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Hardware Cost Design Optimization for
Functional Safety-Critical Parallel Applications
on Heterogeneous Distributed
Embedded Systems

Guoqi Xie
and Keqin Li

Abstract—Industrial embedded systems are cost sensi-
tive, and hardware cost of industrial production should be
reduced for high profit. The functional safety requirement
must be satisfied according to industrial functional safety
standards. This study proposes three hardware cost op-
timization algorithms for functional safety-critical parallel
applications on heterogeneous distributed embedded sys-
tems during the design phase. The explorative hardware
cost optimization (EHCO), enhanced EHCO (EEHCO), and
simplified EEHCO (SEEHCO) algorithms are proposed step
by step. Experimental results reveal that EEHCO can obtain
minimum hardware cost, whereas SEEHCO is efficient for
large-scale parallel applications compared with the existing
algorithms.

Index Terms—Functional safety, hardware cost, het-
erogeneous distributed embedded systems, real time,
reliability.

|. INTRODUCTION
A. Motivation

IGH-END industrial embedded systems, such as auto-
motive, avionic, and real-time control systems, are typi-
cal heterogeneous distributed embedded systems, where several
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heterogeneous processors with difference performance are dis-
tributed on the same communication bus, such as controller
area network (CAN), to form a distributed architecture [1]. The
communication among processors is performed through mes-
sage passing over the bus. In heterogeneous distributed systems,
applications (functions) are increasingly parallel, and tasks in
an application exhibit evident data dependencies and prece-
dence constraints [1]-[3]. Examples of parallel applications are
Gaussian elimination and fast Fourier transform [1], [3]. These
two applications have also been implemented in embedded sys-
tems [4], [S]. A parallel application with precedence-constrained
tasks at a functional level is described by a directed acyclic graph
(DAG) [1]-[3], where nodes represent tasks, and edges represent
communication messages between tasks. However, the develop-
ment of industrial embedded systems is usually cost sensitive
because they are mass-produced industrial products. Reducing
the hardware cost can greatly save the cost of industrial pro-
duction for high profit. Although the distributed architecture
has drastically reduced the hardware cost of wiring harness, the
number of processors required for application execution still
generates significant hardware cost. In addition, with the appli-
cation scale continuing to grow, the required processor hardware
cost is correspondingly increased. Currently, the unit price of
processors for CAN interfaces are from $25 to $110 [6]. In
fact, some unnecessary processors can be removed as long as
such operation does not affect the correct execution of the ap-
plication. Therefore, it is important to reduce hardware cost by
minimizing the number of processors [7].

Meanwhile, functional safety has become the preferential di-
rection of industrial embedded system development, and it refers
to the absence of unreasonable risk caused by systematic failures
and random hardware failures [8]. A safety-critical embedded
application must comply with related functional safety stan-
dards, such as ISO 26262 for automotive systems [9], DO-178B
for avionics systems, and IEC 61508 for all kinds of industrial
embedded systems [10]. Abnormal execution and missed dead-
line are considered typical random hardware and systematic fail-
ures, respectively. That is, besides normal real-time requirement
(also called response time requirement, timing constraint, and
deadline constraint), reliability requirement (RR) (also called
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reliability goal, reliability assurance, and reliability constraint)
must also be satisfied to ensure application’s functional safety
according to related functional safety standards. Therefore, it is
necessary to reduce hardware costs while satisfying the func-
tional safety requirement, which includes the real-time require-
ment and the RR together.

B. Our Contributions

A development life cycle of safety-critical embedded systems
usually involves analysis, design, implementation, and testing
phases [1]. The current study focuses on the design phase. The
main contribution of this study is to reduce hardware cost while
satisfying the functional safety requirement of a DAG-based
parallel application on heterogeneous distributed embedded sys-
tems. The details are as follows.

1) An explorative hardware cost optimization (EHCO) al-
gorithm is proposed by iteratively removing the proces-
sors, without which the minimum hardware costs can be
generated while satisfying application’s functional safety
requirement.

2) Considering that partial EHCO-generated results can sat-
isfy the real-time requirement, but may not satisfy the RR,
a reliability enhancement (RE) algorithm is proposed to
enhance application’s reliability value without violating
the precedence constraints among tasks and real-time re-
quirements of the application, and thereby, we propose
an enhanced EHCO (EEHCO) algorithm to improve the
possibility that functional safety requirement is satisfied.

3) Considering that both EHCO and EEHCO have high time
complexity and thereby require large computation effort
for large-scale parallel applications, a simplified EEHCO
(SEEHCO) algorithm is proposed to adapt large-scale
parallel application’s hardware cost design optimization.

Il. RELATED WORK

Depending on the application, an industrial embedded system
development must comply with one or more standards like IEC
61499, IEC 61508, IEC 62061, IEC 61511, and ISO 26262 [8],
[11]. This study mainly reviews related research on functional
safety and cost optimization of a DAG-based parallel applica-
tion.

Response time minimization and reliability maximization are
conflicting, and optimizing them is a bicriteria minimization
problem [12], [13]. In [14] and [15], the authors presented the
maximum reliability (MaxRe) and least resources to satisfy the
RR algorithms to reduce the resource cost for a parallel ap-
plication by minimizing the task redundancy on heterogeneous
distributed systems using fault tolerance. In [12], the authors
presented a bicriteria scheduling heuristic to generate an approx-
imate Pareto curve of nondominated solutions, among which the
designers can verify the functional safety requirement by find-
ing the points that satisfy the RR and the real-time requirement
simultaneously. In [13], the authors also studied the same prob-
lem as MaxRe and RR and proposed the heuristic replication
for redundancy minimization method, which exhibited a signif-
icant improvement in resource cost reduction. Considering the

TABLE |
NOTATIONS IN THIS STUDY

Notation Definition
w; WCET of the task n; on the processor pj
Ci,j WCRT between the tasks n; and n;
ranky (n;) Upward rank value of the task n;
[ X Size of the set X
price;, Unit price the processor py,
A Failure rate of the processor pj.
R(n;,pr) Reliability of the task n; on the processor py
Ruax (n; Maximum reliability of the task n;
min (72 Minimum reliability of the task n;
R(n;) Reliability of the task n;
Dpr () Assigned processor of the task n;
EST(n;,pr)  Earliest start time of the task n; on the processor pj,
EFT(n;,pr)  Earliest finish time of the task n; on the processor pj.
LFT(n;,pr)  Latest finish time of the task n; on the processor pj.
AST(n;) Actual start time of the task n;
AFT(n;) Actual finish time of the task n;
HC(G) Hardware cost of the application G
R(G) Reliability of the application G
Rumax(G) Maximum reliability of the application G
Rumin(G) Minimum reliability of the application G
Rieq(G) Reliability requirement of the application G
LB(G) Lower bound of the application G
RT(G) Response time of the application G
RTeq(G) Real time of the application G

limited resources of embedded systems, fault tolerance may be
unsuitable [1]. In [1], resource cost is presented to satisfy the RR
by transferring the RR of the application to each task without
using fault tolerance.

