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Triple modular redundancy (TMR) fault tolerance mechanism can provide almost perfect fault-masking, which 
has the great potential to enhance the reliability of real-time systems. However, multiple copies of a task 
are executed concurrently, which will lead to a sharp increase in system energy consumption. In this work, 
the problem of parallel applications using TMR on heterogeneous multi-core platforms to minimize energy 
consumption is studied. First, the heterogeneous earliest finish time algorithm is improved, and then according 
to the given application’s deadline constraints and reliability requirements, an algorithm to extend the execution 
time of the copies is designed. Secondly, based on the properties of TMR, an algorithm for minimizing the 
execution overhead of the third copy (MEOTC) is designed. Finally, considering the actual situation of task 
execution, an online energy management (OEM) method is proposed. The proposed algorithms were compared 
with the state-of-the-art AFTSA algorithm, and the results show significant differences in energy consumption. 
Specifically, for light fault detection, the energy consumption of the MEOTC and OEM algorithms was found 
to be 80% and 72% respectively, compared with AFTSA. For heavy fault detection, the energy consumption of 
MEOTC and OEM was measured at 61% and 55% respectively, compared with AFTSA.
1. Introduction

1.1. Background

Nowadays, integrated circuit technology and computer technol-

ogy are developing rapidly, more than a hundred processor elements 
can be integrated into a single chip, which is called multi-core pro-

cessors [30]. Multi-core platforms often integrate different types of 
cores to execute applications, which have heterogeneous character-

istics. For example, OMAP1/OMAP2 integrates CPU and DSP on 
the same chip, the Tegra integrates CPU and GPU on the same 
chip [4]. Because the multi-core platform has high performance and 
low energy consumption it has recently received much attention 
[13][18][19][20][21][23][27][28][29]. In recent years, safety-critical 
embedded real-time systems also used multi-core platforms to execute 
parallel applications [2].

Due to the temporary failure of the components or by external inter-

ference such as cosmic ray radiations, electrical power drops, and elec-
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trostatic discharge, transient faults may occur at run-time, which will 
reduce the reliability of the system [10][22][40]. Reliability is an ex-

tremely important non-functional target in the safety-critical embedded 
real-time systems. For example, in ISO 26262, the corresponding relia-

bility requirements for exposure level-E2 (low probability) and level-E3 
(medium probability) are 0.99 and 0.9, respectively [35]. The reliabil-

ity requirements of applications must be guaranteed, the faults should 
be handled when the system is in run-time, otherwise, it may lead to 
disastrous consequences [12].

N-Modular Redundancy (NMR) is one of the most popular tech-

niques for enhancing the reliability of applications [2][30]. NMR exten-

sively utilizes the 𝑀 -out-of-𝑁 voter as a decision-making component. 
Within an array of inputs from 𝑁 voters, the system can be considered 
error-free only when at least 𝑀 of these inputs are equal to each other. 
In general, 𝑀 ≥ ⌊𝑁∕2 + 1⌋ is required, that is, at least 𝑀 ≥ ⌊𝑁∕2 + 1⌋
voter inputs should be equal. Because NMR uses the comparison of the 
execution results for fault detection and masking, it does not require 
any other specific fault detection mechanism. Since it is unlikely that 
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all modules in NMR will fail at the same time and generate the same 
error results, the NMR fault tolerance mechanism can provide almost 
perfect fault-masking [26]. Triple Modular Redundancy (TMR) is a spe-

cial NMR, which uses the results of three copies of the application (or 
task) for voting comparison.

Existing research has demonstrated that a Dual Modular Redundant 
(DMR) system exhibits lower reliability compared to a simplex sys-

tem. Both 4MR and 5MR configurations consistently demonstrate lower 
reliability than TMR. Furthermore, 6MR shows only slightly higher re-

liability than TMR [30]. Therefore, TMR has the great potential to 
enhance the reliability of the real-time systems [16][26]. When em-

ploying the TMR or NMR mechanism, multiple copies of a task are 
executed on different cores, and their execution results are subjected to 
a voting process. Consequently, the system must access the memory or 
cache corresponding to multiple cores. Excessive communication over-

head can significantly delay voting time. Therefore, multi-core systems 
with robust parallelism and low communication overhead are suitable 
for executing multiple task copies.

