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Abstract—Predicting the runtime of tasks is of great significance
as it can help users better understand the future runtime consump-
tion of the tasks and make decisions for their heterogeneous devices,
or be applied to task scheduling. Learning features from user task
history data for predicting task runtime is a mainstream method.
However, this method faces many challenges when applied to edge
intelligence. In the Big Data era, user devices and data features are
constantly evolving, necessitating frequent model retrains. Mean-
while, the noisy data from these devices requires robust methods
for valuable insight extraction. In this paper, we propose an edge
server-oriented deep neuro-fuzzy system (ESODNFS) that can be
trained and inferred on edge servers, for providing users with task
runtime prediction services. We divided the dataset and trained
it on multiple improved adaptive-network-based fuzzy inference
system units (ANFISU), and finally conducted joint training on
a deep neural network (DNN). By partitioning the dataset, we
reduced the number of parameters for each ANFISU, and at the
same time, multiple units can be trained in parallel, supporting
fast training and iteration. Additionally, the application of fuzzy
inference can effectively learn the features in noisy data and make
accurate predictions. The experimental results show that ESOD-
NFS can accurately predict the runtime of real tasks. Compared
with other DNN and DNFS, it can achieve good prediction results
while reducing training time by over 35%.

Index Terms—Deep neuro-fuzzy system, edge server, heterog-
eneous device, prediction.

I. INTRODUCTION

A S A popular direction of cloud computing, edge computing
has been widely studied and applied in recent years. Edge
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computing solves the problem that the delay of data transmission
to the cloud computing center is too long in the traditional
cloud computing framework. By sinking computing and data
processing capabilities to the edge of the network, edge servers
can respond more quickly to user needs and provide real-time
services. With the development of the Internet of Things and ar-
tificial intelligence technology, a new technology that combines
edge computing and artificial intelligence, edge intelligence, has
emerged. Edge intelligence deploys AI algorithms and models
to edge servers, providing fast response while also providing
intelligent services.

Edge intelligence has played a huge driving role in the de-
velopment of the Internet of Things. It is the promotion and
application of edge intelligence that enables industries such as
autonomous driving and smart cities to develop. Therefore, in
recent years, there have been many studies related to edge intel-
ligence. The authors of [1] conducted a comprehensive analysis
of current and emerging edge computing architectures for smart
healthcare. They also examined the application of advanced
artificial intelligence techniques for classification and predic-
tion in edge intelligence. A self-learning architecture based on
self-supervised generative adversarial nets was proposed and
was proved to have the potential to identify and classify un-
known services that emerge in edge computing networks [2]. A
blockchain-based edge intelligence system was presented by [3]
to ensure the CEDs’ data security, privacy, latency, and efficiency
and presented the use case scenario of blockchain and edge
intelligence in the COVID-19 pandemic. In [4], the challenge
of edge intelligence and tiny machine learning was assessed and
the paper highlighted their issues with a particular focus on mi-
crocontroller deployment and offered potential solutions. These
studies indicate that edge intelligence is becoming a research
hotspot in the Internet of Things, driving the development of
cloud computing and playing an increasingly important role in
industrial development.

With the help of edge intelligence, many technologies and
services that require quick response and AI algorithm support
can be provided. For example, predicting the duration of task
execution in the current device state based on the user’s task
running history. The runtime of a task often depends on many
factors, such as device architecture, resources, network status,
etc., and obtaining the runtime of a task in advance is very
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meaningful. First, knowing the runtime of a task in advance
is beneficial for users to make better decisions on whether to
run the task or execute other alternative tasks. Second, terminal
device resources are gradually becoming heterogeneous, and
many devices have multiple types of heterogeneous resources
(such as CPU, GPU, NPU) at the same time [5]. Tasks may have
multiple ways of running, each using different resources and
resulting in significant differences in runtime [6]. Third, many
scheduling algorithms are designed to utilize the runtime of tasks
for achieving the shortest completion time, both in cloud [7],
[8], [9] and edge [10], [11] scenarios. However, inaccurate task
runtime can lead to a decrease in the performance of scheduling
algorithms, so accurate task runtime prediction is helpful for the
design of scheduling algorithms.

The mainstream approach to predicting task runtime leverages
machine learning techniques on historical data, aiming to discern
patterns of runtime fluctuations from past records [12]. The main
difficulties of this approach are twofold. On the one hand, it
is important to select features that are closely related to the
runtime of the task for prediction and are often related to the
content of the task itself. On the other hand, there is often
noise and missing data in historical data, which places great
demands on the robustness of the model. Deep Neuro-Fuzzy
System (DNFS) performs well on these issues due to its strong
robustness, generalization, and interpretability [13].

DNFS is a technology that combines DNN and Fuzzy
Logic (FL). DNN has been extensively studied and applied in
many industries in recent years, such as transportation [14],
medicine [15], biological recognition [16], and so on. It is
precisely because of DNN’s powerful learning and memory
capabilities that it can complete many complex classification,
prediction, and generation tasks. However, due to its black-box
drawback, DNN has poor interpretability, making it difficult to
understand the inference process of the network [17], and even
bringing security risks [18]. FL has been applied and studied
in many industries by using IF-THEN rules to simulate human
reasoning processes, and has made great progress [19], [20],
[21]. A technique of combining neural networks with FL called
adaptive-network-based fuzzy inference system (ANFIS), was
proposed [22] and has been proven to have good robustness
and generalization in prediction [23]. More importantly, since
ANFIS builds a network based on the process of FL, its network
structure is interpretable, and the calculation and inference pro-
cesses in the network can be explained using the theory of fuzzy
inference. Therefore, DNFS combines FL and DNN, effectively
integrating the learning ability of DNN with the interpretability
of FL.

In recent years, there have been many studies and applications
related to DNFS. In [24], a self-organizing DNFS was proposed
to classify kidney cancer subgroups and it improved that DNFS
can be very useful in high dimensional data. [25] integrated
DNFS with a butterfly optimization algorithm to improve the
prediction accuracy on forecasting the PM2.5 concentration.
DNFS was used to calculate the risk levels for patients and
provide patients with the potential recommendation about the
severity staging of the associated diseases [26]. These studies
indicate that DNFS has high research value and performs well

in many applications. Therefore, DNFS will be able to perform
well in predicting task runtime.

