
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 6, DECEMBER 2024 6703

FAPM: A Fake Amplification Phenomenon Monitor
to Filter DRDoS Attacks With P4 Data Plane

Dan Tang , Xiaocai Wang , Keqin Li , Fellow, IEEE, Chao Yin , Wei Liang ,
and Jiliang Zhang , Senior Member, IEEE

Abstract—Distributed Reflection Denial-of-Service (DRDoS)
attacks have caused significant destructive effects by virtue of
emerging protocol vulnerabilities and amplification advantages,
and their intensity is increasing. The emergence of programmable
data plane supporting line-rate forwarding provides a new oppor-
tunity for fine-grained and efficient attack detection. This paper
proposed a light-weight DRDoS attack detection and mitigation
system called FAPM, which is deployed at the victim end with the
intention of detecting the amplification behavior caused by the
attack. It places the work of collecting and calculating reflection
features on the data plane operated by “latter window assisting
former window” mechanism, and arranges complex identification
and regulation logic on the control plane. This approach avoids
the hardware constraints of the programmable switch while
leveraging their per-packet processing capability. Also, it reduces
communication traffic significantly through feature compression
and state transitions. Experiments show that FAPM has (1) fast
response capability within seconds (2) a memory footprint at the
KB level and communication overhead of 1 Kbps, and (3) good
robustness.

Index Terms—Attack mitigation, distributed reflection denial-
of-service, fake amplification phenomenon, P4.

I. INTRODUCTION

D ISTRIBUTED Reflection Denial-of-Service (DRDoS)
attacks [1] are a common but highly threatening type

of denial-of-service attack, showing a growing trend, mainly
manifested in the huge volume and endless protocol loopholes.
In 2018, a Memcached-based DRDoS attack overwhelmed
the code hosting website GitHub with a peak traffic of 1.35
Tbps [2]. A tool named AMPFUZZ [3] has discovered several

Manuscript received 22 January 2024; revised 31 July 2024; accepted 12
August 2024. Date of publication 26 August 2024; date of current version
20 December 2024. This work was supported in part by the National Natural
Science Foundation of China (#62472153), the YueLuShan Center Industrial
Innovation Project (#2023YCII0115), and the Science and Technology Key
Projects of Changsha City (#kq2208038). The associate editor coordinating
the review of this article and approving it for publication was G. Schembra.
(Corresponding author: Jiliang Zhang.)

Dan Tang and Xiaocai Wang are with the College of Computer Science and
Electronic Engineering, Hunan University, Changsha 410082, China (e-mail:
Dtang@hnu.edu.cn; xiaocaiwang@hnu.edu.cn).

Keqin Li is with the Department of Computer Science, State University
of New York, NY 12561 USA, and also with Hunan University, Changsha
410082, China (e-mail: lik@newpaltz.edu).

Chao Yin is with the School of Computer and Big Data Science, Jiujiang
University, Jiujiang 332000, China (e-mail: david_yin@jju.edu.cn).

Wei Liang is with the School of Computer Science and Engineering, Hunan
University of Science and Technology, Xiangtan 411199, China (e-mail:
wliang@hnust.edu.cn).

Jiliang Zhang is with the College of Semiconductors (College of
Integrated Circuits), Hunan University, Changsha 410082, China (e-mail:
zhangjiliang@hnu.edu.cn).

Digital Object Identifier 10.1109/TNSM.2024.3449889

unreported protocol vulnerabilities in Debian network services
that can be exploited for DRDoS attacks. The endless protocol
vulnerabilities are also an important factor in promoting the
development of DRDoS attacks, and therefore can impact
various network architectures, such as vehicular networks [4],
cloud computing [5], Software-Defined Networking [6], and
the wider Internet of Things [7].

DRDoS attackers control a botnet to send a series of
protocol-specific request packets, with the source IP spoofed
to match the target host. By exploiting vulnerabilities in the
protocol, the attack can generate an amplification effect. Upon
receiving the IP-spoofed requests, the involved servers will
send a large volume of response packets to the victim host to
destroy it, which may not even be using the service related to
the protocol.

Because DRDoS attacks violate the normal request-response
relationship, many researches detect them by establishing map-
pings in a session. RALF [8] logs attributes of request packets,
only allowing responses if these attributes match, and triggers
an alert if mismatches exceed a threshold. WisdomSDN [9]
can detect and mitigate DNS amplification attacks in SDN.
After learning each DNS request packet, the switch installs
a corresponding flow table rule, which indicates a one-to-one
mapping of the DNS response packet by swapping source and
destination IP addresses and ports. The response packets are
forwarded or discarded based on the flow table, and each rule
has a short timeout interval because of limited capacity. Due to
cache limitations and reliance on empirical knowledge, these
methods are often protocol-specific and can only filter known
protocol attack packets.

Another category of methods introduces the authentication
mechanism lacking in the IP protocol and its upper-layer UDP
protocol to identify DRDoS attack packets. When receiving
a request packet, a server deployed with ESFD [10] first
initiates a TCP connection with the host that sent the request
to preliminarily confirm its validity. If the connection is
successfully established, the server then queries the host for
the timestamp of the previous request packet. If the host can
provide the correct timestamp, the previous request packet
is considered legitimate and can be forwarded or responded
to. For the purpose of reflection and amplification, DRDoS
attackers forge the source IP of request packets. Although the
IP address can be changed arbitrarily, the actual forwarding
and routing hops required for the packet in the network are
fixed. A method called HCF [11] filters IP spoofing packets
based on their hop count. The server establishes and maintains
a mapping table of IP addresses and corresponding hop counts

1932-4537 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on December 21,2024 at 02:40:21 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0062-0213
https://orcid.org/0009-0006-7435-5367
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0003-1915-1901
https://orcid.org/0000-0002-5074-1363
https://orcid.org/0000-0001-8712-2964

6704 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 6, DECEMBER 2024

in advance. Upon receiving a request packet, the TTL field is
extracted to infer the number of hops the packet has traversed.
If this count is inconsistent with the mapping table, the packet
is identified as an IP spoofing packet. As long as the IP
deception packets can be identified and filtered, the enlarged
path of DRDoS attacks can be destroyed.

However, most of the methods mentioned above are
deployed on servers, which adds to the burden on servers that
are already handling a large volume of responses, exacerbating
processing delays and potential downtime. In the face of high-
speed traffic requirements, transferring attack detection tasks
from end hosts [12] to the data forwarding planes [13] is an
emerging trend. P4 programmable switches with ASIC chips
provide an opportunity for this strategy due to their line-speed
and flexible processing capabilities.

Existing methods that use P4 switches to detect DRDoS
attacks have some limits. N ETHCF [14] filters IP spoofing
packets based on hop count. This method has the defects
of low detection accuracy and high communication overhead
between the data plane and the control plane. DIDA [15] is
completely located in the data plane with the cost of deploy-
ment on multiple edge routers which has high requirements on
the underlying equipment and causes a lot of detection delay.
To this end, we present FAPM, a DRDoS attack detection
and mitigation system, as a light-weight deployment solution
with the P4 data plane. The “latter window assisting former
window” technique accumulates the packet length of the
bi-directional flow on the edge switch of the victim end.
The amplification factor is calculated and uploaded using a
calculator designed specifically for this scenario. According
to the uploaded information, the control plane can determine
whether there is a fake amplification phenomenon brought on
by DRDoS attacks, that is, whether there is a large reflection
factor between the packet length of the bi-directional flow.
The main flow collection and feature calculation work is
deployed in the data plane, and the more complex judgment
and decision-making work is completed by the control plane.
The system offers reduced communication overhead and low
resource usage while ensuring the response effect due to its
clever design and implementation details.

The main contributions of this paper are summarized as
follows:

• We deploy the main part of FAPM on the data plane,
which introduces the “latter window assisting former
window” storage mechanism and amplification factor
calculator to collect and calculate reflection features
rapidly.