Besides resource cost, the development cost and hardware
cost design optimization for safety-critical parallel applications
were studied in [7], [16], and [17]. In [16] and [17], the au-
thors presented development cost minimization to satisfy the
real-time requirement for parallel applications by presenting
genetic algorithm-based and tabu-search-based metaheuristics,
respectively. In [7], the authors presented hardware cost mini-
mization to satisfy the real-time and security requirements for
a parallel application by presenting integer linear programming
and heuristics, respectively. Despite the introduction of hard-
ware cost in [7], it focuses on the security requirement rather
than the RR. However, functional safety requirement simultane-
ously includes the RR and the real-time requirement, and they
must be simultaneously satisfied according to functional safety
standards.

I1l. MODELS

Table I lists the notations and their definitions that are used
in this study.

A. System Architecture

This study considers a distributed architecture where several
processors are mounted on the same CAN bus [1]. Each pro-
cessor contains a central processing unit (CPU), random access
memory and nonvolatile memory, and a network interface card
[17]. A task executed completely in one processor sends mes-
sages to all its successor tasks, which may be located in the



2420

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 6, JUNE 2018

i}

mo
| | 1 ]

— CAN bus
{na}

Heterogeneous distributed embedded system architecture.

Fig. 1.

different processors of different buses. For example, task n; is
executed on processor p; of CAN;. It then sends a message
m 2 to its successor task 1, located in pe of CANj3 (see Fig. 1).
P = {p1 D25 -5 D) p‘} represents a set of heterogeneous proces-
sors, where | P| represents the size of set P. For any set X, this
study uses | X| to denote its size.

B. Application Model

A parallel application is represented by a DAG G = (N, W,
M, C) (1], [2], [13], [16], [17].

1) N represents a set of tasks in GG, and n; € N represents
the ith task of G. pred(n;) represents the set of the im-
mediate predecessor tasks of n;, whereas succ(n;) rep-
resents the set of the immediate successor tasks of n;.
The task with no predecessor task is denoted by nengy,
whereas the task with no successor task is denoted by
Nexit- If @ DAG-based application has multiple neqyy or
multiple nexi; tasks, then a dummy entry or exit task with
zero-weight dependencies is added to the graph. Each task
n; € N has different worse-case execution time (WCET)
values on different processors due to the heterogeneity of
processors. W is an |N| x |P| cube, where w; j, denotes
the WCET of n; on the processor p;. All the WCETs
of the tasks are determined through the WCET analysis
method during the analysis phase [1].

2) The communication between tasks mapped to different
processors is performed through message passing over
the bus. Hence, M is a set of communication edges,
and each edge m; ; € M represents the communication
message from n; to n;. Accordingly, ¢; ; € C represents
the worst-case response time (WCRT) of m; ; [1]. All the
WCRTs of the messages are also determined through the
WCRT analysis method during the analysis phase [1].

The scheduling can be either static or dynamic and preemp-
tive or nonpreemptive [18]. The real-time application can be
soft or hard [18]. This study considers the nonpreemptive static
scheduling for a hard real-time application during the design
phase. Fig. 2 shows a motivating parallel application with tasks
and messages [1]. The example shows ten tasks executed on
three processors {pi, p2,p3}. The weight 18 of the edge be-
tween n; and n, represents WCRT, denoted by c¢; ; if ny and n,
are not assigned to the same processor. Table ITis the WCET ma-
trix | N| x | P| of tasks on different processors of the motivating
parallel application. For example, the weight 14 of n; and p; in
Table I represents WCET of n; on p;, denoted by w; | = 14. It
can be seen that the same task has different WCETSs on different
processors due to the heterogeneity of the processors. The moti-
vating example will be used to explain the proposed algorithms

Fig. 2. Motivating example of a DAG-based parallel application with
ten tasks [1], [3], [19].

TABLE I
WCETS OF TASKS ON DIFFERENT PROCESSORS OF THE MOTIVATING
PARALLEL APPLICATION [1], [3], [19]

Task  pr p2  p3

ny 14 16 9
ny 13 19 18
n3 11 13 19
n4 13 8 17
ns 12 13 10
ne 13 16 9
ny 7 15 11
ng 5 11 14
ngy 18 12 20
n10 21 7 16

TABLE IlI
PROCESSOR PARAMETERS FOR THE MOTIVATING PARALLEL APPLICATION

Parameters/processors p1 D2 P3
price;, 20 10 30
Ak 0.00055  0.0005  0.0004

in this paper. For simplicity, all the units of all parameters are
ignored in the example.

C. Hardware Cost Model

As heterogeneous processors are used in this study,
all processors have individual unit prices. Hence, let
{price,, price,, ..., price|p| } represent the set of unit prices of
heterogeneous processors. Table III shows that the hardware
costs of the processors p;, p2, and p3 are 20, 10, and 30, respec-
tively.

The hardware cost of the application is the sum of those of
all active processors, and it is calculated by

HC(G) = Z price;.
Pk €Pactive
D. Reliability Model and RR Assessment

There are two major temporal types of failures, namely,
the transient failure (i.e., random hardware failures) and the
permanent failure [1], [12], [13]. This study only considers the
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transient failure of processors because some functional safety
standards, such as ISO 26262 and IEC 61508, only combine
the random hardware failures and reliability together [1], [13].
As pointed out in ISO 26262, random hardware failures occur
unpredictably during the life cycle of a hardware but follow
a probability distribution [1]. In general, transient failures for
a task in a DAG-based parallel application follow the Poisson
distribution [1], [12], [13]. Let A;, represent the constant failure
rate per time unit of the processor pj,, and the reliability of n;
executed on py, and its WCET is donated by

R(m,pk) :e—)»k-u;[‘k' 0

Similar to the WCRTSs of messages and WCETS of tasks, this
study assumes that the failure rates are known and have been
obtained in the analysis phase. The reliability of the DAG-based
parallel application is calculated by [1], [12], [13]

R(@G) =[] Ri)= ] ROu:ppe(n,)) )

n; EN n; EN

where py.(,,) represents the assigned processor of n;. As the
CAN bus has high fault-tolerance capacity, this study only con-
siders processor failure and does not include the communication
failure into the problem (i.e., communication is reliable in this
study).

As the WCET of each task on each processor has been deter-
mined by the WCET analysis method during the analysis phase,
the MaxRe value of task n; can be obtained by traversing all the
processors, and it is calculated by

Ruax(ni) = max R(ni,pr ). 3)

As the reliability of application G is the product of reliability
values of all the tasks [see (2)], the MaxRe value of application
G is calculated by

Rmax (G) - H Rmax (nt) (4)

n; EN

The RR Rieq(G) must be less than or equal to Ry .x(G);
otherwise, Ryq(G) cannot always be satisfied. Hence, Ryeq(G)
must have the following constraint:

Rreq<G) < Rmax<G)- (5)

Otherwise, the RR assessment cannot be passed. Table III
shows that the failure rates of processors p;, p», and p; are
A1 = 0.00055, A, = 0.0005, and A3 = 0.0004, respectively. The
MaxRe value is calculated as Rpax(G) = 0.956476. Let RR
Runin (G) = 0.95, which can pass the assessment, because

0.95 < 0.956476

according to (5) of the RR assessment.

