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A B S T R A C T

Multimodal Emotion Recognition in Conversations (MERC) aims to classify utterance emotions using textual,
auditory, and visual modal features. Most existing MERC methods assume each utterance has complete
modalities, overlooking the common issue of incomplete modalities in real-world scenarios. Recently, graph
neural networks (GNNs) have achieved notable results in Incomplete Multimodal Emotion Recognition in
Conversations (IMERC). However, traditional GNNs focus on binary relationships between nodes, limiting their
ability to capture more complex, higher-order information. Moreover, repeated message passing can cause
over-smoothing, reducing their capacity to preserve essential high-frequency details. To address these issues,
we propose a Spectral Domain Reconstruction Graph Neural Network (SDR-GNN) for incomplete multimodal
learning in conversational emotion recognition. SDR-GNN constructs an utterance semantic interaction graph
using a sliding window based on both speaker and context relationships to model emotional dependencies.
To capture higher-order and high-frequency information, SDR-GNN utilizes weighted relationship aggregation,
ensuring consistent semantic feature extraction across utterances. Additionally, it performs multi-frequency
aggregation in the spectral domain, enabling efficient recovery of incomplete modalities by extracting both
high- and low-frequency information. Finally, multi-head attention is applied to fuse and optimize features for
emotion recognition. Extensive experiments on various real-world datasets demonstrate that our approach is
effective in incomplete multimodal learning and outperforms current state-of-the-art methods.
1. Introduction

Multimodal Emotion Recognition in Conversations (MERC) [1] aims
to identify the emotions expressed by each multimodal utterance in
conversation scenes. Unlike traditional Unimodal Emotion Recognition
in Conversations (UERC) [2], MERC can use textual, auditory, and
visual modal information from the utterance to reveal more realistic
emotions of the speaker by capturing the consistency and comple-
mentary semantics within and between modalities [3,4]. With the
development of human–computer interaction, MERC has attracted sig-
nificant attention from researchers because it can be widely used
to understand and generate conversation [5]. However, most exist-
ing MERC methods usually assume that each utterance has complete
modalities, ignoring the incomplete modality problem [6,7]. Unfortu-
nately, obtaining complete multimodal data is incredibly challenging in
practical conversation scenarios [8]. For example, auditory data may
not be available due to noise interference, visual data may not be
available due to light or occlusion, and even more modal data may

✩ Our code is publicly available at https://github.com/fufangze/SDR-GNN.
∗ Corresponding author.
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not be available due to sensor failure [9]. Fig. 1 presents a sample
conversation between two speakers, where each utterance contains
three modalities. The conversation on the right side illustrates the
condition when modalities are incomplete.

The problem of incomplete modalities poses significant challenges
for MERC tasks. To this end, researchers have proposed various meth-
ods to solve this problem mainly from how to perform modal recov-
ery [8–11]. For instance, Pham et al. [8] proposed the MCTN model
considering the semantic consistency between modalities. MCTN con-
structs cyclic transformations between modalities through sequence
modeling to learn robust joint representations and uses cyclic consis-
tency loss to achieve modality recovery. Wang et al. [9] considered
the consistency of distribution between modalities and proposed the
DiCMoR model. DiCMoR reduces the distribution gap by mapping
different modalities to a latent space with Gaussian distribution and
samples the characteristic distribution of the latent space to achieve
modal recovery. Sun et al. [10] considered the consistency of long-range
semantics between modalities and proposed the EMT-DLFR model.
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Fig. 1. A toy example of complete multimodal features and incomplete multimodal
features in conversation. Missing modalities pose a considerable challenge to capturing
intra- and inter-modal semantic dependencies.

EMT-DLFR captures consistent semantics in the global dialogue context
by building a multi-modal Transformer and achieves modality recovery
through feature reconstruction. Lian et al. [11] considered the complex
relationship between multi-modal utterances and proposed the GCNet
model. GCNet uses graph neural networks to model context and speaker
relationships separately to capture consistent semantics for missing
modality recovery. Although these methods show good performance,
they still have some limitations:

(i) Limitations in capturing higher-order information. In single-
modal or multi-modal emotion recognition, the distribution of modal-
ities in conversations is typically fixed. However, in conversations
with incomplete modalities, the absence of modalities is often un-
predictable. Models need to adapt to modalities absence of varying
degrees and under different circumstances. While existing graph-based
models, including GCNet [11], do capture higher-order information
through information propagation, they rely on traditional graph struc-
tures, which are limited to binary relationships between nodes. These
fixed structure graphs often struggle to capture complex semantic
dependencies in conversations, especially when adapting to various
missing modalities. MMIN [12] proposed six possible missing-modality
conditions, but it can only learn for individual utterances. In contrast,
our approach utilizes a hypergraph structure, which effectively models
higher-order relationships among multiple nodes [13]. This allows the
model to capture more complex and nuanced dependencies, overcom-
ing the limitations of conventional graphs that GNN-based models face.
Therefore, how to capture the complex semantic dependencies between
utterances, adapt to different situations, and optimize the recovery of
incomplete modalities is an issue that cannot be ignored.

(ii) Limitations in handling high-frequency information. Much
research shows that high-frequency signals that reflect dissimilarity are
as crucial as low-frequency signals that reflect consistency in MERC
tasks [6,7]. Because the message propagation of GNN [14] has low-
pass filtering characteristics, node representation is achieved by ag-
gregating consistent low-frequency information in the neighborhood
and suppressing differential high-frequency information. This incli-
nation towards low-frequency components results in over-smoothing,
where distinctive emotional transitions – the high-frequency signals
– are suppressed, masking important intra-modal shifts. Regrettably,
the constructed utterances-emotion interaction graphs often have se-
mantic inconsistencies, and it is crucial to retain high-frequency in-
formation. Our proposed SDR-GNN addresses this by preserving and
leveraging high-frequency information to capture rapid transitions and
local changes, which are integral for comprehensive emotional analy-
sis. Consequently, simultaneously retaining and fusing high- and low-
frequency information to guide the recovery of incomplete modalities
is a challenge that must be overcome.
2 
Inspired by the above analysis, this paper proposes a novel Spec-
tral Domain Reconstruction Graph Neural Network for Incomplete
Multimodal Learning in Conversational Emotion Recognition, named
SDR-GNN. SDR-GNN can capture the complex emotional dependen-
cies between utterances while learning multi-frequency information in
multimodal features for incomplete modal recovery to obtain better
emotion recognition results. Specifically, SDR-GNN first simulates the
modal missing problem in real conversation scenarios by randomly
discarding some modal features, and adding speaker information to the
discourse features to form multimodal nodes. Subsequently, to model
the complex semantic dependencies between multimodal utterances,
SDR-GNN constructs the emotional interaction graph from the context
and speaker relationships based on a sliding window, where the nodes
in the sliding window are fully connected and construct the context and
speaker hyperedges separately. Next, to capture the complex emotional
dependence between far and near utterances and learn multi-frequency
information in multimodal features, SDR-GNN uses a neighborhood
relationship awareness layer, a hyperedge relationship awareness layer,
and a multi-frequency information awareness layer separately for in-
formation propagation. Finally, SDR-GNN reconstructs based on the
learned features to guide the recovery of incomplete modalities and
uses multi-head attention for feature fusion to achieve emotion recog-
nition. We conducted experiments on three conversational datasets,
verifying the effectiveness of our method. The experimental results
demonstrate that our SDR-GNN outperforms existing approaches. The
main contributions of this paper can be summarized as follows:

• Existing graph neural networks (GNNs) are constrained by their
inherent limitations, which may lead to over-smoothing and the
erasure of high-frequency signals, making it difficult to fully uti-
lize multi-frequency information. We have not only addressed this
limitation but also applied our approach to multimodal emotion
recognition under incomplete modalities, thereby filling the gap
in current works.

