep neural network to calculate the thermal imbalance.
TA executes thermal-aware migrations for minimizing the
temperature difference between the hottest and coldest
PMs, and hence reducing the holistic energy consumption.

� DeepEE [22]: DeepEE considers conflicts between IT and
cooling energy consumption in traditional data centers,
which parameterizes the Deep Q-Network action space to
jointly optimize the resource scheduling of VM consolida-
tion and CRAC adjustments, which selects the destination
server according to the predefined theoretical optimum
temperature.

� Thermal-Aware Workload Management (TAWM) [23]:
TAWM method considers the availability of RES, which
applies the pre-cooling technology to dynamically adjust
the CRAC temperature or power on idle servers to mitigate
hotspots when RES is sufficient.

� BD-LSTM: BD-LSTM is a variation of the proposed
framework, which employs LSTM as the resource predic-
tion method instead of the MTL-LSTM strategy for guiding
BayesDDQN to optimize resource allocation.

� BD-XGBoost: BD-XGBoost is another alternative version
of the proposed framework, which utilizes XGBoost to
predict resource variations and BayesDDQN to schedule
resources.

C. Experimental Results

In experiments, a series of sensitivity analysis are conducted
to determine how fluctuating parameters and various approaches
(e.g., VM distributions, prediction methods, and scheduling
strategies) affect the simulator’s outcomes. To further quantify
the potential impact of noise and variability in real-world sys-
tems, all possible PM anomalies scenarios under different VM
initial deployments are simulated, including overload, violation
of Tred inlet temperature, violation of Tmax (CPU temperature),
and all combinations of the three anomalies. Simulation exper-
iments run 10 times, the average results from these executions

Fig. 4. Performance and accuracy evaluation for MTL.

are used to evaluate the framework’s performance in terms
of prediction accuracy, energy consumption, temperature, RES
utilization, and VM migrations.

Accurately predicting energy consumption and inlet tempera-
ture is a key measure of the effectiveness of the proposed MTL-
LSTM method. Merely obtaining the root mean square error
(RMSE) of the prediction method is insufficient as the number of
episodes required for the training loss to converge should remain
current with the highly dynamic conditions in multi-resource
prediction environments. As evidenced through Fig. 4(a), the
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TABLE IV
PREDICTION RMSES OF ENERGY CONSUMPTION AND INLET TEMPERATURE

training loss curves of inlet temperature (output_1_loss) and
energy consumption (output_2_loss ) in MTL-LSTM begin to
converge after 30 epochs. During the experiments, each training
epoch lasts approximately 2 seconds. Consequently, for a MTL-
LSTM model with 300 iterations, retraining occurs every 10
minutes, with convergence happening after 1 minute. Moreover,
MTL-LSTM leverages the shared parameters to capture com-
plex non-linear relationships in multi-features. As a result, the
prediction curve of MTL-LSTM closely aligns with actual traces
as shown in Fig. 4(b) and (c), averaging a nearly 50% reduction
in RMSE errors for energy consumption and inlet temperature
compared to LSTM and XGBoost as presented in Table IV.
Regarding other techniques, XGBoost is particularly effective
when dealing with structured data with categorical variables,
such as thermal-related attributes, reducing 38.7% inlet temper-
ature prediction RMSE error than LSTM. On the other hand,
LSTM can capture long-term dependencies in sequential data,
which reduces 12.2% RMSE error of energy prediction than
XGBoost.

Powering DCs with RES provides new opportunities to reduce
reliance on brown energy, but the uncertain feature of RES also
leads to massive energy wastage. In this context, besides the
total energy consumption, the actual consumed brown energy
that is directly related to the purchased fossil fuel is analyzed.
Furthermore, the feasibility of the pre-cooling method in such
environment is evaluated according to saved cooling energy
consumption. As shown in Fig. 5, the detailed consumed energy
at each time slot aims to assess the effectiveness of the scheduling
decisions taken by the proposed framework, including total
energy consumption, brown energy consumption, and cooling
energy consumption. The total time slot can be categorized into
two Phases based on the availability of RES, where no sufficient
RES in the first 15 hours and the last 3 hours are depicted as Phase
1in Table V, and the rest hours are depicted as Phase 2 in Table V.
During Phase 1, due to the lack of sufficient RES, all algorithms
prioritize thermal awareness, focusing on hotspot mitigation and
cooling cost reduction. The RL-based BayesDDQN and DeepEE
can proactively learn and excel at adapting to limited renewable
energy scenarios. As shown in Table V, they achieve average
reductions in brown energy consumption of 7.53% and 5.2%
than heuristic-based methods, respectively. In Phase 2, Fig. 5
illustrates abundant RES generation, which allows BayesDDQN
and TAWM to adjust their CRAC temperatures by applying
the pre-cooling technology without incurring additional brown
energy, and hence consuming less cooling energy than others.
In contrast, TAS, TA and DeepEE only process VM consol-
idation with default CRAC temperatures, and DeepEE incurs
extra brown energy usage at times 18, 20, and 21 to satisfy
thermal constraints. Nevertheless, with the help of the neu-
ral network, DeepEE can better optimize energy performance
holistically, reducing average 3.98% brown energy consumption
and 4.38% cooling energy consumption compared to TAS, TA