E. Lower Bound and Real-Time Requirement
Assessment

Besides RR assessment, lower bound and real-time require-
ment must also be assessed. The lower bound refers to the min-
imum response time of a parallel application when all tasks are
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TABLE IV
UPWARD RANK VALUES FOR TASKS OF THE MOTIVATING PARALLEL
APPLICATION
Task nq no n3 N4 ns Neg ny ng ng 10
ranky(n;) 108 77 80 80 69 63.3 427 357 443 147

executed on the processors using a well-studied DAG schedul-
ing algorithm. Considering that scheduling task with quality-of-
service (QoS) requirement for optimality on multiprocessors is
known to be an NP-hard optimization problem [20], obtaining
a lower bound of a parallel application is an NP-hard optimiza-
tion problem [19]. Therefore, a convincing and well-studied
algorithm must be employed to obtain the lower bound. The
heterogeneous earliest finish time (HEFT) algorithm presented
in [19] is a well-studied scheduling algorithm to obtain the lower
bound and has been applied to parallel application [3], [21]. This
study also uses the HEFT algorithm to assess the lower bound.
The concrete process is as follows.

First, the HEFT algorithm uses the upward rank value (rank,)
of a task given by (6) as the common task priority standard. In
this case, the tasks are ordered according to the decreasing order
of rank,. Table IV shows the upward rank values of all the tasks
in the motivating example, which are obtained with (6):

rank,(n;) = w; + max ){cm- + rank,(n; ) }. 6)

nj €suce(n;
Note that only if all the predecessor tasks of n; have been as-
signed to the processors, n; will prepare to be assigned. Assume
that two tasks n; and n; satisfy rank,(n;) > rank,(n;); if no
precedence constraint exists between n; and n;, then n; may
not have higher priority than n;. Finally, the task priority in G
is {n1,n3,n4,n2, N5, M6, M9, N7, N8, N10 }-

Second, the attributes EST(n;, py) and EFT(n;, py) repre-
sent the earliest start time (EST) and the earliest finish time
(EFT), respectively, of task n; on processor py. EFT(n;, py.) is
considered as the common task assignment criterion because it
can meet the local optimal of each precedence-constrained task
by using the greedy policy. The aforementioned attributes are
calculated as follows:

ST(nentryapk) =0

EST(n;, py) =max (avail[pk,]’ {AFT(n,;)+c, ; })

max
ny, €pred(n; )
(7
and
EFT(n;,pr) = EST(n, pi) + wi - 3

avail[p; ] is the earliest available time when processor py, is ready
for task execution. AFT(n, ) is the actual finish time of task n,.
n; is assigned to the processor with the minimum EFT by using
the insertion-based scheduling policy that n; can be inserted
into the slack with the minimum EFT.

Fig. 3 shows the Gantt chart of parallel application G (see
Fig. 2) using the HEFT algorithm. The lower bound is obtained
as LB(G) = 80. The arrows in Fig. 3 represent the generated
communication between tasks.
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Fig. 3. Lower bound calculation using HEFT.

A known real-time requirement RT,q(G) (i.e., deadline) is
then provided for the application on the basis of the actual phys-
ical time requirement after hazard analysis and risk assessment
by certificate authority (CA) (see Fig. 3). The concrete hazard
analysis and risk assessment are not discussed in this paper be-
cause this study mainly focuses on hardware cost optimization.
RTyeq(G) must be larger than or equal to LB(G); otherwise,
RT,eq(G) cannot always be satisfied based on the HEFT as-
sessment algorithm. Hence, RT\q(G)) must derive the following
constraint:

LB(G) < RTyq(G). 9)

Otherwise, the real-time requirement assessment cannot be
passed. For this motivating example, let the real-time require-
ment be RTq(G) = 100, which can pass the assessment,
because

80 < 100

according to (9) of the RR assessment.

F. Problem Statement

The problem to be addressed is to find the processor assign-
ments of all tasks to minimize the hardware cost:

HC(G) = Z price;,

P € Pactive

while satisfying the real-time requirement

RT(G) = AFT(neyit) < RTreq(G) (10)

and the RR:

R(G) > Rieg(G). an

As stated in Section III-E, scheduling tasks with QoS require-
ment for optimality on multiprocessors is known to be an NP-
hard optimization problem [20].

IV. EXPLORATORY HARDWARE COST OPTIMIZATION

A. lterative Hardware Cost Optimization
(IHCO) Algorithm

As this study aims to minimize the total hardware cost of
a parallel application, reducing the use of the processor is an
effective way. Therefore, we should remove as many as pro-
cessors and assign the tasks of the parallel application to the
remaining processors while still satisfying the functional safety
requirement.

Removing processor has been employed in energy consump-
tion reduction. In [22], the proposed method iteratively removes

R(G)=0.946816 < R4(G)=0.95 RT(G)=82 < RT(G)=100
T

price]:20’ n i\ns I n l\ns M}\ I ; ‘
1 L
| |
™
pricezzmi n4 ns ‘ \‘( ny ‘ nio : |
|
| |
ice=30] Jeening ' il
price;=30/| sleeping : )
| | | | ; |l | | I+ } +»
0 10 20 30 40 50 60 70 80 90 100
Fig. 4. HEFT-generated task mapping on p; and p, when ps3 is in the
sleep state.
R(G)=0.949329 < R4(G)=0.95 RT(G)=98 < RTo(G)=100
pricel=20; sleeping ' }
Ll
[
pricezzlol /‘l M‘ /“ ny ‘

pr,-ceszw[ m I/ 3 I n }
} | I I } | | | | } Yoy
0 10 20 30 40 50 60 70 80 90 100

Fig. 5. HEFT-generated task mapping on p, and p; when p; is in the
sleep state.
R(G)=0.940165 < R (G)=0.95 RT(G)=96 < RT;e,(G)=100
ico=20! \
price, 2Oi A ny n I /4 ny /‘{ns/H nio W
pricez:101 slc//ping }

price3=30[ Z IV n3

[
U
I
i ]
} | | | l | | + 4y

0 10 20 30 40 50 60 70 80 90 100

Fig. 6. HEFT-generated task mapping on p; and p3 when p; is in the
sleep state.

as many processors with a small number of assigned tasks to
reduce the energy consumption until the real-time requirement
cannot be satisfied. The idea of [22] can also be applied to this
study as long as the method iteratively removes as many pro-
cessors with a high hardware cost until application’s real-time
requirement cannot be satisfied. Such an approach is named as
IHCO in this study. Considering the motivating example that
processor p3 has the highest cost of 30 among {pi, p2, p3}, as
shown in Fig. 4, we must remove p; from {p;, p>, p3} and assign
all the tasks of the application to p; and p,. Of course, we can let
p3 to be a sleep state rather than really removing it from the sys-
tem during the design phase. Fig. 4 shows the HEFT-generated
task mapping on p; and p, when pj is in the sleep state. We can
obtain the response time of 82, which can satisfy the real-time
requirement of 100. However, the obtained reliability value cal-
culated by (2) is 0.946816, which cannot satisfy the RR of 0.95.
In other words, removing p3 from the processor set is infeasi-
ble, and we cannot obtain a valid hardware cost value for the
application in this case. Therefore, iteratively removing as many
processors with a high hardware cost is not optimized design
and we need to propose better methods.

