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CFWS: DRL-Based Framework for Energy Cost and
Carbon Footprint Optimization in Cloud Data Centers

Daming Zhao , Jian-tao Zhou , and Keqin Li , Fellow, IEEE

Abstract—The rapid growth and widespread adoption of cloud
computing have led to significant electricity costs and environmen-
tal impacts. Traditional approaches that rely on static utilization
thresholds are ineffective in dynamic cloud environments, and
simply consolidating virtual machines (VMs) to minimize energy
costs does not necessarily result in the lowest carbon footprints.
In this paper, a deep reinforcement learning (DRL) based frame-
work called CFWS is proposed to enhance the energy efficiency
of renewable energy sources (RES) supplied data centers (DCs).
CFWS incorporates an adaptive thresholds adjustment method
TCN-MAD by evaluating the predicted probability of a physical
machine (PM) being overloaded to prevent unnecessary VM migra-
tions and mitigate service level agreement (SLA) violations due to
imbalanced workload distribution. Additionally, CFWS introduces
a novel action space in the DRL algorithm by representing VM
migrations among geo-distributed cloud data centers as flattened
indices to accelerate its execution efficiency. Simulation results
demonstrate that CFWS can achieve a superior optimization of
energy costs and carbon footprints, saving 5.67% to 13.22% brown
energy with maximized RES utilization. Furthermore, CFWS re-
duces VM migrations by up to 86.53% and maintains the lowest
SLA violations within suboptimal execution time in comparison to
the state-of-art algorithms.

Index Terms—Carbon emission, cloud data centers, energy cost,
renewable energy, resource allocation, workload shifting.

I. INTRODUCTION

THE widespread application of cloud computing technology
promotes the scale and number of data centers (DCs),

resulting in the energy consumption problem has become in-
creasingly prominent. According to the Energy Information
Administrator (EIA) report [1], global data centers are expected
to consume 95 TWh energy by 2040, which is twice as high as
in 2020. The impact of high energy consumption is two-fold. On
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one hand, data center operators have to pay extra millions of dol-
lars a year due to the dramatic increment in energy consumption.
On the other hand, huge energy consumption will cause negative
environmental impacts. A report by McKinsey [2] highlights
that cloud data centers contributed to 3.5% of the world’s CO2

emissions in 2018, and this figure is projected to increase to
14% by 2040. Therefore, carbon emission optimization is also
worthy of attention.

In current studies, improving resource utilization through
workload shifting is viewed as an efficient approach to relieve
the high energy costs and carbon footprints of data centers.
One method for achieving this is through adaptive overloaded
detection, which utilizes multi-thresholds or regression-based
threshold adjustment approaches to reflect the changing work-
load patterns and prevents service level agreement (SLA) viola-
tions [3] by proactive virtual machine (VM) consolidation from
potentially overloaded physical machines (PMs). Toward this
goal, the over-utilization resource can be migrated to a limited
number of active PMs and the remaining PMs can be switched
to the inactive mode for saving energy [4]. Although promising,
unpredictable workloads and inaccurate thresholds setting will
also lead to energy wastage or high SLA violations.

Another effective way to mitigate the energy crisis and adverse
environmental impact is renewable energy sources (RES) based
resource scheduling. IT giants such as Apple and Facebook have
both achieved carbon neutrality through their solar-supplied data
centers [5]. This can be fulfilled through shifting workload to
cheaper or cleaner data centers, but electricity prices and carbon
footprint rates vary temporally and spatially, leading to a compli-
cated decision process. Even though existing heuristic cost and
carbon-aware algorithms attempt to fulfill their objectives by
maximizing RES utilization [6], they have to introduce so many
computationally and dynamically intractable hyperparameters.
Deep reinforcement learning (DRL) is increasingly recognized
as a critical component for developing self-sufficient resource
management algorithms in such changeable cloud environ-
ments [7], which can dynamically adjust agents’ behaviors based
on environmental conditions and optimize resource allocation.
However, migrating VMs among geo-distributed typically needs
to traverse all data centers and PMs for determining the con-
solidation scheme, which is difficult to learn and represent an
accurate value function or policy in high-dimensional spaces,
resulting in scalability and responsiveness challenges.

In this paper, a novel DRL-based framework, named CFWS,
is proposed for achieving a trade-off between energy cost
and carbon footprint through workload shifting. CFWS could
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periodically adjust the upper threshold to detect overloaded
PMs for minimizing performance degradation and then design a
DRL algorithm to perform VM migration for improving energy
efficiency. The followings are the paper’s main contributions:
� Propose a multi-objective workload shifting framework

CFWS where an intelligent DRL-based VM migration
is implemented with the consideration of time-variability
electricity prices and spatial-variability carbon footprint
rates (CFRs) among geo-distributed cloud data centers to
relieving energy costs and carbon footprints by maximizing
RES utilization.

� Propose an adaptive PM overloaded detection algorithm
TCN-MAD where the combined use of the temporal con-
volutional network (TCN) and median absolute deviation
(MAD) enhances the threshold adjustment process by con-
sidering both the temporal characteristics and the distribu-
tion of the workload, avoiding unnecessary migrations and
severe SLA violations.

� Propose a DRL-based VM migration method where a
flattened index is introduced in DRL’s action space to
simplify the representation of possible migration actions by
assigning a unique index to each potential destination for
obtaining cost and carbon-aware VM migration schemes,
reducing the complexity and computational overhead in-
volved in evaluating migration possibilities in contrast to
existing approaches.

� Evaluate the CFWS considering realistic data center con-
figuration in comparison to four state-of-art algorithms.
Performance results demonstrate that the proposed algo-
rithm can reduce 5.67% to 13.22% brown energy by max-
imizing RES utilization. Furthermore, CFWS successfully
balances the trade-off between energy cost and carbon
footprint, while also minimizing the number of VM mi-
grations by 46.49% to 86.53% and achieving a minimized
probability of SLA violations within suboptimal execution
time.

