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A B S T R A C T

With the rapid development of information technology, efficient energy utilization has become a major chal-
lenge in modern computing system design. This paper focuses on the energy-constrained parallel application
scheduling problem in heterogeneous systems and proposes three algorithms to minimize the makespan of
applications. The first one is the minimum makespan algorithm under energy constraints. In this algorithm,
we construct an optimal cost table with energy constraints, which can be applied to determine the priority of
tasks and the processors allocated in the application. The second one is the energy reclaiming algorithm, which
is used to reclaim some energy from non-critical tasks while ensuring that the makespan of the application
remains unchanged. The third one is the energy reallocation algorithm, which tends to allocate reclaimed
energy to critical tasks to increase their execution frequency, thereby reducing the makespan of the entire
application. Experiments were conducted on different parallel applications in various scenarios, and the results
showed that the proposed algorithm can achieve smaller makespan compared to existing algorithms in most
cases.
1. Introduction

With the widespread application of artificial intelligence, big data
analysis, high-definition video processing, and other domains, the de-
mands on computing systems have escalated. Traditional single-type
processor systems often fall short in terms of efficiency and perfor-
mance when handling these high-load, high-complexity tasks. Hetero-
geneous computing systems, by integrating diverse specialized comput-
ing units such as Central Processing Units (CPUs), Graphics Processing
Units (GPUs), and Field-Programmable Gate Arrays (FPGAs), can more
effectively handle complex and varied computational scenarios [1,2].
When executing parallel applications on mobile devices, Internet of
Things (IoT) devices, and high-performance heterogeneous computing
platforms, energy efficiency is crucial [3]. It is imperative to minimize
system energy consumption while meeting specific user demands, such
as service quality and response times. Reducing energy consumption
not only lowers electricity costs during operation but also reduces
carbon emissions.

Dynamic Voltage and Frequency Scaling (DVFS) stands as an ef-
fective technique for enhancing energy efficiency by dynamically ad-
justing the processor’s voltage and execution frequency based on the
actual requirements of applications. This approach can significantly
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reduce system energy consumption when the system operates under
low workload conditions and can be widely applied in various fields [4–
8]. However, the reduction in processor voltage and frequency through
DVFS inevitably extends the execution time of applications, which
might result in applications failing to meet their execution time con-
straints [9]. Consequently, in scenarios where DVFS is applied, it is
vital to strike a balance between performance and energy conservation,
ensuring that applications run efficiently without compromising the
user experience.

In practical application scenarios, heterogeneous embedded systems
inherently limited energy resources, such as those powered by bat-
teries or reliant on energy harvesting mechanisms. When executing
applications within these systems, meticulous management of energy
consumption is crucial. In energy-constrained heterogeneous multi-
processor systems, task scheduling for parallel applications faces sev-
eral challenges: firstly, how to appropriately assign tasks to suitable
processors to balance computational performance and energy con-
sumption, ensuring that the available energy within the system is not
exhausted prematurely; secondly, how to dynamically adjust the volt-
age and operating frequency of processors based on system workload,
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thereby guaranteeing that applications meet their execution time con-
straints. Therefore, it is necessary to investigate the parallel application
scheduling problem with energy constraints in heterogeneous systems.

In recent years, numerous researchers have proposed energy-
efficient scheduling approaches that aim to reduce energy consumption
while still satisfying the execution time constraints of applications [10–
13]. However, these approaches do not consider energy as a constraint
in task scheduling, rendering them unsuitable for scenarios where
energy resources are strictly bounded. For energy-constrained sys-
tems, there are some algorithms that optimize the execution time
(also known as makespan) of parallel applications [14–19]. However,
most of them use the execution time required when the processor
operates at its highest frequency to calculate the priority of tasks.
When tasks have energy constraints, they may not be able to execute
at the highest frequency, which often results in unreasonable task
prioritization. Moreover, existing algorithms only evaluate the current
task based on available energy when assigning tasks to processors,
without considering the future situation of the current task, which
may lead to suboptimal decisions in some cases. In addition, existing
algorithms tend to allocate disproportionately high amounts of energy
to non-critical subtasks in parallel applications, whose execution fails
to contribute positively to reducing the overall application runtime.
To address these shortcomings, we have designed a series of new
algorithms. In most cases, our algorithms achieve shorter execution
times for applications compared to the existing algorithms.

This paper primarily investigates the scheduling problem of par-
allel applications with energy constraints in heterogeneous systems,
aiming to minimize the execution time of the applications. Our main
contributions are outlined as follows:

(1) This paper constructs an energy-constrained Optimistic Cost
Table (OCT), based on which the priority of tasks within the application
is determined. Since the values in the OCT are calculated according
to the energy budget of the application, the priority of tasks for the
same application may vary depending on the available energy, which
facilitates reducing the makespan of the application.

(2) This paper designs three algorithms. The first algorithm aims
to minimize the makespan of the application under energy constraints.
Since there are non-critical tasks in the results of this algorithm, the ex-
ecution frequencies of these tasks can be further reduced. Therefore, the
second algorithm is designed to reclaim energy from these non-critical
tasks while ensuring the application’s makespan remains unchanged.
The third algorithm then employs this reclaimed energy to readjust the
execution frequencies of tasks, thereby further reducing the makespan
of applications.

(3) This paper conducts experiments using different applications
across various scenarios. The experimental results illustrate that the
makespan generated by the algorithm proposed in this paper is smaller
than that generated by existing algorithms in most cases.

The rest of this paper is organized as follows. Section 2 reviews
the related work. Section 3 introduces the models used in this paper
and discusses the problems under investigation. Section 4 elaborates
on the three algorithms we proposed and provides a case study. Finally,
Sections 5 and 6 discuss our simulation results and conclusions.

2. Related work

Parallel applications are commonly modeled as Directed Acyclic
Graphs (DAGs) due to the precedence constraints existing between their
subtasks [10–13]. Scheduling parallel applications in heterogeneous
systems to minimize execution time is known to be an NP-complete
problem. The problem of scheduling parallel applications to optimize
metrics such as execution time, energy consumption, reliability, and
throughput has been widely investigated [12,20–24].

To reduce system energy consumption while meeting the execution
time constraints of applications, Tang et al. [10] introduced the DEWTS
algorithm, which utilizes DVFS and the method of processors merging
2 
Fig. 1. Structure of heterogeneous systems.

to reduce system energy consumption while ensuring that applications
meet their deadline requirements. In [11], Xie et al. employed the
downward and upward methods to reduce system energy consumption.
In [12], the authors separately developed non-DVFS and global DVFS-
enabled scheduling algorithms to reduce system energy consumption.
In [13], Huang et al. proposed the DVFS-weakly-dependent schedul-
ing algorithm to minimize energy consumption. In [25], the authors
introduced a deadline-constrained energy-aware scheduling approach
for geographically distributed cloud data centers.

In response to the varying user requirements and diverse execution
environments of applications, researchers have developed scheduling
algorithms subject to other constraints, such as minimizing energy
consumption with reliability constraints [26–30], minimizing energy
consumption with execution time and reliability constraints [31,32],
maximizing reliability with execution time constraints [33,34], mini-
mizing execution cost with budget constraints [35], and enhancing user
quality of experience while minimizing energy consumption [36].

For scenarios with energy constraints, Xiao et al. [14] proposed the
MSLECC algorithm to minimize the scheduling length of applications.
Due to the imbalance of energy pre-allocation among tasks in the
MSLECC algorithm, in [15], Song et al. designed the ESECC algorithm,
which improves the pre-allocation energy method in the MSLECC al-
gorithm. In [16], the authors introduced an enhanced scheduling algo-
rithm to reduce the scheduling length of parallel applications. Further-
more, Quan et al. [17] also proposed an improved scheduling approach
for energy consumption constrained parallel applications to reduce the
scheduling length. In [18], Zhu et al. investigated a structure-aware
task scheduling method, which takes into account the structure of tasks
during scheduling. In [19], Chen et al. proposed a scheduling approach
based on the energy difference coefficient to minimize the execution
time of applications. In [37], Li et al. proposed a minimal schedule
time with energy constraint method in the fog computing environment.
In [38], the authors introduced a hierarchical computation offloading
technique that maintains energy and delay constraints in the fog envi-
ronment. In addition, there are also methods for network optimization
and resource management, such as SASRM [39], WS-QSTM [40], and
MIJTIP [41].

This paper primarily focuses on minimizing the execution time
of energy-constrained parallel applications in heterogeneous systems.
Table 1 lists the works that share the same objectives as this paper.

3. System model and problem description

3.1. Heterogeneous system model

The heterogeneous system utilized in this study consists of 𝑚 proces-
sor units, denoted as 𝑃 𝑈 = {𝑝𝑢1, 𝑝𝑢2,… , 𝑝𝑢𝑚}, with each processor unit
equipped with DVFS capability. The platform architecture is shown in
Fig. 1, where the processor units can collaborate in executing parallel
applications, and the output from any given processor can be transmit-
ted via a bus to other processors for further processing. Additionally,
each task exclusively uses a processor during its execution, meaning
that the execution of any task is considered non-preemptive [26].
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Table 1
Works with the same research objectives.