B. EHCO Algorithm

In view of the limitations of the IHCO, this subsection pro-
poses an exploratory method. Consider the same motivating
example as in Fig. 4; if p; or p; is in the sleep state instead of
the ps, then individual task mappings are shown in Figs. 5 and
6, respectively.



XIE et al.. HARDWARE COST DESIGN OPTIMIZATION FOR FUNCTIONAL SAFETY-CRITICAL PARALLEL APPLICATIONS 2423
; : TABLE V

Algorithm 1: EHCO Algorithm. EHCO-GENERATED SCHEDULE RESULTS

Input: P = {pi,p2,...,p|p|}> G, and RTyeq(G), Rieq (G)

Output: RT(G), R(G), and HC(G) Sleeping Response Reliability Satisfying Hardware
1: Puive — P; processor time RT(G)  value R(G) functional cost HC(G)
2: I.n\./(.)ke the HEFT algorithm on P, to obtain the qiﬁl;zglerﬁ;?

initial RT(G) « LB(G), R(G), and HC(G);
R 1 98 0.949329 No
. if (RT(G) f>1R"1'"req(G)||R(G) < Rieq(G)) then " o 0940165 No
return false; 3 82 0.946816 No

3

4.

5: end if

6: while (P, 1s not null) do

7 for (each active processor p; € Pjive) do

8 Let p;. be the sleep state;

9 Invoke the HEFT algorithm on Pyeive — {p1 } to

obtain RT;, (G), Ry (G), and HCy, (G);

10: end for

11:  if (no result satisfies RT;, (G) < RTyq(G) &&
Ri:(G) = Ryeq(G)) then

12: return true;

13: else

14: Obtain the processor py,i, that has HC,i, (G) =

min {HC,(G)}

Pk € Pactive,RT} (G)ngrEq(G):R(G)2Rreq((;)
using (12);

15: Piciive (Pactive - {pmin});

16: RT(G) < RTyin(G), R(G) < Ruin(G), and
HC(G) « HCpin(G).

17:  endif

18: end while

We can see that Figs. 5 and 6 obtain higher reliability val-
ues than Fig. 4 while satisfying the real-time requirement. Even
Figs. 5 and 6 still cannot satisfy the RR of 0.95, their results in-
dicate that removing the processor with high hardware cost does
not necessarily lead to the reliability enhance of the application.

Inspired by the aforementioned analysis, we present the ex-
ploratory method called EHCO described in Algorithm 1.

The main idea of the EHCO algorithm is that it iteratively
removes the processors, without which the minimum hardware
cost is generated while satisfying application’s functional safety
requirement from active processors Pyve until application’s
functional safety requirement cannot be satisfied. The details of
EHCO are explained as follows.

1) In Line 1, all processors are active, namely, Pycive < P.

2) In Line 2, EHCO invokes the HEFT algorithm on
all the processors to obtain the initial response time
RT(G) <« LB(G), reliability value R(G), and hardware
cost HC(G). If the functional safety requirement cannot
be satisfied in this case, then EHCO directly returns false
(i.e., hardware cost optimization is failed) (lines 3-5). In
the following, EHCO executes the iterative explorative
process in lines 6—18.

3) In lines 7-10, EHCO makes an explorative process for
each active processor by invoking the HEFT algorithm
on Pyive — {pr} to obtain the response time RTy(G),
reliability value Ry, (G), and hardware cost HCy, (G) of the

application G on the active processors when the processor
Py 1s the sleep state.

4) If no result of the above explorative process satisfies ap-
plication’s functional safety requirement, then EHCO
directly returns true and the hardware cost optimiza-
tion is end (lines 11-13); otherwise, EHCO removes
the processor pmin, without which the minimum hard-
ware cost HC iy (G) is generated while satisfying appli-
cation’s functional safety requirement (lines 14 and 15).
HCpyin (G) can be found by

HC,in(G) = min
Dk € Pactive,RTy (G><RTreq(G)*R(G)>Rreq(G>

x {HC,(G)} (12)

where P, ve represents the active processor set excluding
the already removed processors as mentioned earlier.

5) EHCO updates application’s response time RT(G), reli-
ability value R(G), and hardware cost HC(G) (Line 16).

The time complexity of the EHCO algorithm is O(|N|? x
| P|?). The details are as follows.

1) The maximum number of removed processors is O(| P|)
time (lines 6-18).

2) Traversing all processors can be done in O(]P|) time
(lines 7-10).

3) Invoking the HEFT algorithm must be done in O(| N|? x
|P]) time (Line 9).

C. Example Results Using EHCO

Table V shows the EHCO-generated schedule results when
each processor is in the sleep state. It can be seen that each case
can satisfy the real-time requirement because their individual
response time values are less than 100, but cannot satisfy the
RR because their individual reliability values are less than 0.95.
Therefore, for motivating example, regardless of which proces-
sor is removed, the application’s functional security requirement
cannot be satisfied.

V. ENHANCED EXPLORATORY HARDWARE
CoST OPTIMIZATION

A. EEHCO Algorithm

By observing the reliability values in Table V, we find that
they are only small distances to the RR of 0.95. If we can enhance
the reliability value without violating the real-time requirements
of the application, it is possible to satisfy the RR and remove
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Algorithm 2: EEHCO Algorithm.

Algorithm 3: RE Algorithm.

Input: P = {p1,p2, ..., pjp|}> G, and RTyeq(G), Rieq (G)
Output: RT(G), R(G), and HC(G)
1: Pdctive — P;
2: Invoke the HEFT algorithm on P,y to obtain the
initial RT(G) < LB(G), R(G), and HC(G);

3: if (RT(G) > RTyeq(G)||R(G) < Ryeq(G)) then
4: return false;
5: end if
6: while (P, is not null) do
7. for (each active processor py € Pieiive) do
8: Let p;. be the sleep state;
9: Invoke the HEFT algorithm on Pyeive — {p1 } to
obtain RT;, (G), Ry (G), and HCy, (G);
10: if (RT(G) < RTyeq(G)&& Ry (G) < Rieq(G))
then
11: Invoke the RE algorithm (Algorithm 3) to
enhance the reliability value R (G);
12: if (R;(G) = Rreq(G)) then
13: Recalculate the hardware cost HC, (G);
14: end if
15: end if
16: end for

17: if (no result satisfies RT;. (G) < RTyq(G) &&
Ri.(G) 2 Ryeq(G)) then

18: return false;

19: else

20: Obtain the processor py,i, using (12);

21 Pactive — (Pactive - {pmin});

22: RT(G) « RTyin(G), R(G) < Ruin(G), and
HC(G) <« HCpin(G).

23: end if

24: end while

processors. In this subsection, the enhanced algorithm called
EEHCO is described in Algorithm 2.

Compared to EHCO, EEHCO’s improvement is that it
introduces the statements of lines 10-15, as shown in
Algorithm 2.

