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A B S T R A C T

As cloud demand for computation and network resources fluctuates, effective resource management becomes
essential for optimizing allocation and enhancing performance in virtualization-based applications. Current
methods struggle to efficiently schedule multiple virtual resources for dynamic workloads. To address this,
we propose a self-adaptive elastic virtual resource management (EVRM) framework that comprises a monitor,
analyzer, planner, and executor, enabling dynamic scheduling of CPU, memory, and bandwidth for virtual
instances. Central to EVRM is a resource management model employing a novel deep reinforcement learning
approach, the deep deterministic policy gradient-based resource allocation (DDPG-RA), which coordinates
resource allocation by automatically exploring optimization policies and learning complex relationships
between resource allocation and performance. Additionally, DDPG-RA features an action refinement algorithm
to derive multiple resource allocations from its outputs. Experimental results using OpenStack demonstrate
that EVRM significantly enhances performance, achieving approximately 52.87% faster benchmark completion
times and a 41.37% reduction in average time under both light and heavy loads, outperforming three
competing approaches while optimizing physical resource utilization.
1. Introduction

In the past few years, cloud computing has undergone rapid devel-
opment to provide computing services [1,2]. This leads to the rejuvena-
tion of virtualization technologies, such as KVM-based virtual machine
(VM) and Docker-based container [3]. Virtualization enables virtual
instances (i.e., VMs or containers) to run in one compute server using
multiplexing hardware resources with robust scalability. This is a way
to improve hardware resource utilization while maintaining a reason-
able quality of service (QoS). However, the exponential growth of in-
ternet traffic and changing cloud resource demands present significant
challenges in maintaining consistent cloud service performance [4–6].
For instance, virtual instances are initially allocated to tenants and
configured with static resources when booted. However, applications
running in virtual instances bring dynamic workload, which has led
to unstable service performance and low resource utilization [7,8].
The inefficiency of allocating resources, including CPU, memory, and
network bandwidth, causes massive performance degradation [9,10].
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To cope with the fluctuations in cloud resource demands, this
paper manages the virtual instances by elastic resource management,
referring to resizing (scaling-up or scaling-down) the resource amount
of virtual instances [11]. Virtual resource management is challenging
and responsible for achieving resource optimization of virtual instances
to get excellent running performance. This paper focuses on dynam-
ically managing computation resources (CPU, memory), and network
resource (bandwidth), in response to the changing workloads of virtual
instances on a server. Our work in this study aims to improve the virtual
instances’ running performance by making full utilization of multiple
resources.

Since virtual instances’ running performance is usually unavailable
with specific quantitative results, most researches [12,13] only consider
the resource utilization when allocating virtual resources or collecting
system information. However, virtual instances’ running performance
relates to a few factors in addition to the resource utilization. Therefore,
the first challenge of elastic virtual resource management is CH1: How
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Fig. 1. Completion time under different computation and network resource configura-
tions of virtual instances.

to build a elastic virtual resource management model that optimizes virtual
instances’ running performance?

Furthermore, numerous resource management methods are pro-
posed to schedule a single type of resources [13,14]. Moreover, co-
ordinating resource schedulers has also been investigated to manage
CPU and memory resources together. For example, the Adares [15] is
devised to leverage a contextual bandits framework to take hot addi-
tion/removal actions for virtual CPU (vCPU) and memory resources
of VMware’s vSphere VMs. With the advantages of portability and
minimal overhead over VMs, containers gain popularity as lightweight
virtualization (or containerization) technology [16]. Resource manage-
ment in container environments possesses limited research, particularly
on coordinating multiple resources management. For example, the
Thoth [17] achieves automatic CPU and memory scaling for container-
based cloud environment via 𝑄-learning method. However, these works
fail to well consider that the running performance of applications al-
ways relates to multiple types of resources [18], including computation
and network resources. For example, the performance of memory-
intensive or network-intensive tasks tends to tightly related to CPU
resources. Therefore, the second challenge is CH2: How to build the
relationship between computation and network resources when we apply a
resource allocation?

Feedback-based resource allocation has been exploited by recent
work for its simplicity [19], obtaining the optimal virtual resources
allocation for only current system state. However, these allocation
solutions can be sub-optimal for the future system states due to the
dynamic workload of virtual instances on a server. Furthermore, rein-
forcement learning (RL) methods are also applied to allocate virtual
resources [19]. However, these works set limited action space during
resource allocation, ignoring the continuous action space and resulting
in limited resource allocation performance. Therefore, the third chal-
lenge is CH3: How to obtain resource allocation solution to optimize the
adaption of dynamic workload for virtual instances on a server?

It is evident that solely scaling CPU and memory overlooks the
critical aspect of application performance, i.e., bandwidth resource. To
substantiate this assertion, we conducted an experiment designed to
illustrate the value of scaling bandwidth alongside CPU and memory. In
our setup, one VM acts as the client, transmitting images, while another
VM serves as the server, executing complex Canny algorithm. During
the experiment, we identified bandwidth as the primary bottleneck,
rather than CPU or memory limitations. By testing various configura-
tions of CPU for client and bandwidth for both VMs, we demonstrate
the necessity of bandwidth scaling alongside CPU and memory opti-
mization. Our findings, detailed in Fig. 1, underscore the importance
of holistic resource scaling for optimal application performance.

We configured bandwidth settings of 1M, 8M, and 16M while
allocating CPU cores to 1 or 4. Notably, the transition time significantly
exceeds the computation time. For instance, transitioning bandwidth
from 1M to 8M reduced the total runtime from 350 s to 200 s.

Conversely, varying CPU cores from 1 to 4 across different bandwidth c

2 
configurations resulted in marginal improvements. These results indi-
cate that optimizing bandwidth, particularly when it is the bottleneck,
significantly enhances application performance.

Based on CH1, CH2 and CH3, we model the relationship between
he resource allocation and system performance accurately, in which
ome resource configuration values are discrete (CPU) while others
memory, bandwidth) are continuous, and it is hard to unify them.
eanwhile, to optimize system performance, we utilize the relationship
odel to dynamically allocate multiple resources for virtual instances.

Targeting CH1, we analyze the key factors that affect the resource
tilization and running performance of virtual instances. Furthermore,
resource management approach requires interaction with the cloud

nvironment, where each resource allocation is selected according to
he current state and is executed to transition to the next state during
he interaction process. Therefore, the resource management problem
beys Markov Decision Process (MDP). We finally construct an MDP
odel for elastic virtual resource management problem.

Targeting CH2 and CH3, since complex dependency relations and
ver-changing workloads are not fully understood to estimate the
esource demands, we apply deep reinforcement learning (DRL) to
earn the optimization policy to allocate multiple virtual resources and
dapt its decision during virtual instances running on a server. The
earned model can maximize the potential reward, i.e., the overall
ptimization of resource utilization and virtual instance running per-
ormance. Specifically, we propose a novel deep deterministic policy
radient based resource allocation (DDPG-RA) method, to coordinate
PU, memory, and bandwidth resources of virtual instances on a server.
DPG-RA employs deep deterministic policy gradient (DDPG) [20]

o automatically explore the optimization policy during the training
rocess, learning the subtle relationships between multiple virtual
esources allocation, resource utilization, and virtual instance running
erformance. Moreover, our DDPG-RA cooperates with a proposed
ction refinement algorithm to obtain multiple virtual resources allo-
ation from DDPG output. Finally, we present a self-adaptive resource
anagement (EVRM) system that dynamically schedules CPU, memory,

nd bandwidth resources in VM and container environments, applying
DPG-RA with learned knowledge to manage multiple virtual resources
llocation to match the changing resource demands.

The contributions of this paper include:

• We build a novel model for elastic virtual resource management,
indicating the key factors that affect the resource utilization and
running performance of virtual instances. To our best knowledge,
we are the first to investigate the coordinating CPU, memory, and
bandwidth.

• We propose a self-adaptive resource management algorithm,
called DDPG-RA, which firstly employs a DDPG model and a
proposed action refinement algorithm to dynamically and quan-
titatively calculate target resource allocation with maximum po-
tential reward.

• We develop a self-adaptive resource management framework
EVRM, applying DDPG-RA with learned knowledge to adapt to
the dynamic changes of workload, with improving the resource
utilization and virtual instance running performance as a goal.

We evaluate our elastic virtual resource management approach
n real-world Nova and Nova-docker services in OpenStack and con-
uct multiple tests to evaluate our framework. The evaluation results
erified that with efficient use of physical resources, the proposed
pproach improves the performance of virtual instances by shorten-
ng the completion time of various benchmarks in the validation of
Ms/containers. Compared to the existing baselines, EVRM reduces

he completion time by about 52.87% on average during light-loaded
valuation and about 41.37% during heavy-loaded evaluation.

The remainder of this paper is organized as follows: Section 2
eviews the related work. Section 3 gives the system overview of
ur EVRM. Section 4 introduces our resource management algorithm
n detail. Experiments are conducted in Section 5. Finally, Section 6

oncludes the paper.
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2. Related work

Many studies have explored elastic resource management for cloud
efficiency. We can classify these works according to the resource types,
including memory, CPU, bandwidth, and coordinating cases.