1.2. Motivation

Many safety-critical systems necessitate the use of TMR technique 
due to their high reliability requirements. TMR involves executing mul-

tiple copies of a task simultaneously, which can result in increased 
system energy consumption and scheduling length of the application. 
An increase in the scheduling length of an application implies a de-

crease in system performance and may also lead to missed deadlines. 
Therefore, an effective task-scheduling scheme is essential in such sys-

tems. On the one hand, the reliability requirements and deadlines of 
the application must be met, and on the other hand, system energy con-

sumption should be minimized. The Dynamic Voltage Frequency Scal-

ing (DVFS) which reduces the execution voltage and frequency of the 
task and prolongs the execution time, can be used to reduce the energy 
consumption of the systems [9][11][31][36][37]. DVFS can also be ap-

plied to TMR fault tolerance. In [26] and [16], the authors have studied 
the energy-efficient TMR problem for a homogeneous multi-core system 
with DVFS. However, to the best of our knowledge, the problem of min-

imizing the energy consumption of parallel applications on heteroge-

neous multi-core platforms with the TMR technique is rarely reported. 
Therefore, this work mainly studies the energy-efficiency scheduling 
scheme for parallel applications on heterogeneous multi-core real-time 
systems with the TMR technique.

1.3. Main contributions

The main contributions of this paper are as follows.

(1) We have transformed the reliability requirement of the applica-

tion into the reliability requirement of the task and then calculated the 
reliability requirement for each copy under the TMR mechanism.

(2) We have proposed an enhanced version of the Heterogeneous 
Earliest Finish Time (HEFT) algorithm called Improved HEFT (IHEFT). 
IHEFT assigns three copies of the task to different cores, which mini-

mizes the scheduling length while meeting the reliability requirement 
of the application.

(3) We have proposed an algorithm, known as Extending Execution 
Time of the copies (EET). The purpose of this algorithm is to reduce the 
system energy consumption while meeting the deadline and satisfying 
the reliability requirements of the application.

(4) Based on the task assignment information from IHEFT, we have 
introduced an algorithm, known as Minimizing the Execution Overhead 
of the Third Copy (MEOTC) using TMR properties. The purpose of this 
algorithm is to minimize the execution overhead of the third copy, re-

sulting in energy savings.

(5) Because the execution results of two copies of a task are voted 
on immediately after their execution, the task will be completed in 
2

advance. Therefore, we have proposed an Online Energy Management 
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scheme (OEM). When a task is completed, the first two copies of sub-

sequent tasks are executed immediately, and the third copy is still 
executed according to the offline scheduling.

2. Related work

2.1. Energy-efficient technique

From the perspective of system design, parallel applications are com-

posed of tasks with precedence-constrainted, which are usually modeled 
as Directed Acyclic Graph (DAG) [1][3][8][9][31][34]. At present, for 
DAG-based parallel applications execution on heterogeneous platforms 
with deadline constraints, there are some energy-efficient scheduling 
algorithms with DVFS technique [8][9][11][31][36][37]. However, 
these algorithms do not consider the reliability requirements of the ap-

plications.

2.2. Reliability aware without task replication

To reduce the energy consumption of the system while satisfying the 
reliability requirements of the applications, Xie et al. [35] designed a 
resource minimization algorithm for parallel applications on heteroge-

neous embedded systems, which first transfers the reliability require-

ment of the application to that of each task and then assigns each task 
to the processor with the minimum resource consumption. Zhang et 
al. [43] studied the reliability maximization problem under energy con-

straints and proposed the RMEC algorithm to maximize the reliability of 
the system. Zhang et al. [44] proposed a bi-objective genetic scheduling 
algorithm to achieve high system reliability and low energy consump-

tion for workflow on heterogeneous systems. Xu et al. [41] introduced 
two methods to decompose the reliability requirement of the applica-

tion to each task for non-DVFS and DVFS respectively and designed two 
energy-efficient algorithms to satisfy the reliability requirement. Huang 
et al. [7] proposed a method of optimizing energy allocation with the 
reliability constraint. The above studies do not consider task replica-

tion, which may be difficult to satisfy the high-reliability requirement 
of applications.

2.3. Fault-tolerant with task replication or recovery

The application’s reliability can be improved by applying the task 
replication technique. Haque et al. [6] investigated the techniques 
based on task replication to minimize energy consumption for a set 
of periodic real-time tasks executing on a multi-core system. Kumar et 
al. [10] introduced an active replication-based framework to minimize 
the energy consumption for a set of periodic real-time tasks with relia-

bility requirements and timing constraints on a heterogeneous system. 
Wang et al. [33] proposed the task replication scheduling algorithm to 
maximize system reliability. Xie et al. [38] presented a fault-tolerant 
scheduling algorithm EFSRG to reduce energy consumption while sat-

isfying the reliability requirement of the application based on an active 
replication. In [39] the authors proposed a redundancy minimization al-

gorithm to satisfy the reliability requirement for a parallel application 
on heterogeneous platforms. Roy et al. [24] introduced an energy-

efficient fault-tolerant framework for real-time tasks with precedence 
constraints on a heterogeneous dual core system. Han et al. [5] de-

signed two algorithms that reduce energy consumption while meeting 
the reliability requirements of applications through task replication. Liu 
et al. [14] introduced a transient fault-tolerant scheduling algorithm 
AFTSA to improve system reliability within a given deadline. However, 
the above works require fault-detection mechanisms which imply that 
they can detect all faults during task execution.