• We retain the decision-making rights for the controller,
which guides the switch to install mitigation strategies
when abnormal features are identified, and dynamically
adjust the window size to ensure the performance and
resilience of the system.

• We carry out experiments in the BMv2 [16] software
switch, define a metric to evaluate attack detection and
mitigation systems, and verify the necessity and superi-
ority of the detailed design. The results show that FAPM
has a small occupation of SRAM and TCAM resources in
the switch, and has low average detection and mitigation
delays which is 5.23s.

Fig. 1. Principle of DRDoS attack.

The remainder of this paper is organized as follows.
Section II provides background on DRDoS attacks and P4.
Section III details the design and deployment of the FAPM
system. Section IV presents extensive experiments validating
the performance of FAPM. Section V discusses related work,
and Section VI summarizes the contributions of this paper.

II. BACKGROUND

In this section, we introduce the threat model of DRDoS
attacks, review existing methods, and provide an overview of
P4 and programmable data planes. Furthermore, we clarify the
challenges associated with implementing the FAPM system.

A. Threat Model and Existing Methods

DRDoS attacks are also known as amplification attacks due
to the caused amplification effect. For example, if a user sends
a MONLIST request to an NTP server, it will encapsulate the
600 most recently synchronized IP addresses into 100 response
packets and send them back. As shown in Fig. 1, attackers use
port scanning to find servers with open services as reflectors,
then send spoofed requests from zombie hosts to these servers,
which in turn flood the victim host with response packets.
This is so that the server will not verify the sender after
receiving the request since DRDoS attacks frequently employ
UDP services whose response packets vastly outnumber the
request packets. For the victim host, the response packets
reflected by each server are pouring in, which will soon crush
its link. The superiority of DRDoS attacks stems from the
fact that the vast volume of data flow originally used for the
attack is diluted via hundreds of servers before converging
into a tremendous flood at the target, making it as difficult to
be isolated and blocked as a slow-rate attack [17], [18]. Also,
the forged source IP makes it more challenging to track down
and find the attacker. The application layer services commonly
exploited in amplification attacks are summarized in Table I.

We categorize existing detection methods for DRDoS attacks
in Table II. The methods performed on servers can be divided
into two categories. The first type, represented by RALF [8] and
WisdomSDN [9], establishes mapping relationships between
requests and responses to filter out incorrectly matched response
packets. Because of the limitation of cache and the use of
empirical knowledge, this approach is protocol-related and can
only detect amplification attacks on known protocols. Hence,
such techniques will be wholly invalid when hackers adopt
a protocol that is not included. The second kind of method
focuses on the authentication of the packet, diagnosing the

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on December 21,2024 at 02:40:21 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: FAPM TO FILTER DRDoS ATTACKS WITH P4 DATA PLANE 6705

TABLE I
APPLICATION LAYER PROTOCOLS USED IN AMPLIFICATION ATTACKS

TABLE II
COMPARISON WITH PRIOR WORK

source validity of the request packet through the hop count
[11] and time stamp information [10]. However, these methods
deployed on servers increase the functional complexity of server
kernels, introducing higher packet processing latency.

NETHCF [14] and DIDA [15] are deployed on pro-
grammable switches with line-speed processing capabilities
to detect DRDoS attacks in high-speed traffic forwarding
scenarios. NETHCF [14] implements hop-count-based filtering
for IP deception packets in P4 switches, but this requires
maintaining a mapping table of the recently used IP addresses
and hops on the data plane. The control plane holds the
complete table and updates the cache of the data plane
frequently. If the hop count of a packet is inconsistent with
the record or missing in the mapping table, the packet needs
to be mirrored to the control plane for further processing,
which may cause pressure on the control channel. DIDA [15]
is a distributed in-network DRDoS attack detection system
that needs the collaboration of multiple edge routers and
access routers in ISPs in order to share information and find
unsolicited response packets. It places significant demands on
bottom-layer devices and causes substantial detection delays
due to the exchange of information between switches.

B. Programmable Data Plane and P4

Traditional network chips from major manufacturers are
inflexible, with fixed functionalities and inconsistent speci-
fications. Currently, ASIC chips offer flexible programming
with Tbps throughput, allowing network operators to extend
network core functionalities using the P4 programming lan-
guage [19]. The Portable Switch Architecture (PSA) enables
other manufacturers to manufacture chips that support P4
programming [20], [21]. As shown in Fig. 2(a), manufacturers
must provide PSA definitions and P4 compilers, while users
interact only with the P4-written programs.

The abstract forwarding logic provided by P4 is depicted
in Fig. 2(b). Network functions are expressed in this abstract

logic and programmed into the data plane using P4. The parser
extracts packet header information and determines the next
state based on specific fields, enabling layer-by-layer parsing.
The switch performs actions based on the Match-Action (M-
A) table. The deparser reverses this process by repackaging
headers for transmission. A buffer between the ingress and
egress pipelines stores packets awaiting processing, allowing
for packet replication and queue management [22].

C. Challenges

The high throughput of P4 switches is ensured under strict
limitations. Specifically, this presents three challenges for the
implementation of FAPM.

• Optimized feature calculation within a constrained
instruction set. Even if there are many effective features,
the M-A abstraction is insufficient for complex calcula-
tions [21]. The computational model of the P4 switch
is extremely constrained and does not support loops
or multiplication and division operations, which limits
the combination of multidimensional complex features.
Choosing simple features and adjusting the computation
method are the implementation strategies of FAPM.

• Stateful flow storage and in-time updating. Attack
detection relies on flow characteristics, necessitating
stateful per-flow information storage. However, there
are only 10+MB of SRAM resources and limited
TCAM in a pipeline. Considering the large number
of network flows, we need to segment time windows
for statistics and achieve real-time updates of statistical
information within the constraints of register read-write
operations.

• Efficient coordination with the control plane. Although
the switch can process packets at line rate, migrating
traffic to external devices for further analysis inevitably
causes a forwarding bottleneck. Therefore, avoiding traf-
fic migration while collaborating with the controller to
implement an efficient and dynamic detection system is
a crucial consideration in the design of FAPM.

III. DESIGN AND DEPLOYMENT

A prominent feature of DRDoS attacks is the imbalance
between a large number of reflection packets and request
packets. We choose to install the detection system at the
victim end to track this amplification occurrence in order
to increase its deployment flexibility. In order to adapt to
the pipeline architecture of the programmable data plane, we
design the storage mechanism of the “latter window assisting
former window” and the amplification factor calculator to
complete the extraction and calculation of reflection features.
The controller is in charge of result evaluation, state transition,
and dynamic parameter modification, all of which call for more
sophisticated and complex logic. Furthermore, due to our design,
communication between the data plane and the control plane
will not be overly burdensome.

A. Fake Amplification Phenomenon

Normal host communication typically involves two-way
message transmission between two hosts. However, during

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on December 21,2024 at 02:40:21 UTC from IEEE Xplore. Restrictions apply.

6706 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 6, DECEMBER 2024

Fig. 2. P4 overview.

0 50 100 150 200 250 300 350 400 450 500

low

0

1

2

3

4

5

o
ta

l
ac

k
et

en

g
th

 (
B

y
te

s)

10
4

he direction with smaller total packet length

he direction with larger total packet length

0 50 100 150 200 250 300 350 400 450 500

low

0

2

4

6

8

10

12

o
ta

l
ac

k
et

en

g
th

 (
B

y
te

s)

10
4

he direction with smaller total packet length

he direction with larger total packet length

Fig. 3. Total packet length comparisons of bi-directional flows.

a DRDoS attack, a large number of response packets from
servers converge on the victim network, even though the
victim host is not accessing services from these servers.
Therefore, a large number of one-way transmission packets
can be sniffed in the victim network. Although the victim
may occasionally request services from some servers, the
number of response packets far exceeds the requests. We call
this phenomenon observed during attacks “fake amplification
phenomenon”. “Amplification” describes a situation in which
the victim transmits few packets or no packets at all, but
the server side sends out a lot of packets. “Fake” means
that while the amplification attribute of a DRDoS attack
involves both the intermediate servers and the attackers, the
amplification referred to here is an indirect amplification
relationship analyzed from the victim’s perspective.