However, few works effectively combine DNFS and edge
intelligence. In the Big Data era, the swift evolution of terminal
device information and associated data features necessitates
frequent model retraining using the most recent device data
since the old model may suffer performance degradation in the
presence of new data. This process often imposes a significantly
long training model time on edge servers. Furthermore, the
presence of noise and missing data in the information collected
from terminal devices often hampers the performance of con-
ventional deep learning models in extracting valuable insights.
Hence, a DNFS that embodies robustness, accuracy, and swift
training capabilities could effectively address these challenges.
Regrettably, such works are still lacking.

Considering the aforementioned shortcomings, we propose
ESODNFS for deployment on edge servers and receive task
runtime prediction requests from heterogeneous end devices,
providing accurate predictions. We summarize the contributions
and innovations as follows:
� We introduce a DNFS-based model for predicting task

runtime, called ESODNFS, which provides accurate pre-
dictions based on device resource conditions before task
execution. This method compensates for the shortcomings
of traditional task runtime prediction models in terms of
robustness, generalization, accuracy, and interpretability.

� The ESODNFS we proposed can be trained in parallel.
We divide the dataset and train each part with different
ANFISUs. Then, we perform joint training using a DNN
to weigh the output of each unit. Our proposed ANFISU
is a model that optimizes the membership function (MF)
and rules of classical ANFIS, with more flexible parameter
settings and better generalization ability. We used least
squares estimation (LSE) and particle swarm optimization
(PSO) instead of gradient descent to achieve better training
efficiency. We also use PSO to learn the parameters of
DNN to achieve better model accuracy. This method can
reduce the number of parameters in DNFS and improve
the training effect of the model, while also completing fast
training in parallel.

� We collect task data from real heterogeneous devices and
implement and train the proposed model, verifying the
effectiveness and feasibility of our method through com-
parative experiments.

The rest of this paper is organized as follows: Section II
introduces some related work. Sections III and IV introduce the
proposed models and methods. Section V conducts experiments
and analyses of experimental results. Section VI concludes the
paper with future research directions.

II. BACKGROUND AND RELATED WORK

A. Methods for Predicting Task Runtime

There are many research methods for predicting task runtime,
and the methods used vary according to the different character-
istics of the task. In [27], the authors highlighted the significance
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of predicting task runtime for Big Data platforms like MapRe-
duce, Hadoop, and Spark, which is crucial for scheduling, cost
estimation, and cluster management. They proposed a gray box
modeling approach for runtime prediction on Spark. A method
that improves task runtime predictions for high-performance
scheduling was developed by [28]. This method clusters his-
torical task logs to categorize tasks and selects six features
with strong runtime correlations. It uses a Transformer model
with plain connections and an attention mechanism, resulting
in enhanced prediction accuracy. The paper [29] also proposes
a method to improve scheduling performance by introducing
multiple additional task features to determine the task execution
mode and obtain a refined model. Through two-step task runtime
estimation, more accurate predictions are obtained. The authors
in [30] argue that scheduling optimization of jobs requires
knowledge of the runtime estimation of running jobs and jobs in
queues. When the scheduler lacks techniques to compute job
runtimes, users are asked to provide runtimes for submitted
jobs, which are often inaccurate. Therefore, a method based on
machine learning and genetic algorithms has been proposed for
predicting the runtime of HPC jobs, thus helping users to eval-
uate job runtimes more accurately. A similar idea was proposed
by [31], where a simple classifier is used to estimate job runtimes
and categorize jobs into large and small. A novel running time
prediction framework, PREP was proposed for achieving more
accurate predictions [32]. PREP takes the running path of a
job as a new feature and clusters the running path based on
the K-means algorithm. Eventually, some regression models
in machine learning are used to achieve the prediction. These
studies further demonstrate the importance of predicting task
runtime and provide some ideas for prediction.

B. Optimization Methods of DNFS and Their Application in
Prediction

Essentially, DNFS is a combination of FL and DNN, hence
many optimizations applicable to FL and DNN can also be uti-
lized for DNFS. The method of non-gradient updating network
parameters, such as metaheuristic algorithms, is widely used
in ANFIS and has excellent performance. The authors of [33]
proposed a three-stage fuzzy metaheuristic algorithm (TSFM)
to implement an adaptive charging scheduling algorithm to meet
wireless rechargeable sensor networks with multi-objective re-
quirements. Whale Optimization Algorithm (WOA) is applied
to parameterize fuzzy rules to enhance the algorithm’s perfor-
mance. The paper [34] introduced a fuzzy system incorporating
Grey Wolf Optimizer (GWO) for solving the routing problem in
wireless body area networks. GWO adjusts the hyperparameters
in the fuzzy system including the parameters of the rules. In [35],
FL control is applied to the energy management system’s design
of an isolated microgrid, and the parameters of FL control are
optimized by PSO and Cuckoo Search.

In terms of the combination of FL and DNN, it can be
roughly divided into three types [13], [17]. Sequential DNFS first
fuzzifies the input, then learns through DNN, and finally outputs
the prediction results. Parallel DNFS performs both fuzzification
and DNN learning on the input, combines the results, and outputs

them. Collaborative DNFS is based on sequential DNFS, where
the output of sequential DNFS is further defuzzifying as the final
output. Due to the structural linearity of sequential DNFS, it is
considered a slow model, while the other two structures have
more flexibility in learning and interpretability when dealing
with complex real-world problems of large-scale data [13].
Therefore, in future research, there may be a greater emphasis
on the design of parallel DNFS and cooperative DNFS.

Many studies have utilized DNFS for various predictive ap-
plications. A deep spatiotemporal fuzzy neural network was
proposed for predicting subway passenger flow during COVID-
19 [36]. The authors point out that the difficulty in predicting
subway passenger flow lies in the complex and nonlinear influ-
encing factors of pedestrian flow. However, the introduction of
fuzzy neural networks has effectively solved this problem. The
paper [37] utilizes DNFS to predict the optimal worker task
matching to address the bilateral location privacy-preserving
problem in mobile crowd sensing scenarios. DNFS shows
good prediction performance in obfuscated location informa-
tion. In [38], a novel deep fuzzy network was developed for
RNA N6-Methyladenosine sites prediction and it shows that
the application of fuzzy systems to deep learning can improve
the generalizability and robustness of models. A hierarchical
Pythagorean fuzzy deep neural network was proposed by [39]
for predicting the quality requirements of cloud services. It
adopted the structure of parallel DNFS and enhanced the model
learning ability using DNN at the end, achieving more accurate
prediction results compared to ordinary DNN and fuzzy neural
networks. These successful applications in prediction problems
demonstrate the effectiveness of DNFS in prediction, however,
most of these research works do not consider applications
in edge intelligence, nor have they been applied to predict
task runtime.