2.4. N-modular redundancy scheduling

NMR executes multiple copies of a task in parallel and compares 

the execution results of these copies for fault detection and masking, 
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which can achieve higher system reliability, although it increases en-

ergy consumption and reduces system utilization. Reliability is crucial 
for many safety-critical systems. Therefore, it is necessary to use NMR 
in many scenarios. In [25], a DRVS system is proposed to select a 
particular reliability mechanism (Single Execution, Dual Modular Re-

dundancy, or TMR) and voltage-frequency level under reliability and 
time constraints. Salehi et al. [26] introduced a two-phase TMR tech-

nique to minimize energy consumption while guaranteeing reliability 
and deadline requirements on multi-core platforms. Mireshghallah et 
al. [16] proposed an energy-efficient reactive TMR approach to tolerate 
both transient and permanent faults. However, these works are im-

plied based on a homogeneous multi-core processor, while we consider 
energy-efficient TMR technique on heterogeneous multi-core real-time 
systems.

3. Models

3.1. System model

The heterogeneous multi-core platform used in this paper is mod-

eled as the core group architecture. 𝑆𝐺 is the set of groups, and for 
each 𝑠𝑔 ∈ 𝑆𝐺 there are 𝑛𝑠𝑔 cores in this group. Therefore, the to-

tal number of cores in platform is 𝑀 =
∑|𝑆𝐺|

𝑠𝑔=1 𝑛𝑠𝑔 , where |𝑆𝐺| is the 
size of the set 𝑆𝐺. (In this paper, |𝑋| represents the size of set 𝑋.) 
In this case, the processor cores in the system can be represented as 
{𝑐𝑜𝑟𝑒1, 𝑐𝑜𝑟𝑒2, ..., 𝑐𝑜𝑟𝑒𝑀}. For 𝑐𝑜𝑟𝑒𝑖, 𝑔𝑟𝑜𝑢𝑝(𝑖) represents the group in 
which it is located. The system architecture is shown in Fig. 1, where 
the core types within a group can be the same or different. This is a flex-

ible model where 𝑀 cores in the platform can be in the same group, 
or in 𝑀 different groups (each group only has one core), or have the 
same type in the same group. Therefore, we assume that the commu-

nication cost between cores within the same group is much lower than 
that of cores in different groups. In addition, we assume that there is the 
same communication bandwidth between different groups and do not 
consider conflicts during data transmission. Similar to [42], each core 
in the platform is DVFS-enabled with a finite set of available execution 
frequencies and the frequency can be adjusted separately.

In the design of multi-core processors, there are typically two pri-

mary approaches to operating frequency management: shared execution 
frequency and independent core-level frequency adjustment.

The shared execution frequency approach benefits from a reduction 
in hardware complexity and associated costs, as it does not mandate 
separate dynamic frequency regulation components for each core. How-

ever, its disadvantage becomes evident when certain cores do not fully 
utilize the common frequency, potentially leading to energy waste. This 
approach also lacks the ability to dynamically adjust the performance 
of individual cores according to varying workloads.

On the other hand, the independent core-level frequency adjustment 
approach offers greater flexibility in resource allocation and enables 
more effective energy efficiency optimization. It is particularly advan-

tageous in multitasking scenarios where resources can be dynamically 
allocated based on the real-time demands of each task, thereby mini-

mizing energy consumption. The disadvantage of this approach is the 
requirement for an individual dynamic frequency control component 
for every core, which results in increased hardware costs.

This paper will investigate how to minimize the energy consumption 
of applications under the TMR mechanism. We hope to fully leverage 
the performance of each core, therefore, this paper adopts the approach 
of individually adjusting the execution frequency for every core.

Table 1 gives the definitions of notations used in this study.

3.2. Application model

The parallel application execution on the heterogeneous platform 
3

is usually modeled as DAG 𝐺 = (𝑇 , 𝐶, 𝑊 ), where 𝑇 , 𝐶 , and 𝑊 are 
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Fig. 1. System architecture.

Table 1

Definitions of notations.