Reference Algorithm Strengths Weaknesses

[14] MSLECC (Minimum Schedule Length with
Energy Consumption Constraint)

The proposed algorithm can always satisfy
the energy consumption constraint, and its
correctness is verified using proof and
experiments.

The large disparity in energy allocation to
tasks affects the performance of the
algorithm.

[15] ESECC (Efficient Scheduling for Energy
Consumption Constrained)

Proposed a method for averaging the
allocation of available energy to tasks to
meet energy constraints.

The inherent properties of the tasks were
not considered during the energy
pre-allocation.

[16] EECC (Enhanced scheduling with Energy
Consumption Constraint)

Proposed a new energy pre-allocation
method and proved its correctness.

The inherent properties of the tasks were
still not considered during the energy
pre-allocation.

[17] ISAECC (Improved Scheduling Approach for
Energy Consumption Constrained)

Proposed a weight-based energy
pre-allocation strategy, where the weights
are calculated considering the maximum
and minimum energy requirements of the
tasks.

The energy consumption for executing
critical and non-critical tasks was not
further processed.

[18] TSSA (Task Structure-aware Scheduling
Algorithm)

During energy pre-allocation, the average
execution time of tasks on different
processors was considered. The scheduling
algorithm takes into account the structure
of the task graph.

Need to perform both forward and reverse
direction scheduling on the task graph.

[19] SEDC (Scheduling algorithm based on the
Energy Difference Coefficient)

Proposed a new scheduling algorithm based
on the energy difference coefficient, which
prioritizes tasks and allocates energy
constraints to them.

The given energy budget for the application
cannot be fully utilized in some cases.

[37] MSTEC (Minimal Schedule Time with
Energy Constraint)

Taking into account the inherent properties
of the tasks and introducing the concept of
the energy consumption ratio during energy
pre-allocation. The algorithm uses task
execution time prediction to optimize
scheduling.

When calculating the priority of tasks,
energy constraints were not considered.
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3.2. Application model

In this study, we represent a parallel application as a DAG 𝐴 =
𝑇 , 𝐸) [2,26,27,42]. The components 𝑇 and 𝐸 are explained as follows:

𝑇 is the task set, denoted as 𝑇 = {𝑡1, 𝑡2,… , 𝑡𝑛}, indicates that there
re 𝑛 tasks within application 𝐴. 𝐸 is the set of directed edges between

tasks, where each edge 𝑒(𝑖, 𝑗) ∈ 𝐸 represents a dependency from task 𝑡𝑖
o task 𝑡𝑗 . If there is an edge from 𝑡𝑖 to 𝑡𝑗 , it means that the execution

of task 𝑡𝑗 must wait for task 𝑡𝑖 to complete, i.e., 𝑡𝑖 is a predecessor of 𝑡𝑗 .
For the convenience of representing the relationships between tasks, we
define 𝑝𝑟𝑒𝑑(𝑡𝑖) to represent the set of all direct predecessor tasks of task
𝑖, and 𝑠𝑢𝑐 𝑐(𝑡𝑖) to represent the set of all direct successor tasks of task
𝑖. Tasks without any direct predecessor and tasks without any direct
uccessor are recorded as 𝑡ent r y and 𝑡exit , respectively.

Due to the heterogeneity of processor units in the system, the time
required to execute the same task may differ across different processors.
Define an 𝑛 ×𝑚 matrix 𝑊 to represent the Worst-Case Execution Time
(WCET) of each task on each processor unit. The notation 𝑤𝑖,𝑘 signifies
the WCET of task 𝑡𝑖 when executed on processor unit 𝑝𝑢𝑘. Since tasks
are non-preemptive and the WCET is considered, we do not consider
context switching overheads.

The communication between tasks mapped to different processors
s performed through data transfer over the bus. If there is an edge
(𝑖, 𝑗), then task 𝑡𝑖 (assigned to processor 𝑝𝑢𝑢) needs to transmit data to
ask 𝑡𝑗 (assigned to processor 𝑝𝑢𝑣), and the time required for this data
ransmission can be calculated as [42,43]

𝑑 𝑡𝑡𝑖,𝑗 = 𝐿𝑢 +
𝑑 𝑎𝑡𝑎𝑖,𝑗
𝐵𝑢,𝑣

, (1)

where 𝐿𝑢 is the communication startup latency of processor 𝑝𝑢𝑢, 𝑑 𝑎𝑡𝑎𝑖,𝑗
epresents the size of the data to be transmitted, and 𝐵𝑢,𝑣 represents the
andwidth of the link connecting processor 𝑝𝑢𝑢 and processor 𝑝𝑢𝑣.

To ensure the robustness of the system, we adopt the Worst-Case
Response Time (WCRT) for data transmission. The WCRT represents
the maximum possible actual response time when transmitting data
3 
on a specific hardware platform [26]. Accordingly, the maximum of
all possible actual response times 𝑑 𝑡𝑡𝑖,𝑗 is denoted by 𝑐𝑖,𝑗 , i.e., 𝑐𝑖,𝑗
epresents the WCRT for 𝑡𝑖 to transmit data to 𝑡𝑗 when 𝑡𝑖 and 𝑡𝑗 are
ot assigned to the same processor. When 𝑡𝑖 and 𝑡𝑗 are assigned to
he same processor, the communication time is considered to be zero,
ecause it is negligible compared to the inter-processor communication
ime [26]. In this study, WCRTs for all data transmissions are known
nd determined during the analysis phase using the WCRT analysis
ethod [26].

3.3. Energy consumption model

This study adopts the widely used system-level power model [11,12,
14,44]. The power dissipation of the processor when performing tasks
t frequency 𝑓 is given as

𝑃 (𝑓 ) = 𝑃st + 𝛽(𝑃in + 𝑃de) = 𝑃st + 𝛽(𝑃in + 𝐶sw𝑓
𝛼). (2)

In (2), 𝑃st represents static power dissipation, which is typically used
to maintain the basic circuits and clock operation. This power persists
continuously and can only be eliminated by shutting down the entire
system. 𝑃in denotes the dynamic power dissipation that is independent
of the processor speed, and it is typically a constant. 𝑃de represents
the frequency-dependent dynamic power dissipation, which includes
the power primarily consumed by the processor and any power that
is dependent on the system’s processing frequency. 𝐶sw is the effective
switching capacitance, and 𝛼 is the dynamic power exponent, a system-
related constant that is generally greater than 2 and less than 3. When
the processor is in an operational state, 𝛽 = 1; otherwise, 𝛽 = 0.
Considering that static energy consumption is unavoidably incurred,
similar to research studies sharing the same objective as ours [14–
19], we primarily concentrate on the dynamic energy consumption of
processors.

Reducing the execution frequency leads to an extended task execu-
tion time, which in turn increases the frequency-independent energy
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consumption. If the execution frequency is lowered without limit, the
overall system energy consumption may actually increase rather than
decrease, because even though dynamic power consumption is re-
duced, the increase in frequency-independent energy consumption due
to longer execution times might exceed the savings. Therefore, there
exists a minimum energy-efficient frequency, which can be calculated
as [11,12,14,44]

𝑓mee =
𝛼

√

𝑃in
(𝛼 − 1)𝐶sw

. (3)

Since the execution frequency of the processor is discrete, we as-
ume that the minimum available frequency of processor 𝑝𝑢𝑘 is 𝑓𝑘,min.

Therefore, 𝑓𝑘,min should be greater than or equal to 𝑓mee. At this point,
he available frequency range for processor 𝑝𝑢𝑘 is [𝑓𝑘,min, 𝑓𝑘,max].

Similar to [14–19,26], the switching overhead in the voltage/
requency levels is ignored as it is negligible (e.g., 10 μs–150 μs [26])
elative to task execution time. When task 𝑡𝑖 is executed on processor
𝑝𝑢𝑘 at an operating frequency of 𝑓𝑘,𝑙, the energy consumption can be
alculated as

𝐸(𝑡𝑖, 𝑝𝑢𝑘, 𝑓𝑘,𝑙) = (𝑃𝑘,in + 𝐶𝑘,sw𝑓𝑘,𝑙
𝛼𝑘 ) ×𝑤𝑖,𝑘 ×

𝑓𝑘,max

𝑓𝑘,𝑙
. (4)

In Eq. (4), we simplify the relationship between task execution
ime and processor frequency to a linear one, disregarding factors
ike thermal throttling, voltage-to-frequency conversion inefficiencies,
emory access latency, and cache effects. This assumption is widely

dopted in DVFS-based scheduling research to make the model more
ractable [2,11–19]. Additionally, reducing the execution frequency of

tasks will affect their reliability. However, our primary objective is
to minimize application execution time within a constrained energy
budget. Incorporating techniques like task re-execution or replication
would increase energy consumption and extend execution time, which
conflicts with our optimization goals. Furthermore, our assumption
aligns with common practices in energy-efficient scheduling, where
tasks are scheduled without strict reliability requirements. Hence, the
reliability requirements of applications are still considered satisfied
after the execution frequency is reduced.