1) EEHCO invokes the RE algorithm (see Algorithm 3) to
enhance the reliability value Ry, (G) after the HEFT algo-
rithm is invoked if the HEFT-generated reliability value
R;(G) is less than the RR Ryeq(G) (line 11).

2) EEHCO recalculates the hardware cost Ry, (G) after the
RE algorithm is invoked if the RE-generated reliability
value R;.(G) is larger than or equal to the RR R4 (G).

The time complexity of the EEHCO algorithm is the same as
that of the EHCO algorithm (i.e., O(|N|* x |P|*)). The details
are analyzed as follows.

1) The maximum number of removed processors is | P| by
invoking the while loop, such that it needs O(|P]) time
(lines 6-24).

2) Traversing all processors can be done in O(]P|) time
(lines 7-16).

Input: P,ive — {pr }. G, given task assignments
Output: Ry (G), RTx(G)

1: Sort the tasks in a list task_list by ascending order of

rank, values.

2: while (there are tasks in task_list) do

3 n; < task_list.out();
4 for (each processor p, € (Pyctive — {Pmin })) do
5: Calculate EST(n;, p,) using (14);
6 Calculate LFT(n;, p,) using (15);
7 if (LFT(n;, p,) — EST(n;, py) < w; ) then
8

: continue;
9: end if
10: Calculate R(n;,p,) using (1);
11: end for
12: Select the processor p,,,(;) with the MaxRe value
for n;;

13: AFT(n;) < RTreq (s Ppr(i) )3

14: AST(n;) < (RTreq(nis Ppr(i)) — Wi pr(i) )
15: end while

16: Calculate the reliability R(G) using (2);

3) Invoking the RE and HEFT algorithms can be done in
O(|N|? x |P|) time (lines 9 and 11) because they are not
nested.

Therefore, the time complexity of the EEHCO algorithm is
O(N]* x |PP).

B. RE Algorithm

The concrete RE algorithm is described in Algorithm 3.

The main idea of RE is that it migrates each task from the
originally assigned processor to the possible new processor that
can enhance the application’s reliability as long as such migra-
tion does not violate the precedence constraints among tasks
and real-time requirement of the application. The reason for
this migration is that there are slacks on processors that can
accommodate tasks.

The time complexity of the RE algorithm is analyzed as fol-
lows.

1) Assigning all tasks by traversing all tasks needs O(|N|)
time (lines 2—15).

2) Traversing all processors can be done in O(|P|) time
(lines 4-11).

3) Calculating the EST and latest finish time (LFT) of each
should traverse all its precedence and successor tasks and
all processors and be done in O(|N| x |P|) time (lines 5
and 6).

Therefore, the time complexity of the RE algorithm is
O(|N|? x |P|), which is equal to that of the HEFT algorithm.
RE also implements low-time complexity reliability enhancing.

EEHCO invokes the RE algorithm to enhance the reliability
and does not sacrifice much computational efficiency due to the
following reasons.
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Fig. 8. Remove ng from Fig. 7 of the motivating application.

1) EEHCO has invoked the HEFT algorithm in line 9 (see
Algorithm 2), and HEFT has the same time complexity
as RE.

2) HEFT and RE are not nested in EEHCO, such that adding
RE into EEHCO does not increase the time complexity
of EEHCO.

3) RE could skip some processors that tasks cannot be in-
serted into (lines 7-9), such that it has higher computa-
tional efficiency than HEFT.

In contrast to HEFT, where the tasks are arranged in the
descending order of rank, values (i.e., from entry to exit tasks
by downward optimization), this section sorts the tasks in the
ascending order of rank, values (i.e., from exit to entry tasks by
upward optimization). The reason is that slacks exist between
the RT(G) and RT,¢q(G), and the exit task with the minimum
rank, can first change its AFT to RT,.q(G), followed by the
remaining tasks.

Considering that the example of p; is in the sleep state, the
slacks in Fig. 5 are between RT(G) = 98 and RT\q(G) = 100.
no will be optimized first, followed by ng, n7, ng, neg, ns, na,
n4, N3, and n;. In the following discussion, we explain how the
real-time requirements of tasks are calculated.

C. Real-Time Requirements of Tasks

We determine the real-time requirements of tasks in this sub-
section. We assume that no has been reassigned in p, (denoted
with green color) using RE shown in Fig. 7, where we have
AST(n19) = 93 and AFT(ny9) = 100. We then consider the
second task to be reassigned ng. In the following discussion, ng
is used as the example to explain the process.

We first removed the current task ng from Fig. 7, shown in
Fig. 8. We then reassign ng into Fig. 8 with a higher reliability
value without violating its real-time requirement. ng’s real-time
requirement is calculated as follows.

1) Considering that ng’s successor task no has been reas-
signed by RE and cannot be changed, the LFT of the
current task n; is restricted by its successor tasks be-

cause of the precedence constraints among them. LFT is
calculated as follows:

LFT(nexita p’u) - RTreq(G)
LFT(n;,p,) = min ) {AST(n;) —¢; ,;}.

nj esucc(n;

2) Considering that ng’s predecessor tasks n,, n4, and ng

have been assigned by the HEFT and cannot be changed,
the EST of the current task n; is also restricted by its
predecessor tasks owing to the precedence constraints
among them. The EST is calculated as follows:

EST(nentryapv) =0
EST(n;,p,) = max {AFT(”J‘) - C/h,i} .

ny epred(n; )
For example, the ESTs and LFTs of ng on the processors
(Pyctive — {Pmin }) in Fig. 8 can be obtained as

EST(?’Lg7 ’UQ) =170 LFT(”& UZ) =93
EST(ng, U3) =55 LFT(ng, U3) = 82.

3) Even when the EST and the LFT have been obtained

on each available processor for the current task, task re-
assignment must be further constrained because the pro-
cessors in Pyeive — { Py } are not always available because
other tasks have already taken parts of the processors and
only some slacks remain in the processors, as shown in
Fig. 8. Therefore, task reassignment is actually task in-
sertion. The slack set on processor p, for n; is defined as
follows:

Si,v = {Si.,@.lasi,v,Z; }

where S; , 1 represents the first slack on p, for n;. Each
slack has a start time (ST) and end time (ET). The vth
slack S; , 4 is defined as

Si,v,q = [ts(Si,v,q)7 te(si,v.q)}

where (S, ,,4) and t.(S;, 4) represent corresponding
ST and ET of n; on p,, respectively. For example, when
reassigning the task ng in Fig. 8, the slacks on p, and ps3
for ng are

{ Ss.» = {[0,18],[39,62], [74,93]}

S = {16, 100]}. 4

4) To avoid violating the precedence constraints among

tasks, the current task n; should be assigned to the slacks
that satisfy the new EST and LFT constraints as follows:

EST(n;,p,) = max {EST(n;, p,), ts(Sive)}  (14)
and
LFT(n;,py) = min {LFT(n;,p,),te(Siv.e)}. (15)

For example, the new EST and LFT values of ng on all
processors shown in Fig. 8 are as follows:

EST(ng, up) = 74 LFT(ng, uz) = 93
EST(ng, u3) = 66 LFT(ng, u3) = 82.
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Fig. 9. ngisinserted into u, of Fig. 8 of the motivating application.