Notation Definition

𝑐𝑖,𝑗 communication time between 𝑡𝑖 and 𝑡𝑗
𝑤𝑖,𝑗 WCET of the task 𝑡𝑖 executes on 𝑐𝑜𝑟𝑒𝑗
𝐸dy(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,𝑙) dynamic energy consumption of the 𝑘th copy of task 𝑡𝑖

on 𝑐𝑜𝑟𝑒𝑗 at frequency 𝑓𝑗,𝑙
𝐸co(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 ) communication energy consumption of copy 𝑡𝑖,𝑘

assigned to 𝑐𝑜𝑟𝑒𝑗
𝐸rt (𝑡𝑖, 𝑐𝑜𝑟𝑒𝑗 ) energy consumption of transmitting the execution 

results of all copies of task 𝑡𝑖 to 𝑐𝑜𝑟𝑒𝑗
𝐸vc(𝑡𝑖, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,𝑙) energy consumption of the execution results of all 

copies of task 𝑡𝑖 voting on 𝑐𝑜𝑟𝑒𝑗 with frequency 𝑓𝑗,𝑙
𝑟𝑡𝑡𝑖,𝑘,𝑗 the time required for the execution result of the copy 

𝑡𝑖,𝑘 to be transmitted to 𝑐𝑜𝑟𝑒𝑗
𝑣𝑐𝑡𝑖,𝑗,𝑙 the time required for the execution results of task 𝑡𝑖 to 

be voted on 𝑐𝑜𝑟𝑒𝑗 with frequency 𝑓𝑗,𝑙
𝐸dcrv(𝑡𝑖) the total amount of the dynamic energy consumption 

of task 𝑡𝑖
𝐸dcrv(𝐺) the total amount of the dynamic energy consumption 

of the application

𝐸st (𝐺) the static energy consumption of the application

𝐸(𝐺) the total energy consumption of the application

𝑅(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,𝑙) the reliability of the copy 𝑡𝑖,𝑘 executed on 𝑐𝑜𝑟𝑒𝑗 with 
frequency 𝑓𝑗,𝑘

𝑅(𝑡𝑖) the reliability of task 𝑡𝑖
𝑅(𝐺) the reliability of the application

𝐸𝑆𝑇 (𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 ) the earliest start time of the copy 𝑡𝑖,𝑘 executing on 
𝑐𝑜𝑟𝑒𝑗

𝐸𝐹𝑇 (𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 ) the earliest finish time of the copy 𝑡𝑖,𝑘 executing on 
𝑐𝑜𝑟𝑒𝑗

𝑆𝑇 (𝑡𝑖,𝑘) the actual start time of the copy 𝑡𝑖,𝑘
𝐹𝑇 (𝑡𝑖,𝑘) the actual finish time of the copy 𝑡𝑖,𝑘
𝐸𝑥𝐹𝑇 (𝑡𝑖,𝑘) the extended finish time of the copy 𝑡𝑖,𝑘
𝑆𝑇𝐶(𝑡𝑖, 𝑐𝑜𝑟𝑒𝑗 ) the start time for comparing the execution results of 

the copies of task 𝑡𝑖 on 𝑐𝑜𝑟𝑒𝑗
𝐹𝑇𝐶(𝑡𝑖, 𝑐𝑜𝑟𝑒𝑗 ) the finish time for comparing the execution results of 

the copies of task 𝑡𝑖 on 𝑐𝑜𝑟𝑒𝑗

described as follows: 𝑇 = {𝑡1, 𝑡2, ..., 𝑡|𝑇 |} is a vertex set in 𝐺, which rep-

resents a task set in application. 𝐶 is a edge set in 𝐺, 𝑐𝑖,𝑗 ∈ 𝐶 indicates 
the time required for data transmission from 𝑡𝑖 to 𝑡𝑗 , 𝑡𝑗 can be executed 
only after data transmission is completed. Because a task may have mul-

tiple immediate predecessors or successors, let 𝑝𝑎𝑟𝑒𝑛𝑡(𝑡𝑖) and 𝑐ℎ𝑖𝑙𝑑(𝑡𝑖)
represent all immediate predecessor and successor tasks of 𝑡𝑖 respec-

tively. The task without a predecessor (or successor) task is called 𝑡entry
(or 𝑡exit ). In general, if there are multiple 𝑡entry (or 𝑡exit ) in application 𝐺, 
we can construct a dummy task of entry (or exit) to 𝐺. A motivation ex-

ample parallel application is shown in Fig. 2. Because the processor core 
is heterogeneous, the required execution time of the same task on dif-

ferent cores is different, so a matrix 𝑊 = |𝑇 | ×𝑀 is used to represent 
the Worst-Case Execution Time (WCET) of each task on the different 
cores with the maximum execution frequency. 𝑤𝑖,𝑗 is the WCET of the 
task 𝑡𝑖 executes on 𝑐𝑜𝑟𝑒𝑗 . It should be noted that the same task requires 
the same execution time to execute on the same type of core. The WCET 
of the five tasks in Fig. 2 on three types of cores are shown in Table 2, 
the WCET of 𝑡1 on three different types of cores is 19, 16, and 11, re-
spectively.
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Fig. 2. Motivation example of a DAG.

Table 2

The WCET of the five tasks in motivation exam-

ple on three types of cores.