• We propose a novel framework, SDR-GNN, to deal with in-
complete conversational data in the MERC task, which jointly
considers the higher-order information of modalities and multi-
frequency features, and fully utilizes the semantic dependence
in both speaker and context for missing modality recovery and
emotion recognition.

• Experimental results on three benchmark datasets verify the ef-
fectiveness of our method. SDR-GNN outperforms existing state-
of-the-art approaches in the domain of incomplete multimodal
learning in conversational emotion recognition.

2. Related works

2.1. Multimodal emotion recognition in conversations

Multimodal Emotion Recognition in Conversations has gained sig-
nificant attention in recent years due to its potential applications in
various fields. Multimodal ERC leverages multiple data modalities,
including text, audio, and visual data, to capture and analyze emotions
more comprehensively during conversational exchanges.

To better utilize multimodal information to address the ERC prob-
lem, researchers have proposed various methods. MulT [15] model
uses cross-modal transformers to capture long-range dependencies.
MMGCN [6] constructs a comprehensive graph to handle multimodal
and extensive contextual information, and includes speaker embed-
dings to encode speaker-specific details. M2FNet [16], a multimodal
network based on multi-head attention layers to capture crossmodal in-
teractions. MultiEMO [17] model incorporates bidirectional multi-head
cross-attention layers for effective fusion. What is more, CBERL [18]
using a multimodal generative adversarial network to address the
imbalanced distribution of emotion categories in raw data.

One major assumption in MERC is that data from all modalities are
complete and continuous. However, in the real world, data from modal-
ities are often incomplete due to various reasons, making learning
under incomplete modalities a promising area of research.
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2.2. Incomplete multimodal learning

Multimodal learning aims to utilize information from a variety of
ata modalities to improve generalization performance. However, in
ome conditions, modalities may be missing or unavailable. A straight-
orward method is to use existing data for classification. Additionally,
here are strategies that conduct data imputation aiming to reconstruct
issing data. We divide the existing methods into two categories:
on-reconstruction and reconstruction methods.

Existing non-reconstruction approaches primarily focus on the anal-
sis of incomplete data, such as through maximizing correlations [19–

21]. Hotelling et al. [22] introduced CCA, which maximizes canoni-
cal correlations by linearly mapping multimodal features into a low-
dimensional space. In contrast to CCA’s linear focus, Andrew et al. [19]
eveloped DCCA, which enhances traditional CCA by addressing its lim-
tations related to linear associations. It employs deep neural networks
o uncover more intricate, non-linear relationships across different
odalities. Additionally, Wang et al. [23] introduced DCCAE. DCCAE

dvances CCA by incorporating autoencoders, which are designed to
xtract latent features from each modality. This approach optimizes
oth the reconstruction accuracy of the autoencoders and the canonical

correlations, effectively balancing the integrity of modality-specific
tructures with the connectivity between modalities.

Reconstruction methods, on the other hand, aim to ensure data
completeness, primarily through data imputation [24–26], generating

issing data [27–29], or reconstructing incomplete data by learn-
ng feature representations. Parthasarathy et al. [24] proposed an
ttention-based model that fills missing video data with zero vectors.
hang et al. [26] developed CPM-Net, which integrates an encoder-

less model with a clustering-like classification loss to learn features
and pads missing modalities with average values. Moreover, several
DNN-based models have been developed, including autoencoders [28],
GAN [30], and Transformers [31].

To better reconstruct incomplete data, researchers started to explore
feature representations. For example, Lian et al. proposed GCNet [11],
which utilizes GNN-based models to capture different types of informa-
tion in conversations to reconstruct missing modalities. Wang et al. [9]
onsidered the consistency of data distributions to recover missing
eatures.

3. Methodology

The main objective of MERC is to assign an appropriate emotion
abel to each utterance within a dialogue. This paper specifically ad-
resses scenarios where multimodal data is incomplete—common in
eal-world applications where some modalities might be unavailable
r lost due to technical issues. We introduce a novel framework, SDR-
NN, designed to effectively manage and process these incomplete
atasets. Our approach leverages the intrinsic structure of conver-
ational data and employs graph neural networks to interpolate or
econstruct the missing modalities, ensuring robust emotion recogni-
ion even with partial information. Fig. 2 in the paper provides a visual
verview of the SDR-GNN framework, illustrating its key components
nd operational flow in handling missing multimodal features across
onversational utterances.

3.1. Node construction

We define each conversation consists of a series of utterances 𝐶 =
{𝑢1, 𝑢2,… , 𝑢𝑛}, where 𝑛 is the number of utterances. Each conversation
nvolves 𝑁 speakers 𝑃 = {𝑝1, 𝑝2,… , 𝑝𝑁}(𝑁 ≥ 2). Each utterance 𝑢𝑖 is

spoken by 𝑝𝑠(𝑢𝑖), where the function 𝑠(⋅) maps the index of utterance into
its corresponding speaker. For each utterance 𝑢𝑖, we extract multimodal
features 𝑢𝑖 = {𝜂 𝑓𝑚

𝑖 }𝑚∈{𝑎,𝑣,𝑡}. Here, 𝑓 𝑎
𝑖 ∈ R𝑑𝑎 , 𝑓 𝑣

𝑖 ∈ R𝑑𝑣 and 𝑓 𝑡
𝑖 ∈

𝑑𝑡
R represent the audio, visual and text features of the utterance,

3 
respectively. {𝑑𝑚}𝑚∈{𝑎,𝑣,𝑡} is the feature dimension of each modality.
Each 𝜂 of 𝑢𝑖 is defined as follows:

𝜂 =

{

1, 𝑓𝑚
𝑖 is available;

0, otherwise.
(1)

In this paper, we assume at least one modality-complete data is
available for analysis. Therefore, an incomplete 𝑀-modal dataset has
(

2𝑀 − 1) different missing patterns, in line with previous works [11,
26].

We employ a bidirectional Gated Recurrent Unit (GRU) to extract
contextual features and dynamically analyze dependency relationships.
The computation is performed as follows:
𝑢𝑖 = 𝐵 𝑖𝐺 𝑅𝑈 (𝑢𝑖, ℎ𝑖(+,−)1),
𝐻 = {ℎ𝑖}𝑛𝑖=1 ∈ R𝑛×(𝑑𝑎+𝑑𝑣+𝑑𝑡),

(2)

𝐻 is the matrix containing all hidden states ℎ𝑖 for (𝑖 = 1) to 𝑛. Each
idden state is a vector that captures contextual information up to the
th position from both directions of the sequence.

3.2. Spectral domain reconstruction graph neural network

The main idea of Spectral Domain Reconstruction Graph Neural
Network is to capture the multivariate relationships between domain
nodes, resulting in better aggregation effects for the following recon-
struction task. We first construct relation graph convolutional networks
(R-GCN) [32] in capturing node features, capturing both contextual
nd speaker features. In addition, considering the dynamic absence
f modalities, we construct a hypergraph with edge-dependent node
eights to flexibly aggregate node information. Recent works has
erified the effectiveness of multi-frequency emotional information in
he ERC task [7,14], therefore we design a frequency-aware module

specifically to capture this information.
We have developed speaker interaction graphs and context inter-

action graphs as the primary modules for extracting emotion cues. In
these graphs, edges measure the significance of connections between
nodes, where the type of edge determines the propagation method of
various information. While both the speaker and context graphs use
identical edges, each edge represents a distinct dependency.