III. HYPERPARAMETER SETTING AND TRAINING METHOD

OF ANFISU

ANFISU is one of the components of ESODNFS proposed,
which is an improvement on ordinary ANFIS aimed at im-
proving model performance and reducing computational power
requirements, making it suitable for deployment on edge servers.
Therefore, in this section, we first briefly describe the architec-
ture of ANFIS, and then present the design of the MFs, the
determination of the hyperparameters, and the training method
in the proposed ANFISU.

A. ANFIS Architecture

ANFIS is a neural network structure based on the Takagi-
Sugeno (T-S) fuzzy model. In the T-S fuzzy model, the conse-
quent of the rule is the output of a linear function. The form of
rules is defined as follows:

R(k) : If x1 is A(k)
1 and x2 is A(k)

2 and . . . and xd is A(k)
d ,

Then yk = p
(k)
0 +

d∑
i=1

p
(k)
i xi (1)
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Fig. 1. Schematic diagram of ANFIS structure, where Fuzzy Neuron repre-
sents the calculation of MF. The forward propagation process of each input is
essentially the calculation process of FL.

where R(k) indicates the kth rule, k = 1, 2, . . . ,K and K is
the number of rules, xi is the ith dimension of input and A

(k)
i

indicates the corresponding fuzzy set and i = 1, 2, . . . , d, d
indicates the dimension number of input, yk indicates the output
of the kth rule, p(k)i indicates the weight of ith dimension of input
in the kth rule. In the process of inference, first, for an input
X = (x1, x2, . . . , xd), we calculate the membership degrees of
all dimensions for the kth rule as (A(k)

1 (x1), A
(k)
2 (x2), . . . , A

(k)
d

(xd)), where A
(k)
i (·) indicates the MF of the ith dimension of

input in the kth rule. Therefore, the firing strength of each rule
is calculated by the following equation:

fk(X) =

d∏
i=1

A
(k)
i (xi) (2)

where fk(X) indicates the firing strength of the kth rule of
the input X , k = 1, 2, . . . ,K. The firing strengths need to be
normalized, denoted as (f1(X), f2(X), . . . , fK(X)), where

fk(X) =
fk(X)∑K
i=1 fi(X)

, k = 1, 2, . . . ,K (3)

Meanwhile, for a known rule R(k), p
(k)
0 , p

(k)
1 , . . . , p

(k)
d are

known values, so the output for all rules can be calculated as
(y1, y2, . . . , yK). The final output equation is:

t̂ =

K∑
i=1

fi(X)yi (4)

where t̂ indicates the inference result of the input X . This
process is expressed using a neural network, as shown in Fig. 1,
and this network is ANFIS.

The only unknowns in ANFIS are the weights of rules and the
parameters in the MFs. The number and type of parameters for
MFs vary depending on the choice of MF. These parameters are
obtained through learning on the dataset, which is essentially
the learning of rules. This means that for a trained ANFIS, it can
be explained through a T-S fuzzy model.

B. Design of MFs

In many ANFIS studies, Gaussian MF is used as the selection
of MF due to its many good properties such as differentiabil-
ity and symmetry. In [39], Gaussian MF was used, and non-
membership degree was introduced based on the Pythagorean
fuzzy set to enhance the expression of MF. In the design of
ANFISU, we also use Gaussian MF and Pythagorean fuzzy
sets. We put the computation process of membership degree
and non-membership degree in fuzzy neuron (FN), which we
show in Fig. 1 and represents the results of MF computation in
ANFIS. They are calculated by the following equations:

μ
(k)
i = exp

(
− (xi − c

(k)
i,1 )

2

2(σ
(k)
i,1 )

2

)
(5)

ν
(k)
i = exp

(
− (xi − c

(k)
i,2 )

2

2(σ
(k)
i,2 )

2

)
(6)

where μ
(k)
i and ν

(k)
i indicate the membership degree and non-

membership degree of the kth rule of the ith dimension of
input respectively, 0 < μ

(k)
i < 1, 0 < ν

(k)
i < 1. c(k)i,1 , c(k)i,2 and

σ
(k)
i,1 , σ(k)

i,2 are the means and standard deviations, respectively,
which are determined by training. Gaussian MF and Pythagorean
fuzzy sets give ANFISU a good fuzzy representation. With
the use of non-membership degree, the Pythagorean fuzzy set
can characterize uncertainty more accurately and have a more
powerful representation, while also bringing in more parameters.
However, the Gaussian MF has few parameters and provides
smoothness and interpretability. Therefore, this combination
enables more accurate fuzzy inference with as few parameters as
possible. In the Pythagorean fuzzy set, the membership degree
and non-membership degree have the following constraint:

0 ≤
(
μ
(k)
i

)2
+
(
ν
(k)
i

)2
≤ 1 (7)

However, the constraint is difficult to maintain during the param-
eter learning process of FNs. When the parameters of the FNs
violate the constraint during learning, some of the parameters
need to be tuned to satisfy the constraint, thus increasing the
difficulty of training and potential performance degradation.
Moreover, considering which parameters need to be tuned makes
the model more complex. Therefore, instead of tuning the origi-
nal parameters of FNs to satisfy the constraint, we introduce the
bound index λ for optimization. Formally, the constraint for μ
and ν is as follows:

0 ≤
(
μ
(k)
i

)λ
(k)
i

+
(
ν
(k)
i

)λ
(k)
i ≤ 1 (8)

where λ
(k)
i indicates the bound index of the kth rule of the ith di-

mension of input. The bound index provides dynamic constraints
for membership degree and non-membership degree and scales
them at the FN output. This scaling is achieved by using the
bound index as an exponent, thus the scaled membership degree
and non-membership degree remain in the interval (0,1). To get
a valid bound index to satisfy the constraint quickly, the bound
index needs to be computed explicitly. However, the range of
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the bound index cannot be solved exactly by (8), so we perform
the following transformation:(