The rest of this paper is organized as follows. Section II
reviews the related works and their limitations. Section III
outlines the system model. Section IV details the proposed
workload shifting framework CFWS. Section V summarizes the
findings of the simulation and compares them to the state-of-art
approaches. At last, Section VI concludes this paper and depicts
its future research plans.

II. RELATED WORK

Workload shifting through VM consolidation is viewed as a
promising method to save energy costs and relieve carbon emis-
sions. In this section, the previous research works are categorized
into three subsections including adaptive overloaded detection,
RES-based resource scheduling and DRL-based workload shift-
ing.

A. Adaptive Overloaded Detection

Many existing researches have focused on multiple threshold-
based overloaded detection methods to adapt to the varying
workload patterns for energy optimization. Arshad et al. [6]

presented a dual-threshold approach to classify hosts into three
primary categories by interquartile range, which can effectively
capture and analyze different levels of host utilization for im-
proved energy-related management. Zhang et al. [8] proposed
an enhanced adaptive threshold classification principle using
the least median square regression technique, which enables
resource migration among four distinct groups for optimal
SLA compliance and energy utilization. However, these reactive
methods fail to consider the recent workload trend. Conse-
quently, PMs with unstable requests need to reserve a large num-
ber of resources for an extended period, which is not conducive
to developing energy-efficient management strategies.

In this regard, regression-based approaches apply statistical
analysis techniques to adjust the utilization thresholds accord-
ingly. Yadav et al. [9] introduced the stochastic gradient descent
method for effectively detecting overloaded hosts, while also
designing an energy-aware VM selection policy based on pre-
dicted minimum utilization. Chen et al. [10] provided a proactive
adjustment for the upper CPU utilization, employing a statistical
measure of dispersion that assigns higher weights to values
with larger deviations from the median. Rawas et al. [11] pro-
posed a location-aware VM consolidation approach (LECC) for
geo-distributed cloud DCs, which evaluates several overloaded
detection methods in advance and then selected the minimum
carbon and cost data center for migrating VMs. Nevertheless,
the aforementioned methods may struggle to accurately predict
requests with large variations that exhibit significant noises in
the data, which leads to undesired VM migrations and SLA
violations.

B. RES-Based Resource Scheduling

In response to the rising energy costs and carbon footprints
for increased computation power, geographically distributed
data centers supplied with renewable energy sources have be-
come increasingly prevalent. Nadalizadeh et al. [12] presented a
renewable-aware geographical load balancing algorithm Green-
Packer that considers the RES availability and varied electricity
prices to process cost-awareness resource scheduling. Xu et
al. [13] designed an innovative workload management strategy
that addresses the challenge of carbon emissions by prioritizing
cloud DCs with sufficient RES or lower CFRs in multi-cloud
environments. However, it is important to note that optimizing
both objectives simultaneously often leads to a conflict, as data
centers with cheaper electricity prices may suffer from higher
carbon footprints, thereby invalidating cost-aware algorithms.

Alternatively, other researches are concentrating on design-
ing methods to coordinate these two objectives. Renugadevi et
al. [14] proposed an optimization function that considers elec-
tricity and carbon costs under task deadline constraints, which
incorporates the concept of application brownout and batch task
delays to maximize RES utilization. Hu et al. [15] presented
a two-stage method to address the energy variances caused by
geo-distributed RES generators, which quantifies the greenness
of each energy source using the average carbon emission rate
and establishes a distribution power model to minimize total
energy costs. Nevertheless, the aforementioned methods may
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TABLE I
OPTIMIZATION OBJECTIVES OF WORKLOAD SHIFTING ALGORITHMS

not be well-suited for handling changing workload patterns,
resource availability and system dynamics, potentially leading
to unnecessary migrations.

C. DRL-Based Workload Shifting

DRL-based workload shifting technology has gained signifi-
cant attention in recent years for improving energy efficiency, as
it allows an agent to learn and optimize its actions without prior
knowledge in dynamic environments. Zeng et al. [16] developed
a DRL-based VM consolidation method, which introduces an
Influence Coefficient to evaluate the impact of each VM on
overloaded hosts and combines a LSTM-based state prediction
model to identity suitable hosts for energy-efficient VM migra-
tion. Shaw et al. [17] proposed a combined variable action space
that considers both PM utilization and VM size for preventing
exhaustive VM consolidation searches, which is guided by a
reward shaping technique to accelerate the well-known SARSA
and Q-Learning process for a greater energy gains. However,
these methods are all aimed at single cloud DC scenarios and do
not consider the influence of RES, resulting in the unpredictable
costs and inevitable carbon footprints.

However, the application of DRL in RES-based data centers
has been relatively limited. Xu et al. [18] proposed an RL-based
job scheduling algorithm that incorporated two techniques into
the neural network to improve learning performance. Their
approach also took into account the characteristics of RES
generation to significantly reduce electricity costs associated
with brown energy. Wang et al. [19] developed an energy quota
planning scheme for situations where there is a shortage of
RES. They simplified the cost calculation process by using a
multiple agents-based DRL reward function to represent the
monetary cost and carbon emissions of each RES generator.
As a result, this approach successfully minimized SLA viola-
tions and demonstrated superior performance. Nevertheless, the
aforementioned methods will face challenges with exhaustive
searching, resulting in limited scalability of action spaces.

Table I presents a summary of relevant studies. The pro-
posed approach is unique in its proactive adjustment of the
upper threshold (THR) for energy-aware VM consolidation,
while utilizing DRL technology to optimize carbon emissions
in multi-electricity RES-powered geo-distributed data centers.

Fig. 1. Architecture of the data center powered by both RES and traditional
energy.

This novel combination of adaptive threshold adjustment and
DRL is a notable contribution to the field.