A bi-directional flow is defined as follows in this paper.
The packets belonging to the same bi-directional flow meet
three conditions: (1) the source IP and destination IP belong
to the same set {IPA, IPB} (2) the source port and des-
tination port belong to the same set {PortA,PortB} (3)
the transport protocol is the same. For example, if (source
IP, destination IP, source port, destination port, transport
protocol) forms a 5-tuples of flow ID, then the pack-
ets whose 5-tuples are (IPA, IPB ,PortA,PortB , TCP) or
(IPB , IPA,PortB ,PortA, TCP) belong to the same bi-
directional flow. Further, specify that a uni-directional flow

whose source IP field value is less than the destination IP field
value is a forward flow of the two ones in a set of bi-directional
flow, and the other uni-directional flow is a backward flow.
When the hosts in the network communicate normally with
each other, the total packet payload difference between the
two of a set of bi-directional flows will not be particularly
large. For victims of DRDoS attacks, there may be only one
uni-directional flow transmitting packets (responses reflected
by the server). Or even if the flow in both directions has
data streaming, the total payload of packets is also extremely
unbalanced, and one direction occupies absolute dominance.
Fig. 3 is a comparison of the total packet length of 500 groups
of bi-directional flows under benign situations and DRDoS-
DNS attacks. In a normal network, the load of the flow in
the two directions is close, and there is no clear amplification
relationship. However, under DRDoS attacks, the packet load
of one direction is overwhelmingly larger than the one of
the other direction, and there is an obvious amplification
relationship. Therefore, the fake amplification phenomenon
observed on the victim side can be used as the judgment basis
for the occurrence of DRDoS attacks.

To detect this fake amplification phenomenon at the victim
end, we design FAPM and deploy it on the edge P4 switch.
Specific design details will be discussed later. Compared to
deploying the detection method on the victim server, which
increases kernel processing complexity, deployment on the
P4 switch offers benefits such as lower hardware latency and
jitter, and faster attack response. It also eliminates the need
for redundant strategies on each server, saving computing and
storage resources.

B. Modules of FAPM in the Data Plane

The advantage of the data plane lies in the low latency of the
hardware and the fine-grained information collection through
direct contact with the packets. Based on the properties of each
packet processing, we deploy the feature extraction in attack
detection on the data plane. With the traffic window as the
detection unit, the switch counts the total length of packets
in both directions of each bi-directional flow and calculates
the corresponding amplification factor, and reports it to the
controller as the characteristic basis for attack judgment. A
traffic window is composed of a fixed-time window and two
fixed-number windows. The mechanism of “latter window
assisting former window” is adopted to store the packet length
of the flows. The related notations are summarized in Table III.
When calculating the amplification factor, taking into account
the variable division not supported by P4, we implement an

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on December 21,2024 at 02:40:21 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: FAPM TO FILTER DRDoS ATTACKS WITH P4 DATA PLANE 6707

TABLE III
NOTATIONS USED IN “LATTER WINDOW ASSISTING FORMER WINDOW”

operation framework suitable for this scenario with the help
of shift operation.

1) “Latter Window Assisting Former Window”: Because
a flow ID might take on a wide range of IP addresses and
port numbers, on the premise that P4 supports a long list of
pre-defined CRC algorithms, we hash the 5-tuple of the flow
ID to aggregate the packet length of the same flow to the
same storage unit. The count-min sketch [25] can effectively
reduce the counting error caused by hash collision, mainly
by increasing the number of hash functions and counting
cells. The minimum count among the cells mapped by these
functions approximates the true count. Set up a set of registers
with size K × N. In order to map each packet of a bi-
directional flow to the same location, take (IP1, IP2, Port1,
Port2, Protocol) as the input of the hash functions. As shown
in Fig. 4, the switch extracts the 5-tuple of a packet and
determines the K storage locations of the bi-directional flow.
The IP field value is then compared to determine the precise
direction, and the packet length is then stored in either the
high L bits (forward) or low L bits (backward) of each unit.

In order to monitor traffic in real-time, the switch counts
and reports information in units of windows. One problem
introduced is at the end of each window, how to report
the statistical information in the window to the controller
and clear the sketch for the next window. Performing these
tasks at the end of each window in the pipeline of the final
packet is impractical due to the excessive workload, which can
disrupt high-speed packet forwarding and cause performance
oscillations. Additionally, assigning such a heavy task solely
to the last packet violates fairness principles.

To avoid task concentration, this paper delays the processing
of statistical data from one window to the next. At the end
of a window, tasks are not completed immediately but are
deferred to the next window. Because statistical data needs to
be retained for one more window, two sets of storage structures
S and S ′ are actually required. At any given time, one structure
retains the statistical data from the earlier window (referred
to as the reserving sketch), while the other counts the packet
length of bi-directional flows in the current window (referred

Fig. 4. Accumulation process of packet length.

Fig. 5. Schematic diagram of the “latter window assisting former window”
mechanism.

to as the working sketch). At the end of each window, the two
roles are swapped.

The arrival of the first packet of a new flow is indicated
by all values at its K storage positions being zero. When a
new flow starts, its corresponding K storage positions in the
working sketch called the length saving pointers, also need
to be recorded. As shown in Fig. 4, these pointers are stored
in K additional registers index1-indexK whose length is N
(assuming that the number of flows in a window does not
exceed N). A counter tracks the number of flows, incrementing
by 1 for each new flow index stored. In the next window,
when the working sketch is converted to the reserving sketch,
a column of index1-indexK can indicate the K positions
where the packet length of the same flow is stored, which is
convenient to locate and find the minimum count value for
further amplification calculation.

Different from the general way, a detection window of
FAPM is composed of WT (fixed duration time T), WN1
(N packets), and WN2 (N packets), as shown in Fig. 5. The
same work in each packet pipeline in the three sub-windows
is to store the packet length in the working sketch as above
and record the length saving pointers for each flow in
index1-indexK . The difference is that additional calculation
and cleaning of the data in the reserving sketch will be
performed within the two fixed-number windows WN1, WN2.
Specifically, in each packet pipeline of WN1, the switch
examines the value α of the counter. If α is greater than
or equal to 0, it retrieves the length saving pointers of a
flow from the αth column of index1-indexK . It then reads
the packet lengths from the corresponding K positions in
the reserving sketch, selecting the minimum value as the
final packet length for that flow. The amplification factor
calculator, introduced later, is used to compute the packet

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on December 21,2024 at 02:40:21 UTC from IEEE Xplore. Restrictions apply.

6708 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 6, DECEMBER 2024

Fig. 6. The workflow of the “latter window assisting former window”.

length amplification factor between the forward and backward
flows. Finally, α is decremented by 1. Therefore, at the end of
the N packets of WN1, the information left by the previous
window has been calculated and can be reported using the
cloning mechanism in P4.

Immediately after that, in each packet pipeline of WN2,
the register units in the reserving sketch are cleared column
by column. If the arrival order of a packet is β, clear the
βth column in the reserving sketch, that is, make the value
stored be zero. As the number of fixed packets in the window
is equal to the length of the sketch, which is N, all cells in
the reserving sketch are just cleared at the end of WN2. The
task is decomposed and distributed to each packet pipeline by
delaying information in one window to the next. This storage
and window operation mechanism is referred to as the “latter
window assisting former window”.