Memory management: Research in [21] proposed an adaptive
lobal-scheduling algorithm to control memory. Lahmann et al. [22]

nvestigated memory allocation in container applications, aiming to
cheduling memory utilization in containers, and presented the dif-
erences between VM-based and container-based resource allocation.
icodemus et al. [23] presented a elastic container memory allocation
ethod to satisfy the changing QoS requirements. However, it only

onsiders current state. Melissaris et al. [24] presented the elastic
loud services of cloud data platform, Snowflake, which scales memory
hen queries require significantly more memory than CPU. However,

t ignores the joint scaling of other virtual resources.
CPU management: Makridis et al. [14] presented adaptive CPU

esource provisioning schemes by configuring timeslice and ratelimit
alues in the Xen Credit scheduler. Jang et al. [25] provided Boost-
cheduling scheme for VMs to lead boost credit via the evaluation
unction, achieving automatic boost frequency management. In ad-
ition, Wang et al. [26] and Wang et al. [27] designed predictive
ethods based on machine learning to decrease CPU slack while avoid-

ng CPU insufficiency for various CPU workloads. Zhao et al. [28]
nvestigated tiny autoscalers to dynamically allocate CPU for short-
unning serverless workloads in Kubernetes. However, these methods
gnore the utilization relationships between multiple resources.
Bandwidth management: Karmakar et al. [29] devised heuristic

nd integer linear programming algorithms for bandwidth allocation.
hen et al. [30] modeled the bandwidth allocation optimization prob-

em and proposed a distributed bandwidth allocation scheme based
n the extension of fairness mechanism and dual decomposition to
mprove network performance while improving bandwidth utilization.
i et al. [31] implemented a coordinating bandwidth control archi-
ecture, which considers bandwidth resource as sharing resource via
roup, provides multi-dimensional bandwidth sharing scheme for inter-
ramework, inter- and intra-application, and develops a path selection
ethod based on network dependency. Zeng et al. [32] devised an

R-IOV-based network I/O allocation framework, named Raccoon, for
workload-aware VM scheduling algorithm to facilitate hybrid I/O
orkloads in virtual environments. Based on this, Ye et al. [13] im-
lemented an autonomic framework Sova, coordinating DSR-IOV and
ive migration to improve the VMs QoS.
Hybrid resource management: Adares leverages a contextual ban-

dits framework to control the CPU and memory adaptations for
VMs [15]. Moreover, research in [12] presented hybrid CPU and
network resource allocation schemes to improve network-intensive
applications’ performance. In addition, Sangpetch et al. [17] devised
Thoth, a dynamic 𝑄-learning resource management system, to ad-
just appropriate resources for the container-based cloud platform.
Google [33] devised Autopilot, which employs machine learning and a
set of finely-tuned heuristics, to adjust vertical scaling for CPU/memory
resources. Prakash et al. [34] focused on container memory and CPU
control in the derivative cloud, where containers are nested in VMs.
They considered that VMs’ resource adjustment (including memory and
CPU) could significantly degrade the performance of containers running
in VMs, thereby developing a policy-driven method to reduce the
impact of the VM resource management process on these containers.
Chouliaras et al. [35] devised PACE to automatically allocate container
CPU and memory resources based on threshold-based rules, CNN and
K-means approaches. While Jeong et al. [4] presented HiPerRM to
auto-scale resource based on the forecasted pod’s CPU and memory
usage. Sheganaku et al. [11] and Vu et al. [36] proposed autoscaling
approaches (including vertical and horizontal scaling) to optimize

container resource allocation. Before allocating resources to virtual

3 
Fig. 2. Elastic virtual resource management framework.

nstances, each work should analyze the relationship between the
unning performance and the resource allocation.

Efforts have been made to improve elastic virtual resource manage-
ent. However, these methods ignore the combination of computation

nd network resources, named CPU, memory, and bandwidth. Fur-
hermore, most research fails to optimize the adaption of dynamic
orkload for virtual instances on a server. This study takes advantage
f OpenStack architecture to improve elastic resource management.
urthermore, we apply DRL to interact with complex environment dy-
amically and obtain learned agent to improve the resource utilization
nd virtual instance running performance.

. System overview

This section introduces the system architecture of the proposed
lastic resource management framework, named EVRM, for virtual
nstances in KVM and Docker (as shown in Fig. 2). To build this frame-
ork, we have adopted the MAPE architecture [37]. EVRM operates as
n event loop system comprising four main modules deployed within
he host environment: the monitor module, the analyzer module, the
lanner module, and the executor module. (i) The monitor collects
ultiple resource information of each virtual instance, including CPU,
emory, and network. We explore several methods to obtain resource

nformation during our research. (ii) Analyzer module retrieves the
esource information of all virtual instances from the monitor module
eriodically. (iii) Planner makes a global decision for the executor
odule to automatically schedule multiple resources for a plurality

f virtual instances with our proposed resource management algo-
ithm (introduced in Section 4). (iv) Finally, executor provisions target
esource for each virtual instance.

.1. Monitor module

The EVRM needs to obtain the CPU, memory, and network infor-
ation of each virtual instance for the analyzer module in this work.
able 1 presents the resource status information for both KVM and
ocker instances.

We adopt the libvirt toolkit to implement an intermediate
M monitor, profiling CPU and memory information through vir-
omain.info() and virDomain.MemoryStats(), respectively.
he former presents the CPU time used in nanoseconds (ns) in the
ourth return parameter. Similarly, we obtain the free memory size
f each VM. In addition, we can obtain the communication packet
nformation through observing /proc/net/dev.

These raw information needs to be transformed to the input of
our analyzer module to serve our proposed resource management
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Table 1
Resource information of each virtual instance.

Type Raw data
(Returned from Monitor)

Extracted data
(Input of Analyzer)

KVM

𝑐𝑝𝑢𝑖(𝑡): CPU used time at 𝑡
of 𝑣𝑖

𝑢𝑐𝑖: Eq. (1)

𝑓𝑖 (𝑡): free memory size at 𝑡
of 𝑣𝑖

𝑢𝑚𝑖: Eq. (1)

𝑟𝑒𝑐𝑣𝑖(𝑡): received packet
size at 𝑡 of 𝑣𝑖

𝑢𝑏𝑖: Eq. (1)

𝑡𝑟𝑎𝑛𝑠𝑖(𝑡): transmitted packet
size at 𝑡 of 𝑣𝑖

Docker

𝑢𝑐𝑖: CPU utilization of 𝑣𝑖 𝑢𝑐𝑖
𝑢𝑚𝑖: memory utilization of
𝑣𝑖

𝑢𝑚𝑖

𝑟𝑒𝑐𝑣𝑖(𝑡) 𝑢𝑏𝑖: Eq. (1)
𝑡𝑟𝑎𝑛𝑠𝑖(𝑡)

algorithm. For the 𝑖th virtual instance 𝑣𝑖, we obtain its CPU usage
𝑢𝑐𝑖 (𝑡), memory usage 𝑢𝑚𝑖 (𝑡), and bandwidth usage 𝑢𝑏𝑖 (𝑡), respectively,
as follows:
⎧

⎪

⎨

⎪

⎩

𝑢𝑐𝑖 (𝑡) =
𝑐𝑝𝑢𝑖(𝑡2) − 𝑐𝑝𝑢𝑖(𝑡1)
(𝑡2 − 𝑡1) ⋅ 𝑐𝑖 (𝑡)

, 𝑢𝑚𝑖 (𝑡) =
𝑚𝑖 (𝑡) − 𝑓𝑖 (𝑡)

𝑚𝑖 (𝑡)
,

𝑢𝑏𝑖 (𝑡) =
𝑟𝑒𝑐𝑣𝑖(𝑡2) + 𝑡𝑟𝑎𝑛𝑠𝑖(𝑡2) − 𝑟𝑒𝑐𝑣𝑖(𝑡1) − 𝑡𝑟𝑎𝑛𝑠𝑖(𝑡1)

(𝑡2 − 𝑡1) ⋅ 𝑏𝑖 (𝑡)
,

(1)

where 𝑚𝑖 (𝑡), 𝑐𝑖 (𝑡), 𝑏𝑖 (𝑡) are memory, CPU, bandwidth configuration of
𝑣𝑖 at time 𝑡, respectively.

Docker containers’ resource information, including CPU, memory,
and network, are profiled through docker stats command, which
records the values of the CPU and memory parameters under cgroup
file system through Docker daemon.

3.2. Analyzer and planner modules

As shown in Fig. 2, the analyzer module obtains the resource
information of all virtual instances from the monitor module period-
ically, and planner makes a global decision for the executor module
to automatically schedule resource between a plurality of instances.
To maintain the synchronization between the monitor and analyzer
modules, the EVRM periodically monitors and schedules resources.
The planner module uses our proposed resource scheduling algorithm,
named DDPG-RA, to calculate target resource allocation for each in-
stance according to the current workload in each cycle. The DDPG-RA
is the core of the analyzer module, and we will introduce it in Section 4.

3.3. Executor module

After obtaining these target resource configuration values from the
Planner module, EVRM executes the resource allocation through the
executor module, which we introduce in this section. Two common
parameters in KVM that can be adjusted for CPU are the maximum
number of CPUs and the live number of CPUs. This same principle
applies to memory allocation. By adjusting the live number of CPUs
and ensuring it remains within the bounds of the maximum number,
we can prevent downtime when modifying allocated resources.

KVM Executor: KVM hypervisor has a kernel module called
kvm.ko, which manages virtual CPU and memory. The interface is
provided by libvirt, whereas the memory allocation function vir-
DomainSetMemoryFlags() and CPU allocation function virDo-
mainSetVcpus() can dynamically change the target amount of
memory and vCPU allocated to each VM, respectively. We can also use
the virsh management tool to control memory and CPU allocation.
As with some bandwidth control schemes [38], we control the band-
width for each vNIC, i.e., limiting the maximum upload (download)
bandwidth, via Linux TC tool.

Docker Executor: Our EVRM applies the original docker update
configuration tool to control memory and CPU allocation by parameters
 p
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Table 2
Summary of key notations.

Notation Description

𝑛 The number of running virtual instances
𝑣𝑖 The 𝑖th virtual instance
𝑚𝑖 (𝑡) The memory configuration of 𝑣𝑖 at time 𝑡
𝑛𝑚𝑖 (𝑡) The memory normalization of 𝑣𝑖 at time 𝑡
𝑢𝑚𝑖 (𝑡) The memory utilization of 𝑣𝑖 at time 𝑡
�̄�𝑖 The maximum memory configuration of 𝑣𝑖
𝑚𝑖 The minimum memory configuration of 𝑣𝑖
𝑐𝑖 (𝑡) The vCPU configuration of 𝑣𝑖 at time 𝑡
𝑛𝑐𝑖 (𝑡) the vCPU normalization of 𝑣𝑖 at time 𝑡
𝑢𝑐𝑖 (𝑡) The vCPU utilization of 𝑣𝑖 at time 𝑡
𝑐𝑖 The maximum vCPU configuration of 𝑣𝑖
𝑐𝑖 The minimum vCPU configuration of 𝑣𝑖
𝑏𝑖 (𝑡) The bandwidth configuration of 𝑣𝑖 at time 𝑡
𝑛𝑏𝑖 (𝑡) The bandwidth normalization of 𝑣𝑖 at time 𝑡
𝑢𝑏𝑖 (𝑡) The bandwidth utilization of 𝑣𝑖 at time 𝑡
�̄�𝑖 The maximum bandwidth configuration of 𝑣𝑖
𝑏𝑖 The minimum memory configuration of 𝑣𝑖
𝑂𝑈 (𝑡) The number of over- and under-loaded virtual instances at time 𝑡
𝑉 𝐴 (𝑡) The sum of the variances of resource utilization at time 𝑡
𝐸𝑉 (𝑡) Evaluation value of each resource management operation at time 𝑡
𝐻𝐶 The total vCPU amount of host
𝐻𝑀 The total virtual memory amount of host

cpus and memory. Finally, similar to VMs, we adopt the Linux TC tool
to allocate bandwidth resources for containers.