III. SYSTEM MODEL

In this section, a typical Infrastructure as a Service (IaaS)
cloud system is considered where wind and traditional energy
are used to supply n geo-distributed DCs, as shown in Fig. 1.
The incoming workload is formed as VMs and delivered to
servers among geographically distributed DCs. In the practical
implementation, the proposed CFWS architecture follows the
principle of MAPE-K, which is the abbreviation of monitor,
analyze, plan, execute, and knowledge. The resource monitoring
system of the cloud data center can be viewed as a monitor
that collects users’ requests and continuously evaluates the
status of various servers according to the workload predictor
in real-time. Once resource utilization of DCs is collected, the
analyze module will identify patterns and trends to understand
the current DCs’ states through four mathematical models. The
energy consumption model calculates the power consumption of
each DC and conveys them to the carbon emission model. The
renewable energy generation model calculates the wind power
of each DC and conveys them to the carbon emission model.
Then, the output of the carbon emission model, together with the
output of the energy consumption model and renewable energy
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generation model, will be used to calculate the energy cost.
Based on the analysis results, the plan module will generate VM
migration strategies, which involves forecasting future resource
demands and identifying potential overload by the proposed
TCN-MAD workload predictor, and developing a DRL-based
VM consolidator to address these challenges proactively. Af-
ter that, the execution module migrates VMs according to the
identified optimal strategies. At last, the pre-defined objectives
(such as energy cost, carbon footprint) and the aforementioned
models will be recorded in the knowledge module to improve
the efficiency of VM migration across cloud data centers. In this
section, details of the monitor module and analyze module will
be introduced.

A. Workload Model

For cloud service providers, establishing cloud data centers
in various regions is feasible to offer services to users.

Definition 1: Let D be the set of n geo-distributed cloud data
centers, which can be expressed as

D = {D1, D2, . . ., Dk, . . .Dn} , (1)

where each cloud data center is considered to be powered by
traditional energy and renewable energy.

These data centers run multiple PMs, which are intercon-
nected through high-speed network to collectively provide re-
sources to cloud users.

Definition 2: Let Sk be the set of m heterogeneous physical
servers running in the kth data center, which can be defined as

Sk = {S1˜k, S2˜k, . . ., Sjk, . . .Smk} , (2)

where Sjk is the jth PM in DC k, and its CPU utilization at time
t can be depicted as UPM

jk (t).
In each time slot tε{1, 2, . . . T}, the incoming user requests

are viewed as instances and executed by h VMs.
Definition 3: Let VMjk be the set of h VMs hosted on the

jth PM of the kth data center, which can be formulated as

VMjk = {VM1jk, V M2jk, . . ., V Mijk, . . ., V Mhjk} , (3)

where VMijk is the ith VM of the jth PM in DC k, and its CPU
utilization at time t can be depicted as UVM

ijk (t).
Accordingly, for the jth PM in DC k, its CPU utilization

UPM
jk (t) can be calculated as

UPM
jk (t) =

∑
iεVMjk

UVM
ijk (t)× xijk(t), (4)

where xijk(t) is a binary integer that represents whether VM i
is assigned to PM j of DC k (1) or not (0).

In this paper, the kth DC’s CPU utilization at time t is
expressed as the average CPU utilization of its hosted PMs as

μk(t) =

∑
j∈Sk

UPM
jk {t}

m
. (5)

B. Energy Consumption Model

Since the energy spent on cooling needs a fine-grained model,
both supplied cooling temperature and inlet temperature will

TABLE II
WATTS DECIDED BY THE CPU UTILIZATION OF SERVERS

decide cooling costs, which is regarded as a separate study.
Therefore, the simplified energy consumption model introduces
PUE to incorporate cooling energy consumption.

Definition 4: Let Pk(t) be kth DC’s power consumption at
time t, which is calculated by the product of its IT devices
power consumption P IT

k (t) and PUE value PUEk. Pk(t) can
be defined as

Pk(t) = PUEk (μk(t), Hk(t))× P IT
k (t), (6)

where the value of thekth DC’s PUE changes with utilization and
the ambient temperatureHk(t). The representative research [20]
calculates the PUE as

PUEk (μk(t), Hk(t))=1+
0.2+0.1μk(t)+0.01μk(t)Hk(t)

μk(t)
.

(7)
Furthermore, the P IT

k (t) in (6) can be calculated by summing
up all servers’ power consumption in the kth DC, which can be
formalized as

P IT
k (t) =

m∑
j=1

P IT
jk

(
UPM
jk (t)

)
. (8)

Considering that constructing an accurate PM energy model
is quite complicated, the SPECpower benchmark [21] is adopted
to evaluate P IT

jk , which is decided by the jth server’s CPU
utilization, as shown in Table II.

C. Renewable Energy Generation Model

For RES-based DCs, the availability of RES is critical. Con-
sidering a data center is powered by wind energy, the feasibility
of which depends on two general aspects. One is whether the
location of the DC has sufficient wind speed to drive the wind
turbine to generate clean energy, and the other is whether the
DC has built enough on-site wind turbines upfront to meet the
energy demand.

Definition 5: Let RESk(t) be the generated renewable en-
ergy at time t, which is decided by the actual wind speed vk(t)
of the kth data center and the number of installed wind turbines
Mk. The wind power can be defined as

RESk(t) = Wind (vk(t))×Mk (9)

Wind (vk(t))

=

⎧⎨
⎩
0 vk(t) < vin, vk(t) > vout
Pr × vk(t)−vin

vr−vin
vin < vk(t) < vr

Pr vr < vk(t) < vout

,

(10)

whereWind(vk(t)) is the generated energy of a wind turbine. It
can be also found that when vk(t) is lower than the cut-in speed
vin or higher than the cut-out speed vout, the output power is
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set to 0. The wind power will increase linearly when wind speed
stays within the cut-in and rated thresholds, otherwise resulting
in rated output.

D. Carbon Emission Model

The coal-based energy, known as brown energy, will emit
carbon footprint into the environment. Although RES is assumed
to generate 0 carbon emission [22], this paper follows the settings
in [23], [24], considering a more realistic scenario where the
CFR value of wind is treated as a constant.