μ
(k)
i

)λ
(k)
i

+
(
ν
(k)
i

)λ
(k)
i ≤ 2max

(
μ
(k)
i , ν

(k)
i

)λ
(k)
i ≤ 1 (9)

Thus, it can be inferred that:

λ
(k)
i ≥ ln 2

min

(
(xi−c

(k)
i,1 )

2

2(σ
(k)
i,1 )2

,
(xi−c

(k)
i,2 )

2

2(σ
(k)
i,2 )2

) (10)

This indicates that the constraints of (8) will always hold as
long as μ and ν satisfy the above inequality. In order for the
inequality to hold, λ

(k)
i will not be learned during the ANFISU

training process but will be randomly selected each time within
the appropriate range. We define

(λmin)
(k)
i =

ln 2

min

(
(xi−c

(k)
i,1 )

2

2(σ
(k)
i,1 )2

,
(xi−c

(k)
i,2 )

2

2(σ
(k)
i,2 )2

) (11)

Due to 0 < μ
(k)
i < 1, 0 < ν

(k)
i < 1, an excessively large λ

(k)
i

will result in both (μ(k)
i )λ

(k)
i and (ν(k)i )λ

(k)
i becoming very small,

thus the upper bound (λmax)
(k)
i needs to be determined when

λ
(k)
i is selected randomly, and we set (λmax)

(k)
i = 2 in this paper.

λ
(k)
i is specified by the following equation:

λ
(k)
i ={
(λmin)

(k)
i , (λmin)

(k)
i > (λmax)

(k)
i

λ
(k)
i ∼ U [(λmin)

(k)
i , (λmax)

(k)
i ], otherwise

(12)

where U [−a, a] is the uniform distribution within the range of
(−a, a). Finally, the output of FN is expressed as:

B
(k)
i (xi) = max

(
0,
(
μ
(k)
i

)λ
(k)
i −

(
ν
(k)
i

)λ
(k)
i

)
(13)

where B(·) represents the output of FN, and A(·) in (2) needs
to be replaced with B(·). The randomized bound index avoids
the increase of the parameters to be trained, thus constraining
the unreasonable membership degree and non-membership de-
gree without increasing the training complexity. Meanwhile,
the randomness of the network will be able to enhance the
generalization of the model and prevent overfitting.

C. Determination of the Number of FNs and Rules

In the original ANFIS design, each input dimension is fuzzi-
fied through K MFs, which are combined to form K rules
without repetition. This structure brings about inflexibility in the
model, and due to the independent relationships between rules,
it cannot express complex reasoning in reality. Moreover, this
design will bring a large number of parameters to be optimized.
In our previous modeling, each FN had 5 unknowns. If the input
dimension is 4 and the number of rules is 10, there are a total of
4× 10× 5 = 200 parameters in all FNs. Due to our ESODNFS
being aimed at edge servers, having too many parameters brings
a significant computational burden. Therefore, we have designed

a method for determining the number of FNs and a method for
designing rules.

First, we define the number of FNs for each input dimension as
(a1, a2, . . . , ad). Intuitively, more FNs should be used for fuzzi-
fication in dimensions that are more conducive to prediction. Our
method is to define the upper bound amax and lower bound amin,
then calculate the value of each dimension and determine the
number of FNs between amax and amin based on the ranking of
values. For the value of each dimension, we use entropy to define
it, which describes the distribution of data in that dimension
in the dataset. The more balanced the distribution of data, the
greater the entropy, and the stronger the decisiveness of that
dimension in prediction. We define the entropy ent(b) of an
array b = {b1, b2, . . . , b|b|} to be calculated using the following
method. First, define bmin, bmax are the minimum and maximum
values of array b, and b′ = {b′1, b′2, . . . , b′|b′|} is obtained from
b, where

b′i =
bi − bmin

bmax − bmin
, i = 1, 2, .., |b| (14)

Furthermore, the array b′′ = {b′′1, b′′2, . . . , b′′|b′′|} is obtained
where

b′′i =
b′i∑|b′|
j=1 b

′
j

, i = 1, 2 . . . , |b′| (15)

Finally,

ent(b) =

|b′′|∑
i=1

b′′i log2(b
′′
i ) (16)

where b′′i log2(b
′′
i ) = 0 if b′′i = 0. When all values in array b

are the same, set ent(b) = 0 without going through the above
calculation process.

Therefore, we divide all samples in the dataset into d arrays
based on their dimensions and use ent(·) to calculate d arrays
to obtain {e1, e2, . . . , ed} d values. The number of FNs for each
dimension is determined by the following equation:

ai = amin +

⌊
(amax − amin)

∑d
j=1[ei > ej ]

d

⌋
(17)

where i = 1, 2, . . . , d, [ei > ej ] = 1 if ei > ej is true and [ei >
ej ] = 0 if ei ≤ ej . In this way, more FNs will be available for
dimensions that have a more even distribution of data and are
more decision-making.

After determining the number of FNs for each dimension,
we consider combining rules from these FNs. The maximum
number of rules is

∏d
i=1 ai, which is huge when there are many

FNs and dimensions. Therefore, our method is to select the best
K rules from them. For ease of expression, we define a rule in the
form of R = (r1, r2, . . . , rd), where ri indicates that this rule
uses the rith FN of the ith dimension, where i = 1, 2, . . . , d. We
assume d = 3, the number of FNs is (3, 2, 2), and set the number
of rules K = 3. As shown in Fig. 2, the three rules in Fig. 2(a)
are represented as (1, 1, 1), (2, 2, 2), and (3, 1, 2), respectively
and the three rules in Fig. 2(b) are (1, 1, 1), (1, 1, 2), and (1, 2, 1).
Obviously, the similarity between the rules in Fig. 2(b) is high,
and the FNs have not been fully utilized. For two similar rules,
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Fig. 2. Schematic diagram of rule combination in cases where the number of
membership functions in each dimension is different. For example, in (a), rule
(3) consists of the 3rd FN of the 1st dimension, the 1st FN of the 2nd dimension,
and the 2nd FN of the 3rd dimension, and is thus denoted as (3, 1, 2).

e.g., (1, 1, 1) and (1, 1, 2), they use two identical FNs, so the
difference between the information contained in these two rules
lies mainly in the third dimension of the data, and the differences
in the other dimensions of the data are not well reflected in the
output of the rules. To make the rule set more valuable, the
FNs contained in these rules need to be as different as possible.
On the one hand, the rules in the rule set need to maximize
their differences, which means that two rules duplicate the least
amount of FNs. On the other hand, all FNs need to be utilized
evenly. Therefore we design the K-rule algorithm.