5) Considering that the ESTs and LFTs for n; have been
obtained, we can decide which processor can accept n;’s
insertion by judging whether (16) is found:

LFT(n;,py) — EST(n;, py) = w; . (16)

For example, ng can be inserted into u; and u, because

LFT(ng, po) — AST(ng, py) = 93 — 74 = 19

> wgp = 11
LFT(ng,p3) — AST(ng,p3) = 82 — 66 = 16
2 wg 3 = 14.

D. REs of Tasks

After the functional safely requirements of the current task
have been obtained in the previous subsections, the current task
can be inserted into the processors. The strategy of enhancing
reliability is as follows: we simply reassign the current task n; to
the insertable processor with the MaxRe value while stratifying
the precedence constraints among tasks. That is, the assigned
Processor py(;) is determined by

R(nzvppr(7)) =

= max
Do €(Paciive—{pk }),LFT(n;,p, ) —EST(ni,py ) 2w v
x { R(ni,py)}- (17

We assign n; to py(;) according to n;’s AFT and AST, which
are calculated by

and

AST(n;) = AFT(n;, Dpr(i)) — Wi pr(i) (19)

respectively. For instance, ng is inserted into p, of Fig. 8 be-
cause it has the MaxRe value of 0.994515, which is larger than
0.994416, where ng is inserted into p3 (see Fig. 9). The AST and
AFT calculated by (19) and (18) are 82 and 93, respectively.

The reliability values of remaining tasks n7, ng, ng, ns, 72, N4,
n3, and n; are then enhanced using the RE algorithm. Finally,
RE-generated motivating application’s task mapping on p, and
ps3 is shown in Fig 10, where application’s reliability value is
enhanced to 0.952848.

E. Example Results Using EEHCO

Table VI shows the EEHCO-generated schedule results when
each processor is in the sleep state in the first while loop. It can be
seen that p;’s sleep satisfies not only the real-time requirement

R(G)=0.952848 > Ry(G)=0.95 RT(G)=100

[ .
price;=20 | sleeping

price;=1 0‘

pric’23:30§

Fig. 10. RE-generated motivating application’s task mapping of the on
p2 and p3 when p; is in the sleep state.

TABLE VI
EEHCO-GENERATED SCHEDULE RESULTS WHEN EACH PROCESSOR IS IN
THE SLEEP STATE IN THE FIRST WHILE LOOP

Sleeping Response Reliability Satisfying Hardware
processor time RT(G)  value R(G) functional cost HC(G)
safety re-
quirement?

D1 92 0.952848 Yes 40

D2 96 0.940165 No -

3 82 0.946816 No -

TABLE VI

EEHCO-GENERATED SCHEDULE RESULTS WHEN EACH PROCESSOR IS IN
THE SLEEP STATE IN THE SECOND WHILE LOOP

Sleeping Response Reliability Satisfying Hardware
processor time RT(G)  value R(G) functional cost HC(G)
safety re-
quirement?
D2 143 0.944405 No -
D3 130 0.937067 No -

of 100, but also the RR of 0.05, whereas p,’s or p3’s sleep
merely satisfies the real-time requirement of 100 and cannot
satisfy the RR of 0.95. Therefore, the application’s functional
safety requirement can still be satisfied after removing p;.

After the first while loop, Table VII shows the EEHCO-
generated schedule results when each processor is in the sleep
state in the second while loop. It can be seen that either p,’s or
p3’s sleep cannot satisfy the real-time requirement of 100 and
the RR of 0.95. Therefore, merely p;’s sleep in the first while
loop is valid, and the task mapping is shown in Fig. 10.

F. SEEHCO Algorithm

Although EEHCO can sufficiently remove the reasonable pro-
cessors to reduce hardware cost, it has high time complexity and
thereby requires large computation effort for large-scale paral-
lel application. For this reason, a simplified algorithm called
SEEHCO is further proposed in this study. We elaborate the
description of the SEEHCO algorithm in Algorithm 4.

SEEHCO’s simplification is that it determines the processor
removing order by attempting to remove each active processor
in lines 5-15, which is similar to EEHCO. However, SEEHCO
no longer redetermines the processor removing order in the
while loop (lines 16-29), but it just directly selects the order
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Algorithm 4: SEEHCO Algorithm.
Input: P = {pi,p2,...,p|p|}> G, and RTyeq(G), Rieq (G)
Output: RT(G), R(G), and HC(G)
1: Invoke the HEFT algorithm on P, to obtain the
initial RT(G) « LB(G), R(G), and HC(G);
2: if (RT(G) > RTeq(G)||R(G) < Ryeq(G)) then
3:  return false;
4: end if
5
6
7

: for (each processor p;, € P) do
Let py, be the sleep state;
Invoke the HEFT algorithm on P — {p;. } to obtain
RT:(G), R (G), and HC, (G);

8:  if (RT(G) < RTyeq(G)&& R (G) < Rieq(G)) then
9: Invoke the RE algorithm (Algorithm 3) to enhance
the
reliability value Rj;(G);

10: if (R),(G) > Rieq(G)) then

11: Recalculate the hardware cost HCy, (G);

12: end if

13:  endif

14: end for

15: Put all the processors into P,y according to an

ascending of HC (G);
16: while (P,ve is not null) do
17: Let p;. be the sleep state;
18: Invoke the HEFT algorithm on P,gjye —
obtain RT;, (G), Ry (G), and HCy, (G);
19: if (RT(G) < RTyeq(G)&& Ry (G) < Ryeq(G)) then

{pk } to

20: Invoke the RE algorithm (Algorithm 3) to enhance
the reliability value Ry (G);

21: if (R;(G) > Rieq(G)) then

22: Recalculate the hardware cost HC;, (G);

23: Pictive < (Pactive — {pk })

24: RT(G) «— RT]c (@), R(G) <« Ry(G), and

HC(G) «+ HC.(G).

25: else

26: return false;

27: end if

28:  endif

29: end while

determined in lines 5-15. By this treatment, SEEHCO’s time
complexity is reduced to O(|N|? x | P|?) (analyzed in detail in
the following), but such a simplification may result in larger
hardware cost than the EEHCO algorithm. Given that the moti-
vating example only has one valid while loop to select removed
processor, the final hardware cost using the SEEHCO algorithm
is also 129.6059 (see Fig. 10).
The time complexity of the SEEHCO algorithm is analyzed
in detail as follows.
1) The maximum number of removed processors is |P| by
invoking the while loop, such that it needs O(]P|) time
(lines 16-29).
2) Traversing all processors can be done in O(|P|) time
(lines 5-14).

R(G)=0.946816 < Ry G)=0.95 RI(G)=96 < RT,((G)=100
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Fig. 11.  Task mapping on p; and p, with the MaxRe when ps3 is in a

sleep state.

3) Invoking the RE and HEFT algorithms can be done in
O(|N? x | P|) time (lines 9 and 11) because they are not
nested.

Considering that lines 5—14 and lines 16-29 are not nested, the
time complexity of the EEHCO algorithm is O(|N|?> x |P[?).