Definition 6: Let P b
k(t) and CFRk be the brown energy

consumption and CFR of the kth data center respectively, both
of which jointly determine the carbon footprint CFk(t) at time
t, and can be defined as

CFk(t) =

n∑
k=1

P b
k(t)× CFRk +RESk(t)× CFRwind,

(11)
where CFRwind is the CFR of wind energy. P b

k(t) is affected
by RES and can be calculated as

P b
k(t) = max (0, Pk(t)−RESk(t)) . (12)

E. Energy Cost Model

For cloud service providers, they have to afford costs associ-
ated with the negative environmental impact of carbon emissions
and electricity expenses of the traditional grid due to insufficient
renewable energy to meet their energy consumption demands.

Definition 7: Let Costk(t) be the energy cost of the kth
data center at time t, which mainly comes from the purchased
traditional grid due to insufficient renewable energyCostgridk (t)
and the carbon emission cost CostCarbon

k (t). Costk(t) can be
defined as

Costk(t) =

n∑
k=1

(
Costgridk (t) + CostCarbon

k (t)
)
, (13)

where Costgridk (t) and CostCarbon
k (t) are determined by the

electricity price Pricek(t), carbon emission price Pricecarbon,
and CFR.

For the Costgridk (t), a pricing method in real-time is adopted,
offering temporal-varied electricity prices for geographically
distributed DCs. At time t, the kth DC’ energy cost then can
be calculated as

Costgridk (t) = P b
k(t)× Pricek(t). (14)

For the CostCarbon
k (t), the carbon emission price is assumed

to be a constant, and thus the carbon cost can be calculated as

CostCarbon
k (t) = CFk(t)× Pricecarbon. (15)

F. Objective Function

Given the status of PMs, the intuitions of VM migrations
among geographically distributed DCs are lowering electric-
ity bills by consolidating more VMs into DCs with cheaper
electricity prices and reducing the consumed brown energy by
maximizing RES utilization, which will eventually fulfill the

Algorithm 1: VMC Procedure of the CFWS Framework.

minimized energy cost and carbon footprint while satisfying
PMs’ upper threshold constraints μH

k . Moreover, each VM
needs to be assigned to a PM as shown in (19). Therefore, the
optimization objectives can be defined as follows:

Minimize

CF =

∫ T

1

n∑
k=1

CFk(t)dt (16)

Cost =

∫ T

1

n∑
k=1

Costk(t)dt, (17)

subjected to

UCPU
jk (t) ≤ μH

k (18)∑
jεS

∑
kεD

xijk(t) = 1. (19)

IV. THE PROPOSED FRAMEWORK FOR WORKLOAD SHIFTING

In this section, the proposed CFWS framework is introduced
to devise an adaptive overloaded host detection strategy and a
DRL-based VM consolidation algorithm to improve the energy
efficiency of RES-supplied cloud DCs.

A. CFWS Framework

The proposed CFWS framework aims to achieve an optimiza-
tion between energy cost and carbon emissions by using the
proposed TCN-MAD method to detect overloaded PMs and a
DRL-based VM consolidator to perform the optimal VM-PM
mapping accordingly. Algorithm 1 outlines the procedure for
VM consolidation within the proposed CFWS framework. First,
the workload predictor utilizes the designed TCN-MAD method
to detect overloaded PMs, and underloaded PMs are identified
by a predefined static threshold, forming the source PM_List
(Lines 4–7). Subsequently, the VM consolidator establishes a
sequential decision model for finding the most suitable PM and
achieving the best mapping for each VM in VM_List (Lines
8–13). The model is solved by the DRL-based VM consolidator
(Line 10), ensuring that data centers consume the minimum cost
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and carbon emissions. The detailed process of which will be
introduced in Algorithm 2. Afterward, the execute module (Line
11) will migrate VMs (Line 8) associated with the source PMs
(Line 7) according to the VM consolidation strategy. Finally,
the entire VM consolidation procedure will be stored in the
knowledge base of the MAPE-K loop for future scheduling (Line
12), and PMs’ status and VMs’ allocation on each PM will be
updated (Line 14). For the rest time, the above process will be
repeated until there are no overloaded or underloaded PMs. In
general, the complexity of Algorithm 1 isO(R× n×m), where
R represents the number of VMs running on the identified source
PM. In fact, n×m is a two-dimensional array that indicates the
distribution of PMs in geo-distributed data centers, consuming
significant computation resources. To this regard, this paper
proposes a novel flattened index to transform the array into
a one-dimensional array, which will be discussed in Section
IV-C2.

B. Workload Predictor

The workloads of PMs change dynamically over time neces-
sitating the use of time series prediction models. In this context,
a workload predictor named TCN-MAD is proposed. TCN is
a deep learning model that specializes in capturing temporal
dependencies in sequential data. It utilizes convolutional layers
with dilated convolutions to capture patterns and dependencies
across different time steps. By applying TCN to historical CPU
information of hosts, it can effectively learn the patterns and
trends that indicate an overloaded state. MAD, on the other
hand, is a statistical technique used to identify deviations from
the average performance, allowing for the real-time detection
of whether a host is operating within normal bounds or ex-
periencing overload. This innovative combination of adaptive
overloaded host detection considers the workload fluctuations
and changes in resource demands, which avoids unnecessary
VM migrations and reduces SLA violations.

In particular, at time t+ 1, the predicted CPU utilization of
PMs allocated on the kth DC can be obtained by TCN method
as: βt+1

k = {βt+1
1˜k , β

t+1
2˜k , . . ., β

t+1
jk , . . ., βt+1

mk }, which is used as
the input of MAD. The upper threshold of the PMs allocated in
the kth DC can be defined by

μH
k = 1− s×MAD, (20)

where the value of s is 2.5 through experimental results men-
tioned in [25]. If the host CPU usage exceeds the threshold, it is
deemed as overloaded and some of the VMs will be migrated out.
On the contrary, VMs belonging to underloaded hosts should be
migrated out altogether. The study by Beloglazov et al. [26]
shows that DCs can obtain excellent performance when the
lower threshold is 40%, regarded as μL

k = 40%. Therefore,
hosts with CPU utilization greater than μH

k or less than μL
k

are regarded as source PMs. The combination of them can
effectively avoid unnecessary migrations while guaranteeing the
SLA satisfaction, as confirmed by the experiments in the next
section.