We define S as the set of selected rules, and T as the set of
remaining rules, and the total size of the two sets is

∏d
i=1 ai.

Initially, S = ∅ and |T | =∏d
i=1 ai. We define the distance

dis(R,S) from rule R to set S as determined by the following
equation:

dis(R,S) = min
R′∈S

ϕ(R,R′) + g(R,S) (18)

Among them, ϕ(R,R′) represents the difference between two
rules, reflecting the degree of association of the rules,

ϕ(R,R′) =
d∑

i=1

[Ri �= R′
i] (19)

g(R,S) reflects the rarity of each dimension of the rule in set S,

g(R,S) =
d∑

i=1

∑
R′∈S [Ri �= R′

i]

|S| (20)

Therefore, we calculate the dis values of all rules in set T ,
take the rule s with the largest dis, and then S ∪ {s}, T \ {s}.
Repeating K times yields the K rules, and these rules have
the greatest difference, making better use of the information in
FNs. It should be noted that different rules may use the same FN
multiple times, for example, the first FN in the second dimension
of Fig. 2(a) is used by the first and third rules, so B

(1)
2 and B

(3)
2

are the same FN.

D. ANFISU Training Method

In the ANFISU we designed, the parameters to be learned
consist of the parameters in the FNs and the weights of the
rules. Metaheuristic algorithms are considered to be a more

efficient method compared to gradient descent for training the
parameters of ANFIS [17]. Since the output of each rule is
calculated through a linear function, LSE can quickly calculate
the optimal weights of rules without iteration. Therefore, we
use PSO to learn the FN parameters and calculate the weights
of rules using LSE each time, with the minimum mean-square
error (MMSE) as the objective function for optimization.

Specifically, the encoding of PSO is to sequentially form
a position vector pos with a dimension of 4

∑d
i=1 ai from

FN parameters, and update it in each round. We define the
two acceleration coefficients as c1 and c2 respectively, and the
inertia weight is defined as w. We use a linearly decreasing
inertia weight, where the maximum and minimum values are
wmax and wmin. A pos determines all FNs, so for an input X ,
(f1(X), f2(X), . . . , fK(X)) can be calculated. According to
(4), the following equation can be further calculated:

t̂ =
K∑
i=1

fi(X)

⎛
⎝p

(i)
0 +

d∑
j=1

p
(i)
j xj

⎞
⎠

= f1(X)p
(1)
0 + f1(X)x1p

(1)
1 + · · ·+ f1(X)xdp

(1)
d

+ f2(X)p
(2)
0 + f2(X)x1p

(2)
1 + · · ·+ fK(X)xdp

(K)
d

(21)

We define P = (p
(1)
0 , p

(1)
1 , . . . , p

(1)
d , p

(2)
0 , p

(2)
1 , . . . , p

(K)
d )T

which size is (K(d+ 1)× 1) and assume that there are a total
of N samples in the dataset, defined as X ′, with each sample
defined as X ′

i = (xi,1, xi,2, . . . , xi,d), i = 1, 2, . . . , N . The
matrix F is defined as follows:

F =⎧⎪⎪⎨
⎪⎪⎩

f1(X ′
1) f1(X ′

1)x1,1 . . . f2(X ′
1) . . . fK(X ′

1)x1,d

f1(X ′
2) f1(X ′

2)x2,1 . . . f2(X ′
2) . . . fK(X ′

2)x2,d

. . . . . . . . . . . . . . . . . .

f1(X ′
N ) f1(X ′

N )xN,1 . . . f2(X ′
N ) . . . fK(X ′

N )xN,d

⎫⎪⎪⎬
⎪⎪⎭

(22)

with a size of (N ×K(d+ 1)). The label of the dataset is Y
which size is (N × 1), thus the loss function can be expressed
as:

L(P ) = (FP − Y )T (FP − Y ) (23)

According to LSE, the optimal P that can minimize the loss
function can be calculated using the following equation:

P = (F TF )−1F TY (24)

Therefore, for the encoding of a particle swarm, we can calculate
the weights of rules using (24) to determine all parameters of
the model and calculate the predicted values of the model. At
the same time, mean-square error (MSE) serves as the fitness
function. It is worth noting that F TF in (24) is not always
an invertible matrix, so singular value decomposition (SVD)
is needed to solve the pseudo-inverse matrix of F and replace
(F TF )−1F T to ensure that P is always available.
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Algorithm 1: Structure Determination and Training of AN-
FISU.

At this point, the design of ANFISU has been fully intro-
duced, and the pseudocode for the entire process is shown in
Algorithm 1.

IV. DESIGN OF ESODNFS

The ANFISU we proposed already has predictive capabilities,
but using it directly for task runtime prediction will lead to
potential problems. ANFISU has a simple structure, insufficient
depth, and limited learning ability. When the dataset size is large,
the model’s parameters, such as the number of FNs and rules,
need to be correspondingly large. However, the model training
process involves complex operations such as matrix multiplica-
tion and matrix inversion. For example, the matrix F TF has
size (K(d+ 1)×K(d+ 1)), so the complexity of its inverse
matrix computation for rule numbers is O(K3). Moreover, such
operations require each particle to run once in each round,
resulting in excessive computational complexity. Therefore, we
need to reduce the number of parameters in ANFISU. However,
due to the decrease in the number of parameters, the learning
ability of ANFISU will decrease, and it cannot learn the features
in the dataset well, which can lead to underfitting problems.