G. Optimal Solutions of the Motivating Application

Considering that both EHCO and EEHCO are greedy algo-
rithms and cannot guarantee an optimal solution, it is better to
provide optimality of the small-scale motivating application for
the proposed heuristic algorithms.

1) Removing two processors is infeasible because the sum
of the WCETs of all tasks on each processor in Table II
is larger than the real-time requirement of 100.

2) Considering that ps has the maximum hardware cost of
30, if we can find a feasible task assignment for the moti-
vating application (i.e., R(G) > 0.95 and RT(G) < 100)
by removing ps, then we can obtain an optimal hardware
cost minimization solution.

3) For the motivating application, we calculate that there
are at most 40 320 task priority orders, but only 1680
task priority orders are valid by excluding orders that do
not meet the precedence constraints among tasks. n; and
nyo are the highest and lowest task priorities in all the
orders. There are 2'° task assignment schemes because
each task may be assigned to p; or p,. Therefore, there are
1720320 (.e., 1680 x 2'9) combinations to determine the
optimal salutation. However, we traverse all the 1 720 320
combinations and find that the MaxRe is 0.946816, which
cannot satisfy the RR of 0.95. Fig. 11 shows the task
mapping on p; and p, with the MaxRe when p; is in a
sleep state, where the task priority order is {n;, ng, na,
ns, ng, Ny, N3, N7, Ng, Ny} and the response time of the
application is 96. Therefore, the minimum hardware cost
minimization of 30 is unfeasible, and it must be increased
to 40, which has been obtained by EEHCO and SEEHCO.

VI. EXPERIMENTS

The performance metrics for comparison are the actual re-
sponse time value RT(G), the actual reliability value R(G), and
the total hardware cost HC(G) of application. The compared
algorithm with the proposed EHCO, EEHCO, and SEEHCO
is the IHCO algorithm, which is involved from [22]. Proces-
sor and application parameters taken from [23] and [24] are as
follows: 10 ms < w; ;, < 100 ms, 10 ms < ¢; ; < 100 ms, and
0.000001/ms < Aj; < 0.000009/ms. The embedded processor’s
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prices are in the scope of $25 < price, < $110 [6], and the
total hardware cost of the system is $4439. Considering that
this study focuses on the design phase, the parallel applications
are executed on a simulated heterogeneous embedded system
based on the above processor and application parameter values.
The simulated system is configured with 64 processors imple-
mented by Java on a standard desktop computer (2.6-GHz Intel
CPU and 4 GB memory). We use fast Fourier transform and
Gaussian elimination as experimental objects because they are
two typical parallel applications with high and low parallelism,
respectively. The details of these two applications can refer
to [1].

Experiment 1: This experiment is conducted to compare
hardware costs, active processor numbers, and computation
time values of fast Fourier transform applications for vary-
ing numbers of tasks. We let the real-time requirement and
the RR be RTyq(G) = LB(G) and Ryeq(G) = Rhert(G), respec-
tively. Rheri(G) represents the HEFT-generated reliability value.
Therefore, all the HEFT, IHCO, EHCO, EEHCO, and SEEHCO
algorithms can satisfy given functional safety requirements be-
cause HEFT-generated values are the initial values of all the
algorithms. For this reason, we no longer provide the actual re-
sponse time and reliability values and directly observe the hard-
ware costs, active processor numbers, and computation time
values of applications. The task numbers are changed from 95
to 2559.

1) The results in Fig. 12(a) show that EEHCO generates the
minimum hardware costs followed by EHCO, SEEHCO,
IHCO, and HEFT in all the cases. We can see that the
HEFT always generates the maximum hardware cost of
$4439 because it occupies all the 64 processors. The re-
duced hardware costs using IHCO are limited, because
its hardware costs are from $4384 to $4439 and are very
close to $4439. In general, the hardware costs increase
with the increment of task numbers using EHCO, EE-
HCO, and SEEHCO. The results also show that EEHCO
is an enhanced version of EHCO, and it outperforms
EHCO by 12.4-32%, that is, using the RE algorithm to
enhance the reliability is effective. SEEHCO can reduce
hardware costs compared with IHCO. However, SEE-
HCO’s effect is gradually reduced with the increase in
the application’s scales because it merely explores one
loop to select removed processors.

2) Fig. 12(b) shows the active processor numbers using all
the algorithms. We find that Fig. 12(b) shows surprising
consistency with the curve changes in Fig. 12(a). The

(a) Hardware cost (unit: $). (b) Active processor numbers. (c) Computa-
tion time (unit: s).

reason is that consumed hardware costs of applications
are very relevant to the numbers of processes, even if the
prices of processors are different.

3) Fig. 12(c) shows the computation time values using all
the algorithms. As we expect, both EHCO and EEHCO
are time consuming, especially on large-scale applica-
tions. For example, when the task number is 2559, the
computation time values reach 30 and 36 min for EHCO
and EEHCO, respectively. For this reason, SEEHCO can
reduce the computation time to 3 s to 2.5 min by reduc-
ing the loop number of EEHCO. However, the negative
effect of SEEHCO is that the cost reduction ratio is also
significantly reduced.

Experiment 2: The application scales, parameter values, and
objective of this experiment are approximately the same as Ex-
periment 1 for Gaussian elimination applications. We still let
the real-time requirement and the RR be RT,q(G) = LB(G)
and Rieq(G) = Riert(G), respectively. The task numbers are
changed from 104 to 2484.

1) Compared with Fig. 12(a), the main difference in
Fig. 13(a) is that EEHCO is more effective than EHCO
in terms of reducing the hardware cost. In addition, SEE-
HCO also shows good performance, and generated hard-
ware costs are less than those of EHCO when the task
numbers are 902 and 2484.

2) Similar to Experiment 1, Fig. 13(b) also shows consis-
tency with the curve changes in Fig. 13(a). The results
further indicate that the consumed hardware costs of the
application are directly relevant to the numbers of pro-
cesses.

3) The computation time values using all the algorithms in
Fig. 13(c) are also similar to those of Fig. 12(c). That is,
EHCO and EEHCO are time consuming, whereas SEE-
HCO is fast, but it has certain negative effect in hardware
cost reduction.

Experiment 3: Besides aforementioned real applications, we
also consider randomly generated parallel applications by the
task graph generator, which provides convenient configuration
for application’s parameters [25]. The parameters are set as fol-
lows: the communication-to-computation ratio is 1, the shape
parameter is 1, and the heterogeneity factor is 0.5. The shape
parameter means the density of the graph values are in the 0.35-
V/IN|/3 scope in the task graph generator, where 0.35 and
v/|N|/3 are the lowest and highest parallelism factors, respec-
tively. As we set the shape parameter as 1 in the experiment,
the randomly generated applications can be considered as high-
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Fig. 14. Results of randomly generated applications for varying task
numbers. (a) Hardware cost (unit: $). (b) Active processor numbers.
(c) Computation time (unit: s).

parallelism applications. The heterogeneity factor values are in
the 0—1 scope in the task graph generator, where 0.1 and 1 are the
lowest and highest heterogeneity factors, respectively. We still
let the real-time requirement and the RR be RT\q(G) = LB(G)
and Ryeq(G) = Rhet(G), respectively. The task numbers are
changed from 500 to 2500. In general, the results in Fig. 14
(a)—(c) show the same rule patterns as Experiments 1 and 2.
Due to space limitation, we no longer discuss similar details in
this experiment. In a word, experimental results with real par-
allel or random generated applications reveal that EEHCO can
obtain minimum hardware cost, whereas SEEHCO is efficient
for large-scale parallel applications compared with the existing
algorithms.