When all tasks are assigned, the energy consumption of the appli-
ation can be calculated as

𝐸(𝐴) =
𝑛
∑

𝑖=1
𝐸(𝑡𝑖, 𝑝𝑢𝑎𝑝(𝑖), 𝑓𝑎𝑝(𝑖),𝑎𝑓 (𝑖)). (5)

In Eq. (5), 𝑝𝑢𝑎𝑝(𝑖) represents the processor assigned to task 𝑡𝑖, 𝑓𝑎𝑝(𝑖),𝑎𝑓 (𝑖)
represents the execution frequency set for task 𝑡𝑖.

When all tasks are assigned to the processor that generates the
minimum energy consumption for execution, i.e.

𝐸min(𝑡𝑖) = min
𝑝𝑢𝑘∈𝑃 𝑈 𝐸(𝑡𝑖, 𝑝𝑢𝑘, 𝑓𝑘,min), (6)

the minimum energy consumption required by the application can be
alculated as

𝐸min(𝐴) =
𝑛
∑

𝑖=1
𝐸min(𝑡𝑖). (7)

Similarly, we can calculate the maximum energy demand 𝐸max(𝑡𝑖)
or task 𝑡𝑖 and the overall maximum energy demand 𝐸max(𝐴) for the

application.

3.4. Task execution time

When tasks in a parallel application are assigned for execution on
 heterogeneous multiprocessor system, the earliest start time (EST)
nd the earliest completion time (ECT) of a task can be respectively
alculated as
⎧

⎪

⎨

⎪

𝐸 𝑆 𝑇 (𝑡ent r y , 𝑝𝑢𝑘) = 0

𝐸 𝑆 𝑇 (𝑡𝑖, 𝑝𝑢𝑘) = max

(

𝑓 𝑟𝑒𝑒𝑡𝑖𝑚𝑒[𝑘],
max {𝐸 𝐶 𝑇 (𝑡𝑗 , 𝑝𝑢𝑎𝑝(𝑗)) + 𝑐′𝑗 ,𝑖}

)

(8)
⎩
𝑡𝑗∈𝑝𝑟𝑒𝑑(𝑡𝑖)

4 
and

𝐸 𝐶 𝑇 (𝑡𝑗 , 𝑝𝑢𝑎𝑝(𝑗)) = 𝐸 𝑆 𝑇 (𝑡𝑗 , 𝑝𝑢𝑎𝑝(𝑗)) +𝑤𝑗 ,𝑎𝑝(𝑗) ×
𝑓𝑎𝑝(𝑗),max

𝑓𝑎𝑝(𝑗),𝑎𝑓 (𝑗)
. (9)

In Eq. (8), 𝑓 𝑟𝑒𝑒𝑡𝑖𝑚𝑒[𝑘] is the earliest free time of processor 𝑝𝑢𝑘.
hen the task on processor 𝑝𝑢𝑘 completes, processor 𝑝𝑢𝑘 becomes

vailable for allocation again. The term 𝑐′𝑗 ,𝑖 represents the time required
o transfer data from task 𝑡𝑗 to task 𝑡𝑖. If 𝑡𝑗 is also assigned to processor
𝑢𝑘, then 𝑐′𝑗 ,𝑖 = 0; otherwise, 𝑐′𝑗 ,𝑖 = 𝑐𝑗 ,𝑖.

When all tasks have been allocated to processors, the makespan of
the application can be represented as

𝑀 𝑆(𝐴) = max
𝑡𝑖∈𝑇

𝐸 𝐶 𝑇 (𝑡𝑖, 𝑝𝑢𝑎𝑝(𝑖)), (10)

which denotes the time from the start of the first task to the completion
of all tasks on all processors.

3.5. Problem description

Consider a parallel application 𝐴 executing on a heterogeneous
istributed system with energy constraints, where the available energy
s denoted as 𝐸avail(𝐴). The problem investigated in this paper is how
o optimally assign tasks in an application to appropriate processors
nd adjust their execution frequencies, thereby achieving the minimum
akespan for the application while ensuring that the overall energy

onsumption stays below the available energy budget 𝐸avail(𝐴). This
roblem can be formalized as minimizing the makespan

𝑀 𝑆(𝐴) = max
𝑡𝑖∈𝑇

𝐸 𝐶 𝑇 (𝑡𝑖, 𝑝𝑢𝑎𝑝(𝑖)), (11)

subject to
𝐸(𝐴) ≤ 𝐸avail(𝐴). (12)

4. The proposed algorithms

In this section, we design three algorithms to minimize the
akespan of the application. The first algorithm is for minimizing

he makespan with energy constraints, the second focuses on energy
eclamation, and the third involves the reallocation of energy.

4.1. Minimizing the makespan with energy constraints

To design the algorithm for Minimizing the Makespan with Energy
onstraints (MMEC), we first address two key issues: determining
nergy constraints for tasks and establishing priorities of tasks.

4.1.1. Determining energy constraints of tasks
If 𝐸avail(𝐴) < 𝐸min(𝐴), the application cannot be scheduled, a

cenario which is not addressed in this paper. When 𝐸avail(𝐴) ≥ 𝐸min(𝐴),
he available energy of task 𝑡𝑖 can be greater than or equal to 𝐸min(𝑡𝑖).
hus, our approach initiates with assigning each task its respective min-

imum demanded energy, followed by reallocating the surplus energy.
The surplus energy of the application can be calculated by

𝐸sur (𝐴) = 𝐸avail(𝐴) − 𝐸min(𝐴). (13)

In this study, we utilized the average energy consumption of tasks
n each processor as a basis for allocating the surplus energy among

tasks. Subsequently, the surplus energy obtained by task 𝑡𝑖 is given by

𝐸sur (𝑡𝑖) = 𝐸sur (𝐴) ×
𝐸avg(𝑡𝑖)
𝐸t ot al

(14)

with

𝐸t ot al =
𝑛
∑

𝐸avg(𝑡𝑖) (15)

𝑖=1
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and

𝐸avg(𝑡𝑖) =
∑𝑚

𝑘=1 𝐸(𝑡𝑖, 𝑝𝑢𝑘, 𝑓𝑘,max)
𝑚

. (16)

Therefore, the energy pre-allocated to task 𝑡𝑖 can be calculated by

𝐸pr e(𝑡𝑖) = 𝐸sur (𝑡𝑖) + 𝐸min(𝑡𝑖) (17)

4.1.2. Establishing priorities of tasks
Heterogeneous Earliest Finish Time (HEFT) is a well-known schedul-

ng algorithm in which the upward rank method is utilized to determine
ask priorities [43]. Following this, the upward rank approach has been
xtensively utilized [8,12,26]. In an effort to minimize the makespan
f applications, the OCT method was introduced, and scheduling al-
orithms based on OCT are proven to outperform the HEFT algorithm
n most scenarios [42]. Given the energy constraints of the applications
onsidered in this paper, we construct a novel energy-constrained OCT.
his OCT is utilized not only to establish priorities for tasks but also to

predict the completion times of successor tasks during the scheduling
process for currently allocated tasks. OCT 𝑜𝑐 𝑡 is an 𝑛×𝑚 matrix, where
𝑐 𝑡𝑖,𝑘 represents the maximum value among all shortest paths from the
uccessor tasks of 𝑡𝑖 to the exit task, given that task 𝑡𝑖 is allocated to
rocessor 𝑝𝑢𝑘. The element 𝑜𝑐 𝑡𝑖,𝑘 can be calculated as follows.

𝑜𝑐 𝑡𝑖,𝑘 = max
𝑡𝑗∈𝑠𝑢𝑐 𝑐(𝑡𝑖)

[

min
𝑝𝑢𝑥∈𝑃 𝑈

{

𝑜𝑐 𝑡𝑗 ,𝑥 +𝑤′
𝑗 ,𝑥 + 𝑐′𝑖,𝑗

}

]

(18)

In Eq. (18), 𝑐′𝑖,𝑗 denotes the time required to transfer data from
ask 𝑡𝑖 to task 𝑡𝑗 . If task 𝑡𝑗 is also assigned to processor 𝑝𝑢𝑘, then
𝑐′𝑖,𝑗 = 0; otherwise, 𝑐′𝑖,𝑗 = 𝑐𝑖,𝑗 . 𝑤′

𝑗 ,𝑥 represents the minimum execution
time of task 𝑡𝑗 on processor 𝑝𝑢𝑥 under energy constraints, which can be
calculated as

𝑤
′
𝑗 ,𝑥 = min

𝑓𝑥,𝑙∈
[

𝑓𝑥,min ,𝑓𝑥,max
]

,
𝐸(𝑡𝑗 ,𝑝𝑢𝑥,𝑓𝑥,𝑙 )< 𝐸pr e(𝑡𝑗 )

{

𝑤𝑗 ,𝑥 ×
𝑓𝑥,max

𝑓𝑥,𝑙

}

. (19)

Eq. (19) represents the minimum execution time of task 𝑡𝑗 on
rocessor 𝑝𝑢𝑥 under energy constraints. If task 𝑡𝑗 fails to satisfy the

energy constraints even when processor 𝑝𝑢𝑥 operates at its minimum
frequency, we set 𝑤′

𝑗 ,𝑥=𝑤𝑗 ,𝑥 × 𝑓𝑥,max
𝑓𝑥,min

. For the exit task 𝑡exit , the value of
′
exit,𝑥 is set to 0 for all processors 𝑝𝑢𝑥 ∈ 𝑃 𝑈 .