𝑡𝑎𝑠𝑘 core type 1 core type 2 core type 3

𝑡1 19 16 11

𝑡2 14 10 18

𝑡3 9 17 12

𝑡4 13 8 16

𝑡5 12 15 7

3.3. Energy consumption model

This work considers processor cores with adjustable voltage and fre-

quency, according to [31][37][43], the power dissipation of CMOS chip 
at frequency 𝑓 is given by

𝑃 (𝑓 ) = 𝑃st + ℏ(𝑃in + 𝑃dy) = 𝑃st + ℏ(𝑃in +𝐶sw𝑓
𝑚) (1)

In (1), 𝑃st is the static power dissipation, which is used to maintain the 
basic operating state of the system. 𝑃in is the leakage power dissipation 
independent of the execution frequency, which is a constant and can 
be ignored when the processor is in a sleep state. 𝑃dy is the dynamic 
power dissipation, which is related to the execution frequency. 𝐶sw and 
𝑚 are the switching capacitance and the dynamic energy exponent, re-

spectively.

Based on Eq. (1), the lowest energy-efficient frequency can be cal-

culated as

𝑓ee =
𝑚

√
𝑃in

𝐶sw(𝑚− 1)
. (2)

When the processor operates at a frequency lower than 𝑓ee, it will 
generate higher energy consumption due to lower energy efficiency 
and longer execution time. Assume that the operating frequency range 
of the processor core is 𝑓min to 𝑓max, to reduce energy consump-

tion, the lowest execution frequency of the processor core should be 
𝑓low = max(𝑓ee, 𝑓min). In practice, because the available execution fre-

quency of the processor core is discrete, it is advisable to assume that 
the execution frequency of core 𝑗 is {𝑓𝑗,low, ⋅ ⋅ ⋅, 𝑓𝑗,𝑙, 𝑓𝑗,𝑙+1, ⋅ ⋅ ⋅𝑓𝑗,max}. In 
this paper, these available frequencies are normalized with respect to 
the highest frequency 𝑓𝑗,max, i.e. 𝑓𝑗,max = 1.

In heterogeneous multi-core embedded systems, the cores with dif-

ferent core types have different power dissipation parameters. Let 
𝐸dy(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,𝑙) represent the dynamic energy consumption of the 
𝑘th copy of task 𝑡𝑖 on 𝑐𝑜𝑟𝑒𝑗 at frequency 𝑓𝑗,𝑙 , which can be calculated 
by

𝐸dy(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,𝑙) = (𝑃𝑗,in +𝐶𝑗,sw𝑓
𝑚𝑗

𝑗,𝑙
) ×𝑤𝑖,𝑗 ×

𝑓𝑗,max

𝑓𝑗,𝑙
. (3)

Considering that different tasks may be executed on different cores 
in different groups, the communication energy consumption will be 
generated when there is communication between two different groups. 
Assuming that the communication energy consumption is proportional 
to the communication time, the energy consumption rate per unit time 
of communication is defined as 𝑐𝑟 [35]. Therefore, when 𝑘th copy of 
task 𝑡𝑖 is assigned to core 𝑐𝑜𝑟𝑒𝑗 , the energy consumption of communi-
4

cation can be calculated by
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𝐸co(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 ) =
∑

𝑡𝑥∈𝑝𝑎𝑟𝑒𝑛𝑡(𝑡𝑖)
𝑐𝑟 × 𝑐′

𝑥,𝑖
. (4)

In Eq. (4), if the copy 𝑡𝑖,𝑘 and any correctly executed copy of 𝑡𝑥 are 
assigned to the same group, then 𝑐′

𝑥,𝑖
= 0; otherwise 𝑐′

𝑥,𝑖
= 𝑐𝑥,𝑖.

When the 𝑁 -modular redundancy technique is used, we do not al-

low different copies of the same task to be assigned to the same core for 
execution. When 𝑁 copies of task 𝑡𝑖 are completed, assuming that their 
execution results are transmitted to 𝑐𝑜𝑟𝑒𝑗 for voting comparison, which 
consumes execution results transmission energy 𝐸rt (𝑡𝑖, 𝑐𝑜𝑟𝑒𝑗 ) and vot-

ing comparison energy 𝐸vc(𝑡𝑖, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,𝑙). The energy consumption for 
data transmission and voting comparison can be calculated as

𝐸rt (𝑡𝑖, 𝑐𝑜𝑟𝑒𝑗 ) =
∑𝑁

𝑘=1
𝑟𝑡𝑡𝑖,𝑘,𝑗 × 𝑐𝑟 (5)

and

𝐸vc(𝑡𝑖, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,𝑙) = (𝑃𝑗,in +𝐶𝑗,sw𝑓
𝑚𝑗

𝑗,𝑙
) × 𝑣𝑐𝑡𝑖,𝑗,𝑙 ×

𝑓𝑗,max

𝑓𝑗,𝑙
(6)

respectively, where 𝑟𝑡𝑡𝑖,𝑘,𝑗 represents the time required for the execution 
result of 𝑡𝑖,𝑘 to be transmitted to 𝑐𝑜𝑟𝑒𝑗 , and 𝑣𝑐𝑡𝑖,𝑗,𝑙 indicates the time 
required for the execution result to be voted on 𝑐𝑜𝑟𝑒𝑗 with frequency 
𝑓𝑗,𝑙 .