4. Elastic virtual resource management algorithm

Although oversubscription resources of virtual instances have been
regular practice, oversubscription contention interference among run-
ning instances cannot be avoided entirely, which results in unpre-
dictable service times [31,34,39]. To cope with the abrupt workloads,
we propose a DDPG-based resource allocation algorithm, named DDPG-
RA, to calculate target resource allocation for each virtual instance
according to the current resource information. Our DDPG-RA em-
ploys DRL model DDPG to automatically explore the optimization
policy during the training process, learning the complex relations be-
tween multiple virtual resources allocation, resource utilization, and
virtual instance running performance. Due to the complexity of multi-
ple virtual resource management, DDPG-RA includes an action refine-
ment algorithm to convert the ratio-based output into target resource
allocation size.

4.1. Problem formulation

We establish a resource management model to manage virtual
instances’ CPU, memory, and bandwidth resources in a physical server.
Table 2 shows the key notations we use in our algorithm.

We define 𝑉 =
{

𝑣1, 𝑣2,… , 𝑣𝑛
}

to represent a set of all virtual
instances, where 𝑛 is the number of virtual instances. We define 𝑀 =
{

𝑚1 (𝑡) , 𝑚2 (𝑡) ,… , 𝑚𝑛 (𝑡)
}

to represent the memory configuration sizes
of each virtual instance at time 𝑡. Moreover, we set that 𝑈𝑀 =
{

𝑢𝑚1 (𝑡) , 𝑢𝑚2 (𝑡) ,… , 𝑢𝑚𝑛 (𝑡)
}

is the memory utilization rates of each
irtual instance at time 𝑡, and the value of 𝑢𝑚𝑖 (𝑡) is between [0, 1]. Let
𝑀 be the total virtual memory amount of host.
This paper applies the number of vCPUs as a quantitative indicator.

e define 𝐶 =
{

𝑐1 (𝑡) , 𝑐2 (𝑡) ,… , 𝑐𝑛 (𝑡)
}

to represent the vCPU amount
f each virtual instance at time 𝑡. At the same time, we define 𝑈𝐶 =
𝑢𝑐1 (𝑡) , 𝑢𝑐2 (𝑡) ,… , 𝑢𝑐𝑛 (𝑡)

}

as the virtual machine CPU utilization at time
, and the value of 𝑢𝑐𝑖 (𝑡) is between [0, 1]. We define 𝐻𝐶 as the total
CPU amount of host.

In order to satisfy that tenants can also enjoy higher network
ervice quality during traffic peak periods, cloud service providers
ill also provide a unique bandwidth plan to allocate part of the

hysical bandwidth directly to the virtual instances. We define 𝐵 =
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{

𝑏1 (𝑡) , 𝑏2 (𝑡) ,… , 𝑏𝑛 (𝑡)
}

and 𝑈𝐵 =
{

𝑢𝑏1 (𝑡) , 𝑢𝑏2(𝑡),… , 𝑢𝑏𝑛 (𝑡)
}

as the band-
idth upper threshold and occupancy rate of each virtual instance at

ime 𝑡, and the value of 𝑢𝑏𝑖 (𝑡) is between [0, 1].
We define resources’ maximum and minimum amount as �̄�𝑖, 𝑐𝑖, �̄�𝑖,

𝑖, 𝑐𝑖, 𝑏𝑖, respectively. In order to avoid diversities among multiple
resources, we normalize the resource configuration of virtual memory
𝑚𝑖 (𝑡), CPU 𝑐𝑖 (𝑡), and bandwidth 𝑏𝑖 (𝑡) into 𝑛𝑚𝑖 (𝑡), 𝑛𝑐𝑖 (𝑡), 𝑛𝑏𝑖 (𝑡) for 𝑣𝑖, as
follows:
{

𝑛𝑚𝑖(𝑡) = 𝑚𝑖(𝑡)∕�̄�𝑖,
𝑛𝑐𝑖(𝑡) = 𝑐𝑖(𝑡)∕𝑐𝑖, 𝑛𝑏𝑖(𝑡) = 𝑏𝑖(𝑡)∕�̄�𝑖.

(2)

This study aims to improve the running performance of applica-
tions by fully utilizing the resources. We analyze the key factors that
affect the resource utilization and running performance, and define the
following objective function.

With our framework’s goal to improve the virtual instances’ running
performance by making full utilization of multiple resources, each
virtual instance should release its under-utilized resources and gain
its over-utilized resources. Here we define two thresholds for each
resource. For memory utilization, we define 𝜉𝑙𝑜𝑤𝑚 as the lower threshold
of memory utilization. When it is lower than this threshold, memory
utilization is under-utilized, and its memory resource should be re-
leased. At the same time, we define 𝜉ℎ𝑖𝑔ℎ𝑚 as the upper threshold of
memory utilization. When a virtual instance utilizes more memory than
𝜉ℎ𝑖𝑔ℎ𝑚 , the virtual instance suffers from performance degradation due
to overloaded memory utilization, and should increase memory size.
Similarly, we define two sets of thresholds for CPU and bandwidth
utilization, 𝜉𝑙𝑜𝑤𝑐 and 𝜉ℎ𝑖𝑔ℎ𝑐 , 𝜉𝑙𝑜𝑤𝑏 and 𝜉ℎ𝑖𝑔ℎ𝑏 , respectively. Each virtual in-
stance should avoid over-utilized and under-utilized states considering
the corresponding upper and lower thresholds. Therefore, we define
𝑂𝑈 (𝑡) as the number of virtual instances in a lousy state at time 𝑡,
ncluding an over-utilized state and an under-utilized state:

𝑈 (𝑡) =
𝑛
∑

𝑖=1
𝑥𝑖, (3)

here 𝑥𝑖 = 0 when it satisfies 𝑢𝑐𝑖 ∈
[

𝜉𝑙𝑜𝑤𝑐 , 𝜉ℎ𝑖𝑔ℎ𝑐

]

, 𝑢𝑚𝑖 ∈
[

𝜉𝑙𝑜𝑤𝑚 , 𝜉ℎ𝑖𝑔ℎ𝑚

]

, and

𝑏𝑖 ∈
[

𝜉𝑙𝑜𝑤𝑏 , 𝜉ℎ𝑖𝑔ℎ𝑏

]

. Otherwise, 𝑥𝑖 = 1.
Furthermore, it is unreasonable that some virtual instances possess

ver-utilized resource utilization while some are light-loaded. There-
ore, a better resource allocation choice is to obtain a balanced resource
tilization among virtual instances. We define 𝑉 𝐴 (𝑡) as the sum of the
ariances of the three resource utilization at time 𝑡:

𝐴 (𝑡) = 𝛾𝑚 ⋅ 𝑣𝑎𝑟 (𝑈𝑀) + 𝛾𝑐 ⋅ 𝑣𝑎𝑟 (𝑈𝐶) + 𝛾𝑏 ⋅ 𝑣𝑎𝑟 (𝑈𝐵) , (4)

here 𝑣𝑎𝑟(⋅) is the function for calculating the variance, and 𝛾𝑚, 𝛾𝑐 ,
and 𝛾𝑏 are the importance coefficients respectively, set by uses. The
smaller the 𝑉 𝐴 (𝑡), the smaller the difference in resource utilization of
each virtual instance.

Additionally, we define 𝐸𝑉 (𝑡) as the evaluation value of each
resource management operation at time 𝑡; enormous 𝐸𝑉 (𝑡) value means
excellent performance. In this case, we evaluate the resource scheduling
for each virtual instance and define the evaluation value of 𝑣𝑖 at time
𝑡 as 𝑒𝑖 (𝑡), 𝐸𝑉 (𝑡) as follows:

𝐸𝑉 (𝑡) =
𝑛
∑

𝑖=1
𝑒𝑖 (𝑡) =

𝑛
∑

𝑖=1
(𝑒𝑐𝑖 (𝑡) + 𝑒𝑚𝑖 (𝑡) + 𝑒𝑏𝑖 (𝑡)). (5)

For the calculation of 𝑒𝑖 (𝑡), we evaluate the effects of scheduling
each resource (including CPU, memory, and bandwidth), and obtain the
corresponding evaluation values, defined as 𝑒𝑐𝑖 (𝑡), 𝑒

𝑚
𝑖 (𝑡), and 𝑒𝑏𝑖 (𝑡), and

𝑒𝑖 (𝑡) = 𝑒𝑐𝑖 (𝑡)+𝑒
𝑚
𝑖 (𝑡)+𝑒𝑏𝑖 (𝑡). Based on variations in the resource utilization

status, we obtain 𝑒𝑐𝑖 (𝑡), 𝑒
𝑚
𝑖 (𝑡), and 𝑒𝑏𝑖 (𝑡) through the rules presented in

Fig. 3 where the normalized evaluation values (i.e., from 𝑎1 to 𝑎6) are
initialized from environmental parameters. For example, as the arrows

numbered (2) and (5), the evaluation values are 𝑎2 and 𝑎5, under the 𝑠

5 
Fig. 3. Rules for evaluation values.

cases that the resource usage change from under-loaded to the normal
state and from the normal to over-loaded state.

In order to improve the virtual instances’ running performance, our
framework dynamically allocates multiple virtual resources to mini-
mize the 𝑂𝑈 (𝑡) and 𝑉 𝐴 (𝑡) and maximize the 𝐸𝑉 (𝑡). Thus, the objective
unction is formulated to minimize 𝐻 , which is expressed as a weighted
ombination of the three parts during the whole time:

min𝐻 = ∫
(

𝜆1 ⋅ 𝑂𝑈 (𝑡) + 𝜆2 ⋅ 𝑉 𝐴 (𝑡) − 𝜆3 ⋅ 𝐸𝑉 (𝑡)
)

d𝑡, (6)

here 𝜆1, 𝜆2 and 𝜆3 are the importance coefficients, initialized from
nvironmental parameters.