After the OCT matrix is calculated, the OCT rank of the task can be
calculated as

𝑂 𝐶 𝑇 𝑅𝑎𝑛𝑘(𝑡𝑖) =
∑𝑚

𝑥=1 𝑜𝑐 𝑡𝑖,𝑥
𝑚

. (20)

Tasks with a higher OCT rank value have a higher priority. Because
Eq. (18) takes into account the data transfer time between tasks, the
priority of any task will not be lower than that of its successor task.

CT reflects the cost of all descendant tasks from each task to the exit
ask. This information enables informed decisions when assigning tasks

to processors. It is important to note that the OCT matrix presented in
this paper is constructed based on the energy constraints of the applica-
tion. Different energy constraints will generate different OCT matrices,
which will affect the priority of tasks. Consequently, the OCT matrices
we construct are different from those presented in [42], leading to
ossible variations in task priorities compared to those outlined in [42].

This aspect will be illustrated with examples in Section 4.4.

4.1.3. The MMEC algorithm
Before scheduling the application, we first calculate the pre-

llocated energy for each task, and then the OCT table and the OCT
ank (priority) for each task can be calculate based on the pre-allocated
nergy. During the scheduling process, we assign tasks to the processor
nd set the execution frequency while ensuring that the tasks meet
heir energy constraints. To assign tasks to the appropriate processors,
5 
we calculate the optimistic task completion time based on OCT table,
which is defined as

𝐸 𝐶 𝑇OCT(𝑡𝑖, 𝑝𝑢𝑘) = 𝐸 𝐶 𝑇 (𝑡𝑖, 𝑝𝑢𝑘) + 𝑜𝑐 𝑡𝑖,𝑘. (21)

At this point, we assign tasks to the processor with the minimum
optimistic completion time for execution.

Based on Eq. (17), during the scheduling process, the available
energy of task 𝑡1 is given as

𝐸avail(𝑡1) = 𝐸pr e(𝑡1). (22)

Once task 𝑡1 is allocated, its actual energy consumption 𝐸(𝑡1, 𝑝𝑢𝑎𝑝(1),
𝑓𝑎𝑝(1),𝑎𝑓 (1)) should be less than or equal to 𝐸avail(𝑡1), at which point
the residual energy 𝐸r es(𝑡1) is 𝐸avail(𝑡1) − 𝐸(𝑡1, 𝑝𝑢𝑎𝑝(1), 𝑓𝑎𝑝(1),𝑎𝑓 (1)). This
residual energy can be utilized to execute task 𝑡2. Consequently, the
available energy for task 𝑡2 is given by

𝐸avail(𝑡2) = 𝐸pr e(𝑡2) + 𝐸r es(𝑡1). (23)

According to this method, the available energy for task 𝑡𝑖 (𝑖 ≥ 2) can
be determined as

𝐸avail(𝑡𝑖) = 𝐸pr e(𝑡𝑖) + 𝐸r es(𝑡𝑖−1). (24)

Based on the above explanations, the MMEC algorithm is designed
as shown in Algorithm 1, with its details explained as below.

(1) Lines 1–3 respectively calculate the pre-allocated energy for
each task, the OCT table, and the OCT rank for each task.

(2) Line 4 sorts the tasks according to their priorities (OCT rank
values).

(3) Lines 5–16 comprise a for loop which selects a processor and an
execution frequency for each task. For each task 𝑡𝑖, the MMEC algorithm
initially calculates its available energy (Line 6). Following this, it
traverses over all combinations of processors and frequencies (Lines
–8), computing the 𝐸 𝐶 𝑇OCT(𝑡𝑖, 𝑝𝑢𝑘) only for those combinations that
atisfy the energy consumption constraints (Line 10). Finally, MMEC

assigns task 𝑡𝑖 to the processor that yields the minimal 𝐸 𝐶 𝑇OCT(𝑡𝑖, 𝑝𝑢𝑘)
nd configures its execution frequency accordingly (Line 15).

(4) Line 17 calculates the makespan of the application.

Algorithm 1 The MMEC Algorithm
Require: 𝑃 𝑈 = {𝑝𝑢1, 𝑝𝑢2, ..., 𝑝𝑢𝑚}, application 𝐴, and 𝐸avail(𝐴)
nsure: 𝑀 𝑆(𝐴)
1: calculate the pre-allocated energy for each task
2: Calculate OCT table
3: Calculate the OCT Rank for each task
4: sort tasks by non-increasing order of 𝑂 𝐶 𝑇 𝑅𝑎𝑛𝑘 value
5: for 𝑖 ← 1 to 𝑛 do
6: calculate 𝐸avail(𝑡𝑖)
7: for each processor 𝑝𝑢𝑘 ∈ 𝑃 𝑈 do
8: for each frequency 𝑓𝑘,𝑙 ∈ [𝑓𝑘,min, 𝑓𝑘,max] do
9: if 𝐸(𝑡𝑖, 𝑝𝑢𝑘, 𝑓𝑘,𝑙) ≤ 𝐸avail(𝑡𝑖) then
0: calculate 𝐸 𝐶 𝑇OCT(𝑡𝑖, 𝑝𝑢𝑘) using Eq. (21)
1: record 𝑘 and 𝑙 corresponding to the minimum

𝐸 𝐶 𝑇OCT(𝑡𝑖, 𝑝𝑢𝑘)
2: end if
3: end for
4: end for
5: assign task 𝑡𝑖 to processor 𝑝𝑢𝑘 and set the execution frequency to

𝑓𝑘,𝑙
6: end for
7: calculate 𝑀 𝑆(𝐴) using Eq. (10)

4.1.4. Time complexity of MMEC
In Line 1, MMEC calculates the pre-allocated energy for each task

with a time complexity of O(𝑛 × 𝑚). Before calculating the OCT table
in Line 2, MMEC needs to calculate 𝑤′ , with a time complexity of
𝑗 ,𝑥
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O(𝑛 × 𝑚 × 𝑓 𝑙), where 𝑓 𝑙 denotes the maximum frequency level of the
processors. Following that, the time complexity required to calculate
he OCT table by MMEC is O(𝑛2 × 𝑚). In Line 4, MMEC sorts the

tasks, and this operation has a time complexity of O(𝑛 log 𝑛). Lines 5–16
assign tasks to processors and set their respective execution frequencies,
with a time complexity of O(𝑛2 × 𝑚 × 𝑓 𝑙). From the analysis outlined,
we can conclude that the time complexity of the MMEC algorithm is
O(𝑛2 × 𝑚 × 𝑓 𝑙).

4.2. Reclaiming energy

4.2.1. Calculating the maximum available execution time
After the application is scheduled using the MMEC algorithm, we

observe that there are certain tasks (non-critical tasks), which can
e executed with further reduced frequencies without increasing the

makespan of the application. This enables us to reclaim a portion of
the energy from these tasks for reallocation. To reclaim the energy from
these non-critical tasks, we first calculate their maximum available exe-
cution time. Following the assignment of tasks by the MMEC algorithm,
the start time of any task 𝑡𝑖 is denoted as 𝑆 𝑇 (𝑡𝑖, 𝑝𝑢𝑎𝑝(𝑖)). With the start
time of task 𝑡𝑖 remaining unchanged, the latest completion time for task
𝑡𝑖, while not increasing the application’s makespan, can be calculated
as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐿𝐶 𝑇 (𝑡exit , 𝑝𝑢𝑘) = 𝑀 𝑆MMEC(𝐴)

𝐿𝐶 𝑇 (𝑡𝑖, 𝑝𝑢𝑘) = min
⎛

⎜

⎜

⎝

min
𝑡𝑗∈𝑠𝑢𝑐 𝑐(𝑡𝑖)

{

𝑆 𝑇 (𝑡𝑗 , 𝑝𝑢𝑎𝑝(𝑗)) − 𝑐′𝑖,𝑗
}

,

min
𝑗 >𝑖,𝑎𝑝(𝑗)=𝑘

{

𝑆 𝑇 (𝑡𝑗 , 𝑝𝑢𝑎𝑝(𝑗))
}

⎞

⎟

⎟

⎠

, (25)

where 𝑀 𝑆MMEC(𝐴) represents the makespan obtained by the MMEC
algorithm. Since processors are not reallocated for tasks, the maximum
available execution time for task 𝑡𝑖 can be calculated as

𝑀 𝐴𝐸 𝑇 (𝑡𝑖, 𝑝𝑢𝑎𝑝(𝑖)) = 𝐿𝐶 𝑇 (𝑡𝑖, 𝑝𝑢𝑎𝑝(𝑖)) − 𝑆 𝑇 (𝑡𝑖, 𝑝𝑢𝑎𝑝(𝑖)). (26)