Our approach is to evenly divide the dataset into s parts
and construct s ANFISU models to learn different parts of the
dataset separately. When making predictions, we input data onto
each ANFISU and use a DNN model to weight s results. All
ANFISUs and the DNN together form our proposed ESODNFS,
as shown in Fig. 3. Due to the spatial parallelism of ANFISU
and DNN, our ESODNFS can be regarded as a parallel DNFS.
This design has the following advantages: 1) The size of the
dataset learned by each ANFISU is reduced, and therefore the
parameter size of the ANFISU is reduced accordingly. Since the
training computational complexity increases cubically with the
parameter size, even if multiple ANFISUs need to be trained,
the overall training time is shorter than training one large-scale
ANFISU. 2) DNN has stronger learning ability, however, tradi-
tional DNFS combines the structures of DNN and fuzzy neural
networks, resulting in a decrease in interpretability. Our DNN

Fig. 3. ESODNFS consists of multiple ANFISUs and a DNN, with each input
passing through all ANFISUs and DNNs to obtain multiple results in ANFISU
and the weights of these results obtained in DNN.

is used for weighting multiple ANFISUs, enhancing the model
learning ability without reducing the interpretability of DNFS.
3) These ANFISUs are independent and do not affect each other
in training. Therefore, ESODNFS is able to train multiple AN-
FISUs simultaneously through parallel or distributed training
instead of sequentially training these ANFISUs, thus realizing
faster training speeds on edge servers. For example, to train
ESODNFS on an edge server, the server creates s processes
for training s ANFISUs simultaneously, fully utilizing multi-
ple CPU resources. This parallelism speeds up the training of
ANFISUs, thus reducing the overall training time of ESODNFS.

First, we introduce the designed DNN. Due to the wide range
of applications of DNNs in real-world problems and the fact
that we are using a common multilayer perceptron, we will
not describe the specific structure. However, the following three
points need to be noted:

Activation Function. We use the sigmoid activation function,
and the equation is as follows:

o(l) =
1

1 + e−(w
(l)o(l−1)+b(l))

(25)

where o(l) indicates the output of the ith layer, w(l) and b(l)

are the weight matrix and bias that connect the lth and (l − 1)th
layers, respectively.

Output. Since the output of DNN represents the weights of
each ANFISU output, normalization is required in the final layer.

Training Method. Traditional DNNs use backpropagation to
update parameters and accomplish training. Compared to the
gradient-based training method, metaheuristic algorithms can
overcome the defect of easily falling into local optima and
be less likely to rely on the initial solution [40]. Due to the
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Algorithm 2: Construction and Training of ESODNFS.

excessive computational burden, metaheuristic algorithms can-
not be applied in large-scale DNNs. However, for ESODNFS,
the size of DNN is designed to be small for faster training,
thus DNN training based on metaheuristic algorithms will not
impose a large computational burden and will be able to obtain
better accuracy. Therefore, we use PSO for parameter learning.
Specifically, all weights of each layer in DNN are sequentially
encoded into pos and then optimized. Since all ANFISUs have
been trained, samples are first input into each ANFISU to obtain
s results. At the same time, samples are input into DNN to
calculate s weights and weighted to obtain the output. This
process is represented by the following equation:

t̂ =

s∑
i=1

DNN(X)i ·ANFISUi(X) (26)

where X represents a single input sample, DNN(·)i represents
the ith value output by DNN, ANFISUi(·) represents the
output of the ith ANFISU. MSE is also used as a fitness function.
The training process of ESODNFS can be found in Algorithm 2.

Finally, we calculate the computational complexity of ESOD-
NFS. For each ANFISU, the complexity of determining FNs and
rules isO(Ns d+ d2) andO(

∏d
i=1 aiKd), respectively. To avoid

the generation of rules becoming a bottleneck, a subset of the
rules in T are selected whose number is related to K, and hence
the complexity isO(Ns d+K2d)withK2d > d2. The computa-

tional complexity of LSE is O(Ns (
∑d

i=1 ai +K2 d2)). Assume
that the number of iteration rounds of PSO is n1 and the number
of particles isn2, thus the computational complexity of the whole
ANFISU is O(Ns d+K2d+ n1n2 N

s (
∑d

i=1 ai +K2 d2)). The

training complexity of the DNN isO(n1n2N(
∑d

i=1 ai +Kd+
W 2)), where W is the size of the fully connected layer.

Ultimately, the computational complexity of the entire ESOD-
NFS is O(Nd+K2ds+ n1n2N(

∑d
i=1 ai +K2 d2 +W 2)).

Compared to ANFIS, ESODNFS introduces more parameters,
but the prediction accuracy and training time of ESODNFS are
both superior to ANFIS, which will be verified in Section V.

V. EXPERIMENT

In this section, we conduct performance tests and experiments
comparing the proposed ESODNFS with other methods. As
ESODNFS is used to predict the runtime of end device tasks,
experiments will also use running data of tasks from real het-
erogeneous devices for prediction.

A. Collection of Datasets

We have prepared three different types of tasks, namely
AI-intensive, memory-intensive, and disk-intensive. For AI-
intensive tasks, they can run with different resources based on
the computing resources of the terminal devices, such as using
GPU on devices with GPU resources and NPU on devices with
NPU resources. For memory-intensive and disk-intensive tasks,
they can only run using CPU resources.

On the end device, we use multiple Raspberry Pi, Atlas 200
DK, and PC devices as the end devices, where the Atlas 200
DK is equipped with NPU hardware resources. For the edge
devices used for training and inference models, we use a device
equipped with 8 Intel (R) Xeon (R) E5-2620 v4@2.10 GHz
CPU(64 G) and with 2 Nvidia Tesla T4 GPU (16 G). Our dataset
is obtained by running three different types of tasks multiple
times on these devices. We have prepared two datasets with
different dimensions and quantities. The first dataset only in-
cludes Raspberry Pi and PC devices running memory-intensive
and disk-intensive task records, where device ID, task ID, CPU
usage, CPU memory usage, disk usage, and task runtime are
recorded as a sample of all information, totaling 6 dimensions,
denoted as D1. The second dataset uses information from all
devices running three types of tasks, with each sample adding
GPU usage, GPU memory usage, NPU usage, and NPU memory
usage information in the previous 6 dimensions, for a total of 10
dimensions, denoted as D2. After our preprocessing, the scale
of D1 is 930× 6 and D2 is 1152× 10 , which is an appropriate
data scale for the edge training model. The runtime of the
task changes from about 10 s to 350 s, the chip usage-related
dimensions change from 0 to 100, the memory usage-related
dimensions change from about 0 to 104, and the disk usage
changes from about 104 to 105.