Eq. (6) outlines the impact of scheduling resources effectively.
o achieve this, we developed and trained a DDPG model. In each

teration, the DDPG model determines the allocation of resources for
he subsequent iteration. Using parameters 𝑎1 to 𝑎6, Eq. (6) assesses
he resource utilization state post-scheduling for the current iteration.

In our model, 𝑂𝑈 (𝑡), 𝑉 𝐴 (𝑡) and 𝐸𝑉 (𝑡) represent the number of
nstances in a bad state, the sum of variances in CPU, memory, and
andwidth utilization, and the effects of scheduling each resource,
espectively. The parameters 𝜆1, 𝜆2, and 𝜆3 denote the significance
f 𝑂𝑈 (𝑡), 𝑉 𝐴 (𝑡) and 𝐸𝑉 (𝑡) in the optimization objective. Increasing
1 is recommended if the objective is to ensure all virtual instances
un in a good state, while boosting 𝜆2 is suggested for maintaining
esource usage balance. Similarly, 𝜆3 serves similar purposes for other
spects of resource management. Regarding the normalized evaluation
alues 𝑎1 to 𝑎6 initialized from environmental parameters, these values
etermine the rewards associated with different performance levels,
ndicating a preference to avoid exceeding upper or lower resource
sage thresholds.

Due to the synchronous execution of multiple applications in the
ealistic system environment, complex dependency relations and ever-
hanging resource requirements make it challenging to outline the
esource demands [33], which is an uncertain optimization problem.
herefore, this study employs DRL to develop a dynamic resource
llocation approach. The DRL works by obtaining strategy improve-
ent through continuous interactions with the changing environment

n discrete time steps.

.2. Markov decision process model

During the MDP process, the agent chooses to perform a resource
llocation action 𝑎𝑡 with maximum potential reward according to the
urrent state 𝑠𝑡, obtains an immediate reward 𝑟𝑡 after performing the
ction, and enters a new state 𝑠𝑡+1.

To make effective decisions to allocate memory, CPU, and band-
idth, the state set contains the resource information of each virtual

nstance 𝑣𝑖, including the amount of the three configuration resources
𝑚𝑖(𝑡), 𝑐𝑖(𝑡), 𝑏𝑖(𝑡)

}

and the corresponding utilization rates of the three
esources

{

𝑢𝑚𝑖, 𝑢𝑐𝑖, 𝑢𝑏𝑖
}

. Thus, we define the state 𝑠𝑡 ∈ 𝑆𝑡 at time 𝑡 as:
{ 𝑖 } 𝑖 {
𝑡 = 𝑠𝑡|𝑖 ∈ [1, 𝑛] , 𝑠𝑡 = 𝑛𝑚𝑖(𝑡),
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𝑢𝑚𝑖(𝑡), 𝑛𝑐𝑖(𝑡), 𝑢𝑐𝑖(𝑡), 𝑛𝑏𝑖(𝑡), 𝑢𝑏𝑖(𝑡)
}

, (7)

where 𝑠𝑖𝑡 is the state for virtual instance 𝑣𝑖 at time 𝑡. The 𝑛𝑚𝑖(𝑡), 𝑛𝑐𝑖(𝑡),
and 𝑛𝑏𝑖(𝑡) are the normalization values of memory, CPU, and bandwidth
configuration (as shown in Eq. (2)). The configuration information is
obtained from monitor module.

The action includes operations on the three resources. Therefore, we
define the action at 𝑡, 𝑎𝑡 ∈ 𝐴𝑡 as:

𝑎𝑡 =
{

𝑎𝑖𝑡|𝑖 ∈ [1, 𝑛]
}

, 𝑎𝑖𝑡 =
{

𝑎𝑖𝑚 (𝑡) , 𝑎𝑖𝑐 (𝑡) , 𝑎
𝑖
𝑏 (𝑡)

}

, (8)

where 𝑎𝑖𝑡 is the ratio-based action result for virtual instance 𝑣𝑖 at time
𝑡. The 𝑎𝑖𝑚 (𝑡), 𝑎𝑖𝑐 (𝑡), and 𝑎𝑖𝑏 (𝑡) are the ratio values to schedule memory,
CPU, and bandwidth of each virtual instance 𝑣𝑖.

DRL aims to get the maximum cumulative reward after performing
an action. In this study, the objective function is to minimize 𝐻
in Eq. (6). Therefore, the immediate reward function is set to negative
sum of the immediate values in Eqs. (3), (4), and (5), so that the
maximum cumulative reward represents the minimal 𝐻 , as shown
below:

𝑟𝑡 = −
(

𝜆1 ⋅ 𝑂𝑈 (𝑡) + 𝜆2 ⋅ 𝑉 𝐴 (𝑡) − 𝜆3 ⋅ 𝐸𝑉 (𝑡)
)

. (9)

4.3. DDPG-based resource allocation algorithm

This study intends to improve the virtual instances’ running per-
formance by making full utilization of multiple resources. We apply
DRL to learn the optimization policy which can maximize the po-
tential reward. Since the system state space and resource allocation
action space are continuous in our elastic virtual resource management
problem, an integrated value-function- and policy-based DRL approach
naturally satisfies our problem. We propose a novel Resource Allocation
algorithm based on DDPG method [20], named DDPG-RA, to adapt
decision in the continuous state and action space of the elastic virtual
resource management problem (Algorithm 1). The DDPG-RA aims to
learn a model that maximizes the potential reward, i.e., the overall
optimization of virtual instance running performance. Our DDPG-RA
employs the DDPG model, including the Actor and Critic networks,
uses the Actor and the Critic networks to generate an action and
guide the Actor network to produce better actions, respectively. (i)
Primary Actor network, defined as 𝜋𝜃(𝑆), takes the current state 𝑠𝑡
as input and obtains action 𝑎𝑡; (ii) Primary Critic network, defined as
𝑄𝜔(𝑆,𝐴), calculates the potential reward value according to 𝑠𝑡, 𝑎𝑡; (iii)
Target Actor network (defined as 𝜋′

𝜃′ (𝑆)) and (iv) Target Critic network
(defined as 𝑄′

𝜔′ (𝑆,𝐴)), copy from the 𝜋𝜃(𝑆) and 𝑄𝜔(𝑆,𝐴) at a certain
period.

The primary Actor network is a deterministic strategy instead of a
predictive strategy. For the same system state, the action generated by
the primary Actor network should make the potential reward value pre-
dicted by the primary Critic network as great as possible. Specifically,
the primary Actor network’s loss function requires obtaining the maxi-
mum potential reward value of the primary Critic network. Therefore,
to minimize the strategy loss function, we reverse the primary Critic
network’s output as the loss function:

𝐽 (𝜃) = −𝐸
[

𝑄𝜔 (𝑠, 𝑎) |𝑠=𝑠𝑡 ,𝑎=𝜋𝜃 (𝑠)
]

. (10)

where 𝑄𝜔 (𝑠, 𝑎) is an action-value function in Critic network, and the
𝑄𝜔

(

𝑠𝑡, 𝑎𝑡
)

is expressed as follows:

𝑄𝜔
(

𝑠𝑡, 𝑎𝑡
)

= 𝐸
[

𝑟𝑡 + 𝛾 ⋅𝑄𝜔
(

𝑠𝑡+1, 𝑎𝑡+1
)]

, (11)

where 𝛾 ∈ [1, 0] represents the discount rate.
With a random mini-batch sample ⟨𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑟𝑡⟩(𝑡 ∈ {1,… , 𝑋})

from replay memory, the parameter 𝜃 in the primary Actor network
is updated through the sampled policy gradient as:

∇ 𝐽 (𝜃) = −𝐸
[

∇ 𝑄 (𝑠, 𝑎) | ∇ 𝜋 (𝑠) |
]

, (12)
𝜃 𝑎 𝜔 𝑠=𝑠𝑡 ,𝑎=𝜋𝜃 (𝑠) 𝜃 𝜃 𝑠=𝑠𝑡 (

6 
Specifically, at each training step, 𝜃 is updated as follows:

𝜃 = 𝜃 −
𝛼𝜋
𝑋

𝑋
∑

𝑡=1

[

∇𝑎𝑄𝜔 (𝑠, 𝑎) |𝑠=𝑠𝑡 ,𝑎=𝜋𝜃 (𝑠)∇𝜃𝜋𝜃 (𝑠) |𝑠=𝑠𝑡
]

, (13)

here 𝛼𝜋 is the primary Actor network’s learning rate.
As for the primary Critic network’s training process, we define the

rimary Critic network’s loss function with mean square error function:

(𝜔) = 𝐸
[

(

𝑦𝑡 −𝑄𝜔
(

𝑠𝑡, 𝑎𝑡
))2

]

, (14)

here the target value 𝑦𝑡 as follows:

𝑡 = 𝑟𝑡 + 𝛾 ⋅𝑄′
𝜔′ (𝑠𝑡+1, 𝜋′

𝜃′ (𝑠𝑡+1)), (15)

With a random mini-batch sample ⟨𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1⟩, 𝑡 ∈ {1,… , 𝑋} from
eplay memory, the parameter 𝜔 in the primary Critic network is
pdated through gradient:

𝜔𝐽 (𝜔) = 𝐸
[

2
(

𝑦𝑡 −𝑄𝜔
(

𝑠𝑡, 𝑎𝑡
))

∇𝜔𝑄𝜔
(

𝑠𝑡, 𝑎𝑡
)]

. (16)

The 𝜔 is training as follows:

= 𝜔 −
𝛼𝑄
𝑋

⋅
𝑋
∑

𝑡=1

[

2
(

𝑦𝑡 −𝑄𝜔
(

𝑠𝑡, 𝑎𝑡
))

∇𝜔𝑄𝜔
(

𝑠𝑡, 𝑎𝑡
)]

, (17)

here 𝛼𝑄 is the primary Critic network’s learning rate.
Finally, at each episode, the target networks’ parameters are up-

ated as follows:
′ = 𝜏 ⋅𝑤 + (1 − 𝜏) ⋅𝑤′, 𝜃′ = 𝜏 ⋅ 𝜃 + (1 − 𝜏) ⋅ 𝜃′, (18)

here 𝜏 is a momentum factor.