Due to the alternating roles of two storage structures (S,
S ′) and three sub-windows (WT , WN1, WN2), there are
six packet processing modes. Register R1 tracks the current
storage structure (0: S is the working sketch, 1: S ′ is the
working sketch), and R2 tracks the window state (0: WT , 1:
WN1, 2: WN2). The above-mentioned tasks are converged
into actions in P4. For example, the action S_N1 indicates
that the current working sketch is S and that it is located in
WN1. Therefore, in the current packet pipeline, the switch
should record its packet length in S and assist the former
window in calculating the amplification factor of one flow
left in the reserving sketch. By querying the table what-to-
do with the values of R1 and R2, the switch can specify the
processing mode for each packet. R2 is updated at the end of
WT or WN1, and both R1 and R2 are updated at the end of
WN2, maintaining the six processing modes. Fig. 6 illustrates
the packet workflow in the “latter window assisting former
window” mechanism.

2) Amplification Factor Calculator: To calculate the reflec-
tion factor of packet length in the former window, the direct
approach would be to divide the accumulated packet lengths
of forward and backward flows. However, due to the lack
of division support in programmable switch hardware, this
method is not feasible. Our primary goal is not to obtain exact
values but to differentiate between normal and attack flows.
Fortunately, there is a significant difference in the reflection
factor between these two cases, allowing us to calculate a
fuzzy amplification factor under restricted conditions while
still achieving effective discrimination.

The numbers in P4 are represented as bitstrings. As detailed
in Algorithm 1, assuming x and y are the packet length (32bits)

Algorithm 1: Amplification Factor Calculator
Input: Two integers of 32 bits x, y
Output: The amplification factor of x and y

1 IndexH ← max(Top1_index (x),Top1_index (y));
2 IndexL ← min(Top1_index (x),Top1_index (y));
3 if IndexH − IndexL ≤ 10 then
4 return IndexH − IndexL � Amplification factor
5 else
6 return 10 � Limit the maximum factor to 210

7 Function Top1_index(a) � a is a 32-bit integer
8 n ← 1; � Count the number of leading zeros
9 if a == 0 then return −1 ;

10 if a � 16= 0 then n ← n + 16; a ← a � 16 ;
11 if a � 24 = 0 then n ← n + 8; a ← a � 8 ;
12 if a � 28 = 0 then n ← n + 4; a ← a � 4 ;
13 if a � 30 = 0 then n ← n + 2; a ← a � 2 ;
14 n ← n − (a � 31) ;
15 return 31− n

of the forward and backward flows, only the position of
the highest bit 1 is relevant, while the other lower bits are
ignored. Then the amplification factor can be expressed as an
exponent of 2, with the exponent being the difference between
the index of the highest bit 1 in x and y. For example, the
amplification factor for 111 (7D) and 110 (6D) is 20, while
it is 24 for 100000001 (257D) and 11110 (30D). If the index
difference exceeds 10, it is capped at 10, indicating that a
210 amplification factor is sufficient to embody the reflection
effect. Because loop logic is not supported in P4, the highest
bit 1 cannot be found by iterative shifting. Instead, a binary
search approach is used to determine whether the highest 1 is
in the high 16 bits or the low 16 bits, and subsequently in the
high 8 bits or the low 8 bits of those 16 bits. This process is
repeated until the highest 1 is located.

Although the results calculated in this manner have a
significant inaccuracy compared to those obtained using a
division ALU, it does not affect the distinction of features. This
is because the amplification factors in normal and attack states
differ significantly in magnitude, similar to the difference
between 2 and 200 rather than 2 and 4. A set of registers
{0r , 1r , 2r , 3r , 4r , 5r , 6r , 7r , 8r , 9r , 10r} is used, where the
subscript r denotes the amplification factor in exponential form
(base 2). Every time a factor is computed, the value in the
corresponding position of the register is incremented by 1.
When finished, the register stores the number of flows for each
amplification factor. This information is then encapsulated in
cloned packets and reported to the control plane, completing
the extraction and computation of reflection features. Our
amplification factor calculation algorithm simplifies operation
and reduces reported payloads. Instead of providing exact
numerical values, it categorizes the factor into 11 discrete
classes from 0r to 10r , compressing the reported information.
With these 11 values, we can assess window states and detect
reflection attacks effectively.

We compare other division implementation methods in
Table IV. A common approach for implementing division

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on December 21,2024 at 02:40:21 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: FAPM TO FILTER DRDoS ATTACKS WITH P4 DATA PLANE 6709

TABLE IV
COMPARISON OF FLEXIBLE PACKET PROCESSING, P4ENTROPY AND

AMPLIFICATION FACTOR CALCULATOR (Y FOR YES, N FOR NO)

indirectly is through logarithmic and exponential operations,
as A/B = exp(log(A)−log(B)). However, P4 lacks support
for these operations. One method [26] involves using lookup
tables for precomputed results, which consumes significant
TCAM resources. Another method [27] avoids TCAM by
decomposing the computation into integer and decimal parts,
but it requires more complex calculations. Both methods
can achieve less than 1% relative error when parameters
are set correctly, which our method does not achieve this
level of precision. However, high precision is not crucial for
amplification factor calculations, allowing for some flexibility
in accuracy. In other words, the amplification factor calculator
can be regarded as a division tool specially tailored for this
case.

C. Modules of FAPM in the Control Plane

As the control plane has access to more abundant storage
and computing resources, it is responsible for adjusting the
system according to the dynamic changes in the network, as
well as making correct state judgments and transitions.

1) Accuracy: Anomaly Checking: When the controller
receives window information reported by the data plane, it
must be able to make a quick and accurate judgment on
whether an attack has occurred, which is crucial for effective
mitigation. One idea is to assign scores from 0r to 10r
in ascending order and multiply them by the corresponding
flow count to obtain a total score which is used to judge
the window status. However, this approach will undoubtedly
be affected by the flow count in the window, which means
a window containing many low-factor flows will have a
score similar to the window with only one high-factor flow.
Additionally, it is not easy to regulate the exact scores of
different amplification factors. To this end, a normalization
operation is first performed to calculate the proportion of
flow counts corresponding to each amplification factor relative
to the total number of flows in the window. Consider “the
amplification factor of the flow is ir ” as a random event xi ,
and P(xi) can be regarded as the probability of occurrence
of the event. Then, the information reported in a window can
be transformed into a probability distribution form {P(xi)},
i=0,1,2,3,4,5,6,7,8,9,10 and

∑10
i=0 P(xi) = 1.

Kullback-Leibler (KL) divergence [28] is a common method
for measuring the similarity between probability distributions.
It is computed using Eq. (1):

DKL(P‖Q) =
∑

i

P(xi) log
1

Q(xi)
−
∑

i

P(xi) log
1

P(xi)

(1)

Fig. 7. Three typical probability distributions.

KL divergence reflects the similarity between probability
distributions P and Q by calculating the increased length
when coding Q using the code of P. This method ignores the
geometric properties of the probability distributions. However,
the differences between events such as x0 and x1, x0 and x10
should not be considered as consistent.

The Wasserstein distance [29], also known as the Earth
Mover’s Distance (EMD), measures the similarity between
probability distributions by depicting them as piles of earth
and calculating the minimum cost to move one set of piles
into the other. Let dij represent the distance from the ith pile
of P to the jth pile of Q, which is the known cost, and let
fij represent the amount of earth moved from the ith pile of
P to the jth pile of Q, which is the variable to be optimized.
Thus, EMD is the minimum cost of moving P to Q expressed
by Eq. (2) by finding an optimal solution in all possible F:

DEMD (P‖Q) =
inf

F =
[
fij
]

⎛

⎝
N∑

i=1

N∑

j=1

dij fij

⎞

⎠ (2)

If the distance matrix is set as dij = |i − j |, with the cost
of movement being positively correlated with the difference
between the amplification factors, the KL divergence and
EMD are calculated for P1 and P2, as well as for P1 and
P3, based on three typical probability distributions shown in
Fig. 7. The results are DKL(P1‖P2) = 10, DKL(P1‖P3) =
10, DEMD (P1‖P2) = 1 and DEMD (P1‖P3) = 10. As
can be seen, the actual distribution of P2 is closer to P1,
and P3 is farther away from P1, but the KL divergence
measure cannot reflect this characteristic. Therefore, in this
paper, EMD is used to measure the similarity of the reflection
characteristics of the window. The control plane calculates the
probability distribution of the window after receiving 11 flow
counts. Then, the EMD is calculated between the probability
distribution of the current window and the representative
probability distributions of the normal and attack windows
which are trained in advance. If it is closer to the attack
window, the window will be regarded as abnormal.