Algorithm 2 the RE Algorithm
Require: the scheduling results of MMEC
nsure: reclaimed energy
1: reclaimed energy 𝑟𝑒 ← 0
2: for 𝑖 ← 1 to 𝑛 do
3: 𝑚𝑎𝑒𝑡 ← 𝑀 𝐴𝐸 𝑇 (𝑡𝑖, 𝑝𝑢𝑎𝑝(𝑖))
4: 𝑘 ← 𝑎𝑝(𝑖)
5: for execution frequency 𝑓𝑘,𝑙 ← [𝑓𝑘,min to 𝑓𝑘,max] do
6: if 𝑤𝑖,𝑘 ×

𝑓𝑘,max
𝑓𝑘,𝑙

< 𝑚𝑎𝑒𝑡 then
7: calculate 𝐸(𝑡𝑖, 𝑝𝑢𝑘, 𝑓𝑘,𝑙) using Eq. (4)
8: if 𝐸(𝑡𝑖, 𝑝𝑢𝑘, 𝑓𝑘,𝑙) < 𝐸MMEC(𝑡𝑖) then
9: reset the execution frequency of task 𝑡𝑖 to 𝑓𝑘,𝑙
0: 𝑟𝑒 ← 𝑟𝑒 + 𝐸MMEC(𝑡𝑖) − 𝐸(𝑡𝑖, 𝑝𝑢𝑘, 𝑓𝑘,𝑙)

11: end if
12: break the inner loop
13: end if
14: end for
15: end for

4.2.2. Reclaiming energy algorithm
Based on the maximum available execution time, the minimum

xecution frequency for the task can be determined. Consequently, an
lgorithm for Reclaiming Energy (RE) is outlined as Algorithm 2.

The RE algorithm begins by initializing the reclaimed energy 𝑟𝑒
to zero in its first line. Lines 2–15 encompass a for loop designed to
reclaim energy from each task. For every task 𝑡𝑖, the RE algorithm
initially calculates its maximum available execution time (Line 3). It
then traverses through processor execution frequencies from low to

high. When a task satisfies the execution time requirement at a certain

6 
frequency, the energy consumption for that task is calculated (Line 7).
If the task’s energy consumption is less than the energy required in the
MMEC algorithm, the task is assigned a new execution frequency with
the excess energy reclaimed (Lines 8–11).

4.2.3. Time complexity of RE
For each task, the RE algorithm first calculates its maximum avail-

able execution time, with a complexity of O(𝑛). Then, RE traverses
the processor execution frequencies, calculating the execution time and
energy consumption for each task, with a time complexity of O(𝑓 𝑙).

here are a total of 𝑛 tasks to consider, so the time complexity of RE is
(𝑛 × (𝑛 + 𝑓 𝑙)).

4.3. Resetting the execution frequency of tasks

4.3.1. Determining the energy reallocated to tasks
After the RE algorithm is completed, each task has obtained a prede-

termined amount of energy. During the energy reallocation process, we
tilize the energy corresponding to each task from the RE algorithm as

a reference to reassign energy to each task. Following this, the energy
reallocated to task 𝑡𝑖 can be recalculated as

𝐸r ealloc(𝑡𝑖) = 𝐸RE(𝑡𝑖) + 𝑟𝑒 ×
𝐸RE(𝑡𝑖)
𝐸t ot al

. (27)

In Eq. (27), 𝐸t ot al =
∑𝑛

𝑖=1 𝐸RE(𝑡𝑖), where 𝐸RE(𝑡𝑖) represents the energy
onsumption associated with the task in the RE algorithm.

Since the execution frequency of the processor is discrete, after the
E algorithm is completed, the execution time of some tasks remains

less than their maximum available execution time. We refer to these
tasks as non-critical tasks and the others as critical tasks. In the real-
locating energy algorithm, the available energy for non-critical tasks is
strictly limited to
𝐸avail(𝑡𝑖) = 𝐸r ealloc(𝑡𝑖), (28)

whereas for critical tasks, the available energy is
𝐸avail(𝑡𝑖) = 𝐸r ealloc(𝑡𝑖) + 𝐸r es(𝑡𝑖−1), (29)

where 𝐸r es(𝑡𝑖−1) represents the residual energy that was not exhausted
by the tasks allocated before 𝑡𝑖.

The advantage of this energy allocation strategy is that it prevents
accumulated residual energy from being allocated to non-critical tasks
when the RE algorithm reclaims less energy. Conversely, when more en-
ergy is reclaimed, non-critical tasks, by obtaining this energy, can also
increase their execution frequency, thereby reducing their execution
time.

4.3.2. Resetting the execution frequency algorithm
According to the available energy of tasks, their execution fre-

quencies can be re-evaluated. Therefore, an algorithm for Resetting
he Execution Frequency (REF) of tasks is designed as depicted in
lgorithm 3.

The REF algorithm attempts to reset the execution frequency of
each task based on the newly available energy. For any given task
𝑡𝑖, the REF algorithm first acquires the processor it is assigned to
and its current execution frequency, and then calculates its available
energy based on whether it is a critical task. If task 𝑡𝑖 can increase
its execution frequency without violating the energy constraints, its
execution frequency is reset accordingly.

4.3.3. Time complexity of REF
In the REF algorithm, since the processor assignment for each

task remains unchanged, the time complexity of setting an execution
frequency for a task is O(𝑓 𝑙). Given that there are a total of 𝑛 tasks to
be considered, so the overall time complexity of the REF algorithm is
O(𝑛 × 𝑓 𝑙).
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Algorithm 3 The REF Algorithm
Require: the scheduling results of RE
Ensure: 𝑀 𝑆(𝐴)
1: for 𝑖 ← 1 to 𝑛 do
2: 𝑘 ← 𝑎𝑝(𝑖)
3: 𝑠 ← 𝑎𝑓 (𝑖)
4: 𝑒 ← 𝐸avail(𝑡𝑖)
5: for execution frequency 𝑓𝑘,𝑙 ← [𝑓𝑘,𝑠 to 𝑓𝑘,max] do
6: calculate 𝐸(𝑡𝑖, 𝑝𝑢𝑘, 𝑓𝑘,𝑙) using Eq. (4)
7: if 𝐸(𝑡𝑖, 𝑝𝑢𝑘, 𝑓𝑘,𝑙) < 𝑒 then
8: reset the execution frequency of task 𝑡𝑖 to 𝑓𝑘,𝑙
9: end if

10: end for
11: end for
12: calculate 𝑀 𝑆(𝐴) using Eq. (10)

Fig. 2. A case study of an application.

Table 2
WCET of tasks on different processors.

Task 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10
𝑝𝑢1 22 22 32 7 29 26 14 29 15 13
𝑝𝑢2 21 18 27 10 27 17 25 23 21 16
𝑝𝑢3 36 18 43 4 35 24 30 36 8 33

Table 3
Power parameters of three processors.
𝑝𝑢𝑘 𝑃𝑘,in 𝐶𝑘,sw 𝛼𝑘 𝑓𝑘,max

𝑝𝑢1 0.03 0.8 2.9 1.0
𝑝𝑢2 0.04 0.8 2.5 1.0
𝑝𝑢3 0.07 1.0 2.5 1.0

4.4. Case study

This section further illustrates the proposed algorithms through a
practical example. The parallel application case is shown in Fig. 2,
which is derived from [42]. This DAG (application) contains ten tasks,
and their WCETs on three processors are shown in Table 2. The
numbers labeled on the edges of the DAG represent the WCRTs. The
power consumption parameters of the three processors are shown in
Table 3 [17,18]. The execution frequency of the processors are nor-
malized according to their respective maximum frequencies, and the
frequency difference between adjacent levels is 0.1.

According to Eq. (7), the minimum energy requirement of the
application can be calculated as 37.66, and similarly, the maximum
energy requirement of the application can also be calculated as 298.89.
If the available energy is given as 𝐸avail(𝐴) = 𝐸min(𝐴) + (𝐸max(𝐴) −
𝐸 (𝐴)) × 0.3 = 116.03, the OCT table can be calculated as shown in
min

7 
Table 4
The OCT values and OCT ranks of tasks.

Task 𝑝𝑢1 𝑝𝑢2 𝑝𝑢3 OCT rank

1 86.04 90.30 106.71 94.35
2 54.61 60.33 54.61 56.52
3 30.00 46.00 46.00 40.67
4 55.87 51.61 62.61 56.70
5 35.87 73.94 30.33 46.72
6 55.87 51.61 56.61 54.70
7 14.44 22.86 23.44 20.25
8 14.44 22.86 56.44 31.25
9 14.44 21.44 21.44 19.11
10 0 0 0 0

Table 5
The results of the MMEC algorithm.

Task 𝐸avail(𝑡𝑖) 𝐸(𝑡𝑖) 𝑝𝑢𝑘 EF ST CT

𝑡1 13.22 12.34 1 0.8 0 27.50
𝑡4 4.44 3.93 1 0.8 27.50 36.25
𝑡2 11.04 9.88 1 0.7 36.25 67.68
𝑡6 13.30 12.37 2 0.9 34.50 53.39
𝑡5 16.64 16.27 1 0.8 67.68 103.93
𝑡3 17.99 16.81 2 0.8 58.50 92.25
𝑡8 16.60 14.32 2 0.8 92.25 121.00
𝑡7 12.86 11.62 1 1.0 108.25 122.25
𝑡9 8.75 8.42 1 0.8 122.25 141.00
𝑡10 10.09 9.96 2 0.8 148.00 168.00

𝐸(𝐴) = 115.90, 𝑀 𝑆(𝐴) = 168.00

Table 6
The results of the RE algorithm.