For these two datasets, there are three points to note. First, the
selected features are closely related to the runtime of the task.
The more tasks run on the device, the fewer remaining resources,
and the longer the task runtime. However, since the data only
records resource information before the task runs, and resource
changes during the task run are not recorded, the datasets are
noisy. Second, we divided datasets D1 and D2 into training and
testing datasets in a 7:3 ratio. Third, the data range of each
dimension has a large deviation, so normalization is used for
preprocessing the dataset. All data is compressed into intervals
of [0, 20] based on the maximum and minimum values of all
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TABLE I
CONFIGURATION OF PSO FOR MODELS TRAINED WITH PSO

TABLE II
DNN CONFIGURATION FOR MODELS WITH DNN

values in the dimension, which is conducive to adjusting the
hyperparameters of the model.

B. Deployment of ESODNFS and Baseline Models

In this section, we introduce the parameter settings and de-
ployment methods of ESODNFS, as well as some other models
used in comparative experiments. As our model is used for pre-
diction, we need to compare it with DNFS related to prediction.
In addition, we have made improvements to the traditional T-S
fuzzy model, so it is necessary to compare the models that have
also been improved on the T-S fuzzy model. In addition, some
traditional models also need to be used for comparison to provide
more comprehensive proof of the performance of the model.

ESODNFS: In the experiment, we set s to 3, which means
dividing the dataset into three parts and using three ANFISUs for
training. Each ANFISU has the same configuration. In dataset
D1, we set amax = 6, amin = 3, K = 10, and we set amax = 5,
amin = 2, K = 8 in dataset D2. The configuration of the PSO is
the same for both datasets, as shown in Table I. We trained these
three models in parallel using a multiprocessing approach and
finally used DNN for joint training. The configuration of DNN
is shown in Table II, where lr indicates the learning rate. As
DNN is trained using PSO, PSO configuration is also required,
as shown in Table I.

HPFDNN [39]: HPFDNN was proposed for predicting cloud
computing resource demand. In this model, the data is first
passed through a fuzzy representation layer and a neural rep-
resentation layer, fused, and then input into DNN for feature
extraction and learning. The fuzzy representation layer uses
Pythagorean fuzzy sets and Gaussian MFs, while the neural
representation layer uses sigmoid functions. The DNN config-
uration of HPFDNN is shown in Table II. It should be noted
that DNN also has dropout layers, where 10% of neurons are
randomly discarded in each layer, and the momentum factor is
set to 0.1. Furthermore, the linear descent learning rate is not
utilized as its impact on the results is not significant.

DJFNN [41]: DJFNN is based on traditional T-S fuzzy models
and has a structure similar to ANFIS. OR neurons have been
proposed to represent more complex inference processes, and
LSE has been used to solve the linear function coefficients.
DJFNN uses a greedy algorithm to solve the weights between

the MF layer and the OR layer, which are some 0/1 weights. The
hyperparameters in DJFNN only have the number of MFs and
rules for each dimension. In dataset D1, we set the number of
MFs for all 5 input dimensions to 12 and the number of rules to 7.
In dataset D2, the number of MFs is 9 and the number of rules is
6. This is the best configuration we have found for our problem.

ANFIS: In traditional ANFIS, the number of MFs for each
dimension is set to be the same as the number of rules. We set
the MF of ANFIS to Gaussian MF, and optimize the parameters
using PSO. The configuration is shown in Table I. LSE is also
used for calculating the coefficients of linear functions. The
number of rules is set to 10.

DNN: The configuration of this DNN is the same as the
DNN configuration in HPFDNN, but there is no setting for the
momentum factor. Its configuration is shown in Table II.

C. Evaluation of ESODNFS Training Convergence
Performance

In this section, we record the convergence performance of
ESODNFS during training. When training ESODNFS, PSO is
first used to train three ANFISUs in parallel, and then PSO is
also used for joint training of DNN. Therefore, we can record the
changes in the fitness functions, i.e. MSE, of the three ANFISUs
and DNN during PSO operation to evaluate the convergence
performance of the model training.

The convergence data during ESODNFS training is shown in
Fig. 4. Whether in dataset D1 or D2, as well as ANFISU or DNN,
PSO can significantly reduce MSE in the first few epochs and
gradually flatten in the later stages, indicating the effectiveness
of PSO in training. Horizontally, each ANFISU performs well
on its dataset, while the training of DNN is on all training set
samples, so it is normal for the final MSE of DNN to be higher
than that of ANFISU. In addition, although 1st ANFISU(D2)
has poor training performance, with an MSE of approximately
0.58, which is much higher than the other two ANFISUs, DNN
training did not result in poor performance. Vertically, the initial
MSE of ANFISU in the D1 dataset is approximately 0.3, while
it exceeds 16 in the D2 dataset. However, in both datasets, the
parameter initialization of PSO is the same. This means that
the increase in dimensionality in the D2 dataset resulted in
worse initial solutions, but the final convergence results were not
significantly different between the two datasets, indicating that
PSO is less likely to rely on the initial solution when optimizing
parameters.

D. Evaluation of Joint Prediction Performance of ESODNFS’s
DNN

The DNN in ESODNFS weights the prediction results of
multiple ANFISUs and obtains accurate results. We recorded
the absolute value error |t− t̂| of a single sample prediction
results of 3 ANFISUs and ESODNFS on the testing set, where t̂
is the model’s predicted value and t is the sample label. To better
highlight the performance of ESODNFS, we sort the absolute
value errors of ESODNFS output results in ascending order and
remove a very small number of points with significant errors to
better display the data.
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Fig. 4. During the ESODNFS training process, ANFISU and DNN use PSO for parameter optimization, achieving lower MSE.

Fig. 5. The absolute value error of the predicted values of ANFISUs and
ESODNFS on each sample in the testing set.