Edges: Considering the overwhelming number of connections when
ach node interacts with all others, we streamline this by limiting

node interactions to a fixed-size context window 𝑤, following insights
from previous research that emphasize the importance of local context.
Therefore, a node 𝑣𝑖 only connects with nearby nodes within the
context window {𝑣𝑗}𝑗∈[𝑚𝑎𝑥(𝑖−𝑤,1),𝑚𝑖𝑛(𝑖+𝑤,𝐿)], significantly reducing com-
lexity. We select 𝑤 from the set {1, 2, 3, 4} and denote the edge from

node 𝑣𝑖 to 𝑣𝑗 as 𝑒𝑖𝑗 ∈  (|| = 𝑛 + 2𝑤 − 1).
Speaker Interaction Graph: The speaker interaction graph lever-

ages the various speakers and their corresponding utterances to map
ut the dependencies among speakers within a conversation. Each edge

𝑒𝑖𝑗 in the graph is tagged with a speaker identifier 𝛼𝑖𝑗 from the set
, which encompasses all speaker types present in the dialogue. The

cardinality of 𝛼, represented as 𝛼, indicates the number of distinct
peaker types. For each connection 𝑒𝑖𝑗 , 𝛼𝑖𝑗 denotes the directional flow
rom speaker 𝑝𝑠(𝑢𝑖) to speaker 𝑝𝑠(𝑢𝑗 ), where 𝑝𝑠(𝑢𝑖) and 𝑝𝑠(𝑢𝑗 ) are the speaker

identifiers for 𝑢𝑖 and 𝑢𝑗 , respectively.
Context Interaction Graph: Context interaction graph utilizes con-

textual information to delineate the contextual dependencies within a
conversation. Each edge 𝑒𝑖𝑗 is assigned a context type identifier 𝛽𝑖𝑗 ∈
|𝛽|, which contains all possible context types in the discussion. The
etermination of 𝛽 values is influenced by the relative positioning of 𝑢𝑖
nd 𝑢𝑗 within the dialogue, with possible values including backward,
resent, forward. Therefore, the total number of context types, |𝛽|, is
hree.
Weighted HyperGraph: In hypergraphs, we define two types of

eights: an edge weight, 𝜆(𝑒), for each edge 𝑒, and a node weight, 𝛾𝑒(𝑣),
for each node 𝑣 incident to edge 𝑒, also known as edge-dependent node
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Fig. 2. The overall structure of the framework. First, we encode features of the utterance using a Bi-GRU to obtain the contextual embedding of each node. Then, we apply the
SDR-GNN to capture features, jointly considering higher-order and multi-frequency information. Finally, we reconstruct the incomplete features and classify the emotion labels.
weight. Intuitively, 𝛾𝑒(𝑣) represents the contribution of node 𝑣 to the
hyperedge 𝑒, enriching the representation of detailed multimodal and
contextual dependencies. Consequently, edge-dependent node weights
are expressed using a weighted incidence matrix. �̂� ∈ R𝑛×||:

�̂� =

{

𝛾𝑒(𝑣), edge is incident with node 𝑣;
0, otherwise.

(3)

Graph learning: We use R-GCN to aggregate the local information
in the graph, then use hypergraph for weighted aggregation. The
calculation is shown as follows:

𝑣𝑠𝑝𝑖 = 𝑅𝑒𝐿𝑈
⎛

⎜

⎜

⎝

∑

𝑟∈𝛼

∑

𝑗∈𝑁𝑟
𝑖

1
|

|

|

𝑁𝑟
𝑖
|

|

|

𝑊 𝑟
1 ℎ𝑗

⎞

⎟

⎟

⎠

, (4)

𝑣𝑐 𝑜𝑖 = 𝑅𝑒𝐿𝑈
⎛

⎜

⎜

⎝

∑

𝑟∈𝛽

∑

𝑗∈𝑁𝑟
𝑖

1
|

|

|

𝑁𝑟
𝑖
|

|

|

𝑊 𝑟
2 ℎ𝑗

⎞

⎟

⎟

⎠

, (5)

𝐕(𝑙+1) = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝐃−1𝐇𝐖𝑒𝐁−1�̂�𝐕(𝑙)), (6)

where 𝑣𝑠𝑝𝑖 ∈ Rℎ, 𝑣𝑐 𝑜𝑖 ∈ Rℎ denote the outputs of nodes in Speaker
types and Context types, respectively. 𝑁𝑟

𝑖 denotes the set of all neighbor
nodes of 𝑣𝑖 under relation 𝑟, and |𝑁𝑟

𝑖 | is the number of 𝑁𝑟
𝑖 . 𝑊

𝑟
1 and 𝑊 𝑟

2
are the trainable parameters for different types of graph under relation
𝑟, respectively. 𝐇 ∈ R𝑛×|| represent the incidence matrix, in which a
nonzero entry 𝐇𝑣𝑒 = 1 indicates that the edge 𝑒 is incident with the
node 𝑣; otherwise 𝐇𝑣𝑒 = 0. 𝐃 ∈ R𝑛×𝑛 and 𝐁 ∈ R||×|| are the node
degree matrix and edge degree matrix, respectively. 𝐕(𝑙) = {𝑣𝑖,(𝑙)}𝑛𝑖=1 ∈
R𝑛×(𝑑𝑎+𝑑𝑣+𝑑𝑡) is the input at layer 𝑙. 𝐖𝑒 = diag(𝜆(𝑒1),… , 𝜆(𝑒𝑖𝑗 )) is the
edge weight matrix.

Frequency-Aware Graph: Although speaker graph and context
graph can capture feature dependencies, they still follow the generic
graph learning protocol, which aggregates and smooths signals from
the local neighborhood, thereby erasing high-frequency signals [7,14].
These signals can be crucial for ERC tasks. To effectively learn different
types of frequency information between the central node and its neigh-
bors, we designed a self-gating mechanism. Specifically, it calculates
the correlation between the central node and its neighbors, learning the
multi-frequency information of multimodal features. Mathematically:

𝑣𝑥𝑖𝑗 = 𝐶 𝑜𝑛𝑐 𝑎𝑡(𝑣𝑥𝑖 , 𝑣𝑥𝑗 ), 𝑥 ∈ {𝑠𝑝, 𝑐 𝑜} (7)

𝑙𝑠𝑝𝑖 = 𝑣𝑠𝑝𝑖 +
∑

𝑟∈𝛼

∑

𝑗∈𝑁𝑟
t anh

⎛

⎜

⎜

⎜

𝑊 𝑟
3 𝑣

𝑠𝑝
𝑖𝑗

√

|𝑁𝑟
||𝑁𝑟

|

⎞

⎟

⎟

⎟

𝑣𝑠𝑝𝑗 , (8)