Task 𝐸avail(𝑡𝑖) 𝐸(𝑡𝑖) 𝑝𝑢𝑘 EF ST CT

𝑡1 13.22 12.34 1 0.8 0 27.50
𝑡4 4.44 3.93 1 0.8 27.50 36.25
𝑡2 11.04 9.88 1 0.7 36.25 67.68
𝑡6 13.30 10.58 2 0.8 34.50 55.75
𝑡5 16.64 16.27 1 0.8 67.68 103.93
𝑡3 17.99 16.81 2 0.8 58.50 92.25
𝑡8 16.60 8.35 2 0.5 92.25 138.25
𝑡7 12.86 11.62 1 1.0 108.25 122.25
𝑡9 8.75 8.42 1 0.8 122.25 141.00
𝑡10 10.09 9.96 2 0.8 148.00 168.00

𝐸(𝐴) = 108.15, 𝑀 𝑆(𝐴) = 168.00

Table 7
The results of the REF algorithm.

Task 𝐸avail(𝑡𝑖) 𝐸(𝑡𝑖) 𝑝𝑢𝑘 EF ST CT

𝑡1 13.23 12.34 1 0.8 0 27.50
𝑡4 5.09 4.82 1 0.9 27.50 35.28
𝑡2 10.87 9.88 1 0.7 35.28 66.71
𝑡6 11.34 10.58 2 0.8 34.50 55.75
𝑡5 17.44 16.27 1 0.8 66.71 102.96
𝑡3 20.92 19.64 2 0.9 58.50 88.50
𝑡8 8.94 8.35 2 0.5 88.50 134.50
𝑡7 14.33 11.62 1 1.0 104.50 118.50
𝑡9 11.73 10.32 1 0.9 118.50 135.17
𝑡10 12.08 11.64 2 0.9 142.17 159.94

𝐸(𝐴) = 115.46, 𝑀 𝑆(𝐴) = 159.94

Table 4. The scheduling results of the MMEC, RE, and REF algorithms
are presented in Tables 5, 6, and 7, where EF, ST, and CT represent
execution frequency, start time, and completion time, respectively.

By observing Table 5, it can be seen that the makespan generated
by the MMEC algorithm is 168.00, and the energy consumption for
executing the application is 115.90, which satisfies the specified energy
constraint.

By implementing the RE algorithm, it is found that the non-critical
tasks in the results of the MMEC algorithm are 𝑡 , 𝑡 , and 𝑡 . Comparing
5 6 8
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Fig. 3. The results for different energy constraint rates when 𝑓 𝑎𝑡 = 0.6. (Experiment 1).
Tables 5 and 6 reveals that the RE algorithm decreases the execution
frequency of task 𝑡6 from 0.9 to 0.8, and reduces the execution fre-
quency of task 𝑡8 from 0.8 to 0.5, while the execution frequency of task
𝑡5 cannot be further decreased. In the end, the makespan generated by
the RE algorithm remains at 168.00, while the energy consumption is
reduced from 115.90 to 108.15.

By observing Table 7, it can be seen that after executing the REF al-
gorithm, the execution frequencies of tasks 𝑡3, 𝑡9, and 𝑡10 are increased,
resulting in a reduction of the application’s makespan from 168.00 to
159.94.

In Section 4.1.2, we mentioned that different energy constraints will
affect the priority of tasks. In this case, with an energy constraint of
116.03, the priority order of tasks is 𝑡1, 𝑡4, 𝑡2, 𝑡6, 𝑡5, 𝑡3, 𝑡8, 𝑡7, 𝑡9, 𝑡10. If
the given available energy is 𝐸avail(𝐴) = 160, the priority order of tasks
will change to 𝑡1, 𝑡2, 𝑡4, 𝑡6, 𝑡3, 𝑡5, 𝑡8, 𝑡7, 𝑡9, 𝑡10. When the available energy
𝐸avail(𝐴) reaches 250, the priority order of tasks is 𝑡1, 𝑡4, 𝑡6, 𝑡2, 𝑡3, 𝑡5, 𝑡8,
𝑡7, 𝑡9, 𝑡10, which is the same as the task priority when there is no energy
constraint. At this point, the makespan of the application is 122.

5. Performance evaluation

5.1. Experimental parameters

The C++ program is used to implement a scheduling simulator.
Before each experiment, we record the processor parameters, the DAG
structure of the parallel application, and the WCET of tasks on differ-
ent processors into respective disk files, ensuring that different algo-
rithms can utilize the same experimental parameters later on. These
parameters are primarily sourced from Refs. [17,18], and are listed as
follows:

The WCET of task 𝑡𝑖 on processor 𝑝𝑢𝑘 is 10 ms ≤ 𝑤𝑖,𝑘 ≤ 100 ms,
and the WCRT between task 𝑡𝑖 and task 𝑡𝑗 is 10 ms ≤ 𝑐𝑖,𝑗 ≤ 100 ms.
The frequency-independent active power, the switch capacitor, and the
dynamic power exponent of processor 𝑝𝑢𝑘 are 0.03 ≤ 𝑃𝑘,in ≤ 0.07, 0.8 ≤
𝐶𝑘,sw ≤ 1.2, and 2.5 ≤ 𝛼𝑘 ≤ 3.0, respectively. The maximum frequency
of the processor 𝑝𝑢𝑘 is 𝑓𝑘,max = 1.0 GHz and the frequency difference
between adjacent levels is 0.1 GHz. These parameters can simulate
performance characteristics of some high-performance processors, such
as the ARM Cortex-A9 and the Intel Mobile Pentium III [12].
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Table 8
Time complexity of algorithms.

Algorithm name Time complexity

ESECC [15], EECC [16], ISAECC [17], TSSA
[18], SEDC [19], MSTEC [37]

O(𝑛2 × 𝑚 × 𝑓 𝑙)
PEFT [42] O(𝑛2 × 𝑚)
MMEC O(𝑛2 × 𝑚 × 𝑓 𝑙)
RE O(𝑛 × (𝑛 + 𝑓 𝑙))
REF O(𝑛 × 𝑓 𝑙)

In recent years, there are MSLECC [14], ESECC [15], EECC [16],
ISAECC [17], TSSA [18], SEDC [19], and MSTEC [37] algorithms that
optimize application’s scheduling length (makespan) under energy con-
straints. In addition, deep reinforcement learning methods have been
applied to the field of scheduling, such as [21,24], but their objectives
and constraints differ from those of this paper. Therefore, our proposed
algorithms are mainly compared with the ESECC [15], EECC [16],
ISAECC [17], TSSA [18], SEDC [19], and MSTEC [37] algorithms, as
their scheduling results are superior to the MSLECC algorithm. In ad-
dition, to observe the scheduling performance of applications without
energy constraints, we also include the results of the PEFT algorithm
into the experiment. The time complexities of these algorithms are
shown in Table 8, where the CPU usage rate of the MSTEC algorithm
is determined by frequency level 𝑓 𝑙 in the experiment, and the PEFT
algorithm does not adjust the execution frequency of the processor.

To clarify the impact of our proposed the energy reclaiming algo-
rithm and the execution frequency resetting algorithm on the makespan
of applications, we presented the results of the MMEC algorithm and
the REF algorithm in the experiments. Furthermore, to ensure that the
available energy for application 𝐴 exceeds 𝐸min(𝐴), we introduce the
concept of energy constraint rate 𝑒𝑐 𝑟, which is represented as

𝑒𝑐 𝑟 = 𝐸avail(𝐴) − 𝐸min(𝐴)
𝐸PEFT(𝐴) − 𝐸min(𝐴)

, (30)

where 𝐸PEFT(𝐴) represents the energy required to execute the appli-
cation when scheduling it using the PEFT algorithm. Therefore, the
available energy of the application is given as
𝐸avail(𝐴) = 𝐸min(𝐴) + (𝐸PEFT(𝐴) − 𝐸min(𝐴)) × 𝑒𝑐 𝑟. (31)
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Fig. 4. The results for different energy constraint rates when 𝑓 𝑎𝑡 = 1.0. (Experiment 1).
In the following experiments, the number of processors in the platform
is 32. To comprehensively evaluate our algorithm, we tested it using
randomly generated DAGs of different shapes, real-world application
DAGs with different levels of parallelism, as well as real-life industrial
DAGs. In each experiment, each algorithm was executed 50 times, re-
sulting in a total of 3400 executions for each algorithm across different
scenarios.