and TAWM across all phases. Furthermore, when BayesDDQN
is combined with LSTM or XGBoost prediction methods, as
shown at the bottom of Table V, the enhanced accuracy of the
proposed MTL-LSTM method leads to an average reduction of
2657.22 kWh in total energy consumption and 1099.84 kWh in
cooling energy consumption. In general, compared to baseline
methods, the energy-saving distributions of BayesDDQN over
ten simulation runs, along with their confidence intervals, are
visually represented by the Kernel Density Estimation (KDE)
plot in Fig. 5(f). The blue curve depicts the estimated proba-
bility density function of energy savings. The red dashed line
denotes the mean savings, while the green dashed lines indicate
a 95% confidence interval, suggesting that the energy savings
are likely to fall between 2.68% and 2.98%. This demonstrates
that the observed energy improvements from BayesDDQN are
not due to random fluctuations but rather a direct outcome of
the optimization framework proposed, and thus achieving an
average reduction of 2.83% in holistic energy consumption,
a 4.74% decrease in brown energy usage, and a 13.48% re-
duction in cooling energy consumption, which are crucial for
relieving carbon footprint and preventing over-cooling energy
wastage.

To ensure that data centers operate in a safety environment
without localized overheating caused by excessive workload
concentration, this paper conducts a comprehensive temperature
comparison, including the average CPU temperature, average
inlet temperature, and hotspots variation over a 24-hour period
as shown in Fig. 6. Although these metrics can be met with
lower CRAC settings, this results in significant cooling energy
consumption as depicted in (2). Therefore, the average cooling
temperature is also compared to evaluate the effectiveness of
temperature adjustment strategies employed by these methods.
It can be found from Fig. 6(a) and (b) that both CPU temperature
and inlet temperature align with ASHRAE recommendations
as depicted in Section V-A, ensuring the reliability of all
algorithms. In such scenario, BayesDDQN effectively prevents
over-cooling by maintaining the highest average CRAR
temperature (21.27 °C) as shown in Fig. 6(c), resulting in the
lowest cooling energy consumption of 67817.69 kWh (Table V).
Meanwhile, BayesDDQN does not incur excessive hotspots
during this optimization process as shown in Fig. 6(d), and its
overheated situation is comparable to the TAWM algorithm
which generates the fewest hotspots. Therefore, BayesDDQN
proves feasible for saving cooling energy with a higher CRAC
temperature setting, also contributing to reduced brown energy
consumption and promoting sustainable cloud data centers
as detailed in Table V. In specific, compared to dynamic
CRAC setting methods TAWM and DeepEE, BayesDDQN
reduces 7.16% (154011.49 kWh vs 143714.50 kWh) and
3.81% (149194.32 kWh vs 143714.50 kWh) brown energy
consumption, respectively. On the contrary, static CRAC
setting methods TAS and TA tend to provide lower cooling
temperature, leading to increases in cooling energy consumption
by 26.85% and 27.25%. Furthermore, although BD-LSTM
and BD-XGBoost perform similarly to BayseDDQN in
temperature-related metrics, they have to consume more energy
to handle additional hotspots due to significant RMSE gaps as
discussed in Table IV, wasting an additional 2177.43 kWh and
2494.56 kWh of brown energy, respectively.

Fig. 7 illustrate the comparative results of RES utilization
that indicates the ratio of the used wind energy to the actual
energy consumed by the data center. This metric provides a clear
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Fig. 5. Energy consumption comparison.

TABLE V
ENERGY CONSUMPTION COMPARISON (KWH)
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Fig. 6. Temperature comparison.