For task 𝑡𝑖, let 𝑐𝑜𝑟𝑒𝑎𝑝𝑐(𝑖,𝑘) represent the assigned core of the 𝑘th copy, 
𝑓𝑎𝑝𝑐(𝑖,𝑘),𝑎𝑒𝑓 (𝑖,𝑘) represent the assigned execution frequency of the 𝑘th 
copy, 𝑐𝑜𝑟𝑒𝑐𝑒𝑟(𝑖) represent the core used to compare the execution re-

sults, 𝑓𝑐𝑒𝑟(𝑖),𝑐𝑒𝑓 (𝑖,𝑙) represent the execution frequency used to compare 
the execution results.

According to the above description, for task 𝑡𝑖, the energy consump-

tion for executing the task itself, for communicating with its parent task, 
for transmitting the execution results for comparison, and for the pro-

cess of comparing the execution results can be calculated by

𝐸dy(𝑡𝑖) =
∑𝑁

𝑘=1
𝐸dy(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑎𝑝𝑐(𝑖,𝑘), 𝑓𝑎𝑝𝑐(𝑖,𝑘),𝑎𝑒𝑓 (𝑖,𝑘)), (7)

𝐸co(𝑡𝑖) =
∑𝑁

𝑘=1
𝐸co(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑎𝑝𝑐(𝑖,𝑘)), (8)

𝐸rt (𝑡𝑖) =𝐸rt (𝑡𝑖, 𝑐𝑜𝑟𝑒𝑐𝑒𝑟(𝑖)), (9)

and

𝐸vc(𝑡𝑖) =𝐸vc(𝑡𝑖, 𝑐𝑜𝑟𝑒𝑐𝑒𝑟(𝑖), 𝑓𝑐𝑒𝑟(𝑖),𝑐𝑒𝑓 (𝑖,𝑙)), (10)

respectively.

Therefore, the total energy consumption for executing task 𝑡𝑖 is given 
by

𝐸dcrv(𝑡𝑖) =𝐸dy(𝑡𝑖) +𝐸co(𝑡𝑖) +𝐸rt (𝑡𝑖) +𝐸vc(𝑡𝑖). (11)

When all the tasks with 𝑁 -modular redundancy are assigned, the 
energy consumption of the application is given by

𝐸dcrv(𝐺) =
∑|𝑇 |

𝑖=1
𝐸dcrv(𝑡𝑖). (12)

Let 𝐸st (𝐺) represent the static energy consumption of the applica-

tion, which is derived from all the processor cores and can be calculated 
by

𝐸st (𝐺) =
∑𝑀

𝑗=1
𝑃𝑗,st ×𝑆𝐿(𝐺), (13)

where 𝑆𝐿(𝐺) is the scheduling length of parallel application 𝐺. Based 
on (12) and (13), the total energy consumption of the application is 
given by

𝐸(𝐺) =𝐸dcrv(𝐺) +𝐸st (𝐺). (14)

3.4. Reliability model

There are transient faults and permanent faults during the execution 
of the application. Since transient faults occur more commonly than 
permanent faults [47][48], only transient faults are considered in this 

study. In general, the occurrence of transient faults follows a Poisson 
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process [35][43]. Given 𝜆 as the constant failure rate per time unit, 
the probability of no faults occurring (which represents system reliabil-

ity) within the time interval 𝑡 can be expressed as 𝑒−𝜆𝑡 [35][38][39]. In 
this paper, the reliability of a task (a copy of a task or an application) 
is defined as the probability that the task (copy or application) will be 
completed correctly before its deadline [48]. Therefore, in the subse-

quent discussion, we assume that a task (copy or application) can be 
completed before its deadline if no faults occur during its execution. If 
a task (copy) cannot meet its deadline constraint, the application will 
not be correctly scheduled by the algorithm proposed in this paper. Dif-

ferent cores have distinct 𝜆 values representing failure rates. Let 𝜆𝑗,max
represent the failure rate per time unit for 𝑐𝑜𝑟𝑒𝑗 execution with the 
maximum frequency, when the 𝑘th copy of task 𝑡𝑖 is executed on 𝑐𝑜𝑟𝑒𝑗
with execution frequency 𝑓𝑗,max, the reliability of this copy can be given 
by [35][38]