5.2. Randomly generated DAG

We first test the performance of each algorithm using randomly gen-
erated DAGs. According to the method of generating DAG in [19,42],
the shape parameter 𝑓 𝑎𝑡 is defined to represent the overall structure of
DAG. For a DAG consisting of 𝑛 tasks, the number of tasks at each level
is defined by a uniform distribution with a mean equal to 𝑓 𝑎𝑡 × √

𝑛.
The parameter 𝑜𝑑 is used to represent the out degree of a task, and
𝑗 𝑢𝑚𝑝 is used to represent an edge connecting a task from the level 𝑙
to a task in the level 𝑙 + 𝑗 𝑢𝑚𝑝. Similar to [19,42], in our experiments,
the shape parameter 𝑓 𝑎𝑡 takes values from the set {0.6, 0.8, 1.0}, and
the parameter 𝑜𝑑 takes values from the set {1, 2, 3, 4, 5}. The edges
for 𝑗 𝑢𝑚𝑝 = 2 and 𝑗 𝑢𝑚𝑝 = 3 are approximately 𝑛 × 10% and 𝑛 × 5%,
respectively, while the 𝑗 𝑢𝑚𝑝 values of the other edges are set to 1.

Experiment 1: This experiment tests the impact of the energy
constraint rate on scheduling results. The number of tasks in DAG is
fixed at 500. When the energy constraint rate 𝑒𝑐 𝑟 increases from 0.1 to
0.9 with each increment of 0.1, the results of each algorithm with 𝑓 𝑎𝑡
set at 0.6 and 1.0 are respectively shown in Figs. 3 and 4.

Figs. 3(a) and 4(a) show the box plots of the makespans generated
by each algorithm, which display the minimum, the first quartile (the
value at the 25th percentile), the median, the third quartile (the value
at the 75th percentile), and the maximum. The figures also show the
mean, which is indicated by a thin dotted line. From the figures,
it can be observed that the PEFT algorithm generates the smallest
makespan due to its not reducing the processor’s execution frequency.
Other algorithms show a trend towards decreasing makespan as the
energy constraint rate increases. Among the other eight algorithms,
the REF algorithm produces the smallest makespan, followed by the
MMEC algorithm. When the energy constraint rate is less than 0.5, the
MSTEC algorithm generates the largest makespan. However, when the
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energy constraint rate is greater than 0.5, the makespan produced by
the MSTEC algorithm becomes smaller compared to the other five algo-
rithms ESECC, EECC, ISAECC, TSSA, and SEDC. Additionally, when the
energy constraint rate exceeds 0.5, the SEDC algorithm yields a larger
makespan than the other algorithms. On average, the three algorithms
ESECC, EECC, and ISAECC do not show significant differences in their
performance, whereas the TSSA algorithm has a slight advantage over
them. When the energy constraint rate reaches 0.8, the makespans
generated by MMEC and REF are very close to those produced by PEFT.
Specifically, the average makespan produced by the REF algorithm is
approximately 94.5% of ESECC, 94.6% of EECC, 94.6% of ISAECC,
95.2% of TSSA, 93.5% of SEDC, 94.1% of MSTEC, and 97.6% of MMEC.

Figs. 3(b) and 4(b) show the average energy consumption of
scheduling applications by each algorithm under different energy con-
straint rates. We have also added a legend indicating the energy
constraints (EC), which is used to observe the relationship between
the energy consumption produced by each algorithm and the energy
constraint. By observing these two figures, it can be seen that all
algorithms except PEFT are able to satisfy the energy constraints. When
the energy constraint rate 𝑒𝑐 𝑟 is less than 0.5, all algorithms except
PEFT have almost exhausted all available energy, and when 𝑒𝑐 𝑟 exceeds
0.5, the energy consumption generated by SEDC and REF algorithms is
significantly lower than the energy constraint.

Experiment 2: This experiment tests the impact of the number of
tasks on the scheduling results. The energy constraint rate 𝑒𝑐 𝑟 is fixed
at 0.5, and the shape parameter 𝑓 𝑎𝑡 is set to 0.8. As the number of tasks
in the DAG increases from 100 to 800 with each increment of 100, the
results of each algorithm are shown in Fig. 5.

From Fig. 5(a), it can be observed that as the number of tasks
increases, the makespan generated by all algorithms also increases.
Except for the PEFT algorithm, the REF algorithm produces the smallest
makespan, followed closely by the MMEC algorithm. Within the other
six algorithms, TSSA generates a slightly shorter makespan compared
to the remaining five algorithms. Specifically, the average makespan
produced by the REF algorithm is approximately 93.0% of ESECC,
93.0% of EECC, 92.9% of ISAECC, 93.7% of TSSA, 92.4% of SEDC,
92.9% of MSTEC, and 97.0% of MMEC.

As shown in Fig. 5(b), the PEFT algorithm fails to meet the energy
constraint, while all other algorithms satisfy the energy constraint and
almost exhaust all available energy.
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Fig. 5. The results for different numbers of tasks. (Experiment 2).

Fig. 6. The results for different numbers of processors. (Experiment 3).

Fig. 7. Results for different WCET value ranges (Experiment 4).
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Experiment 3: This experiment tests the impact of the number of
processors on scheduling results. The number of tasks in DAG is set to
000, the shape parameter 𝑓 𝑎𝑡 is set to 0.8, and the energy constraint
ate 𝑒𝑐 𝑟 is set to 0.5. The results of different algorithms are illustrated
n Fig. 6 when the number of processors in the platform is 16, 32, 48,
4, 80, 96, 112, and 128, respectively.

As shown in Fig. 6(a), when the number of processors is less than 80,
the makespan generated by all algorithms decreases as the number of
processors increases. When the number of processors exceeds 80, there
is no significant change in the makespans generated by all algorithms.
Overall, the PEFT algorithm produces the smallest makespan, followed
by REF and MMEC. When the number of processors is large (such as
over 48), the MSTEC algorithm produces a smaller makespan than the
other five algorithms. The makespans generated by the ESECC, EECC,
and ISAECC algorithms show no significant difference, but they are all
slightly smaller than the makespan produced by the SEDC algorithm
and slightly larger than the makespan generated by TSSA. Specifically,
the average makespan produced by the REF algorithm is approximately
91.5% of ESECC, 91.5% of EECC, 91.5% of ISAECC, 92.1% of TSSA,
90.8% of SEDC, and 92.9% of MSTEC.

As shown in Fig. 6(b), all algorithms except PEFT are able to meet
he energy consumption constraint requirements. With the exception
f the SEDC algorithm, the other seven algorithms have almost ex-
austed all the available energy. Because we have already understood
he approximate relationship between the energy consumption and
vailable energy generated by each algorithm through the previous
hree experiments, we will not draw energy consumption histograms
or each algorithm in the following experiments.
Experiment 4: This experiment tests the impact of different task

sizes on the performance of various algorithms. The number of tasks is
set to 500, with a shape parameter 𝑓 𝑎𝑡 of 0.8 and an energy constraint
rate of 0.6. The WCET range is set to [10 ms, 𝑠𝑤 ms]. When 𝑠𝑤
increases from 100 to 800 with each increment of 100, the makespans
generated by each algorithm are shown in Fig. 7.

From Fig. 7, it can be seen that the makespans generated by all
algorithms increase as 𝑠𝑤 increases. Among all the algorithms, the
makespans generated by ESECC, EECC, and ISAECC have little differ-
ence and are all smaller than those generated by SEDC and MSTEC.
The makespans generated by both TSSA and REF are competitive, with
REF producing a smaller makespan compared to TSSA. On average, the
makespan produced by the REF algorithm is 93.0% of ESECC, 93.1%
of EECC, 93.0% of ISAECC, 94.2% of TSSA, 91.0% of SEDC, 92.0% of

STEC and 94.3% of MMEC.

5.3. Real-world application DAG

In addition to randomly constructed DAGs, we also tested the al-
gorithm’s performance using real-world applications, such as Gaussian
Elimination (GE) and Fourier Transform (FT), which exhibit character-
istics of low parallelism and high parallelism, respectively [11,26,45].
In our experiments, a parameter 𝑣 is introduced to describe the scale
size of the application. In the GE application, the total number of
tasks is 𝑛 = (𝑣2 + 𝑣 − 2)∕2; whereas in the FT application, it is 𝑛 =
(2 × 𝑣 − 1) + 𝑣 × log2𝑣, where 𝑣 = 2𝑢 with 𝑢 is a nonnegative integer.

Experiment 5: The FT application with scale size 𝑣 = 64 (511 tasks)
s used to test the performance of different algorithms under varying

energy consumption rates. The results of different algorithms are shown
in Fig. 8 when the energy constraint rate 𝑒𝑐 𝑟 increases from 0.1 to 0.9
with each increment of 0.1.

As shown in Fig. 8, the makespan produced by PEFT is the smallest
and remains almost constant, whereas the makespan generated by
other algorithms decreases as the energy constraint increases. When the
energy constraint rate 𝑒𝑐 𝑟 is 0.1, the makespan produced by MSTEC,
MMEC, and REF is greater than that of the other five algorithms. After
𝑒𝑐 𝑟 reaches 0.2, REF generates the smallest makespan (except for PEFT),
followed by MMEC. When 𝑒𝑐 𝑟 is less than 0.5, the makespan generated
 E
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by the MSTEC algorithm is greater than that generated by the ESECC,
EECC, ISAECC, and TSSA algorithms. However, when 𝑒𝑐 𝑟 exceeds 0.5,
the makespan generated by MSTEC becomes less than the makespans
produced by these four algorithms. On average, the makespan produced
by the REF algorithm is approximately 95.1% of ESECC, 95.5% of
EECC, 95.1% of ISAECC, 95.6% of TSSA, 93.6% of SEDC, 94.9% of
MSTEC, and 98.3% of MMEC.