Fig. 2. The process of the DRL-based VM consolidaton.

C. DRL-Based VM Consolidator

DRL-based VM consolidator, as an indispensable part of
CFWS, is responsible for interacting with the cloud environment
and making energy-aware decisions on when and where to
migrate VMs. This can be formulated as a Markov decision
problem and the application of DRL methods has been proven
to provide an optimal solution. Compared with traditional meth-
ods, the DRL agent can adjust its policy accordingly for bet-
ter responsiveness to varying conditions, which is particularly
advantageous in dynamic cloud environments. However, the
VM consolidation problem poses challenges due to the high
dimensionality of the action space, which involves selecting a
target data center and a destination host for VM migration in a
geo-distributed environment. The curse of dimensionality makes
it computationally demanding and time-consuming for the DRL
agent to explore and evaluate all possible actions. In view of
this, a novel DRL-based VM consolidation method is proposed
in this paper, which utilizes the flattened index to represent
the action space for addressing these problems. The subsequent
subsections will provide further details on this approach.

1) DRL for Energy-Efficient VM Consolidation: In this pa-
per, the basic idea of using DRL to solve the VM consolidation
problem is to employ a neural network-based agent to learn
an optimal policy. The agent interacts with the environment,
which represents the RES-powered cloud DCs, and takes actions
(such as migrating VMs) based on the observed states (e.g.,
CPU utilization, workload distribution) to maximize a long-term
cumulative reward (e.g., energy cost, carbon emission). The
agent learns the optimal actions for different states, leading to
energy-efficient VM consolidation decisions.

The proposed DRL-based VM consolidator encompasses
three key steps, as depicted in Fig. 2: (1) Collecting the current
system state and VM migration histories from data centers; (2)
Training a computational model for predicting future system
states using the provided TCN-MAD model (Section IV-B); (3)
Integrating DRL with hash mapping, where the main and target
neural networks utilize the flatten index technology to map input
states to a set of actions, including the migrated VM, target data
center, and destination host. Each output node eventually outputs
the maximum Q-value, which is then commissioned to actuate
in the data centers upon training completion. Subsequently, the
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environment receives reward feedback and turns to a new state.
The detailed definitions of them are as followings:

1) State space: The VM migration problem is represented as
a Markov process for sequential decision-making issues while
facing unfavorable uncertainty. stk represents the state space of
the kth data center at time t, which is formulated as a CPU
utilization tuple

stk = <βt
1k, β

t
2k, . . ., β

t
jk, . . ., β

t
mk>, (21)

where βt
jk is the CPU utilization of the jth host of DC k. Here,

CPU utilization is used to represent state space for two main
reasons. First, as mentioned in Section III-B, the CPU is the
primary contributor to energy consumption. Second, when the
VM consolidation happens, the CPU capacity constraint is used
to evaluate the feasibility of the migration strategy to meet the
requirements of the destination host, as demonstrated by (15).

2) Reward: The reward r(t) aims to capture the long-term
rewards rather than immediate rewards, providing insights into
the operational state and efficiency of the VM migration policy at
time t. As lower electricity costs do not necessarily correspond to
lower carbon footprints, a linear weighting function is designed
to represent the reward function for each state. The objective is
to achieve lower energy costs and carbon emissions as follows:

r(t) = β1 ×
(

n∑
k=1

Costk(t− 1)−
n∑

k=1

Costk(t)

)

+ β2 ×
(

n∑
k=1

CFk(t− 1)−
n∑

k=1

CFk(t)

)
, (22)

whereCostk(t− 1) andCFk(t− 1) are the energy cost and car-
bon footprint at time t− 1. In order to eliminate the differences
in data, both of them will be scaled to the same order of mag-
nitude. Moreover, the coefficients are the positively weighted
values that sum up to 1. Maximizing r(t) will be viewed as the
reference for subsequent VM migrations, hence ensuring that
the energy cost and carbon footprint are reduced compared to
the previous time. The objective of training the DQN network
is to maximize the expected reward to determine the best VM
migration. However, if a PM’s utilization UCPU

jk (t) exceeds the
upper thresholdμH

k , which is not able to accommodate any VMs,
the expected reward r(t) is set to negative infinity.

2) Flatten-Based Action Space for DRL: As the most im-
portant component of DRL, the action space of this paper is
defined as the VM migration schemes to change overloaded
or underloaded PMs’ status. Considering that migrating VMs
to suitable PMs among geo-distributed cloud DCs introduces a
n×m two-dimensional action space and it is advised to explore
as many VM migration schemes as possible by interacting
with the DRL environment. This paper provides an innovative
hash-map based action space, which reduces the complexity of
the action space by transforming it into a one-dimensional rep-
resentation, known as a flattened index. This approach facilitates
the identification of migrated VMs belonging to the source PM
and enables the selection of appropriate destination PM and DC.

Fig. 3. Example of VM migration.

Consequently, the action space A at time t can be expressed as

at = [1, R× (n×m)]
hash−−−→
map

at =
{
avmt , ad−DC

t , ad−host
t

}
,

(23)
where the multiple of n and m has been introduced at the
beginning of the previous section. By multiplying these values
together, a flattened index is generated, which accommodates
all possible actions and corresponds to the range of randomly
selected VMs. To effectively represent the actions, a hash map is
employed to convert the flattened action index into an action set
denoted as {avmt , ad−DC

t , ad−host
t }. Fig. 3 depicts an example

to illustrate such process. It is assumed that there are 3 data
centers, each containing 4 PMs, and the second PM of DC1 is
overloaded, which includes 5 VMs and some of which need to
be migrated out. As a result, the scale of the action space will be
5× 3× 4. If the flattened index randomly outputs the value 43,
it will be further mapped to determine the specific migrated VM
and the destination PM. The following steps outline this process
in detail:

Step 1: Determine the migrated VM. In this case, the value
43 corresponds to a three-dimensional array that is the flattened
index of the migrated VMs. To be specific, 43 is divided by the
total number of PMs in all data centers (3× 4). Since all indexes
in this example start with 1, the quotient indicates that VM4 will
be selected, avmt is 4.