Algorithm 1: DDPG-RA
1 Initialize the primary Actor network 𝜋𝜃 (𝑆) and the primary

Critic network 𝑄𝜔 (𝑆,𝐴);
2 Initialize the target Actor network 𝜋′

𝜃′ (𝑆) and the target Critic
network 𝑄′

𝜔′ (𝑆,𝐴);
3 Create the replay memory and clear it;
4 for each episode do
5 Initialize the environment and gather state information;
6 for each time t do
7 𝑎𝑡 ← 𝜋𝜃

(

𝑠𝑡
)

+ ;
8 𝑟𝑎𝑡 ← 𝑟𝑒𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡(𝑠𝑡, 𝑎𝑡); //Algorithm 2
9 Execute action 𝑟𝑎𝑡 through executor in Section 3.3;
10 Observe the next state 𝑠𝑡+1 and calculate reward in

Eq. (9);
11 Store the tuple < 𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑟𝑡 > in the replay memory;
12 if 𝑂𝑈 (𝑡) = 0 then
13 break;

14 Sample mini-batch from the replay memory;
15 Update primary Critic and Actor networks based on

Eqs. (16) and (12), respectively;
16 Update the target network parameters based on Eq. (18);

In each episode of Algorithm 1, DDPG-RA gets the current resource
state of the virtual instance (line 5), and the primary Actor network
generates the corresponding action (line 7). Since the output of Actor
network using tanh as the activation function ranges in [−1, 1], which
annot directly reflect the meaning of actions, a ratio-based action
efinement algorithm is designed in Section 4.4 (line 8). Through action
efinement, allocated/reclaimed resources can be directly obtained, and
ur EVRM executes the action (line 9). Next, we obtain the resource
tate at time 𝑡+1, calculate the reward from Eq. (9) (line 10), and store
𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑟𝑡⟩ in the replay memory (line 11). When there is no lousy
tate virtual instance (line 12), DDPG-RA jumps out of this episode
line 13). Finally, to learn the complex relations between empirical data
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and non-stationary distribution, we adopt the replay memory method
to randomly sample from the previous state transition experience for
training (lines 14–16). In this case, the empirical data can be fully
utilized, and the correlation of continuous samples can also be reduced,
avoiding significant variance during parameter updating.

In order to provide random explorations to improve the learning
coverage during the training process, we add an extra noise  to 𝑎𝑡 in
line 7. Thereby, the equation of action 𝑎𝑡 that ultimately interacts with
the environment is as follows:

𝑎𝑡 = 𝜋𝜃(𝑠𝑡) + , (19)

where  possesses a normal distribution with mean 𝜇 and variance 𝜎2,
ritten as  ∼ 𝑁

(

𝜇, 𝜎2
)

. We initially set 𝜇 = 0 and 𝜎 = 0.8. With the
number of episodes increasing, the 𝜎 minus 0.05 happens every 100
episodes until 𝜎 = 0.2.

.4. Action refinement

In the last section, the proposed framework uses the Actor network
o directly output the ratio-based action result 𝑎𝑡, an action refinement

algorithm is proposed to refine the ratio-based action into refined
action, denoted as 𝑟𝑎𝑡. The information of 𝑟𝑎𝑡 contains the specific
size of configuration resources of each virtual instance. Then the host
allocates virtual resources for each virtual instance according to 𝑟𝑎𝑡:

𝑟𝑎𝑡 =
{

𝑟𝑎𝑖𝑡|𝑖 ∈ [1, 𝑛]
}

, 𝑟𝑎𝑖𝑡 =
{

𝑟𝑎𝑖𝑚(𝑡), 𝑟𝑎
𝑖
𝑐 (𝑡), 𝑟𝑎

𝑖
𝑏(𝑡)

}

, (20)

where 𝑟𝑎𝑖𝑡 is the configuration action for virtual instance 𝑣𝑖 at time 𝑡. The
𝑟𝑎𝑖𝑚 (𝑡), 𝑟𝑎𝑖𝑐 (𝑡), and 𝑟𝑎𝑖𝑏 (𝑡) are the configuration values to configure the
memory, CPU, and bandwidth of each virtual instance 𝑣𝑖, respectively.

During action refinement, the actions are continuous values in
[−1, 1], whereas the negative and positive values are considered to
reduce and increase resources, respectively. The refinement process is
presented in Algorithm 2.

4.4.1. Memory refinement
For the memory action 𝑎𝑖𝑚 (𝑡) ∈ [−1, 0), we transform it as 1 +

𝑎𝑖𝑚 (𝑡) and then reclaim the memory of each virtual instance 𝑣𝑖 by
𝑚𝑖 ⋅

(

1 + 𝑎𝑖𝑚 (𝑡)
)

, which means 𝑟𝑎𝑖𝑚 (𝑡) = −𝑚𝑖 ⋅ 𝑎𝑖𝑚 (𝑡) (line 4). For the
memory action 𝑎𝑖𝑚 (𝑡) ∈ [0, 1], we allocate the reclaimed memory to
these virtual instances as per their action values. First, we calculate the
amount of available memory size 𝑀 (line 5), which will be assigned to
instances with positive memory action values 𝑟𝑎𝑡𝑖𝑜 (line 7). Then, our
EVRM increases instance memory according to the ratio between their
action values. Specifically, our EVRM configures the memory size by
𝑟𝑎𝑖𝑚 (𝑡) = 𝑚𝑖 +𝑀 × 𝑎𝑖𝑚 (𝑡) ∕𝑟𝑎𝑡𝑖𝑜 for each instance 𝑣𝑖 (line 10).

4.4.2. CPU refinement
The vCPUs get executed on physical cores as tasks and their num-

ber can exceed the number of physical cores. However, multiproces-
sors possess unpredictable architectures by adding interference and
communication delays between different tasks executed on different
cores [40]. Without considering the task scheduling strategy on multi-
processors, each vCPU cannot obtain a fixed timeslice on physical cores
to execute tasks.

Therefore, the CPU resource is difficult to quantify, and CPU
scheduling is generally minor. We adopt the fine-grained scheduling
of one vCPU. Specifically, we suggest to separate the continuous action
values in [−1, 1] into values in [−1,−𝜖), [−𝜖, 𝜖], and (𝜖, 1]. More specif-
ically, when the CPU action value 𝑎𝑖𝑐 (𝑡) ranges in [−1,−𝜖), [−𝜖], and
(𝜖, 1], our EVRM deals with virtual instance 𝑣𝑖 through decreasing by
one vCPU, remaining unchanged, and increasing by one vCPU, which
corresponds to 𝑟𝑎𝑖𝑐 (𝑡) = 𝑐𝑖−1, 𝑟𝑎𝑖𝑐 (𝑡) = 𝑐𝑖, and 𝑟𝑎𝑖𝑐 (𝑡) = 𝑐𝑖+1, respectively

(lines 12–17).

7 
Algorithm 2: Refinement
Input : state 𝑠𝑡, action 𝑎𝑡;
Output: the refined action 𝑟𝑎𝑡;

1 Initialize 𝑀 as the remaining available host memory, 𝑟𝑎𝑡𝑖𝑜 ← 0;
2 for each 𝑎𝑖𝑡 ∈ 𝑎𝑡 do
3 if −1 ≤ 𝑎𝑖𝑚 (𝑡) < 0 then
4 𝑟𝑎𝑖𝑚 (𝑡) ← −𝑚𝑖 (𝑡) ⋅ 𝑎𝑖𝑚 (𝑡);
5 𝑀 ← 𝑀 + 𝑚𝑖 (𝑡) ⋅

(

1 + 𝑎𝑖𝑚 (𝑡)
)

;
6 else
7 𝑟𝑎𝑡𝑖𝑜 ← 𝑟𝑎𝑡𝑖𝑜 + 𝑎𝑖𝑚 (𝑡);

8 for each 𝑎𝑖𝑡 ∈ 𝑎𝑡 do
9 if 0 ≤ 𝑎𝑖𝑚 (𝑡) ≤ 1 then
10 𝑟𝑎𝑖𝑚 (𝑡) ← 𝑚𝑖 (𝑡) +𝑀 ⋅ 𝑎𝑖𝑚(𝑡)∕𝑟𝑎𝑡𝑖𝑜;

11 for each 𝑎𝑖𝑡 ∈ 𝑎𝑡 do
12 if −1 ≤ 𝑎𝑖𝑐 (𝑡) < −𝜖 then
13 𝑟𝑎𝑖𝑐 (𝑡) ← 𝑐𝑖 (𝑡) − 1;
14 else if −𝜖 ≤ 𝑎𝑖𝑐 (𝑡) ≤ 𝜖 then
15 𝑟𝑎𝑖𝑐 (𝑡) ← 𝑐𝑖 (𝑡);
16 else
17 𝑟𝑎𝑖𝑐 (𝑡) ← 𝑐𝑖 (𝑡) + 1;
18 𝑟𝑎𝑖𝑏 (𝑡) ← 𝑏𝑖 (𝑡) ⋅

(

1 + 𝑎𝑖𝑏 (𝑡)
)

;
19 if 𝑟𝑎𝑖𝑐 (𝑡) < 𝑐𝑖 (OR 𝑟𝑎𝑖𝑐 (𝑡) > 𝑐𝑖) then
20 𝑟𝑎𝑖𝑐 (𝑡) ← 𝑐𝑖 (OR 𝑟𝑎𝑖𝑐 (𝑡) ← 𝑐𝑖);
21 if 𝑟𝑎𝑖𝑚 (𝑡) < 𝑚𝑖 (OR 𝑟𝑎𝑖𝑚 (𝑡) > �̄�𝑖) then
22 𝑟𝑎𝑖𝑚 (𝑡) ← 𝑚𝑖 (OR 𝑟𝑎𝑖𝑚 (𝑡) ← �̄�𝑖);
23 if 𝑟𝑎𝑖𝑏 (𝑡) < 𝑏𝑖 (OR 𝑟𝑎𝑖𝑏 (𝑡) > �̄�𝑖) then
24 𝑟𝑎𝑖𝑏 (𝑡) ← 𝑏𝑖 (OR 𝑟𝑎𝑖𝑏 (𝑡) ← �̄�𝑖);

25 if ∑𝑛
𝑖=1 𝑐𝑖 (𝑡) < 𝐻𝐶 OR ∑𝑛

𝑖=1 𝑚𝑖 (𝑡) < 𝐻𝑀 then
26 return 𝑟𝑎𝑡;

4.4.3. Bandwidth refinement
As we described in Section 3.3, we allocate the bandwidth by

limiting the maximum upload and download bandwidth of each vNIC.
Here, we configure the same for both upload and download bandwidth
and transform the bandwidth action value as 𝑟𝑎𝑖𝑏 (𝑡) = 𝑏𝑖 ⋅

(

1 + 𝑎𝑖𝑏 (𝑡)
)

line 18).