Experiment 6: GE applications with different numbers of tasks are
mployed for evaluating different algorithms. The energy constraint
ate 𝑒𝑐 𝑟 is fixed at 0.5. When the scale size 𝑣 increases from 12 to
0 with each increment of 4 (corresponding to task numbers of 77,
35, 209, 299, 405, 527, 665, and 819 respectively), the results of each
lgorithm are shown in Fig. 9.

From Fig. 9, it can be seen that the makespans generated by all algo-
rithms increase with the increase of the number of tasks. Among these,
the makespan generated by the ESECC, EECC, ISAECC, and SEDC algo-
rithms does not show a significant difference and is relatively larger.
The other five algorithms, ranked in ascending order of makespan, are
PEFT, REF, MMEC, MSTEC, and TSSA. In this experiment, our proposed
lgorithms have significant competitiveness. On average, the makespan

produced by the REF algorithm is approximately 75.8% of ESECC,
75.9% of EECC, 75.9% of ISAECC, 77.3% of TSSA, 75.8% of SEDC,
88.8% of MSTEC, and 94.7% of MMEC.

The analysis of the reasons for the aforementioned experimental
results is as follows:

(1) Although all algorithms assign energy to tasks in different ways,
hey generally aim for a relatively balanced allocation of energy. This

means that no task is assigned significantly more energy than others
hile some receive disproportionately less. The ESECC, EECC, and

SAECC algorithms all utilize the upward rank method to determine the
riority of tasks, implying that any given task has the same priority
cross these three algorithms. Consequently, while the makespan gen-
rated by these three algorithms for a single application might vary.

On average, the makespans generated by these three algorithms are
unlikely to have significant differences.

(2) The TSSA algorithm also employs the upward rank method to
determine the priority of tasks. However, TSSA considers scheduling
fter reversing the task graph. As a result, TSSA can produce a shorter
akespan than ESECC, EECC, and ISAECC under certain scenarios.

(3) SEDC adopts a method based on the time difference coefficient
to calculate the priority of tasks, which arranges tasks more reason-
ably. Therefore, the SEDC algorithm performs better in some scenarios
(such as when 𝑒𝑐 𝑟 = 0.1 in Experiment 5). However, in the energy
allocation scheme of SEDC, the residual energy of task 𝑡𝑖 is reclassified
nto the available energy of the subsequent 𝑛 − 𝑖 tasks, resulting in

lower-priority tasks (tasks assigned later) receiving more energy. Con-
sequently, when the energy constraint rate is high (such as exceeding
0.5), some low-priority tasks consume significantly less energy than
their energy constraints, leading to the algorithm generating much less
energy than its energy constraints. Due to some energy not being fully
utilized by high-priority tasks, it has a negative impact on optimizing
the makespan.

(4) MSTEC also calculates the priority of tasks based on their OCT
alues. However, MSTEC does not consider energy constraints when
alculating OCT. When the energy constraint rate is low (e.g., less
han 0.6), processors must execute tasks at lower frequencies, leading
o execution times that differ significantly from those at the highest
requency. In this case, OCT does not accurately reflect the actual
onditions of the tasks, resulting in poorer performance of the algo-
ithm. However, when the energy constraint rate is high, processors
an operate at higher frequencies, and OCT more closely reflects the
ctual conditions of the tasks, leading to better relative performance of
STEC when the energy constraint rate is high (see Experiment 1 and
xperiment 5).
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Fig. 8. Results for different energy constraint rates (Experiment 5).
Fig. 9. Results for different numbers of tasks (Experiment 6).
Fig. 10. The results for different energy constraint rates (Experiment 7).
(5) MMEC takes energy constraints into account when calculat-
ing OCT, resulting in OCT values for tasks that more accurately re-
flect their actual conditions. When MMEC assigns a task to a proces-
sor, it not only considers the earliest completion time of the current
task but also attempts to achieve shorter completion times for subse-
quent tasks through OCT. Therefore, MMEC generates a relatively short
makespan. Building upon MMEC, the REF algorithm further optimizes
the makespan, resulting in the smallest makespan in most cases.

(6) In all the algorithms that consider energy constraints (excluding
SEDC), the remaining energy after scheduling task 𝑡𝑖 is mainly added
to the energy budget of task 𝑡𝑖+1, rather than being reassigned to all
subsequent tasks (𝑡𝑖+1 to 𝑡𝑛). This approach ensures that tasks scheduled
later do not receive a larger share of available energy. As a result,
these algorithms will essentially exhaust all available energy. Due to the
REF algorithm reallocating the energy collected by the RE algorithm,
it cannot assign additional energy when the execution frequency of
critical tasks in the MMEC algorithm has already reached its maximum.
Consequently, when the energy constraint ratio is high, the energy
consumption produced by the REF algorithm will be significantly lower
than the energy constraint (refer to Experiment 1).
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5.4. Real-life industrial DAG

Experiment 7: This section employs a specific real-life industrial
DAG, previously used for testing algorithm performance in [18], to
evaluate different algorithms. As depicted in Fig. 11, the DAG consists
of six components: namely, the engine controller (𝑡1−𝑡7), the automatic
gearbox (𝑡8 − 𝑡11), the anti-locking brake system (𝑡12 − 𝑡17), the wheel
angle sensor (𝑡18 − 𝑡19), the suspension controller (𝑡20 − 𝑡24), and the
bodywork (𝑡25 − 𝑡31). In the experiment, the parameters of the DAG
were taken from [18] and are listed as follows: 100 μs ≤ 𝑤𝑖,𝑘 ≤ 400 μs,
100 μs ≤ 𝑐𝑖,𝑗 ≤ 400 μs. Similar to [18], the number of processors is set
to 16. When the energy constraint rate 𝑒𝑐 𝑟 increases from 0.1 to 0.9,
the scheduling results of each algorithm are shown in Fig. 10.

From Fig. 10, it can be observed that as the energy constraint rate
increases, the makespans generated by all algorithms (except for PEFT)
tend to decrease. Overall, there is not much difference in the perfor-
mance of the ESECC, EECC, and IASECC algorithms. The makespans
generated by them are slightly larger than those generated by TSSA and
REF but slightly smaller than those generated by MSTEC and MMEC.
When the energy constraint rate is 0.1, the average makespan generated
by SEDC is slightly smaller than that produced by the ESECC, EECC, and
IASECC algorithms. However, once the energy constraint rate reaches
0.2, the average makespan generated by SEDC becomes slightly larger
than that produced by the ESECC, EECC, and IASECC algorithms. The



H. Xu et al. Future Generation Computer Systems 166 (2025) 107678 
Fig. 11. Real-life industrial DAG.

makespan generated by MMEC is greater than that produced by ESECC,
EECC, IASECC, TSSA, and SEDC in most cases. Thanks to the collection
and reallocation of energy, the REF algorithm generates relatively small
makespans in most cases. When the energy constraint rate is less than
or equal to 0.8, the average makespan generated by REF is smaller than
that produced by other algorithms (except for the PEFT algorithm).
Overall, the makespans generated by TSSA and REF are relatively small.
The average makespan produced by REF is 94.6% of ESECC, 94.6%
of EECC, 94.7% of ISAECC, 97.6% of TSSA, 93.9% of SEDC, 93.9% of
MSTEC, and 92.9% of MMEC.

Based on the results from the aforementioned seven experiments,
the following summary can be derived (without considering PEFT):

(1) As the energy constraint rate increases, the makespan generated
by all algorithms tends to decrease.

(2) The relative performance of different algorithms in terms of
makespan varies across different scenarios, which indicates that none
of the eight algorithms compared in this paper outperforms the others
in every scenario.

(3) The REF algorithm can generate the minimum makespan in
most scenarios and consumes significantly less energy than the energy
constraint. This indicates that in most scenarios, the REF algorithm
not only produces the smallest makespan, but also has relatively lower
energy consumption compared to other algorithms.

6. Conclusions

In this paper, we have investigated the scheduling problem for
parallel applications on heterogeneous systems with energy constraints,
introducing three algorithms designed to minimize the makespan. To
the best of our knowledge, the method of creating task priorities
based on available energy is being proposed for the first time. This
approach provides a fresh perspective for task scheduling strategies
in energy-constrained environments, offering new insights into how
energy availability can influence scheduling decisions. The experimen-
tal results demonstrate that the algorithms proposed in this paper
produce a smaller makespan than existing algorithms in most scenarios,
alongside relatively lower energy consumption. This highlights the ef-
fectiveness of our proposed algorithms in energy-constrained situations.
In future work, we will attempt to apply artificial intelligence methods
to the scheduling of parallel applications under energy constraints, and
consider the overheads associated with context switching during task
execution and processor voltage-frequency scaling.
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