PM1 PM2 PM3 PM4

DC1
DC2
DC3

⎛
⎜⎝1 2 3 4

5 6 7 8

9 10 11 12

⎞
⎟⎠ . (24)

Step 2: Determine the destination DC and PM. The value 7,
which is the remainder of Step 1, represents a two-dimensional
array indicating the target data center and destination PM. To
better illustrate this decision process, an array with 3 rows and
4 columns is introduced as (24).

It can be noticed that 7 is located at array [2], [3], which
corresponds to the PM3 of DC2. However, this array can be
transformed into a one-dimensional array using the flattened
index with a length of 12. In other words, array [7] is the hash
map of array [2], [3]. Therefore, the ordering and relationship
between different actions are preserved with the flattened index,
allowing for easier comparison and selection of actions based on
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their index values. This process can be mathematically explained
in the following two substeps:

Step 2(a): Divide the remainder (7) of Step 1 by the number
of PMs of each DC (4), and round up the quotient as the index
of the target data center. Thus, DC2 is selected, ad−DC

t is 2.
Step 2(b): Determine the destination PM. Particularly, regard

the remainder (3) of Step 2(a) as the index of the PM. As a result,
PM3 is selected ad−host

t is 3.
Step 3: If the destination PM is not the source PM, then VM4

in PM2 of DC1 will be migrated to PM3 of DC2. Otherwise,
return to Step 1. Furthermore, if the destination PM has no spare
capacity to accommodate the migrated VM, the reward function
will be punished.

It should be noticed that since the initial value of the action
index is randomly selected, the above steps will be repeated in
T imeStep until a maximum reward value is achieved.

3) DQN-Based VM Consolidation: Algorithm 2 gives the
whole VM migration procedure with the DQN method, which
tries to obtain the best consolidation strategy as the destination
of the migrated VMs on overloaded or underloaded PMs. In
particular, Lines 1–3 initialize the network with the initial PM
status and return a Q function about the action value. Lines
4–33 are the training procedure of the DQN network. Among
them, Lines 7–12 employ ε-greedy policy to explore the best
VM migration strategy based on a predefined reward function
(20), so that high reward can be returned more frequently and the
exploration probability εwill be decreased accordingly to reduce
exploration. During the process, Line 13 executes a flattened
index action aj to determine the migrated VM, destination DC
and PM according to the hash map as mentioned in Section
IV-C2. Then, observe the next observation sj+1 and reward rj ,
where rj is calculated through (20), which is not only affected by
the consumed energy consumption and generated wind energy
but also decided by the PM’s capacity (Lines 14–19). Besides,
experience replay in Lines 20–22 is used to evaluate for im-
proving learning process stability by breaking the correlation of
learning data and reducing update variance. After that, Lines
29–31 build a target Q network to eliminate divergence use
experience replay to learn about their environment and update
networks. Finally, the set of actions will be returned as the VM
consolidation strategy.

In general, in order to optimize the trade-off between energy
costs and carbon emissions in a dynamic cloud environment,
the proposed DRL-based VM consolidator first detects the
overloaded PM by the proposed TCN-MAD method. Also, the
introduction of the flattened index in the algorithm reduces
complexity and enhances the effectiveness of VM consolidation
during the exploration phase of DRL.

V. SIMULATION EVALUATION

This section considers CFWS in detail, creating the model
and fulfilling the algorithm using PyCharm 3.3 running on a
16 GB RAM PC using an Intel(R) Core i7-8750H processor
with 2.2 GHz. The scenario under analysis is consistent with
the real environment, with four geographically distributed DCs
in the United States. Moreover, workload traces from Google

Algorithm 2: DRL-Based VMC Algorithm.

and renewable energy traces from National Renewable Energy
Laboratory (NREL) [27] are used to build an IaaS cloud envi-
ronment.

A. Simulation Settings

1) Data Centers Configuration: The effect of environmental
fluctuations on renewable energy will be simulated using four
US data centers in different locations across Arizona, California,
Oregon, and Louisiana. These data centers are strategically
chosen to represent diverse climate influences due to their dis-
tinct geographical locations and time zones. Additionally, they
exhibit variations in electricity prices and CFRs. To be specific,
each data center has a varying number of heterogeneous PMs,
with half of them being HP ProLiant ML G4s and the other
part HP ProLiant ML110 G5s [28]. Table II provides detailed
information on the energy consumption of these server types at
different workload levels. Since the CPU is the primary energy
contributor, the server capacity is expressed in terms of CPU
frequency in MIPS. Table III outlines the CPU capacities and
the number of cores for PMs and VMs.

2) Workload: Google Cluster Dataset (GCD) [29] is used to
simulate the resource requests by estimating the daily active
users from various regions. The reason for utilizing GCD is
its comprehensive coverage of diverse applications and users
worldwide. It includes workload data from a 12,500-machine
cluster collected over 29 days in May 2011. In the context of
this paper, VM will be migrated to address situations where the
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TABLE III
SERVER/VM TYPES AND CAPACITY

TABLE IV
PARAMETERS OF WIND TURBINE

Fig. 4. Wind power generation.

TABLE V
CARBON FOOTPRINT RATE (TONS/MWH)

available resources of a PM are insufficient to meet the resource
requirements of the incoming workload.

3) Wind Energy: The RES traces utilized are sourced from
the NREL, offering records of sampled points across the world
at 10-minute intervals. This research utilizes such information
to perform an analysis over a period lasting from April 1st to
30th 2020; an overall time consisting of 720 hours. In particular,
records implying the first 20 days forming 480 hours have
been taken as the training set which includes environmental
temperature, humidity, wind speed, and time. The next five days
make up 120 hours and are used as the test sample, and the
last five days are used as the verification samples, allowing for
the prediction of wind power generation. In contrast to previous
studies that consider both solar and wind energy [28], this paper
assumes that NE-3000 wind turbines [30] are installed at each
data center to fulfill the electric necessities of cloud DCs. Table
IV provides an overview of the wind turbine parameters, and
the generated wind power is calculated using (6), as depicted in
Fig. 4.