.4.4. Action filtering
To ensure the regular operation of each virtual instance, we set

he minimum amount of resource configuration for the memory, CPU,
nd bandwidth of each 𝑣𝑖, denoted as 𝑚𝑖, 𝑐𝑖, 𝑏𝑖. During the scheduling

process, each virtual instance cannot be lower than these minimum
resources. Before performing action, it is necessary to determine how
many resources each virtual instance obtains after executing it. Fur-
thermore, if it is lower than the minimum resource or exceeds the
maximum resource configuration, the operation is invalid, and we
choose the minimum or maximum amount of resource instead (lines
19–24). Finally, we obey the available virtual resource constraints
(lines 25–26).

5. Evaluations

We use several hosts to build an Ocata-version OpenStack platform
to evaluate our EVRM. Each host possesses the Intel(R) Xeon(R) Gold
6226R CPU @ 2.90 GHz with 64 cores, with a 512 GB memory
and disk size of 878 GB. The physical host possesses close to 10000
Mbps of bandwidth resource. Its OS is Ubuntu 22.04.4 LTS 64. We
mainly use a nova (KVM) and a nova-docker (Docker) compute nodes
in the OpenStack. We create a plurality of virtual instances in KVM

and Docker nodes to assess multiple types of resource management,
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Table 3
Initial configurations of VMs and containers.

Resource Configuration

Memory: Memory configuration 𝑚𝑖 2 GB
Maximum memory size �̄�𝑖 8 GB
Minimum memory size 𝑚𝑖 512 MB

CPU: CPU configuration 𝑐𝑖 2 vCPUs
Maximum CPU size 𝑐𝑖 12 vCPUs
Minimum CPU size 𝑐𝑖 1 vCPUs

Bandwidth: Bandwidth configuration 𝑏𝑖 2 MB/s
Maximum bandwidth size �̄�𝑖 10 MB/s
Minimum bandwidth size 𝑏𝑖 1 MB/s

including memory, CPU, and bandwidth. Our EVRM is written in Python
and deployed on each compute node. Each virtual instance is booted
with an initial configuration, as in Table 3.

5.1. Experiment setup

Our EVRM aims to improve the efficiency of virtual nodes by
dynamically coordinating multi-type virtual resources, we compare our
EVRM with two comparison schemes by benchmark performance and
resource utilization. The experiment setting is as follows.

5.1.1. Comparison schemes
To evaluate the proposed EVRM, we compare with Default case,

where applications run under bare virtualization. Furthermore, most
existing resource management approaches focus on scheduling a sin-
gle type of resources, here we also compare with two hybrid re-
source management prototypes in KVM and Docker-based technologies,
respectively.

• Adares [15], a VM-based baseline, leverages a RL approach,
named contextual bandits, to control the CPU and memory adap-
tations for VMs.

• Thoth [17], a container-based baseline, is a dynamic 𝑄-learning
resource management system to adjust appropriate amount of
resource for containers.

• Escra [41], a method that does not use ML, is a threshold based
approach adjusting the CPU quota and maintaining a memory
pool for containers.

The Thoth employs a Q-learning approach to decide whether to
increase or decrease the number of application docker containers. We
have adopted this model and redefined its rewards to focus on resource
management instead of changing container numbers. The rationale
for Thoth’s decision to adjust the number of containers stems from
the application’s varying resource needs or excessive resource usage.
Thus, we transform the container number change to resource scaling.
Furthermore, we have extended the Escra methodology from container
management to VM management, which is feasible because the core
principle involves adjusting instance resources and transitioning from
dockers to VMs is straightforward.

5.1.2. Benchmark applications
We evaluate the performance overhead with DaCapo [42], a Java

benchmark suite. It includes different types of test applications, in-
cluding processor-, memory-, and disk-intensive applications. In this
paper, we choose several benchmark applications to evaluate per-
formance overhead, including memory-intensive (i.e., h2), processor-
intensive (i.e., jython, pmd, avrora, sunflow, fop, xalan, lusearch, lusearch-
fix, batik), disk-intensive (i.e., eclipse, luindex) benchmarks, which are
regarded as light-weight CPU intensive tests. In all evaluations, each
selected DaCapo application runs ten times. The Httpload is a Linux-
based webserver testing tool. Given a fixed number of concurrency 𝑝
and fetch 𝑓 , which illustrates the amount of data obtained in each test,
8 
the network performance can be estimated based on the completion
time of the test. In network load evaluation (Section 5.3), we set
dynamic values for 𝑝 and 𝑓 . While in other evaluations, we set default
values 𝑝 = 50 and 𝑓 = 1000.

In order to create resource competition scenarios, we also adopt nu-
merous workload applications to run together with benchmarks during
evaluation, involving the following:

• Memory workload, is a real-world memory-consuming test ap-
plication. Given a memory load size 𝑥, it occupies 𝑥 amount of
memory resources in a virtual instance.

• CPU workload, is an endless loop of continuous addition op-
erations. Given the number 𝑦, it creates the corresponding 𝑦
processes, and each process occupies one vCPU.

• Mono, is a microkernel benchmark [21]. Given a workload range
[𝑙𝑜𝑤, ℎ𝑖𝑔ℎ], Mono works in two phases. In the first phase, Mono
initially requests a 𝑙𝑜𝑤-size memory, increasing its memory re-
quests monotonically to ℎ𝑖𝑔ℎ. In the second phase, Mono grad-
ually reduces its memory requests from ℎ𝑖𝑔ℎ to 𝑙𝑜𝑤. Mono is
executed with h2 as a benchmark suite in our experiments, ob-
serving the performance of h2 under dynamic memory workloads
of Mono.

According to the Ref. [43], we extracted the workload characteriza-
tion by monitoring the resource usage. We run all Dacapo applications
and Httpload test tool sequentially and bind these tasks to 2 CPU thread
cores (i.e., 200% CPU). We observe the CPU and memory usages and
extract the receiving and transmission data size in Fig. 4. As shown in
Figs. 4(a) and 4(b), Dacapo applications exhibits periodic and sinusoidal
characteristics. Fig. 4(c) shows network workload characteristics. At
first the receiving traffic rises sharply and then decrease quickly to a
relatively steady state. Finally, it falls to 0 rapidly.

By combining these different workload and benchmark, we obtain
various test suites that include static and fluctuation workloads.

5.1.3. Initial settings of parameters
In our proposed DDPG-RA, environment parameters are set by

empirical analysis or actual requirements. We set scheduling period as
5 s, and set the upper and lower thresholds as 80% and 20% as system
settings. The parameters in Eqs. (4) and (6), i.e., 𝜆1, 𝜆2, 𝜆3, 𝛾𝑚, 𝛾𝑐 , 𝛾𝑏,
are all set as 1. The evaluation values (i.e., from 𝑎1 to 𝑎6) in Fig. 3 are
set as −1,−0.1,−5,−1,−10,−10, respectively. Furthermore, momentum
factor 𝜏 = 0.05.

The training process of our DDPG-RA is performed by a simula-
tor, where the Actor and Critic networks’ input layers are 6𝑛 and 9𝑛
dimensional vectors, respectively. The output layers are a 3𝑛 and 1
dimensional vectors, respectively. In light-loaded evaluation, we choose
a four-layer fully connected network as the structure of the DNN,
wherein the Actor and Critic networks both possess two hidden layers
with 128 and 64 dimensions. In heavy-loaded evaluation, a five-layer
fully connected network is used as the structure of the DNN, wherein
the Actor networks possess three hidden layers with 400, 300, and 100
dimensions, and the Critic networks possess three hidden layers with
600, 300, and 100 dimensions. The simulator configures the virtual
nodes with the same initial configuration in Table 3. At the same time,
to thoroughly learn the knowledge of diverse application loads, we
have generated 1000 different initial load vectors for the subsequent
light-loaded and heavy-loaded experiments, respectively. A load vector
represents initial load information of virtual instances, include CPU,
memory, and bandwidth loads. At the beginning of each episode, it
randomly selects a load vector and executes lines 6–13 in Algorithm 1,
wherein the load vector remains unchanged. When there is no lousy
state virtual instance, it then jumps out of this episode and adopts the
replay memory method to randomly sample from the previous state
transition experience for training the agent. We trained 50,000 episodes
for the agents used in the subsequent light-loaded and heavy-loaded
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Fig. 4. CPU, memory and network workload characterization.
Fig. 5. The impact of 𝜖 values under heavy-loaded KVM experiment.

xperiments. During the training process, we set 𝛼𝜋 = 10−4, 𝛼𝑄 = 10−3,
nd 𝛾 = 0.6, based on the observation in numerous experiments.

We set 0.1 to 0.9 at the interval of 0.1 as candidate range for CPU
apping parameter 𝜖 in Algorithm 2. Fig. 5 presents the completion

ime of heavy-loaded KVM experiment (introduced in Section 5.4)
nder different 𝜖 values. The case under 𝜖 = 0.2 shows the best
erformance, which is our experimental setting.

.2. Validation of light-loaded evaluation

The EVRM aims to schedule virtual resources between multiple
irtual instances reasonably while avoiding performance degradation.
e compare the benchmark performance of the EVRM, Adares, and
efault cases. We create 5 virtual instances to demonstrate whether

he EVRM can shorten the benchmarks’ completion times, including
aCapo and Httpoad applications.

We try to verify the performance improvement brought by EVRM
nder heavy workload states. We choose to run each suite of bench-
arks in one virtual node, and the other four nodes are idle. Each suite

f benchmark applications is shown in Table 4. Firstly, we start our
esource scheduling program. Secondly, each testing suite includes load
pplications and various benchmarks to reach a heavy-loaded state in
he virtual instance. During the evaluation, each DaCapo application
n test suites runs ten times. Finally, we get the benchmark results,
ncluding average results, with error bars indicating the standard de-
iation of DaCapo applications to quantify the variance of their overall
erformance.