2) Lightness: State Transition and Mitigation: To minimize
the impact on normal users, the controller does not imme-
diately conclude a DRDoS attack upon receiving reflection
features identified as abnormal. Instead, it treats the network
state as suspicious. Upon detecting the first suspicious window,
the controller instructs the switch to record the length saving
pointers and the 5-tuple flow ID (IP1, IP2, Port1, Port2,
Protocol) in the subsequent window. Unlike before, where
information was reported only at the end of WN1, the
amplification factor and flow ID are now reported immediately

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on December 21,2024 at 02:40:21 UTC from IEEE Xplore. Restrictions apply.

6710 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 6, DECEMBER 2024

Fig. 8. The architecture of FAPM.

each time the factor is calculated, thereby increasing the
workload of the switch.

As shown in Fig. 9, the controller uses the data reported by
the switch to determine its state. Typically, the switch operates
in a light-weight mode, handling basic statistics and reporting.
If the controller detects an abnormal window, it instructs the
switch to enter a heavy-weight mode and cache the reported
information. After three consecutive abnormal distributions,
the system confirms a DRDoS attack and initiates defense
measures. Otherwise, the switch reverts to light-weight mode.
The port with the highest occurrence is identified as the open
service port, and the most frequent IP is identified as the victim
host. The controller then sends a mitigation entry with this
port and IP to the switch and instructs it to discard packets
with matching source ports and destination IPs. The switch
then immediately returns to light-weight mode.

This state transition mechanism allows the switch to remain
in light-weight mode for fast packet processing. It only turns
to heavy-weight mode during network fluctuations to monitor
subsequent windows, then quickly returns to light-weight
mode once the fluctuation or attack flow is resolved. This
approach ensures that attack flow location and defense occur
with minimal overall cost.

3) Flexibility: Dynamic Window: After the switch allo-
cates the required registers for recording the packet length,
generally this configuration will not be changed arbitrarily.
However, changes in flow rate can affect system performance.
Specifically, as the flow rate increases, more flows in a
window heighten hash collision probability, reducing attack
detection accuracy. To alleviate this negative impact, the size
of the window WT can be reduced. On the other hand, as
the flow rate decreases, the number of flows in a window
also decreases. To minimize communication overhead while
ensuring counting accuracy, the size of WT can be increased
appropriately. Therefore, if the size of WT can be flexibly
adjusted based on the flow rate passing through the switch, the
robustness of the system can be fundamentally guaranteed.

Assuming the length of the sketch is N, as mentioned earlier,
we expect that a window will have at most N flows. Since the
number of flows can reflect the flow rate, the control plane can
calculate a total flow number f of a window after receiving the
flow counts corresponding to 11 amplification factors. The two
thresholds are THhigh and THlow . When f reaches THhigh ,
it indicates a high flow rate and a high likelihood of hash

collisions, which needs to cut the time window WT in half.
When f is less than THlow , it means that the flow rate at this
time is very low and collisions are not easy to occur, so WT
can be doubled to reduce the communication frequency. When
f is between the two thresholds, the size of WT is adjusted
only when the difference between f and the total flow count
f ′ of the previous window exceeds a certain value range. This
is to avoid unnecessary frequent adjustments of the window
size. The overall goal is to keep the total number of flows
in a window stable within the range [THlow ,THhigh]. The
formula for calculating the new window size Tnew based on
the current window size Tcurr is as follows, where trunc()
represents rounding towards zero:

Tnew =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2 × Tcurr , f < THlow

Tcurr ×
⎛

⎝1 −
trunc

(
f−f ′
range

)

×range

N

⎞

⎠, THlow ≤ f ≤ THhigh

0.5 × Tcurr , f > THhigh

(3)

D. Overall Framework

Fig. 8 illustrates the system architecture of FAPM. The
greatest advantage of the data plane is its hardware-enabled
efficient packet processing capability, which allows it to
quickly parse packets and extract length fields at a fine-
grained level. Complex computing models that the data plane
cannot directly execute are delegated to the intelligent control
plane. By compressing window reflection features into 11 flow
counts, communication bandwidth is conserved, enabling a
deployment strategy that leverages the strengths of both planes.

IV. EXPERIMENT AND EVALUATION

Our experiments aim to answer several design and
performance-related questions regarding FAPM, including:

• Does the design “latter window assisting former window”
truly optimize its effectiveness?

• Can the time window be dynamically adjusted based on
the flow rate to improve system performance?

• How can we evaluate its performance in the detection and
mitigation of DRDoS attacks?

A. Experimental Setup

On a virtual machine (Ubuntu 20.04, Intel i5-7500, 16 GB
mem), we build a simulation platform and run the topology
shown in Fig. 11 on Mininet [30]. The switches used in this

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on December 21,2024 at 02:40:21 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: FAPM TO FILTER DRDoS ATTACKS WITH P4 DATA PLANE 6711

Fig. 9. State transition mechanism of FAPM.

topology are BMv2 [16]. The FAPM prototype1 in the data
plane is implemented with P4 and deployed on switch S3 at
the victim end. All traffic destined for the victim will pass
through this edge switch, which is connected to the control
plane through P4Runtime.

B. “Latter Window Assisting Former Window”

We conduct two sets of experiments under the same con-
ditions. The first set uses a typical window partition method,
which calculates all the information and clears all registers
in the last packet pipeline of the window. The second set
uses the “latter window assisting former window” method
designed in this paper, which distributes the work evenly
across each packet pipeline. Fig. 12 shows the ingress and
egress timestamps of packets in the switch under two sce-
narios. Accumulating a large amount of work until the last
packet results in oscillations at the end of each window, with
increasing delays in processing some packets, which affects
network performance. In contrast, the design of this paper can
effectively avoid these disadvantages, ensuring smooth and
consistent packet forwarding.

C. Adjustment of Time Window

This experiment is carried out to test the function of FAPM
in dynamically adjusting the time window to match the flow
rate. As shown in Fig. 10(a), traffic is sent to the destination
host with a bandwidth of 5Mbps, 10Mbps, 15Mbps, and
20Mbps respectively, each lasting for 15s. The initial time
window WT is set to 1s, with THhigh at 80 and THlow at
20. The yellow line indicates that the window’s duration can
be adjusted to avoid the high hash collision rate as the flow
speed continues to rise.

We make the comparison between opening and closing the
time window tuning module on the control plane. As shown
in Fig. 10(b), at low flow rates from 0-15s, there is no issue
with hash collisions, so the window size is increased to reduce
the reporting frequency and communication overhead. After
15s, as the flow counts in the reported window increase, the
window size begins to shrink for the purpose of preventing
hash collisions. At this time, the growth of communication
costs has become a secondary concern.

Fig. 10(c) is a bubble chart with the horizontal axis as
the number of flows and the vertical axis as the number
of hash collisions in a window. The size of the bubble is
positively correlated with the length of the time window.

1Available at https://github.com/wxc397/FAPM.

TABLE V
THE COMPOSITION OF ATTACK TRAFFIC

TABLE VI
THE DETECTION METRICS UNDER THREE DISTANCE MATRICES (“ACC”

STANDS FOR ACCURACY, AND “PRE” STANDS FOR PRECISION)

Blue bubbles, indicating the tuning module is disabled, are
uniformly sized (1s) and clustered in high collision areas. In
contrast, yellow bubbles, with the tuning module enabled, vary
in size and are predominantly found in lower collision areas.
The tuning module effectively controls the number of flows
in most windows within the range [THlow , THhigh], which is
consistent with our design objective.