𝑅(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,max) = 𝑒−𝜆𝑗,max×𝑤𝑖,𝑗 (15)

When the execution frequency is reduced to save energy, the probability 
of fault will increase. According to [43][47][48], the transient faults 
rate 𝜆𝑗,𝑙 of core 𝑐𝑜𝑟𝑒𝑗 with the frequency 𝑓𝑗,𝑙 is given by

𝜆𝑗,𝑙 = 𝜆𝑗,max × 10
𝑑𝑗×(𝑓𝑗,max−𝑓𝑗,𝑙 )
𝑓𝑗,max−𝑓𝑗,min , (16)

where 𝑑𝑗 indicates the sensitivity fault rates to voltage and frequency 
scaling of 𝑐𝑜𝑟𝑒𝑗 , which is greater than 0.

According to Eq. (15), when the 𝑘th copy of task 𝑡𝑖 is executed on 
core 𝑐𝑜𝑟𝑒𝑗 with frequency 𝑓𝑗,𝑙 , the reliability can be calculated by

𝑅(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,𝑙) = 𝑒
−𝜆𝑗,𝑙×

𝑤𝑖,𝑗×𝑓𝑗,max
𝑓𝑗,𝑙 . (17)

This work mainly studies the energy-efficiency scheduling problem 
with the TMR technique, that is, three copies of task 𝑡𝑖 will be executed. 
According to Eq. (17), the reliability of the three copies is 𝑅(𝑡𝑖,1), 𝑅(𝑡𝑖,2), 
and 𝑅(𝑡𝑖,3) respectively. Then the reliability of task 𝑡𝑖 can be calculated 
by

𝑅(𝑡𝑖) =𝑅(𝑡𝑖,1)𝑅(𝑡𝑖,2)(1 −𝑅(𝑡𝑖,3))

+𝑅(𝑡𝑖,1)𝑅(𝑡𝑖,3)(1 −𝑅(𝑡𝑖,2))

+𝑅(𝑡𝑖,2)𝑅(𝑡𝑖,3)(1 −𝑅(𝑡𝑖,1))

+𝑅(𝑡𝑖,1)𝑅(𝑡𝑖,2)𝑅(𝑡𝑖,3). (18)

The reliability of the task can be significantly improved by using the 
TMR technique. For example, when the reliability of each copy of a 
task is 0.9, the reliability of this task with TMR will increase to 0.972.

When the reliability of all tasks is calculated, the application’s relia-

bility can be given by

𝑅(𝐺) =
∏|𝑇 |

𝑖=1
𝑅(𝑡𝑖). (19)

3.5. Problem description

Consider a parallel application 𝐺 using TMR execution on the het-

erogeneous multi-core platform, in which each core supports the DVFS 
technique. When three copies of all tasks in 𝐺 are assigned to the pro-

cessor core to execute at the appropriate frequency, the schedule length 
of the application is 𝑆𝐿(𝐺). The problem in this paper is to minimize 
the energy consumption of the system while the schedule length 𝑆𝐿(𝐺)
is less than or equal to the given deadline 𝐷𝐿(𝐺) and the reliability 
of the application 𝐺 is higher than the given reliability requirement 
𝑅req(𝐺).

4. Energy-efficient TMR scheduling framework

To solve the problem of minimizing energy consumption under 
5

scheduling length and reliability constraints, we first design an algo-
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rithm that minimizes scheduling length while satisfying system relia-

bility requirement, which is an improved version of the well-known 
HEFT algorithm (IHEFT). IHEFT can be used to determine whether the 
application can meet the scheduling length and reliability constraints 
with the TMR mechanism. Then we designed three energy-efficient al-

gorithms to minimize energy consumption, which are the Extending Ex-

ecution Time of the copies (EET) algorithm, Minimizing the Execution 
Overhead of the Third Copy (MEOTC) algorithm, and the Online En-

ergy Management (OEM) algorithm. The specific introduction of these 
algorithms is as follows.

4.1. The IHEFT algorithm

4.1.1. Introduction to key principles

The primary objective of the IHEFT algorithm is to minimize the 
scheduling length while satisfying the reliability requirement of the 
application. Unlike the original HEFT algorithm, IHEFT initially trans-

forms the application-level reliability requirement into corresponding 
task-level reliability requirements. Subsequently, it calculates the reli-

ability requirement for each replica of a task within the context of the 
TMR framework. Following this, the algorithm assigns each copy to pro-

cessor cores with the aim of achieving the minimum finish time. Finally, 
after all copies have been assigned and executed, a voting mechanism 
is implemented where the results from the three replicas of each task 
are compared and validated.

4.1.2. Computing reliability requirements for task copies

To make the reliability of the application satisfy the requirements, 
the reliability of each copy of the task should not be lower than the 
given critical value 𝑅critical when using the TMR technique. Therefore, 
we should obtain 𝑅critical based on the reliability requirement of the 
application.