4) Carbon Footprint Rate and PUE: The US Department of
Energy Electricity Emission Factors [31] provides the carbon
footprint rates of the four data centers, which are presented in
Table V. These values are used to calculate the carbon emissions
for each data center. Also, the number of servers contained

Fig. 5. Temperature variation.

Fig. 6. Electricity price.

within these data centers is presented. Among the four data
centers, Oregon emits the least carbon footprint when consuming
the same amount of energy. For the CFR of wind, it is assumed
to be 0.0225 (Ton/MWh) as mentioned in [23]. For the PUEs
of geo-distributed cloud data centers, this paper considers their
dynamics as modeled in (7), which integrates the impact of
environmental temperature variations as shown in Fig. 5. Such
settings are beneficial to provide a more accurate evaluation of
data centers’ comprehensive energy efficiency across varying
CPU utilization levels and temperature conditions.

5) Electricity Price: Electricity prices are provided by the
US EIA. Fig. 6 illustrates energy prices over a 5-day period with
a 24-hour interval. Moreover, this paper considers cloud DCs are
powered by on-site wind energy, which is assumed to have no
additional costs since it incurs one-time capital and maintenance
expenses regardless of its utilization. The carbon cost of wind is
considered to be 20 ($/Ton) [32].

6) Baseline Method: Since there are no existing studies
specifically addressing the research problem presented in this
paper, the authors have developed four baseline methods by
drawing insights from relevant works. These comparison meth-
ods serve as baseline methods for evaluating the performance
and effectiveness of the proposed approach.
� Greenpacker: This method is derived from [12], which

focuses on RES-powered data centers. In the proposed
baseline method, it traverses geo-distributed data centers
and adds hosts with sufficient resources for accommodat-
ing the migrated VM to the PM list. However, the baseline
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Fig. 7. Energy consumption.

algorithm disregards the fragmentation cost and instead
aims to select the PM that minimizes brown energy and
energy cost in a greedy manner.

� LECC: This method is derived from [11], which heuristi-
cally explores the VM migration scheme for minimizing
the carbon emission cost. Based on the findings of that
study, the proposed baseline method is designed to identify
overloaded and underloaded PMs based on MAD and mini-
mum CPU utilization, respectively. Moreover, the VM that
has a higher correlation of the CPU utilization is selected
to migrate, which is known as maximum correlation. The
PM with the least availability is viewed as the destination
host.

� ADVMC: This method is derived from [16], which develops
a DRL-based VM placement strategy and adopts LSTM to
predict the system status in a traditionally powered cloud
data center. Referring to it, the proposed baseline method
sets upper and lower CPU thresholds with 0.9 and 0.2,
respectively. Furthermore, the VM selection is performed
using the influence coefficient policy, and DRL is employed
to migrate the selected VMs in order to minimize the total
energy consumption while avoiding SLA violations.

� ADVMC-RES: This method is a variant of ADVMC, which
expands the experimental setup to include multiple RES-
powered data centers. In comparison to ADVMC, this
baseline method is designed to prioritize cloud DCs that
are abundant in RES instead of energy consumption to
optimize carbon emissions.

B. Simulation Results

To further evaluate the proposed CFWS framework, simu-
lations were done over 5 days to investigate the energy con-
sumption, energy cost, carbon emission, RES utilization and
the number of migrations of four data centers. Each simulation
was executed 30 times using different initial virtual machine
placements.

1) Energy Consumption: The energy consumption compar-
ison is illustrated in Fig. 7. Meanwhile, brown energy is
introduced because it is a key contributor to carbon emissions.

Fig. 8. Carbon emission and RES utilization.

Notably, the proposed algorithm CFWS can significantly reduce
5.67%–13.22% brown energy compared with baseline algo-
rithms while consuming similar total energy. This is because
the CFWS optimizes brown energy consumption over extended
periods by considering future rewards and long-term workload
variations, which also incorporates the TCN method to relieve
the gap between RES generation and energy consumption.
Among other DRL-based algorithms, ADVMC-RES focuses on
migrating VMs to the data center with sufficient RES, and hence
achieving less brown energy to ADVMC (98431.77 kWh versus
100363.63 kWh). Among heuristic algorithms, LECC performs
better for the reason that it adopts the MAD to dynamically
adjust thresholds to improve resource utilization as CFWS does.
On the contrary, Greenpacker does not design elaborate PM
overloaded identification schemes, which exhibits the highest
energy consumption in both metrics.

2) Carbon Emission: Fig. 8 shows the experimental results
of carbon emissions, which further introduces the comparative
results of RES utilization. The RES utilization indicates the
proportion of wind energy utilized in the data center relative
to the total generated wind energy. It is evident that CFWS
performs best in both metrics, the reason of that can be attributed
to two main factors. On the one hand, CFWS achieves the
highest RES (72.19%) to trade off environmental impacts of
carbon emission (113966.14 g), whereas Greenpacker tops the
carbon emission (157566.57 g) with the lowest RES utiliza-
tion (59.16%). Similarly, ADVMC-RES considers the real-time
availability and variability of RES, which also prioritizes the
utilization of RES and decreases 9716.04 g carbon emissions
compared to ADVMC. On the other hand, CFWS considers
the geographic heterogeneity of CFRs during VM migration.
This is also reflected in the fact that although the carbon-aware
LECC only improves 0.48% RES than Greenpacker, it reduces
17473.75 g carbon emission.