𝑖

⎝

𝑖 𝑗
⎠

4 
𝑙𝑐 𝑜𝑖 = 𝑣𝑐 𝑜𝑖 +
∑

𝑟∈𝛽

∑

𝑗∈𝑁𝑟
𝑖

t anh
⎛

⎜

⎜

⎜

⎝

𝑊 𝑟
4 𝑣

𝑐 𝑜
𝑖𝑗

√

|𝑁𝑟
𝑖 ||𝑁

𝑟
𝑗 |

⎞

⎟

⎟

⎟

⎠

𝑣𝑐 𝑜𝑗 , (9)

Here, 𝑊 𝑟
3 , 𝑊 𝑟

4 ∈ R2ℎ are trainable weight matrices, and t anh(⋅) is
the hyperbolic tangent function, which scales the input to the range
[−1,1]. In the context of graph neural networks, low-frequency signals
can be thought of as generalized information propagated across large
areas of the network, indicating similarity or commonality among
nodes. High-frequency signals, conversely, emphasize differences or
specific characteristics distinct to neighboring nodes. These signals are
derived through the spectral decomposition of the graph Laplacian,
which allows us to separate these frequency components mathemat-
ically. Through this mechanism, the outputs of 𝑊 𝑟

3 𝑣
𝑠𝑝
𝑖𝑗 and 𝑊 𝑟

4 𝑣
𝑐 𝑜
𝑖𝑗

effectively gauge the significance of various frequency components.
The self-gating mechanism, as proposed in our SDR-GNN, enables
dynamic differentiation and integration of these frequency signals,
helping retain essential low-frequency information while preserving
critical high-frequency details crucial for tasks involving nuanced data.
For example, if 𝑊 𝑟

3 𝑣
𝑠𝑝
𝑖𝑗 < 0, high-frequency messages are prominent,

signifying a greater difference between node 𝑖 and its neighbor 𝑗, and
vice versa.

To aggregate these representations, we concatenate them to form
the final representation of the Local Enhancement Graph:

𝑙𝑖 = 𝐶 𝑜𝑛𝑐 𝑎𝑡(𝑙𝑠𝑝𝑖 , 𝑙𝑐 𝑜𝑖 ). (10)

3.3. Reconstruction & Self optimization

To better utilize multi-frequency data, we input the extracted fea-
tures into a linear transformation layer for predicting missing data and
achieving data recovery. Then input the recovered data into a multi-
head attention layer [33] to fuse and optimize reconstructed modalities,
which can be shown as follows:

𝐹 = 𝐿𝑊𝑚 + 𝑏𝑚, 𝑚 ∈ {𝑎, 𝑣, 𝑡}, (11)

𝐹𝑖 = sof t max(𝑄𝐾𝑇
√

𝑑
)𝑉 , (12)

where 𝐿 = {𝑙𝑖}𝑛𝑖=1 ∈ R𝑛×𝑑ℎ is the matrix containing all hidden states 𝑙𝑖
and 𝐹𝑚 = {𝑓𝑖}𝑛𝑖=1 ∈ R𝐿×𝑑𝑚 is the estimated complete data. 𝑊𝑚 ∈ R𝑑×𝑑𝑚

and 𝑏𝑚 ∈ R𝑑𝑚 are the trainable parameters, where 𝑑𝑚 is the feature
dimension for each modality. For the attention layers, 𝑄 = 𝐹 𝑊𝑄,
𝐾 = 𝐹 𝑊𝐾 , 𝑉 = 𝐹 𝑊𝑉 . 𝑄 = 𝐹 𝑊𝑄, 𝐾 = 𝐹 𝑊𝐾 , 𝑉 = 𝐹 𝑊𝑉 are the
trainable parameter matrices. In this approach, multiple attentions are
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combined to obtain the output results of the multi-head attention layer
as follows:

𝑀 𝑢𝑙 𝑡𝑖ℎ𝑒𝑎𝑑(𝐹 ) = 𝐶 𝑜𝑛𝑐 𝑎𝑡(𝐹1,… , 𝐹𝑘)𝑊 , (13)

where 𝐹1,… , 𝐹𝑘 is the output of each attention layer, 𝑘 is the number
f attention layers, and 𝑊 is the trainable parameter matrix.

3.4. Emotion classifier

To enhance the learning of more discriminative features for conver-
sation understanding, we input the latent representations 𝐿 = {𝑙𝑖}𝑛𝑖=1
nto a fully-connected layer, subsequently followed by a softmax layer
o compute the classification probabilities:

𝑌 = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(𝐿𝑊𝑐 + 𝑏𝑐 ), (14)

here 𝑌 = {�̂�𝑖}𝑛𝑖=1 ∈ R𝑛×𝑐 is the estimated probabilities, 𝑦𝑖 ∈ {1,… , 𝑐},
�̂�𝑖 ∈ {1,… , 𝑐}. Where 𝑦𝑖 is the true labels and 𝑐 is the number of
discrete labels in the corpus, 𝑊𝑐 ∈ R𝑑×𝑐 and 𝑏𝑐 ∈ R𝑐 are the trainable
parameters. 𝑊𝑐 ∈ R𝑑×𝑐 and 𝑏𝑐 ∈ R𝑐 are the trainable parameters.

Our loss function consists of two parts, the reconstruction function
nd the cross entropy function. The reconstruction function is used to
alculate the difference between the original data and the filled data,
hile the cross entropy function is used for label classification. The

alculation is illustrated as follows:

𝑐 𝑒 = −1
𝑛

𝑛
∑

𝑖=1
𝑦𝑖 log(�̂�𝑖), (15)

𝑟𝑒𝑐 =
∑

𝑚∈{𝑎,𝑣,𝑡}

1
𝑑𝑚𝑛

𝑛
∑

𝑖=1
‖(𝑓𝑚

𝑖 − 𝑓𝑚
𝑖 )‖

2, (16)

 = (1 − 𝑒)𝑐 𝑒 + 𝑒𝑟𝑒𝑐 . (17)

4. Experiments

In this section, we describe the three benchmark conversational
datasets employed in our experiments, explain the evaluation metrics
and multimodal features used, and introduce a variety of advanced
baselines for comparison in the context of incomplete multimodal
learning.

4.1. Datasets

To assess the efficacy of the SDR-GNN model, we conducted experi-
ments using three benchmark conversational datasets: IEMOCAP [34],
CMU-MOSI [35], and CMU-MOSEI [36]. The details are shown in
Table 1. These datasets are widely recognized in the research commu-
ity for their comprehensive coverage of emotional and multimodal
uman interactions, making them ideal for testing new models in

multimodal learning contexts.
IEMOCAP includes multiple conversations between two speakers,

segmented into short utterances each annotated with discrete emo-
tion labels. For consistency in comparisons, we employ two prevalent
labeling methods, generating datasets with either four or six classes.
The four-class dataset includes the emotions: anger, happiness (where
xcitement is merged with happiness), sadness, and neutral [37]. The
ix-class dataset encompasses: anger, happiness, sadness, neutral, ex-
itement, and frustration [38].
CMU-MOSI features a collection of movie review videos from online

latforms, comprising 2199 short monologue clips. Each clip is rated
ith a sentiment intensity score on a scale from −3 (most negative) to
3 (most positive).
CMU-MOSEI extends CMU-MOSI by incorporating a wider range of

opics with 22,856 movie review clips from YouTube, maintaining the
ame sentiment scoring method from −3 to +3.