.2.1. KVM experiments
Each evaluation suite will be tested under EVRM, Adares, and

efault in the KVM-based environment, respectively. From the results
f average running time in Figs. 6, 7, 8, we can obtain that benchmarks
et lower running times under resource scheduling (based on EVRM
r Adares) than Default. The benchmark performance is inversely pro-
ortional to the running time, the low completion time, the better
erformance. Since the EVRM gets more significant performance than
efault, we mainly discuss the comparison between the two resource
cheduling schemes.

9 
Table 4
Evaluation suites each with the same memory workload 𝑥 = 400 MB and CPU workload
𝑦 = 1.

Suite Benchmark Suite Benchmark
ID Name ID Name

1 ℎ2 8 𝐻𝑡𝑡𝑝𝑙𝑜𝑎𝑑 + 𝑙𝑢𝑠𝑒𝑎𝑟𝑐ℎ_𝑓𝑖𝑥
2 ℎ2[𝑚𝑜𝑛𝑜] 9 𝐻𝑡𝑡𝑝𝑙𝑜𝑎𝑑 + 𝑝𝑚𝑑
3 𝑒𝑐𝑙𝑖𝑝𝑠𝑒 10 𝐻𝑡𝑡𝑝𝑙𝑜𝑎𝑑 + 𝑙𝑢𝑖𝑛𝑑𝑒𝑥
4 𝑎𝑣𝑟𝑜𝑟𝑎 11 𝐻𝑡𝑡𝑝𝑙𝑜𝑎𝑑 + 𝑏𝑎𝑡𝑖𝑘
5 𝑗𝑦𝑡ℎ𝑜𝑛 12 𝐻𝑡𝑡𝑝𝑙𝑜𝑎𝑑 + 𝑓𝑜𝑝
6 𝑠𝑢𝑛𝑓𝑙𝑜𝑤 13 𝐻𝑡𝑡𝑝𝑙𝑜𝑎𝑑 + 𝑥𝑎𝑙𝑎𝑛
7 𝑙𝑢𝑠𝑒𝑎𝑟𝑐ℎ 14 𝐻𝑡𝑡𝑝𝑙𝑜𝑎𝑑 + 𝑒𝑐𝑙𝑖𝑝𝑠𝑒

15 𝐻𝑡𝑡𝑝𝑙𝑜𝑎𝑑 + 𝑗𝑦𝑡ℎ𝑜𝑛
16 𝐻𝑡𝑡𝑝𝑙𝑜𝑎𝑑 + ℎ2

Fig. 6. The completion time of each single benchmark in a KVM instance.

First, we observe the comparison results (Fig. 6) of multiple bench-
marks numbered 1 to 7 in Table 4. They get shorter completion time un-
der EVRM than Adares and Escra, achieving 67.43% and 76.54% faster
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Fig. 7. The completion time of the Httpload task under diverse benchmarks in a KVM
nstance.

n sunflow experiment compared to Adares and Escra respectively. Al-
hough EVRM only shows light advantage over Adares in h2+mono ex-
eriment, EVRM presents significant improvement compared to Adares
nd Escra in other experiments.

Second, we compare the performance of network-intensive test
uites numbered 8 to 16 in Table 4, which are suites combining
etwork- and compute-intensive benchmarks. Fig. 7 illustrates the
onsiderable reduction in completion times for network-intensive tasks
Httpload) under our EVRM compared to the Default, Adares and
scra, showcasing an average improvement of 49.86%. In addition to
ptimizing network-intensive tasks, EVRM also enhances the results
f corresponding compute-intensive tasks, as demonstrated in Fig. 8.
pecifically, EVRM achieves a 53.26% reduction in completion times
or the xalan compared to Adares and a 69.65% reduction in the
usearch compared to Escra. While EVRM exhibits a slight performance
egradation in the h2 compared to Adares, it outperforms both Adares
nd Escra in other experiment suites.

.2.2. Docker experiments
We have verified the promotions of our EVRM resource manage-

ent scheme in the KVM environment through the above discussion.
hen the same steps test the performance in container nodes. Finally,
e compare the benchmark performance of the EVRM, Thoth, and
efault cases. The results are presented in Figs. 9, 10, 11, which are
 a

10 
Fig. 8. The completion time of each single benchmark under the Httpload task in a
KVM instance.

similar to the results of KVM experiments. With diverse test suites
arising in a container sequentially, the EVRM performs better results
than the Thoth scheme as a whole between 5 containers.

Like the KVM experiments, we can conclude that our proposed
VRM and the baseline Thoth scheme perform better than the Default
ase. Thus, we analyze the comparison between EVRM and Thoth
chemes.

First, we observe the results in Fig. 9. The benchmarks executed
nder EVRM present enhanced performance in terms of running speed
ompared to Thoth, with reductions of up to 77.48%. Similarly, when
ompared to Escra, EVRM demonstrates a significant speed improve-
ent of 77.48%. Our EVRM outperforms others in all test suites.

Second, we compare the performance of network-intensive test
uites numbered 8 to 16 in Table 4, which are suites combining
etwork- and compute-intensive benchmarks. The completion times
f network-intensive task (i.e., Httpload) are presented in Fig. 10.
he results demonstrate that EVRM outperforms Default, Adares, and
scra for network-intensive tasks (Httpload), showcasing a significant
eduction in completion times by an average of 52.39%. Finally, our
VRM performs better results of the corresponding compute-intensive
asks (Fig. 11) compared to Thoth and Escra, reducing up to 79.12%
nd 90% in fop test, respectively.
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Fig. 9. The completion time of single benchmark in a Docker instance.

Since EVRM coordinates multiple resources, our EVRM improves
emory-, CPU-benchmark applications and outperforms the Adares

nd Escra by 16.93% and 49.32% in VM and the Thoth and Escra
y 61.43% and 55.96% in docker on average respectively. In light-
oaded experiments, EVRM shows the best performance since it benefits
rom fine-grained continuous space compared to Adares and Thoth.
oreover, EVRM transforms the continuous values to discrete values

hrough pre-training coverage, making models fit to current environ-
ent. Escra’s performance is relatively poor due to its limited capability

f adjusting only the CPU quota. This limitation becomes evident when
ealing with heavy workloads, as Escra is constrained by the constant
PU number.

Compared to Docker experimental results in Fig. 9, KVM performs
etter in Fig. 6. Comprehensive explanations are taken as follows.
ocker’s shared-kernel architecture introduce contention between con-

ainers, especially under heavy-loaded conditions. While KVM provides
tronger resource isolation by leveraging full virtualization, where each
M runs its own kernel. This reduces resource contention, particularly

n CPU-bound or I/O-intensive tasks. The stronger isolation in KVM
nsures better performance when the system is heavily loaded, which
xplains its superior performance in such conditions.

.3. Validation of dynamic network load evaluation

To better simulate the real web workload, we change the 𝑝 and
𝑓 values of Httpload testing tool dynamically and observe the EVRM
performance. We generate 20 sets of 𝑝 and 𝑓 values through a two-
dimensional normal distribution, and then we run Httpload in 5 in-
stances under different schemes. Fig. 12 presents the completion time
of the Httpload in each instance.

Figs. 12(a) and 12(b) present the results under KVM and Docker.
Our EVRM performs the best in both KVM and Docker experiments
11 
Fig. 10. The completion time of the Httpload task under diverse benchmarks in a
Docker instance.

where the EVRM outperforms others by 10.47% and 16.24% on av-
erage, due to the fact that our EVRM well adapt to network resource
scheduling.

5.4. Validation of heavy-loaded evaluation

We investigate 15 virtual instances to compare EVRM with compar-
ison schemes in term of benchmarks’ completion times. In Section 5.2,
only one virtual instance runs benchmarks. In this section, we deploy
diverse benchmark suites in all 15 virtual instances synchronously.
Each suite in Table 5 runs on one virtual instance. Furthermore, we run
the DaCapo benchmarks for ten times and average the results with error
bars indicating the standard deviation of DaCapo applications. Based on
the initial configuration in Table 3, the 15 virtual instances would be
competitive for the CPU resource of the compute node.

5.4.1. KVM experiments
Fig. 13 displays the completion results of the benchmarks on KVM.

Similarly, we find that the results under the EVRM circumstance per-
form the best. EVRM outperforms Default, Adares and Escra by reduc-
ing 51.16%, 51.31% and 58.04% time on average.

In Fig. 13(a), the benchmark under EVRM perform the best as a
whole. The sunflow gets the most significant speedup, by achieving 2.2×
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Fig. 11. The completion time of each benchmark under Httpload task in a Docker
instance.

Fig. 12. Dynamic Httpload completion time in 5 instances.

peedup on average. However, the running speed of avrora drops by
ithin 10%, which is a minor performance penalty.

When hybrid suites of the network- and compute-intensive bench-
arks are tested, the proposed EVRM obtains the best Httpload perfor-
ance by more than 3× speedup on average than other methods, under

arious CPU workloads (as shown in Fig. 13(b)). This result is mainly
aused by the absence of bandwidth management when Default, Adares
nd Escra deal with multiple resource management.

As for the corresponding compute-intensive benchmarks
Fig. 13(c)), our EVRM also presents the best results as a whole. The
usearch-fix and eclipse get the best result compared to Default by
12 
Table 5
Information about each evaluation suite.