From the experiments, we have the following observations.
For fast Fourier transform application and randomly generated
applications, EEHCO has very similar results compared
to EHCO, as shown in Figs. 12 and 14. But for Gaussian
elimination application, obvious difference can be observed, as
shown in Fig. 13. We know that the fast Fourier transform ap-
plication and randomly generated applications in this study are
high-parallelism applications, whereas Gaussian elimination
application is low-parallelism application. A low-parallelism
application has longer response time than a high-parallelism
application in the approximately equal scale. That is, the
tasks in low-parallelism application are not evenly assigned
to the processor. This nonuniform assignment allows the RE
algorithm to be fully employed. Therefore, EEHCO has obvious
difference compared to EHCO for low-parallelism Gaussian
elimination application.

Experiment 4: To calculate how many processors can be
removed and how much cost can be saved in a real industrial ex-
ample, we use the real automotive application shown in Fig. 15
adopted from [1] and [16] to show the results. This application
consists of six application blocks: engine controller with seven
tasks (nj—n7), automatic gear box with four tasks (ng—njp),
antilocking brake system with six tasks (nj;—n17), wheel angle
sensor with two tasks (n13—n19), suspension controller with five
tasks (np0—n24), and body work with seven tasks (n,5—n3;). Pro-
cessor and application parameters take from [1] are as follows:
100 prs< wi e <400 1s, 100 s < ¢ < 400 ps, 0.000001/p
s < Ar < 0.000009/p s. The application is executed on 16
electronic control units (ECUs), and its real-time requirement
is 1000 1 s based on the hazard analysis and risk assessment.

We adopt reliability-related values from the automotive func-
tional safety standard ISO 26262. ISO 26262 provides the du-
ration/probability of exposure in [9, Table B.2, Annex B of

n, Ng N
n, n, N,
n, N,

n, n,

N, e

n25
n26
n27
n, Nz N,
F.s M N,
Ny Ny,
n, n,,
Fig. 15. Real automotive application [1], [16].

TABLE VI
CLASSES OF PROBABILITY OF EXPOSURE REGARDING
DURATION/PROBABILITY OF EXPOSURE IN ISO 26262 [9]

Exposure level Probability of exposure  Reliability requirement

El  Very low probability Not specified At least exceeds 0.99

E2 Low probability < 1% 0.99
E3  Medium probability [1%, 10%] > 0.9
E4 High probability > 10% <=0.9

Part 3], as shown in Table VIII. For example, the probability of
exposure E4 is larger than 10% of average operating time. ISO
26262 does not define the concept of RR, but we can deduce the
corresponding RRs for given exposure levels. For example, the
probability of exposure E2 is less than 1% of average operating
time, that is, the lowest probability of a occurrence hazardous
event is close to 0.01; to ensure safety, the actual reliability must
be larger than or equal to 1 — 0.01 = 0.99, which is considered
as the RR in this case. The RRs for other exposures can also
be obtained according to the above rule. Finally, the RRs for
exposures are shown in Table VIII.

In this experiment, the RR is changed from 0.9 to 0.99 with
a 0.01 increment because values of RRs fall in the range of
exposures E3 and E2 (see Table VIII). Meanwhile, the MaxRe
requirement for the application is set as 0.999999, which belongs
to the RR in E1. The total hardware cost of the system including
32 ECUs is $1097.

Tables IX and X show the removed ECU numbers and saved
hardware costs, respectively, of the real automotive application
for varying RRs.
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TABLE IX
REMOVED ECU NUMBERS OF THE REAL AUTOMOTIVE APPLICATION FOR
VARYING RRs

Rreg(G) 09 091 092 093 094 095 096 097 0.98 0.99
IHCO 7 7 7 7 7 7 7 7 0 0
EHCO 0 10 10 10 10 10 10 10 0 0
EEHCO 10 10 10 10 10 10 10 10 8 0
SEEHCO 8 8 8 8 8 8 8 8 5 0
TABLE X
SAVED HARDWARE COSTS (UNIT: $) OF THE REAL AUTOMOTIVE
APPLICATION FOR VARYING RRs
Rreg(G) 09 091 092 093 094 095 096 097 098 0.99
IHCO 325 325 325 325 325 325 325 325 O 0
EHCO 869 869 869 869 869 869 869 869 0 0
EEHCO 869 869 869 869 869 869 869 869 709 0
SEEHCO 750 750 750 750 750 750 750 750 500 O

1) Table IX shows that IHCO, EHCO, EEHCO, and SEE-
HCO can remove seven, ten, ten, and eight ECUs, re-
spectively; Table X shows that IHCO, EHCO, EEHCO,
and SEEHCO can save the hardware costs of $325, $869,
$869, and $750, respectively, when the RR is from 0.9
to 0.97. The removed ECU numbers do not increase with
the increment of RRs from 0.9 to 0.97. The results also
indicate that IHCO can also remove redundant ECUs and
save hardware costs, that is, IHCO is feasible when the
RR is not very high. In the feasible range of IHCO, we
can calculate that EHCO, EEHCO, SEEHCO can, re-
spectively, improve 62.5%, 62.5%, and 56.7% hardware
costs compared with IHCO, as shown in Table X.

2) When the RR reaches 0.98, the removed ECU numbers
using IHCO and EHCO drastically reduce to 0, whereas
EEHCO can still remove eight ECUs and save the hard-
ware cost of $709 by including the RE algorithm to en-
hance the reliability, and SEEHCO can also remove five
ECUs and save the hardware cost of $500 by simplifying
the EEHCO algorithm. The results indicate that IHCO
has a shortcoming, and it may be infeasible when the RR
is high.

3) When the RR reaches 0.99, all the algorithms cannot
remove any ECU and save hardware cost, as shown in
Tables IX and X. The results reflect that we need to con-
sume a considerable cost to satisfy its functional safety
requirement when the RR is very high.

VII. CONCLUSION

In this study, three hardware cost design optimization al-
gorithms EHCO, EEHCO, and SEEHCO were proposed for
a functional safety-critical DAG-based parallel application on
heterogeneous distributed embedded systems. EHCO iteratively
removes the processors, without which the minimum hardware
costs can be generated while satisfying application’s functional
safety requirement. EEHCO improves the possibility that the

functional safety requirement is satisfied by invoking the RE
algorithm to enhance application’s reliability value without vi-
olating the precedence constraint among tasks and real-time
requirements of the application. SEEHCO adapts large-scale
parallel application’s hardware cost design optimization by sim-
plifying EEHCO’s loop number. Experiments also show the
effectiveness of the proposed algorithms.
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