4.2. Implementation details and evaluation metrics

We evaluate the performance of various methods on multimodal
atasets with different missing rates, defined as  = 1 −

∑𝑛
𝑖=1 𝑠𝑖 . Here,
𝑛×𝑀

5 
Table 1
Statistical information on IEMOCAP, CMU-MOSI and CMU-MOSEI.

Dataset # utterances # conversations

Train & val Test Train & val Test

IEMOCAP(four-class) 4290 1241 120 31
IEMOCAP(six-class) 5810 1623 120 31
CMU-MOSI 1513 686 62 31
CMU-MOSEI 18 197 4659 2549 676

𝑠𝑖 represents the number of available modalities for the 𝑖th sample, 𝐿 is
he total number of samples, and 𝑀 is the total number of modalities.

For each sample, modalities are randomly masked according to ,
ensuring at least one modality per sample. This constraint results
in  ⩽ 𝑀−1

𝑀 . For 𝑀 = 3,  ranges from 0.0 to 0.7, the latter
pproximating 𝑀−1

𝑀 . In line with prior research [9,11], the missing rate
emains constant across training, validation, and testing phases.

We utilize the datasets IEMOCAP, CMU-MOSI, and CMU-MOSEI,
which are equipped with predefined splits for training, validation, and
testing. The model configuration that performs optimally is identified
sing the validation set and subsequently evaluated on the test set.
ur methodology involves adjusting two key parameters: the dimension
f latent representations, labeled as ℎ, and the size of the interac-

tion window, labeled as 𝑤. Our experiments involve values of ℎ ∈
{100, 150, 200, 250} and 𝑤 ∈ {1, 2, 3, 4}, applied across all datasets. For
optimization, the Adam optimizer is employed, with a learning rate of
0.001 and a weight decay of 0.00001. Additionally, we incorporate
a multi-head attention mechanism with 𝑘 = 256 heads. To mitigate
overfitting, Dropout [39] is applied at a rate of 𝑝 = 0.5. The reliability
of our results is ensured by averaging the performance over ten trials
on the test set.

To verify our method, we select the following evaluation metrics to
fair compete with different approaches.

For IEMOCAP, we choose weighted average F1-score (WAF1) as
he evaluation metric. WAF1 is calculated as a weighted mean F1 over
ifferent emotion categories with weights proportional to the number
f utterances in each emotion class, which can be shown as follows, in
ine with previous works [11,38].

𝑊 𝐴𝐹1 =
∑𝐸

𝑗=1 𝑁𝑗 ∗ 𝐹1𝑗
∑𝐸

𝑗=1 𝑁𝑗
(18)

where 𝐸 is the total number of emotion categories, 𝑁𝑗 is the number
of samples in category 𝑗, and 𝐹1𝑗 is the F1 score for category 𝑗.

For CMU-MOSI and CMU-MOSEI, we focus on the negative/positive
lassification task, with scores assigned to less than 0 for negative
nd greater than 0 for positive, respectively. We choose WAF1 as the
rimary metric and the accuracy (ACC) of the classification task as the
econdary metric.

4.3. Baselines

CCA [22]: CCA aims to find the linear relationships with the maximum
correlation between two multimodal datasets. By linearly mapping
them into a low-dimensional common space, CCA learns the relation-
hips between different modalities. It is a strong benchmark model,
specially suitable for scenarios where linear relationships can capture

the interactions between modalities well.

DCCA [19]: DCCA enhances traditional CCA by addressing its limita-
tions related to linear associations. It employs deep neural networks
to uncover more intricate, non-linear relationships across different
modalities.

DCCAE [23]: DCCAE advances CCA by incorporating autoencoders,
hich are designed to extract latent features from each modality.

This approach optimizes both the reconstruction accuracy of the au-
toencoders and the canonical correlations, effectively balancing the
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Table 2
Comparison of performance with various missing rates on IEMOCAP. We report WAF1 scores (%). Higher WAF1 indicates better performance.
The best performance is highlighted in bold.

Dataset Method Missing rate

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Average

IEMOCAP
(four-class)

CCAa [22] 64.52 65.19 62.60 59.35 55.25 51.38 45.73 30.61 54.33
DCCAa [19] 60.03 57.25 51.74 42.53 36.54 34.82 33.65 41.09 44.71
DCCAEa [23] 63.42 61.66 57.67 54.95 51.08 45.71 39.07 41.42 51.87
CPM-Neta [26] 58.00 55.29 53.65 52.52 51.01 49.09 47.38 44.76 51.46
AEa [40] 74.82 71.36 67.40 62.02 57.24 50.56 43.04 39.86 58.29
CRAa [28] 76.26 71.28 67.34 62.24 57.04 49.86 43.22 38.56 58.23
MMINa [12] 74.94 71.84 69.36 66.34 63.30 60.54 57.52 55.44 64.91
GCNeta [11] 78.36 77.48 77.34 76.22 75.14 73.80 71.88 71.38 75.20
Ours 79.58 78.55 78.08 77.53 77.09 75.84 75.03 74.41 77.01

IEMOCAP
(six-class)

CCAa [22] 43.04 46.06 43.86 41.66 37.13 34.94 32.06 21.80 37.57
DCCAa [19] 42.18 39.15 34.47 27.65 23.69 22.86 22.71 27.38 30.01
DCCAEa [23] 46.19 43.77 41.28 37.98 34.58 30.02 26.78 27.66 36.03
CPM-Neta [26] 41.05 37.33 36.22 35.73 35.11 33.64 32.26 31.25 35.32
AEa [40] 56.76 52.82 48.66 42.26 35.18 29.12 25.08 23.18 39.13
CRAa [28] 58.68 53.50 49.76 45.88 39.94 32.88 28.08 26.16 41.86
MMINa [12] 56.96 53.94 51.46 48.42 45.60 42.82 40.18 37.84 47.15
GCNeta [11] 58.64 58.50 57.64 57.08 56.12 54.40 53.60 53.46 56.18
Ours 61.34 60.86 59.83 59.49 59.16 57.38 55.51 55.26 58.60

a Results come from [11].
Table 3
Comparison of performance with various missing rates on CMU-MOSI and CMU-MOSEI. We report WAF1/ACC scores (%). The best performance
is highlighted in bold.

Dataset Method Missing rate

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Average

CMU-MOSI

DCCAa [19] 75.4/75.3 72.2/72.1 69.1/69.3 65.2/65.4 62.0/62.8 59.9/60.9 57.3/58.6 56.0/57.4 64.6/65.2
DCCAEa [23] 77.4/77.3 74.7/74.5 71.9/71.8 66.7/67.0 62.8/63.6 61.3/62.0 58.8/59.6 57.4/58.1 66.3/66.7
MCTNa [8] 81.5/81.4 78.5/78.4 75.7/75.6 71.2/71.3 67.6/68.0 64.8/65.4 62.5/63.8 59.0/61.2 70.1/66.7
MMINa [12] 84.4/84.6 81.8/81.8 79.1/79.0 76.2/76.1 71.6/71.7 66.5/67.2 64.0/64.9 61.0/62.8 73.1/73.5
GCNeta [11] 85.1/85.2 82.3/82.3 79.5/79.4 77.2/77.2 74.4/74.3 69.8/70.0 66.7/67.7 65.4/65.7 75.1/75.2
DiCMoRa [9] 85.6/85.7 83.9/83.9 82.0/82.1 80.2/80.4 77.7/77.9 76.4/76.7 73.0/73.3 70.8/71.1 78.7/78.9
Ours 86.3/86.3 85.0/85.1 81.9/81.9 80.7/80.8 77.9/78.0 76.1/76.2 72.2/72.2 71.1/71.3 78.9/79.0