Fig. 7. RES utilization and VM migrations Comparison.

measure of how well different resource scheduling algorithms
integrate and optimize the use of renewable energy sources. It
can be found that the RES utilization of RL-based methods per-
forms better, where BayesDDQN is lower than that of DeepEE,
but BayesDDQN consumes less brown energy by saving 19.92%
cooling energy (67817.69 kWh vs 81327.71 kWh) as detailed
in Table V. This difference primarily stems from the energy
consumption of BayesDDQN in Phase 2, which correlates with
RES fluctuations as shown in Fig. 5(e). BayesDDQN executes
finer-grained pre-cooling actions for the cooling equipment
to maximize RES utilization and coordinates IT and cooling

energy consumption with a RL-based VM consolidator to re-
duce brown energy consumption. Similar advantages are seen
in BD-LSTM and BD-XGBoost, where their average cooling
energy consumption in Phase 2 is 35.04% less than that in
DeepEE. On the contrary, the asynchronous control of such
resource scheduling disables DeepEE to achieve the optimal
solution under the predefined CRAC temperature. The benefits
of the pre-cooling technology in enhancing RES utilization are
suitable for heuristic algorithms as well. Specifically, TA and
TAWM exhibit similar RES performance and brown energy
consumption (154712.02 kWh vs 154011.49 kWh) as shown in
Table V, their main energy differences are originated from cool-
ing energy. With the help of pre-cooling, TAWM saves 5.15%
cooling energy while improving only 0.63% RES utilization
(93.56% vs 92.93%) in Phase 2. It is anticipated that cooling
energy will be further reduced when considering longer-term
RES utilization.

Comparing the number of VM migrations provides insight
into the operational efficiency of different resource scheduling
algorithms as shown in Fig. 7. Effective VM migrations can
avoid increased overhead, including higher energy consumption
and potential performance degradation due to the resource-
intensive nature of the migration process. In this paper, VMs
will be migrated if a server experiences a level of 90% CPU
utilization or expresses the temperature constraints Tred and
Tmax. As expected, thermal-aware algorithms such as TAS and
TA ignore the holistic energy optimization of both systems,
which focuses on optimizing IT energy consumption with a
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lower CRAR temperature as shown in Fig. 6(c). Such limited
search space makes their migrations are mainly caused by over-
loaded servers, leading to fewer VM migrations. In contrast,
TAWM utilizes pre-cooling technology to alleviate hotspots as
shown in Fig. 6(d) while avoiding excessive VM migrations.
For RL-based methods, DeepEE will execute 87 VM migrations
to optimize various metrics, whereas BayesDDQN requires 79
migrations. The main reason can be inferred from Fig. 5 and
Fig. 6(d). As shown, DeepEE has two more hotspots when RES
is sufficient (Phase 2) and 7 more hotspots at time 4 and 22, while
BayesDDQN applies pre-cooling in Phase 2 and dynamically de-
termines the optimal suggested CRAC temperature with Bayes
optimizer to avoid unnecessary VM migrations in Phase 1. For
BD-LSTM and BDXGBoost, their increased migrations com-
pared to BayesDDQN can be attributed to unpredicted hotspots
due to their worse accuracy.

VI. CONCLUSION

In this paper, a reinforcement learning based framework is
proposed to optimize the holistic energy of sustainable cloud
data centers. This framework begins with the development of a
MTL-LSTM prediction method, where LSTM is employed as
the parameter-sharing layer to improve the accuracy of jointly
estimating energy consumption and thermal status. Following
this, a novel energy-aware approach BayesDDQN is presented to
tackle asynchrony challenges by integrating Bayesian optimiza-
tion with DDQN. This combination excels in coordinating con-
flicts of IT and cooling energy consumption while effectively uti-
lizing renewable energy, resulting in superior energy efficiency
and environmental sustainability. Additionally, the framework
incorporates pre-cooling technology, which minimizes unnec-
essary VM migrations and reduces reliance on brown energy
by maximizing the use of RES. The experimental results show
that the framework reduces holistic energy consumption by an
average of 2.83%, with a 4.74% decrease in brown energy. Ad-
ditionally, cooling energy consumption is reduced by an average
of 13.48% while generating the fewest hotspots. Meanwhile, the
proposed MTL-LSTM prediction method within this framework
outperforms XGBoost and LSTM methods, resulting in half
RMSE errors for energy consumption and inlet temperature.

In future work, the proposed algorithm is expected to be ex-
tended in a geographically distributed cloud environment, where
hundreds and thousands of rack servers will contribute huge state
space and computationally intractable action space. Moreover,
this work focuses on a simplified differentiation between brown
and wind energy, which can be refined by incorporating more
granular distinctions among different types of renewable and
non-renewable energy sources (e.g. solar, wind, hydro, coal).
These energy mixes are also expected to be utilized to power
both the training and execution of prediction and RL models,
thereby improving the overall energy footprint. Finally, there is
also a necessity that the proposed BayesDDQN be evaluated in
a real cloud infrastructure such as OpenStack, where thermal
sensors can be installed to collect thermal information.
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