3) Energy Cost: Fig. 9 compares energy costs and carbon
costs with baseline algorithms. As expected, the CFWS will pay
less costs due to its outstanding performances in brown energy
reduction and carbon emission optimization as discussed in prior
subsections. In comparison to LECC, which also considers price
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TABLE VI
COMPARISON RESULTS ON EVALUATING OVERLOADED PM DETECTION METHODS

Fig. 9. Energy cost.

variations among geo-distributed data centers, CFWS achieves
even greater cost savings by reducing carbon costs by $522.54
and energy costs by $811.35. This highlights CFWS’s ability to
adapt and optimize migration strategies based on the real-time
electricity market, leading to significant cost reductions. The
results also suggest that the introduction of RES is effective
to eliminate brown energy as demonstrated by ADVMC-RES,
which leads to the reduction of carbon cost by 7.26% than
ADVMC. Furthermore, the Greenpacker causes the most costs
in this scenario. It treats electricity prices at all data centers as
a constant value and fails to make decisions according to their
price differences.

4) Migrations: The last two columns in Table VI illustrate
SLA violations and the necessary VM migrations associated
with them. SLA violations are defined as the ratio of overloaded
PMs that exceed the CPU utilization threshold to the total
number of active PMs. Compared to baseline algorithms, CFWS
demonstrates a remarkable reduction in VM migrations, ranging
from 46.49% to 86.53%, with an average decrement of 36.52%
in SLA violations. This achievement can be attributed to the pro-
posed TCN-MAD in CFWS, which proactively estimates unseen
overloaded situations in advance to mitigate the need for frequent
migrations. Experimental results further highlight the superior-
ity of DRL-based methods (CFWS, ADVMC, ADVMC-RES)
over heuristic-based algorithms (Greenpacker, LECC) in terms

of reducing VM migrations and minimizing SLA violations.
This is because DRL-based methods can continuously update
their migration policies based on real-time feedback and adjust
their decision-making processes accordingly, whereas heuristic
algorithms require extra migrations to adapt to changing condi-
tions.

In addition to the above, comparisons about overloaded PM
detection are also recorded in the last 8 rows of Table VI to eval-
uate the effectiveness of the proposed TCN-MAD on migrations
and SLAs. The table presents nine combinations using different
overloaded detection algorithms, including TCN-MAD, LSTM-
MAD, MAD, IQR, and THR (a static threshold set to 0.8 [33]).
The aggressive parameters, denoted as s, are set to 2.5 for MAD
and 1.5 for IQR [25]. For the threshold adjustment performance,
it can be found that TCN-MAD-2.5 could achieve optimal results
in most cases with the least migrations and SLAs. This is
because the threshold adjustment method based on MAD will
lead to fewer VM migrations (e.g., MAD-2.5 performs better
through reducing VM migrations by 16.26% and SLA violations
by 19.58% than IQR-1.5). Compared with the static threshold
setting (THR-0.8), the proposed TCN-MAD-2.5 avoids 34.87%
VM migrations and 48.82% SLA violations. On the other hand,
this paper introduces the well-known LSTM method and de-
signs LSTM-MAD-2.5, LSTM-IQR-1.5 and LSTM-THR-0.8
adaptive threshold adjustment method to evaluate the validity
of the TCN-based workload prediction. Since TCN has been
shown to have better accuracy while predicting the workload
variation than LSTM [34], [35], TCN-based methods reduce
subsequent migrations to rebalance the workload (eg. TCN-
MAD-2.5 reduces 2 VM migrations and 0.14% SLA violations
than LSTM-MAD-2.5) and the default static threshold methods
perform worst.

5) Execution Time: Fig. 10 depicts the execution time of
the proposed algorithm compared to the state-of-the-art ap-
proaches, providing insights into the computational overhead
of each method. The results demonstrate that CFWS exhibits
a slightly higher execution time compared to LECC. This can
be attributed to the fact that LECC pre-determines the target
data center. Therefore, the destination PM determined by sorted
available resources will result in a computational complexity of
O(R×m logm), whereas CFWS has a complexity of O(R×
n×m) as discussed in Section IV-A. Despite the higher com-
plexity, CFWS may still be preferred in scenarios where carbon
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Fig. 10. Execution time.

emissions and energy costs are of primary concern. The ad-
vantage of the proposed flatten-based action space is evident
when comparing it with variations of traditional DRL-based al-
gorithms such as ADVMC and ADVMC-RES. where the action
spaces are designed based on sorted data centers and PMs, lead-
ing to execution time with O(R× n log n×m logm). Among
all the scenarios, Greenpacker exhibits the slowest execution
time. This is due to its need for two inner for loops and an
outer while loop to iterate all available PMs for migrating.
Consequently, its complexity is the largest at O(R× n×m+
R2 × n).

VI. CONCLUSION

In this paper, a DRL-based framework CFWS is proposed to
optimize energy costs and reduce carbon footprints via workload
shifting for RES-supplied cloud DCs. To be specific, it first
provides an adaptive overloaded PM detection method TCN-
MAD that helps reduce VM migrations by proactively identi-
fying periods of anticipated resource overload, thus reducing
unnecessary migrations and the occurrence of SLA violations.
Based on that, a flattened index is introduced to determine
the destination of migrated VMs among geo-distributed data
centers, which promotes better energy-efficient exploration with
the consideration of the temporal and spatial-variability of elec-
tricity prices and CFRs to increase the likelihood of obtaining
optimal migration strategies. The simulation results demonstrate
the superiority of CFWS as compared to the state-of-art al-
gorithms, which achieves the optimal energy cost and carbon
emission while requiring fewer migrations and exhibiting lower
SLA violations within satisfactory execution time. Additionally,
CFWS achieves the highest RES utilization among the compared
algorithms, reaching 72.19%.

In the future, the proposed algorithm is expected to be tested
in a real cloud infrastructure such as OpenStack or extended in a
workload management platform such as Aneka. Additionally,

like the existing studies, the proposed CFWS only provides
guidelines for optimizing the RES-based cloud data center and
demonstrates its feasibility through simulation experiments.
Hence, there is also a necessity that the proposed CFWS be
practically implemented or validated in modern built sustainable
data centers powered by renewable energy. Furthermore, the rest
of future work will construct a more realistic carbon emission es-
timation model that considers the spatial-temporal varied carbon
footprint rates of RES. It is also expected to consider the impact
of cooling and network transmission on energy consumption
to prevent service quality degradation due to insufficient RES
supply.
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