CMU-MOSEI

DCCAa [19] 80.9/80.7 77.3/77.4 74.0/73.8 71.2/71.1 69.4/69.5 65.4/67.5 63.1/66.2 61.0/65.6 70.3/71.5
DCCAEa [23] 81.2/81.2 78.3/78.4 75.4/75.5 72.2/72.3 70.0/70.3 66.4/69.2 63.2/67.6 62.6/66.6 71.2/72.6
MCTNa [8] 84.2/84.2 81.6/81.8 78.7/79.0 76.2/76.9 74.1/74.3 72.6/73.6 71.1/73.2 70.5/72.7 76.1/77.0
MMINa [12] 84.2/84.3 81.3/81.9 78.8/79.8 75.5/77.2 72.6/75.2 70.7/73.9 70.3/73.2 69.5/73.1 75.4/77.3
GCNeta [11] 85.1/85.2 82.1/82.3 79.9/80.3 76.8/77.5 74.9/76.0 73.2/74.9 72.1/74.1 70.4/73.2 76.8/77.9
DiCMoRa [9] 85.1/85.1 83.5/83.7 81.5/81.8 79.3/79.8 77.4/78.7 75.8/77.7 73.7/76.7 72.2/75.4 78.6/79.9
Ours 87.3/87.4 86.7/86.8 85.7/85.9 84.7/84.8 83.8/84.0 82.6/82.8 81.3/81.6 80.8/81.0 84.1/84.3

a Results come from [9].
w

integrity of modality-specific structures with the connectivity between
modalities.

AE [40]: In incomplete multimodal learning, autoencoders are widely
used to impute missing data from partially observed inputs. By jointly
optimizing the reconstruction loss of autoencoders and the classifi-
ation loss of downstream tasks, this method supports a trade-off in
mplementation.

CRA [28]: CRA extends AE by integrating a series of residual au-
oencoders into a cascaded architecture for data imputation. During

implementation, CRA optimizes both imputation and downstream tasks
in an end-to-end manner, enhancing the quality of data completion and
the performance of tasks.

MMIN [12]: The MMIN model integrates CRA with cycle consistency
learning to predict the latent representations of missing modalities.
This approach makes MMIN a robust benchmark model, demonstrating
excellent performance under a range of missing conditions. This dual-
omponent strategy enhances the model’s ability to handle incomplete
ata, ensuring more accurate and reliable predictions across different
cenarios.

CPM-Net [26]: CPM-Net accounts for both completeness and versatility
n multi-view representation to learn discriminative latent features. The
ramework is constructed to optimize the use of multiple partial views
6 
by defining and theoretically proving ‘‘completeness’’ and ‘‘versatility’’
in multi-view representations.

MCTN [8]: MCTN is a method designed to learn robust joint represen-
tations by translating between modalities. It combines an autoencoder
with a cycle consistency loss to achieve modality reconstruction.

GCNet [11]: GCNet is a state-of-the-art method that utilizes graph
neural networks to capture different types of features and recover
missing modalities, further improving the performance of downstream
tasks.

DiCMoR [9]: DiCMoR is also a state-of-the-art method which considers
the consistency of data distributions to recover the missing features, in
order to obtain better recovered data.

5. Results and analysis

5.1. Classification performance

Tables 2 and 3 presents the classification performance compared
ith different approaches under various missing rate. From these re-

sults, we can observe:
1. On average, SDR-GNN consistently outperforms other methods

across all datasets. For IEMOCAP and CMU-MOSEI, SDR-GNN shows
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Table 4
Comparison of performance with various missing rates on IEMOCAP. We report WAF1 scores (%). The best performance is highlighted in
bold.

Dataset Method Missing rate

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

IEMOCAP (four-class)

SDR-GNN 79.58 78.55 78.08 77.53 77.09 75.84 75.03 74.41
SDR-GNNw/o Sp 79.05 78.64 77.72 76.30 76.95 75.61 73.70 73.40
SDR-GNNw/o Co 79.26 78.40 77.93 76.28 75.23 74.28 72.94 72.26
SDR-GNNw/o Fre 78.23 77.70 76.73 76.16 75.79 74.16 72.42 72.17
SDR-GNNw/o Op 79.20 78.91 78.74 78.12 76.66 76.21 75.14 73.34

IEMOCAP (six-class)

SDR-GNN 61.34 60.86 59.83 59.49 59.16 57.38 55.51 55.26
SDR-GNNw/o Sp 61.08 59.76 59.54 59.40 59.13 57.12 54.95 54.63
SDR-GNNw/o Co 60.62 60.53 58.83 58.74 57.21 55.78 53.71 53.11
SDR-GNNw/o Fre 59.42 59.21 59.01 57.17 56.51 54.82 53.05 51.97
SDR-GNNw/o Op 59.58 60.38 59.01 58.38 56.55 55.77 54.38 53.19
a

i
s

i
a
l
g

(

l

an absolute improvement from 0.77% to 8.6% on WAF1. Compared
with non-reconstructive approaches, reconstructive techniques, includ-
ing our SDR-GNN, demonstrate superior performance. This improve-
ment is attributed to the ability of reconstructive methods to esti-
mate and rebuild modalities from existing modalities. Compared with
he reconstruction methods [8,9,11,12], our SDR-GNN perform bet-

ter. We argue that these baselines do not use the multi-frequency
information in conversation. Our method utilizes multi-frequency sig-
nals to reconstruct missing modalities, resulting in better classification
performance.

2. Our method exhibits less performance degradation with increas-
ing missing rates compared to others. For example, in IEMOCAP (four-
class), while other methods see performance drops between 6.98% and
7.70% as the missing rate increases to 0.7, our SDR-GNN declines
y only 5.17%. Moreover, SDR-GNN shows greater improvement as
he missing rate rises; in CMU-MOSEI, the improvement is 3.21% at
 missing rate of 0.1, reaching 8.6% at 0.7, indicating robustness in
cenarios with high missing rates.

3. Experimental results demonstrate SDR-GNN also exhibits better
performance when multimodal data is complete ( = 0.0), For all
datasets, our SDR-GNN improve 0.7% ∼ 2.7%. These results validate
the effectiveness of our method on both complete and incomplete
multimodal data.

5.2. Ablation study

To study the necessity of different components in SDR-GNN to
model performances, we conduct ablation studies on IEMOCAP(four-
class) and IEMOCAP(six-class). Experimental results are shown in
Table 4.

• SDR-GNN: Our proposed method that considers both features
relationships and multi-frequency information.

• SDR-GNNw/o Sp: It is derived from SDR-GNN, but ignores the
information comes from speaker interaction graph.

• SDR-GNNw/o Co: It is derived from SDR-GNN, but ignores the
information comes from context interaction graph.

• SDR-GNNw/o Fre: It is derived from SDR-GNN, but replaces the
frequency-aware graph learning with a GNN-based model from
DialogueGCN [41], a currently advanced graphical model for
conversation understanding.

• SDR-GNNw/o Op: It is derived from SDR-GNN, but remove self op-
timizing multi-head attention layer used for data reconstruction.