Suite Benchmark Memory CPU
ID name load 𝑥 load 𝑦

1 ℎ2 300 MB –
2 ℎ2[𝑚𝑜𝑛𝑜] 200 MB 1
3 𝑒𝑐𝑙𝑖𝑝𝑠𝑒 100 MB 2
4 𝑎𝑣𝑟𝑜𝑟𝑎 300 MB 2
5 𝑗𝑦𝑡ℎ𝑜𝑛 100 MB 1
6 𝑠𝑢𝑛𝑓𝑙𝑜𝑤 100 MB –
7 𝑙𝑢𝑠𝑒𝑎𝑟𝑐ℎ – –
8 ℎ𝑡𝑡𝑝_𝑙𝑜𝑎𝑑 + 𝑙𝑢𝑠𝑒𝑎𝑟𝑐ℎ_𝑓𝑖𝑥 200 MB 1
9 ℎ𝑡𝑡𝑝_𝑙𝑜𝑎𝑑 + 𝑝𝑚𝑑 200 MB –

10 ℎ𝑡𝑡𝑝_𝑙𝑜𝑎𝑑 + 𝑙𝑢𝑖𝑛𝑑𝑒𝑥 200 MB 1
11 ℎ𝑡𝑡𝑝_𝑙𝑜𝑎𝑑 + 𝑏𝑎𝑡𝑖𝑘 200 MB 1
12 ℎ𝑡𝑡𝑝_𝑙𝑜𝑎𝑑 + 𝑓𝑜𝑝 – –
13 ℎ𝑡𝑡𝑝_𝑙𝑜𝑎𝑑 + 𝑥𝑎𝑙𝑎𝑛 – –
14 ℎ𝑡𝑡𝑝_𝑙𝑜𝑎𝑑 + 𝑒𝑐𝑙𝑖𝑝𝑠𝑒 100 MB –
15 ℎ𝑡𝑡𝑝_𝑙𝑜𝑎𝑑 + 𝑗𝑦𝑡ℎ𝑜𝑛 200 MB –

obtaining 50.18%× and 66.52%× speedup, respectively. Additionally, the
xalan also gets a slightly 4.65%× higher speed.

5.4.2. Docker experiments
Similarly, we conduct the same experiments on containers. Com-

parison results are presented in Fig. 14. In Fig. 14(a), our EVRM
outperforms Thoth and Escra. For example, the eclipse results present
2.1× and 4.3× speedup in completion time compared to Thoth and
Escra. Although Thoth shows 1.22× and 1.74× improvements compared
to EVRM in avrora and jython, EVRM achieves 56.47% improvements
on average over Thoth, and EVRM still performs the best as a whole.

As for the results of the hybrid suites of the network- and compute-
intensive benchmarks in Figs. 14(b) and 14(c), the proposed EVRM
presents at least 25.04% and 26.55% time reduction than Thoth and Es-
cra scheme respectively, under various DaCapo benchmarks (as shown
in Fig. 14(b)). Furthermore, the EVRM also obtains the best results of
corresponding compute-intensive benchmarks (Fig. 14(c)). Compared
to Thoth and Escra scheme, EVRM reduces the completion time by
61.59% and 66.13% respectively.

These results presented in Figs. 13 and 14 verify that EVRM can
shorten the completion times of diverse applications under heavy work-
load circumstances. While slight performance drops in some virtual
instances can be observed under peak resource contention, this is a
challenging situation where it may be difficult to meet the SLO require-
ments of all instances. In such cases, horizontal scaling becomes an
essential strategy to ensure SLO compliance by distributing workloads
across additional resources when vertical scaling reaches its limits.

EVRM performs the best under heavy-loaded experiments since we
define Eq. (6) and reward parameters 𝑎1 to 𝑎6 to model the system
behavior. In the pre-training process the model learns the intricate
relationship between resources and system performance, and studies
how to minimize Eq. (6) to optimize the system accordingly. In the
experiments, EVRM dynamically adjusts resources to minimize the
occurrence of bad states instances. Although Escra maintains a memory
pool and it actually benefits from CPU quota adjust and memory
pool under light-loaded experiments, it presents limited performance
in heavy-loaded experiments due to the fixed CPU number. Moreover,
EVRM outperforms Adares and Thoth due to fine-grained output.

5.4.3. Resource violation
In our experiments, we also compare EVRM with other existing

CPU-memory scheduling schemes on CPU and memory violations in
heavy-loaded KVM and Docker experiments, as presented in Fig. 15.
As for resource violation, Fig. 3 illustrates that instances violate the
threshold when their resource usage exceeds the upper threshold or
falls below the lower threshold. For CPU and memory, we set the lower

threshold at 0.2 and the upper threshold at 0.8.
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Fig. 13. Comparisons of the completion time in VMs.
Fig. 14. Comparisons of the completion time in containers.
To better explain resource violation, we present the 14th VM’s
esource log which is extracted in a heavy-loaded VM experiment under
he EVRM scheme. Figs. 16(a) and 16(b) shows the CPU and memory
nformation, respectively. Memory usage is in violation condition at
irst, and then EVRM enlarge the memory to avoid the violation de-
ands. CPU usage is low at the beginning, thus EVRM adjusts the CPU

rom 4 to 3. However, the workload grows gradually and it is under
iolation condition later in the 16th iteration. As a result, EVRM then
djusts CPU from 3 to 4 to better cope with the surge workload. We
ecord the violation time proportion as violation result.

In our KVM experiments, EVRM demonstrates the lowest CPU viola-
ion rate and the second-lowest memory violation rate among all tested
ethods. Conversely, Escra consistently exhibits the highest violation

ates due to its limited approach of adjusting only the CPU quota,
esulting in consistently high CPU usage. EVRM’s superior performance
n CPU violations can be attributed to the accurate training of the
DPG module to match system behavior. Regarding memory violations,
VRM shows second-lowest violation rate. While memory violation
hows limited impacts in our heavy-loaded KVM experiments, our
VRM possesses the best benchmark running performance (Fig. 13) at
he expense of memory violation.

Similarly, our EVRM demonstrates the best violation rate for both
PU and bandwidth in Docker experiments. Notably, the CPU violation
ate is relatively high in Docker environments due to the heavy nature
f the Dacapo and Httpload test suites for Docker. In memory violation
xperiments, EVRM consistently strives to maintain resource utilization
ithin an appropriate range, resulting in the lowest violation rate.
hoth exhibits suboptimal behavior under heavy-loaded conditions
ecause it can only adjust one instance at a time. On the other hand,
scra performs well by managing a memory pool to control memory
tilization.

In summary, faster completion of tasks reflects more efficient re-
ource utilization, highlighting that our EVRM consistently achieves
13 
Fig. 15. CPU and memory violations.

Fig. 16. CPU and memory information in VM14.
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Fig. 17. System overhead comparison.

faster completion times with efficient resource usage. Consequently,
EVRM optimally utilizes physical resources and enhances the running
performance of virtual instances.

5.5. System overhead

We evaluate the system overhead, or in other words the self-
adaptive overhead of EVRM in terms of CPU and memory utilization.
We boot 15 bare VMs and containers on a nova node and a nova-docker
node, called Default case, and observe CPU and memory utilization
within an hour. Subsequently, we adopt EVRM to schedule CPU,
memory, and bandwidth for all virtual instances once a minute, at the
range of [1 vCPU, 2 vCPU], [1024 MB, 2048 MB], and

[

1 MB∕s, 2 MB∕s
]

,
respectively. Furthermore, we also observe CPU and memory utilization
within an hour. In this way, we can evaluate the CPU and memory
overhead of our EVRM that executes resource scheduling actions.

In Figs. 17, the red lines show the CPU and memory overhead
incurred during frequent scheduling on CPU, memory, and bandwidth
for VM and container nodes. The black lines are default CPU and
memory overhead. Although many unknown system processes interfere
with the results during the observation, we can find that our EVRM
appears similar CPU and memory overhead to the default KVM or
Docker host. Our EVRM does not generate significant overhead, which
demonstrates the availability of our EVRM.

Except the resource overhead, we also observe the latency caused
by EVRM. We have compared two situations in both KVM and Docker
experiments with heavy-loaded evaluation setting. One with maximum
resource configuration called No-limit case and the other uses EVRM
with resource restriction at the beginning. In No-limit case, we allocate
12 CPU, 8 GB memory and 10 MB/s bandwidth for VMs and containers.
Finally, we get the application completion time under two cases in
Fig. 18.

Figs. 18(a) and 18(b) present the results under KVM and Docker.
Compared to No-limit case, the applications running under EVRM
exhibit close completion time. Our EVRM shows negligible latency
expenditure because EVRM adjusts the resource properly and there is
no downtime when modifying resource, which we have clarified in
Section 3.3.

5.6. Replay memory effect

We record the pre-training overheads to evaluate the number of
adaptations required to reach the target threshold. We train the model
in 1000 episodes and each episode includes 100 iterations to find the
14 
Fig. 18. System latency observation.

Fig. 19. Convergence rate with vs without replay memory.

Fig. 20. Completion time of heavy-loaded KVM experiment with vs without replay
memory.

target optimized reward. We compare the training rewards with and
without replay memory. We find that EVRM with replay memory needs
around 200 episodes while EVRM without replay memory requires 150
episodes, as shown in Fig. 19. These results suggest that training EVRM
without replay memory involves fewer episodes compared to training
with replay memory because training EVRM with replay memory takes
the previous data to train to mitigate overfitting problem.

To compare the effect of replay memory on model performance, we
conduct heavy-loaded KVM experiments under two circumstances and
the results are shown in Fig. 20. The results present that the EVRM
trained with replay memory runs faster, because replay memory helps
mitigate overfitting effects.

6. Conclusion

In this paper, we have developed the EVRM, which integrates
monitoring, analysis, planning, and execution modules to achieve ef-
fective resource consolidation under both KVM and Docker virtualiza-
tion. Subsequently, we have introduced a novel model for the elastic
virtual resource management problem and proposed the DDPG-RA,
a comprehensive resource allocation algorithm that manages multi-
ple resources—CPU, memory, and bandwidth. DDPG-RA leverages the
DDPG algorithm to derive ratio-based action decisions, which are fur-
ther refined into resource allocation choices through an action refine-
ment algorithm in the subsequent phase.

We have compared the performance of EVRM against two existing
resource management frameworks through light- and heavy-load evalu-
ations in both VM and container instances. The results demonstrate that
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EVRM significantly outperforms these approaches in benchmark appli-
cation completion times, achieving reductions of 64.4% and 41.37%
on average in KVM and Docker during light-loaded evaluations, and
39.11% and 43.38% during heavy-loaded evaluations. Additionally,
EVRM maintains lower CPU and memory violations compared to other
methods in both environments, while exhibiting negligible self-adaptive
overhead. These findings confirm that EVRM effectively adapts to
workload variations for virtual nodes on a consolidated server.

Looking ahead, a promising area for future research is the joint opti-
mization of local resource management and horizontal virtual instance
management to enhance server consolidation in cloud data centers.
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