D. Attack Detection

CIC-DDoS2019 [24] is a DRDoS attack traffic dataset that
contains multiple protocols. In this paper, we replay a portion
of this dataset (3369981 packets, as detailed in Table V) and
benign traffic (4500000 packets) in experiments conducted
with a window size of WT=0.1s, WN1=WN2=100, and two
hash functions. Thus, we obtain the probability distributions
related to the reflection feature for each window.

Set the distance metric in k-means to EMD for training.
As shown in Table VI, cross-validation is conducted under
three distance matrices: dij = |i − j | which is linear, dij =

2|i−j | which is exponential, and dij = |i − j |2 which is
square. The results demonstrate that the exponential distance
matrix yielded the best performance, achieving the highest
detection effectiveness among the five experiments. The aver-
age detection accuracy is 91.36%, the average precision is
92.37%, and the average recall is 91.08%. Fig. 13 illustrates
the obtained clustering centers, where the amplification factors
of attack windows are concentrated at higher positions, while
the amplification factors of benign windows are dispersed at
lower positions.

E. Attack Mitigation

1) Metric Definition: In order to evaluate the overall level
of an attack mitigation system, we define an evaluation metric
called mitigation efforts (ME). T0 represents the time when
the attack begins, T1 indicates the moment when the system

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on December 21,2024 at 02:40:21 UTC from IEEE Xplore. Restrictions apply.

6712 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 6, DECEMBER 2024

Fig. 10. Opening tuning module vs. closing tuning module of time window.

Fig. 11. Topology of the experiment.

0 30 60 90

Packet

6.08

6.1

6.12

6.14

6.16

6.18

6.2

T
im

(u
s)

10
7

0 30 60 90

Packet

2.18

2.2

2.22

2.24

2.26

2.28

2.3

T
im

e(
u
s)

10
7

6.135

6.14

10
7

gress timestamp

ngress timestamp ingress timestamp

egress timestamp

0 30 60 90

Packet

2.18

2.2

2.22

2.24

2.26

2.28

2.3

T
im

e
(u

s)

10
7

ngress timestamp

gress timestamp

Fig. 12. The ingress and egress timestamps of packets.

Fig. 13. Clustering centers of probability distributions.

detects an abnormality, which is the moment when the heavy-
weight mode is first switched to in this paper, T2 indicates the
moment when the attack flow is discarded, and T3 is the time
when the available bandwidth is fully restored to its normal
level. Then, D = T3 − T1 reflects the entire response time,
D0 = T1 −T0 reflects the sensitivity of attack detection, and
D1 = T2 − T1 reflects the efficiency of deploying mitigation
rules. To directly evaluate an attack detection and mitigation
system overall, we express ME using the following equation:

ME = −ln
(
D

60

)

×
(

1− D0

60

)

×
(

1− D1

60

)

(4)

Fig. 14. Value of ME with different D0, D1, D.

TABLE VII
TIME POINTS FOR MITIGATING CORRELATED EVENTS AND ME METRICS

If D is smaller and the proportions of D0 and D1 in D are
smaller, ME is higher and the system performance is better.
Moreover, when D exceeds 60s, the performance of the system
is considered extremely poor, and the value of ME becomes
negative. As shown in Fig. 14, systems with ME>2 can be
considered good.

2) Performance Testing: We conduct three sets of experi-
ments in total. The first set launches an amplification attack
using only one specific service at 10s. The second set launches
an amplification attack using multiple services simultaneously
at 10s, which is uncommon in reality but possible. The third
set launches attacks continuously at 10s, 20s, and 30s to test
the stability of the system. Fig. 15 shows the traffic of the
victim link and the communication traffic caused by the cloned
packets reported by the data plane. E0∼E3 represent the
corresponding events at T0∼T3. The results show that FAPM
can quickly respond to and block attack flows, with extremely
low communication overhead, and an average bandwidth of
less than 1 Kbps.

The detailed numerical statistics are listed in Table VII,
which shows that the ME of FAPM exceeds 2 under all differ-
ent conditions, and D is still the dominant factor determining
the system performance.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on December 21,2024 at 02:40:21 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: FAPM TO FILTER DRDoS ATTACKS WITH P4 DATA PLANE 6713

Fig. 15. Network traffic after deploying FAPM.

TABLE VIII
PERFORMANCE COMPARISON BETWEEN FAPM AND OTHER METHODS

3) Method Comparison: Compared with existing methods
that use P4 data planes for DRDoS attack detection [14], [15]
in Table VIII, the greatest advantage of FAPM lies in its light-
weight deployment. The data plane only needs to use registers
to record packet length and does not require caching a large
amount of information. This greatly saves the valuable SRAM
(tens of megabytes) and TCAM (a few megabytes) of the
switch. Additionally, the compression of the window features
reduces communication overhead to an extremely low level.

V. RELATED WORK

Sketch-based network measurement in P4 data plane.
Network measurement based on sketches significantly con-
tributes to attack detection, optimized scheduling, and
intelligent operation and maintenance. Currently, significant
research focuses on deploying advanced sketch counting
structures in constrained programmable data planes, such as
FCM-Sketch [31] and CocoSketch [32]. However, some real-
time applications, such as real-time attack detection systems,
do not belong to the landmark window models which need
the overall network traffic data from the start time to the
present moment. Instead, they are more concerned with sliding
window data, which requires the sketches to be able to
promptly update outdated cumulative data that is no longer
meaningful.

One mainstream strategy is to adopt a partitioning strategy,
such as maintaining a large sketch and small sketches [33] for
different time intervals, or using a queue [34] to maintain a
series of partitions working in the current window. However,
implementing sketch segmentation and queue maintenance in
P4 switches is a challenge. Another approach is to maintain a
timestamp list [35] to precisely evict outdated packet statistics,
but this imposes a significant memory burden on the switch.
Moreover, this update mechanism operates asynchronously on
a per-flow basis, which means that it cannot obtain all the
statistics for a specific window at a single window-end point.
The “latter window assisting former window” mechanism
proposed in this paper adds a replicated sketch and index
recording structure. It records the packet information of the
current window while simultaneously calculating and clearing
the complete data of the historical window. By introducing a
one-window delay, this mechanism efficiently supports feature
extraction and computation within the real-time window and
report the features to the controller on a per-window basis.

Attack detection with P4 data plane. Many studies have
explored deploying attack detection systems in P4 forwarding
devices. One approach is to use machine learning models
to implement an intelligent data plane for online inference,
allowing for line-rate classification of benign and malicious
traffic. Planter [36] and NetBeacon [37] have implemented
tree-based models, but the calculation and number of statistical
features these models rely on are constrained by the stage
numbers and the computation capability of the switch. This
significantly reduces the classification accuracy of the model.
Brain-on-Switch [38] has successfully deployed RNN models
by designing a binary activation function and sliding execution
inference time steps. However, a small portion of traffic with
low classification confidence needs to be forwarded to external
servers for further analysis, resulting in forwarding delays.

Dedicated in-band detection systems emphasize rule-based
detection and filtering. Jaqen [39] and POSEIDON [40]
designed a series of monitoring and defense primitives to cope
with dynamically changing DDoS attacks, but this requires
significant changes to the switch configuration. SECAP [41]
and N ETHCF [14] perform authentication in the data plane to
verify legitimate connections, consuming substantial memory
for rule storage. P4DDLe [42] and Euclid [43] collect and
compute traffic features in the data plane. P4DDLe [42] needs
to store many packet-level features for the classifier, while
Euclid [43] uses IP entropy as a feature, requiring a large
amount of SRAM for the longest prefix match table entries to
complete the pre-computed function. Our solution only needs
to record the packet lengths and perform simple shift opera-
tions to obtain reflection features. Additionally, it compresses
the window information into 11 category features, reducing
storage resource occupation and upload communication.

Deployment of DRDoS attack detection methods. Due
to the unique nature of DRDoS attacks, their detection and
mitigation strategies can be deployed at the source, interme-
diary, and victim ends. At the source end, a threshold-based
detection method [44] on the SDN gateway filters request
packets and samples traffic to identify attacks. Intermediary
reflection servers can serve as deployment points, as they
can determine the legitimacy of the request before generating

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on December 21,2024 at 02:40:21 UTC from IEEE Xplore. Restrictions apply.