Impact of Speaker Interaction Graph: To study the effect of
speaker interaction graph. We remove the information that comes
from the speaker graph. Experimental results show that performance
decreases in most cases on both IEMOCAP (four-class) and IEMOCAP
(six-class). The inferior performance of SDR-GNNw/o Sp on both datasets
roves the effectiveness of speaker information.
Impact of Context Interaction Graph: We remove the informa-

tion that comes from the context interaction graph to investigate its
7 
effectiveness. Experimental results show that performance decreases
t all missing rates. Meanwhile, compared with SDR-GNNw/o Sp, SDR-

GNNw/o Co deceases more. The results show that contextual information
s more important than speaker information, which also proves the
ignificance of contextual information.
Impact of Frequency-aware Graph Learning: To investigate the

mpact of frequency-aware graph learning, we replace the frequency-
ware graph learning with a graph convolution network from Dia-
ogueGCN, which captures speaker and context dependencies on one
raph. Results from Table 4 show that performance drop considerably

at all missing rates. This proves the importance and superiority of cap-
turing frequency information using Frequency-aware Graph Learning,
especially when modalities are incomplete.

Impact of Self Optimization: We use multi-head attention layers to
optimize the reconstructed data. To study the effect of this model, we
remove the multi-head attention layers during training. Experimental
results demonstrate that the performances of SDR-GNNw/o Op decline
on all datasets. The results of SDR-GNNw/o Op prove the effectiveness
of self optimizing reconstructed data (see Fig. 4).

5.3. Emotion categories analysis

We investigate the classification performance of different emotional
categories under various missing rates. Figs. 3(a)∼3(h) show confusion
matrices on IEMOCAP (four-class) and IEMOCAP (six-class) under dif-
ferent missing rates. The rows represent the predicted labels, and the
columns represent the actual emotional labels.

Figs. 3(a)∼3(d) depict the confusion matrices on IEMOCAP (four-
class). From these matrices, we observe no significant decrease in the
accuracy of recognizing various emotion categories as the missing rate
increases. This indicates that our SDR-GNN can effectively recognize
conversations with high missing rates. However, as the missing rate
increases, we notice that conversations truly labeled as ‘happy’ are
more likely to be misclassified as ‘angry’. We attribute this to the
possibility that, with significant data loss, the model may struggle
to capture subtle features distinguishing between happy and angry
emotions. For instance, incomplete tone and emphasis information in
audio may hinder the model’s ability to differentiate between excited
high tones and angry high tones. In the expression of happy and
angry emotions, certain expressions may appear similar to some extent,
particularly when multimodal information is incomplete. Without con-
textual support from other modalities, the model may fail to interpret
these subtle differences accurately.

Figs. 3(e)∼3(h) depict the confusion matrix on IEMOCAP (six-class).
Similar to IEMOCAP (four-class), the model can maintain recognition
accuracy even as the loss rate increases. However, unlike IEMOCAP
four-class), IEMOCAP (six-class) introduces two additional labels: ‘‘ex-

cited’’ and ‘‘frustrated’’, which adds complexity to the model’s recogni-
tion task. From these confusion matrices, it is evident that statements
abeled as ‘‘happy’’ are more prone to being misclassified as ‘‘angry’’ or

‘‘excited’’. This is reasonable since the model struggles to differentiate
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Fig. 3. Confusion matrices of the test set on IEMOCAP at varying missing rates. The matrices present the true labels along its rows and the predicted labels across its columns.

Fig. 4. Classification performance comparison between SDR-GNN and Lower bound under different missing rates.
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Table 5
The complexity comparison of different models on IEMOCAP(four-class) under missing
rate  = 0.6. We report Parameters(M), Training time (s) and WAF1 scores (%). The
est performance is highlighted in bold.
Models Params (M) Training time (s) WAF1 (%)

CPM-Net 37.7 8.34 68.68
GCNet 34.0 7.68 78.87

SDR-GNN 41.1 10.67 81.13
SDR-GNNmini 32.7 7.52 80.34

statements with intense emotions, particularly when the loss rate is
high. Moreover, statements with a true label of ‘‘neutral’’ are often

istakenly identified as ‘‘frustrated’’. From a frequency perspective, we
elieve that emotions such as ‘‘neutral’’ exhibit low-frequency signals
hat tend towards zero. However, when the loss rate increases, some
ow-frequency signals are erroneously amplified, leading to misjudg-
ents by the model. Additionally, ‘‘frustrated’’ is frequently misclassi-

fied as ‘‘anger’’, likely due to similarities in language features between
frustrated and anger, such as negative emotions and vocabulary. This
imilarity poses challenges in accurately distinguishing between these
wo emotions.

5.4. Model complexity analysis

To analyze the complexity of our model, we compared SDR-GNN
nd SDR-GNNmini with other state-of-the-art models.

• SDR-GNN: Our original version that considers both features rela-
tionships and multi-frequency information..

• SDR-GNNmini: A derivative of SDR-GNN that retains all core
functionalities of SDR-GNN but reduces the number of neurons
and network layers.

From the experimental results in Table 5, SDR-GNN performs the
best, but its parameter size and training speed are inferior to other
methods. SDR-GNNmini outperforms other methods in terms of param-
eter size and training speed, but its performance is slightly lower than
SDR-GNN.

We believe that the higher parameter size of SDR-GNN enhances the
model’s learning capacity, thereby improving its performance, but this
also results in longer training times. SDR-GNNmini, on the other hand,
acrifices some performance in exchange for faster training speed.

In conclusion, SDR-GNNmini outperforms other solutions in terms of
parameter size, training time, and performance, which also validates
the effectiveness of our method.

5.5. Importance of incomplete data

Our proposed SDR-GNN not only utilizes complete multimodal data,
ut also make full use of incomplete multimodal data. To investi-

gate the importance of incomplete data, in Fig. 3, we compare the
performance of different methods under various missing rates.

• SDR-GNN: The method we proposed that fully utilizes both com-
plete and incomplete modality data for conversational learning.

• Lower bound: It comes from SDR-GNN, but abandons the incom-
plete multimodal utterances. This method is a straightforward
strategy that only focus on complete data, which is regarded as
the lower bound [25].

According to Fig. 4, SDR-GNN consistently outperforms the lower
bound across all missing rates and datasets. Meanwhile, as the missing
rate increases, the disparity in performance between SDR-GNN and the
comparison system widens significantly. This observation underscores
the significance of leveraging incomplete data to enhance the perfor-
mance of conversational learning models. By effectively incorporating
9 
incomplete information, SDR-GNN demonstrates superior adaptability
and robustness in handling incomplete multimodal data.

The experimental results demonstrate that despite the incomplete-
ess of the data modality, it retains significant utility. It is imperative
o concurrently leverage both complete and incomplete modal data to
nhance contextual understanding and improve recognition outcomes.
ur belief stems from the comprehensive utilization of both data types

by SDR-GNN in establishing contextual connections, enabling it to
maintain recognition accuracy even under high missing rates. This
underscores the efficacy and superiority of leveraging both data types
simultaneously.

5.6. Reconstruction performance

Our approach employs SDR-GNN to reconstruct the data in order
o meet the requirements of downstream emotion classification. There-
ore, the quality of the reconstructed data will directly impact the
erformance of the classification task. To validate the effectiveness of
ur approach, we compared it with two advanced data reconstruction
odels, GCNet [11] and CRA [28]. To evaluate the reconstruction

performance of different methods, we calculated the mean square error
(MSE) between the reconstructed data of the missing modalities and the
real data, in line with previous works.