The absolute value error of the prediction results of ESOD-
NFS and 3 ANFISUs for each sample on the testing dataset
is shown in Fig. 5. On most samples, ESODNFS can fuse the
output values of 3 ANFISUs to obtain reasonable prediction
results, although the prediction error of ESODNFS is not always
the best among the outputs of 3 AIFISUs. This is because each
ANFISU learns different features, and for a certain sample on the
testing set, some ANFISUs can accurately predict, while others
have less than ideal prediction performance. On these ANFISUs
that can be accurately tested, ESODNFS’s DNN assigns them
greater weights. However, ESODNFS inevitably needs to assign
weights to other ANFISUs, resulting in ESODNFS not being
optimal among all ANFISUs on certain samples.

In dataset D1, there is not much difference in the predictive
performance of 3 ANFISUs. However, in some samples, the
prediction value of one ANFISU has a large error. However,
ESODNFS corrected the prediction result, thereby reducing the
error. At the same time, it can be observed that over 80% of the
samples have an absolute error of less than 0.25 in ESODNFS,
while a small number of samples have poor prediction perfor-
mance due to ANFISUs not having accurate prediction results
on these samples.

In dataset D2, it is evident that the predictive performance
of 1st ANFISU and 3 rd ANFISU is not as good, while 2nd
ANFISU has a relatively good predictive performance. There-
fore, ESODNFS’s DNN assigns more weights to the 2nd AN-
FISU, resulting in ESODNFS’s curve being very close to the
2nd ANFISU’s curve. This indicates that ESODNFS has better
robustness, even if the performance degradation caused by poor
training performance of an ANFISU does not have a significant
impact on the predictive performance of ESODNFS.

E. Evaluation of Model Prediction Accuracy and Training
Time

In this section, we calculate the MSE of ESODNFS and the
baseline models to compare the accuracy of the proposed model
in prediction. To observe the accuracy of task runtime prediction
more specifically, we converted the predicted values into the
original time metric and calculated the average time error. Fur-
thermore, we statistically analyzed the error distribution of the
models on the testing set to gain a more specific understanding
of the model’s predictive performance. At the same time, the
training time of the models is also counted to demonstrate that
our ESODNFS can be trained more quickly.

As shown in Fig. 6, MSE on the training and testing sets
of ESODNFS and other baseline models, as well as three
ANFISUs, are recorded. From these data and the training pro-
cess, we can summarize the following information: 1) Overall,
ESODNFS has good predictive performance. Whether in the
low-dimensional dataset D1 or the high-dimensional dataset
D2, ESODNFS performs more accurately on the testing set
compared to other models, with values of 0.5793 and 0.8161,
respectively. In addition, the average time error of ESODNFS on
the testing set is also smaller than most other baseline models,
with values of 3.6292 s and 3.5673 s, respectively. 2) The results
of ESODNFS on the training set are not optimal. However, some
models have a small MSE on the training set, but a large MSE
on the testing set. For example, ANFIS has an MSE of 0.135 and
2.054 on the training and testing sets in dataset D2, respectively.
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Fig. 6. The MSE of all models on the training and testing sets, as well as the average time error on the testing set.

Fig. 7. The distribution of squared error and absolute time error on the testing
set. The error of each model is calculated, and sorted, and the top 90% of the
content is taken to better understand the error distribution.

This indicates that although ESODNFS is not as good as other
models during training, it has a more prominent prediction effect
in practical prediction due to its good generalization ability.
3) Due to the larger dimensions, larger data volume, and more
noise in dataset D2, most models have a higher MSE in dataset
D2 than in dataset D1. However, the MSE of DNN in dataset D2
is lower than that in D1, which may be related to the parameter
initialization of the model. 4) The predictive performance of
HPFDNN is not as good as DNN, which may be due to the
incorrect parameters of the fuzzy representation layer during
data fuzzification, resulting in the loss of features that can be
extracted from the data.

TABLE III
TRAINING TIME FOR EACH MODEL

It is worth noting that some models have a larger MSE, but
the average time error is smaller. This is because there is a
significant error in predicting some samples, resulting in an
amplification of the squared error. This indicates that MSE may
be affected by prediction with small quantities but significant
errors. Therefore, we statistically analyzed the error distribution
of the model on the testing set, where 90% of the sample sizes
with small errors are recorded, as this indicates the accuracy of
the model prediction in most cases.

As shown in Fig. 7, the error of ESODNFS and DJFNN is
small on most samples. In some cases (D1), the curve of DJFNN
is below ESODNFS, indicating that more samples are predicted
more accurately by DJFNN. However, ESODNFS has the small-
est MSE, indicating that it can better handle extreme samples.
From this graph, it can be observed that all three models based
on the T-S fuzzy model have better predictive performance,
indicating that the T-S fuzzy model is superior on noisy datasets.

We have calculated the time spent on training these models.
As shown in Table III, due to the small number of parameters
for ESODNFS and the parallel training of multiple ANFISUs,
the training time for ESODNFS is the shortest in datasets
D1 and D2. The training time of ESODNFS is shortened in
dataset D1 by 3.27%, 20.37%, 20.45%, and 18.18%, and in
dataset D2 by 31.34%, 35.62%, 25.35%, and 22.88%, compared
to DJFNN, ANFIS, HPFDNN, and DNN. This means that
ESODNFS can complete model training in a faster time, so
that when the data of the end devices served by the edge server
changes significantly, the model can be retrained more quickly,
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achieving more accurate task runtime prediction services. It is
worth noting that the training of multiple ANFISUs is conducted
using parallel training on the same edge server. If distributed
training is performed on multiple edge servers, it may be possible
to achieve faster training speed, which is the potential of our
ESODNFS.

VI. CONCLUSION

This paper introduces ESODNFS, a fast-training model with
strong predictive and generalization capabilities, designed to
adapt to rapid change of end device information in the Big
Data era. We enhance ANFIS to create ANFISU, using PSO
and LSE for efficient training. To further speed up training, we
parallelize multiple ANFISUs on a partitioned dataset and use
a DNN to weigh their outputs, improving prediction accuracy,
model robustness, and training speed. Experiments show that
ESODNFS, integrating parallel-trained ANFISUs with the task
execution data from actual end devices, outperforms other mod-
els in prediction, training speed, and robustness.

However, as the T-S fuzzy model is further studied, more
structures such as OR neurons are proposed, which may further
improve the performance of our proposed ANFISU model. In
addition, the interpretability of ESODNFS and how to enhance
model security based on interpretability are also important re-
search topics that require our consideration. Therefore, we will
conduct further research on these issues in the future.
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