6714 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 6, DECEMBER 2024

and delivering the response, as discussed in [10] and [11].
Unfortunately, due to the vast number of servers, implementing
this method universally is challenging.

Deployment at the victim end is relatively flexible and
convenient. A distributed system proposed in [45] is located
at the edge switches and uses aggregated sketches to detect
DRDoS attacks by examining request-response packet map-
pings. Although deployment on the victim side is flexible and
on-demand, its reaction is relatively delayed compared to the
source and intermediary sides. Additionally, it cannot prevent
the bandwidth waste caused by reflected packets before they
reach the target. Thus, some methods designed the architecture
to detect DRDoS attacks in the border of an ISP network.
In D2AMA [46], a control agent communicates with the
border routers associated with the affected subnet, enabling
the shielding of attack packets through fuzzy association
rules. DIDA [15] facilitates the exchange of request and
response packet counts between access routers to identify
DRDoS attacks. Access control lists are then applied and
maintained on the routers to filter out malicious traffic. To
respond earlier at the upstream switches and reduce the
bandwidth consumption of attack traffic along the path, the
FAPM system proposed in this paper can be enhanced in two
ways. First, after the controller makes an attack determination,
it notifies the upstream switches about the attack event and
the attack source, prompting them to start discarding the
malicious traffic. Second, the system can be deployed in a
distributed manner across multiple ISP access points, which
requires designing a specific information exchange protocol
and meeting higher demands on the underlying devices.

VI. CONCLUSION

In this paper, we explore the advantages of fast and fine-
grained programmable data planes and propose a light-weight
DRDoS attack detection and defense system called FAPM. In
the data plane, it collects the information and calculates fea-
tures for the fake amplification phenomenon through a storage
mechanism called “latter window assisting former window”
and an amplification factor calculator. As for the control plane,
it is responsible for decision-making and dynamic regulation.
At the same time, FAPM ensures that communication between
the two planes involves only a small number of cloned packets.
Multiple sets of experiments verify the agility, flexibility, and
low overhead of FAPM.

In the future, we aim to enhance FAPM to address a
broader range of attack threats and assess its performance
when deployed on hardware switches. Additionally, we will
investigate the optimal balance between the data plane and
control plane in implementing network functions to further
refine the design.

REFERENCES

[1] Y. Li, Q. Wang, F. Yang, and S. Su, “Traceback DRDoS attacks,” J. Inf.
Comput. Sci., vol. 8, no. 1, pp. 94–111, 2011.

[2] K. Singh and A. Singh, “Memcached DDoS exploits: Operations,
vulnerabilities, preventions and mitigations,” in Proc. IEEE 3rd Int.
Conf. Comput., Commun. Security (ICCCS), 2018, pp. 171–179.

[3] J. Krupp, I. Grishchenko, and C. Rossow, “AmpFuzz: Fuzzing for
amplification DDoS vulnerabilities,” in Proc. 31st USENIX Secur. Symp.
(USENIX Secur.), 2022, pp. 1043–1060.

[4] X. Li, T. Liu, M. S. Obaidat, F. Wu, P. Vijayakumar, and
N. Kumar, “A lightweight privacy-preserving authentication protocol for
VANETs,” IEEE Syst. J., vol. 14, no. 3, pp. 3547–3557, Sep. 2020.

[5] Q. Liu, Y. Peng, J. Wu, T. Wang, and G. Wang, “Secure multi-keyword
fuzzy searches with enhanced service quality in cloud computing,” IEEE
Trans. Netw. Service Manag., vol. 18, no. 2, pp. 2046–2062, Jun. 2021.

[6] D. Tang, Y. Yan, S. Zhang, J. Chen, and Z. Qin, “Performance
and features: Mitigating the low-rate TCP-targeted DoS attack via
SDN,” IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 428–444,
Jan. 2022.

[7] X. Li, S. Liu, F. Wu, S. Kumari, and J. J. P. C. Rodrigues, “Privacy
preserving data aggregation scheme for mobile edge computing assisted
IoT applications,” IEEE Internet Things J., vol. 6, no. 3, pp. 4755–4763,
Jun. 2019.

[8] P. M. Priya, V. Akilandeswari, and S. M. Shalinie, “Detecting DRDoS
attack by log file based IP pairing mechanism,” WSEAS Trans. Comput.,
vol. 13, pp. 538–548, 2014.

[9] Z. A. El Houda, L. Khoukhi, and A. S. Hafid, “Bringing intelligence
to software defined networks: Mitigating DDoS attacks,” IEEE Trans.
Netw. Service Manag., vol. 17, no. 4, pp. 2523–2535, Dec. 2020.

[10] L. Kavisankar, C. Chellappan, P. Sivasankar, A. Karthi, and A. Srinivas,
“A pioneer scheme in the detection and defense of DrDoS attack
involving spoofed flooding packets,” KSII Trans. Internet Inf. Syst.,
vol. 8, no. 5, pp. 1726–1743, 2014.

[11] C. Jin, H. Wang, and K. G. Shin, “Hop-count filtering: An effective
defense against spoofed DDoS traffic,” in Proc. 10th ACM Conf.
Comput. Commun. Secur., 2003, pp. 30–41.

[12] D. Tang, X. Wang, X. Li, P. Vijayakumar, and N. Kumar, “AKN-
FGD: Adaptive Kohonen network based fine-grained detection of LDoS
attacks,” IEEE Trans. Dependable Secure Comput., vol. 20, no. 1,
pp. 273–287, Jan./Feb. 2023.

[13] D. Tang, S. Wang, B. Liu, W. Jin, and J. Zhang, “GASF-IPP: Detection
and mitigation of LDoS attack in SDN,” IEEE Trans. Services Comput.,
vol. 16, no. 5, pp. 3373–3384, Sep./Oct. 2023.

[14] M. Zhang et al., “NetHCF: Filtering spoofed IP traffic with pro-
grammable switches,” IEEE Trans. Dependable Secure Comput., vol. 20,
no. 2, pp. 1641–1655, Mar./Apr. 2023.

[15] X. Z. Khooi, L. Csikor, D. M. Divakaran, and M. S. Kang, “DIDA:
Distributed in-network defense architecture against amplified reflection
DDoS attacks,” in Proc. 6th IEEE Conf. Netw. Softwarization (NetSoft),
2020, pp. 277–281.

[16] “Behavioral model version 2.” Accessed: Feb. 23, 2022. [Online].
Available: https://github.com/p4lang/behavioral-model

[17] D. Tang, Y. Yan, C. Gao, W. Liang, and W. Jin, “LtRFT: Mitigate the
low-rate data plane DDoS attack with learning-to-rank enabled flow
tables,” IEEE Trans. Inf. Forensics Security, vol. 18, pp. 3143–3157,
2023.

[18] B. Liu, D. Tang, J. Chen, W. Liang, Y. Liu, and Q. Yang, “ERT-
EDR: Online defense framework for TCP-targeted LDoS attacks in
SDN,” Expert Syst. Appl., vol. 254, Nov. 2024, Art. no. 124356.

[19] P. Bosshart et al., “P4: Programming protocol-independent packet
processors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, 2014.

[20] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, “The
P4—>NetFPGA workflow for line-rate packet processing,” in Proc.
ACM/SIGDA Int. Symp. Field-Programm. Gate Arrays, 2019, pp. 1–9.

[21] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,” ACM SIGCOMM
Comput. Commun. Rev., vol. 43, no. 4, pp. 99–110, 2013.

[22] A. Sivaraman, C. Kim, R. Krishnamoorthy, A. Dixit, and M. Budiu,
“DC.p4: Programming the forwarding plane of a data-center switch,” in
Proc. 1st ACM SIGCOMM Symp. Softw. Defin. Netw. Res., 2015,
pp. 1–8.