Fig. 5 shows the performance of the reconstructed data under differ-
nt missing rates. A lower MSE indicates a smaller difference between

the reconstructed data and the real data, implying better reconstruction
erformance. We observe that as the missing rate increases, the MSE
lso increases. This is because a higher missing rate leads to a reduction
n data volume, making it more difficult for the model to reconstruct

the data.
The experimental results demonstrate that SDR-GNN outperforms

other methods in most cases. Compared to GNN-based models, SDR-
GNN performs better because we utilize multi-frequency signals of
different frequencies in our reconstruction method, further proving
the importance of multi-frequency information for data reconstruction.
Moreover, as the missing rate increases, the growth in MSE for SDR-
GNN is the lowest, indicating that our model has better robustness
compared to other methods.

5.7. Parameter tuning

Our SDR-GNN model includes four hyper-parameters: the interac-
ion window size 𝑤, the hidden layer dimension ℎ, reconstruction
oss function weight 𝑒 and the number of hypergraphs layer 𝑙. We
ssessed the impact of these parameters through experiments on the
EMOCAP (four-class) dataset under various missing rates, selecting 𝑤
rom {1, 2, 3, 4} and ℎ from {100, 150, 200, 250}, 𝑒 ranges from 0.1 to 0.9

and 𝑙 from {1, 2, 3, 4, 5, 6}. The results of the experiments are displayed
in Table 6, Figs. 7 and 8.

In most cases, the classification performance improves first the
egrades as 𝑤 increase. This can be explained from two aspects. On one
and, a bigger window size can contain more utterances, which helps
apturing and learning contextual information. On the other hand, a
arge window size will contain a large number of edges, which may
nclude more irrelevant information. This will increase the difficulty of
odel learning.

Similarly, an increase in the hidden layer dimension ℎ generally
results in improved performance. At the same time, we also observed
that when ℎ becomes too large, it leads to a decline in the model’s
performance. as seen in Table 6. A larger ℎ provides a greater num-
er of trainable parameters, thereby enhancing the model’s ability to
apture and represent complex feature interactions. This is particularly
eneficial for discerning subtle patterns and distinctions in the data,

which are crucial for accurate classification. However, this increase in
parameters also heightens the risk of overfitting. Therefore, choosing
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Fig. 5. Reconstruction performance comparison between SDR-GNN and other methods under different missing rates. Lower MSE indicates better imputation performance.
Fig. 6. Parameter tuning with various number of hypergraph from IEMOCAP(Four).

appropriate parameters is crucial for improving the performance of the
model.

To investigate the impact of the hyperparameters 𝑒 and 𝑙, we
conducted experiments on the IEMOCAP (Four-class) dataset with a
missing rate of  = 0.4.

As shown in Fig. 6, when the weight of the reconstruction loss
function 𝑒 increases from 0.1 to 0.9, the model’s performance first
rises and then declines, with the best performance observed around
𝑒 = 0.5. We believe that the reconstruction task and the classification
task should have similar weights. If the reconstruction task dominates,
the classification results deteriorate; conversely, if the model focuses
10 
Fig. 7. Parameter tuning with various weight of reconstruction loss function from
IEMOCAP (Four-class).

too much on the classification task, the quality of the reconstructed
data decreases, which negatively impacts classification performance.
Therefore, in our actual experiments, we set 𝑒 to 0.5 to balance the
weights between the classification and reconstruction tasks, achieving
good results in most cases.

From Fig. 7, we can observe that as the number of layers 𝑙 in-
creases, the model’s performance also first improves and then declines.
This is because with fewer layers, the number of propagated nodes is
limited, while with more layers, redundant data propagation does not
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Fig. 8. Prediction results on incomplete conversational data from IEMOCAP (Four-class).
Table 6
Parameter tuning with various missing rates.
 ℎ 𝑤

1 2 3 4

0.0

100 77.85 78.02 77.87 78.15
150 78.75 78.55 79.03 79.52
200 78.76 79.10 78.99 79.45
250 78.68 79.32 79.12 78.50

0.1

100 77.95 77.50 77.94 77.61
150 77.69 77.75 79.05 78.38
200 78.50 78.37 78.58 78.57
250 78.43 78.80 78.33 78.24

0.2

100 77.26 77.34 77.74 77.21
150 77.62 77.71 77.85 77.44
200 77.36 76.67 78.12 78.00
250 77.54 77.43 77.88 77.32

0.3

100 76.80 76.63 77.04 77.04
150 76.96 77.18 77.32 76.95
200 76.92 76.67 77.63 77.44
250 76.60 76.03 76.78 76.66

0.4

100 75.69 75.81 75.97 76.40
150 75.66 75.88 76.23 76.55
200 75.93 76.74 77.11 76.70
250 75.98 75.50 75.65 76.23

0.5

100 74.99 75.23 75.51 75.64
150 75.22 75.44 75.61 75.67
200 75.73 75.32 75.92 76.09
250 75.02 74.87 75.56 75.62

0.6

100 74.41 74.26 74.33 74.64
150 74.54 74.36 74.76 74.82
200 74.84 74.74 75.55 74.88
250 74.34 74.02 73.89 74.44

0.7

100 74.33 73.90 74.30 74.18
150 74.43 73.98 74.77 73.69
200 74.28 74.09 74.78 74.10
250 72.13 73.34 73.23 74.02

further enhance feature extraction. Additionally, it increases the risk of
over-fitting.

5.8. Case study

In this section, we compare the prediction results of different meth-
ods under the condition of missing modalities. The dialogue example is
taken from IEMOCAP (Four-class), and Fig. 8 shows the experimental
results. In this dialogue, Speaker B tells Speaker A that he intends to
propose to Annie. We observe that as the degree of missing modalities
increases, the performance of all models decreases, as it becomes more
challenging to predict the outcome with less data.

In the dialogue shown in Fig. 8, 𝑢5 can be considered a high-
frequency signal sentence because SpeakerA shifts from Neutral to
Anger, displaying intense emotion that stands out distinctly from the
surrounding context. Most models perform poorly in predicting 𝑢5,
11 
except for SDR-GNN and MMIN. MMIN is designed to analyze indi-
vidual utterances, so the surrounding context does not influence its
predictions. In contrast, other models that rely on context for feature
extraction or clustering algorithms may lose 𝑢5’s high-frequency signal
during the feature capturing and signal propagation process. How-
ever, SDR-GNN effectively differentiates multi-frequency information
for feature aggregation, preventing this issue.

Our method consistently achieves high accuracy across all situa-
tions, demonstrating its effectiveness. SDR-GNN comprehensively lever-
ages multi-frequency information, further improving prediction accu-
racy, which also highlights the importance of multi-frequency informa-
tion.

6. Conclusion

In this study, we introduce a novel framework, SDR-GNN, designed
for addressing the challenges of incomplete multimodal learning in
conversational emotion recognition. This approach leverages the de-
pendencies between speakers and contexts, utilizing multi-frequency
information within conversations effectively. Our framework specifi-
cally addresses the higher-order information of modalities and exploits
multi-frequency data, bridging the gap in existing methods. We validate
our method through experiments on three benchmark datasets, with re-
sults showing that SDR-GNN outperforms current methods in handling
incomplete multimodal data for emotion recognition. Additionally,
we dissect the critical role of each component within SDR-GNN and
examine the influence of various hyper-parameters. Furthermore, After
that, we analyze emotion categories at various missing rates and show
the importance of incomplete data.

In the future, we will explore ways to better use the multi-frequency
information in conversations and the relationships between the fre-
quency signals and emotions.
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