[23] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a
new intrusion detection dataset and intrusion traffic characterization,” in
Proc. ICISSP, 2018, pp. 108–116.

[24] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani,
“Developing realistic distributed denial of service (DDoS) attack dataset
and taxonomy,” in Proc. Int. Carnahan Conf. Security Technol. (ICCST),
2019, pp. 1–8.

[25] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,
pp. 58–75, 2005.

[26] N. K. Sharma, A. Kaufmann, T. E. Anderson, A. Krishnamurthy,
J. Nelson, and S. Peter, “Evaluating the power of flexible packet
processing for network resource allocation,” in Proc. NSDI, 2017,
pp. 67–82.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on December 21,2024 at 02:40:21 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: FAPM TO FILTER DRDoS ATTACKS WITH P4 DATA PLANE 6715

[27] D. Ding, M. Savi, and D. Siracusa, “Estimating logarithmic and
exponential functions to track network traffic entropy in P4,” in Proc.
IEEE/IFIP Netw. Oper. Manage. Symp. (NOMS), 2020, pp. 1–9.

[28] J. M. Joyce, “Kullback-Leibler divergence,” in International
Encyclopedia of Statistical Science. Berlin, Germany: Springer, 2011,
pp. 720–722.

[29] S. S. Vallender, “Calculation of the wasserstein distance between
probability distributions on the line,” Theory Probab. Appl., vol. 18,
no. 4, pp. 784–786, 1974.

[30] “Mininet.” Accessed: Feb. 23, 2022. [Online]. Available:
http://mininet.org/

[31] C. H. Song, P. G. Kannan, B. K. H. Low, and M. C. Chan, “FCM-sketch:
Generic network measurements with data plane support,” in Proc. 16th
Int. Conf. Emerg. Netw. Exp. Technol., 2020, pp. 78–92.

[32] Y. Zhang et al., “CocoSketch: High-performance sketch-based measure-
ment over arbitrary partial key query,” in Proc. ACM SIGCOMM Conf.,
2021, pp. 207–222.

[33] S. Matusevych, A. Smola, and A. Ahmed, “Hokusai-sketching streams
in real time,” 2012, arXiv:1210.4891.

[34] R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner, “Heavy hitters
in streams and sliding windows,” in Proc. 35th Annu. IEEE Int. Conf.
Comput. Commun. (INFOCOM), 2016, pp. 1–9.

[35] Y. Chabchoub and G. Heébrail, “Sliding HyperLogLog: Estimating
cardinality in a data stream over a sliding window,” in Proc. IEEE Int.
Conf. Data Min. Workshops, 2010, pp. 1297–1303.

[36] C. Zheng et al., “Automating in-network machine learning,” 2022,
arXiv:2205.08824.

[37] G. Zhou, Z. Liu, C. Fu, Q. Li, and K. Xu, “An efficient design of
intelligent network data plane,” in Proc. 32nd USENIX Security Symp.
(USENIX Secur.), 2023, pp. 6203–6220.

[38] J. Yan et al., “Brain-on-switch: Towards advanced intelligent network
data plane via NN-driven traffic analysis at line-speed,” in Proc.
21st USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2024,
pp. 419–440.

[39] Z. Liu et al., “Jaqen: A high-performance switch-native approach for
detecting and mitigating volumetric DDoS attacks with programmable
switches,” in Proc. 30th USENIX Secur. Symp. (USENIX Secur.), 2021,
pp. 3829–3846.

[40] M. Zhang et al., “Poseidon: Mitigating volumetric DDoS attacks with
programmable switches,” in Proc. 27th Netw. Distrib. Syst. Secur. Symp.
(NDSS), 2020, pp. 1–18.

[41] D. Smyth, S. Scott-Hayward, V. Cionca, S. McSweeney, and D. O’Shea,
“SECAP switch—Defeating topology poisoning attacks using P4 data
planes,” J. Netw. Syst. Manage., vol. 31, no. 1, p. 28, 2023.

[42] R. Doriguzzi-Corin, L. A. D. Knob, L. Mendozzi, D. Siracusa, and
M. Savi, “Introducing packet-level analysis in programmable data planes
to advance network intrusion detection,” Comput. Netw., vol. 239,
Feb. 2024, Art. no. 110162.

[43] A. da S. Ilha, Â. C. Lapolli, J. A. Marques, and L. P. Gaspary, “Euclid: A
fully in-network, P4-based approach for real-time DDoS attack detection
and mitigation,” IEEE Trans. Netw. Service Manag., vol. 18, no. 3,
pp. 3121–3139, Sep. 2021.

[44] S.-N. Nguyen, V.-Q. Nguyen, G.-T. Nguyen, J. Kim, and K. Kim,
“Source-side detection of DRDoS attack request with traffic-aware adap-
tive threshold,” IEICE Trans. Inf. Syst., vol. 101, no. 6, pp. 1686–1690,
2018.

[45] X. Jing, J. Zhao, Q. Zheng, Z. Yan, and W. Pedrycz, “A reversible sketch-
based method for detecting and mitigating amplification attacks,” J.
Netw. Comput. Appl., vol. 142, pp. 15–24, Sep. 2019.

[46] X. Yang, W. Yang, Y. Shi, and Y. Gong, “The detection and orientation
method to DRDoS attack based on fuzzy association rules,” J. Commun.
Comput., vol. 3, no. 8, pp. 1–10, 2006.

Dan Tang received the B.S., M.S., and Ph.D.
degrees from the Huazhong University of Science
and Technology in 2014. He is currently an
Associate Professor with the College of Computer
Science and Electronic Engineering, Hunan
University. His research interests include network
security, information security, and programmable
network.

Xiaocai Wang received the B.E. degree in computer
science and technology from Hunan University in
2022, where she is currently a Postgraduate with
the College of Computer Science and Electronic
Engineering. Her research directions include cyber-
space security and programmable network.

Keqin Li (Fellow, IEEE) is a SUNY Distinguished
Professor of Computer Science with the State
University of New York and also a National
Distinguished Professor with Hunan University. His
current research interests include cloud comput-
ing, fog computing and mobile edge computing,
energy-efficiency computing and communication,
embedded systems and cyber-physical systems, het-
erogeneous computing systems, big data computing,
high-performance computing, CPU-GPU hybrid and
cooperative computing, computer architectures and

systems, computer networking, machine learning, intelligent and soft comput-
ing. He is an AAIA Fellow. He is also a member of Academia Europaea.

Chao Yin received the B.S., M.S., and Ph.D. degrees
from the Huazhong University of Science and
Technology in 2014. He is currently an Associate
Professor with the School of Computer and Big Data
Science, Jiujiang University. His research interests
include information security, big data, cloud storage,
and erasure codes.

Wei Liang received the Ph.D. degree in computer
science and technology from Hunan University in
2013. He was a Postdoctoral Scholar with Lehigh
University, Bethlehem, PA, USA, from 2014 to
2016. He is currently a Professor with the School
of Computer Science and Engineering, Hunan
University of Science and Technology. His research
interests include blockchain security technology,
network security protection, embedded system and
hardware IP protection, fog computing, and security
management in wireless sensor networks.

Jiliang Zhang (Senior Member, IEEE) is currently
a Full Professor with the College of Integrated
Circuits, Hunan University. He is the Vice Dean of
the College of Integrated Circuits, Hunan University.
He has authored more than 80 technical papers
in leading journals and conferences. His current
research interests include hardware security, inte-
grated circuit design, and intelligent system. He was
the recipient of CCF Integrated Circuit Early Career
Award, and the winner of Excellent Youth Fund of
NSFC. He was a CCF Distinguished Speaker. He

has been the Program Committee Member for a number of well-known
conferences, such as DAC, ASP-DAC, GLSVLSI, and FPT. He is the
Secretary-General of CCF Fault-Tolerant Computing Professional Committee.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on December 21,2024 at 02:40:21 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