When the reliability requirement 𝑅req(𝐺) of the application 𝐺 is 
given, the reliability requirement of the task 𝑅req(𝑡𝑖) can be obtained 
by different methods [38][45][46]. For simplicity, this paper uses the 
method in literature [38], and the reliability requirement of the task is 
given by

𝑅req(𝑡𝑖) = |𝑇 |√𝑅req(𝐺). (20)

When assigning tasks, the reliability requirement of task 𝑡𝑖 can be given 
by

𝑅req(𝑡𝑖) ≥
𝑅req(𝐺)∏𝑖−1

𝑥=1𝑅(𝑡𝑥) ×
∏|𝑇 |

𝑥=𝑖+1𝑅req(𝑡𝑥)
, (21)

where item 
∏𝑖−1

𝑥=1𝑅(𝑡𝑥) is the reliability obtained by 𝑖 − 1 tasks that 
have been assigned, and item 

∏|𝑇 |
𝑥=𝑖+1𝑅req(𝑡𝑥) is the reliability expected 

to be obtained for tasks that have not yet been assigned.

Assuming that 𝑅(𝑡𝑖,1) =𝑅(𝑡𝑖,2) =𝑅(𝑡𝑖,3) =𝑅critical can make the task 
𝑡𝑖 just satisfy the reliability requirement, Eq. (18) can be rewritten as an 
univariate cubic equation

2𝑅3
critical − 3𝑅2

critical +𝑅req(𝑡𝑖) = 0. (22)

Based on recent derivations of the cubic solution [15], let 𝑅critical be 
represented as

𝑅critical = 𝑥− −3
3 × 2

= 𝑥+ 1
2
, (23)

and then the univariate cubic equation (22) can be expressed as

𝑥3 + 𝑝𝑥+ 𝑞 = 0, (24)

where 𝑝 = −3
4 and 𝑞 = −1

4 + 1
2𝑅req(𝑡𝑖). Then we calculate the discrim-

inant 𝐷 using the formula 𝐷 = 𝑞2

4 + 𝑝3

27 . Due to reliability requirement 
0 < 𝑅req(𝑡𝑖) < 1, it is easy to know that 𝐷 < 0, so the univariate cubic 

equation (24) has three distinct real roots, which are
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𝑥1 = 2
√

− 𝑝
3
cos

(
𝜋

6
+ 𝜃

3

)
(25)

𝑥2 = −2
√

− 𝑝
3
cos

(
𝜋

6
− 𝜃

3

)
(26)

𝑥3 = 2
√

− 𝑝
3
sin 𝜃

3
(27)

where 𝜃 = tan−1
(

𝑞

2
√
−𝐷

)
and − 𝜋

2 < 𝜃 <
𝜋

2 . According to Eq. (23), we 

know that 𝑅critical = 𝑥 +0.5. Because the reliability must be greater than 
0 and less than 1, only 𝑥3 provides a valid solution which ensures that 
𝑅critical falls within the required range of reliability. For 𝑥1 and 𝑥2, the 
corresponding reliabilities exceed 1 and fall below 0 respectively. To 
calculate the 𝑅critical, for instance, if the 𝑅req(𝑡𝑖) = 0.99, then we can 
get 𝑅critical = 0.941097. For more details on solving univariate cubic 
equations, please refer to reference [15].

4.1.3. Determining minimum finish times for task copies

HEFT [32] is a well-known algorithm to solve the problem of mini-

mizing the scheduling length of a parallel application executing on het-

erogeneous systems, which has high performance and relatively short 
scheduling length. HEFT uses the concept of 𝑅𝑎𝑛𝑘 to obtain the schedul-

ing order of tasks, the 𝑅𝑎𝑛𝑘 value of task 𝑡𝑖 is defined as

𝑅𝑎𝑛𝑘(𝑡𝑖) =𝑤𝑖 + max
𝑡𝑗∈𝑐ℎ𝑖𝑙𝑑(𝑡𝑖)

{𝑐𝑖,𝑗 +𝑅𝑎𝑛𝑘(𝑡𝑗 )}, (28)

where 𝑤𝑖 =
(∑𝑀

𝑗=1𝑤𝑖,𝑗

)/
𝑀 represents the average WCET of the task 

𝑡𝑖 on each core. The tasks scheduled in non-ascending order of 𝑅𝑎𝑛𝑘
value can meet the requirements of execution order. Assuming that the 
task 𝑡𝑖 mentioned below has been sorted by non-ascending order.

When an application executes on a heterogeneous system with 
TMR technique, for the 𝑘th copy of task 𝑡𝑖 is assigned to core 𝑗, let 
𝐸𝑆𝑇 (𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 ) represent the earliest start time in the worst-case sce-

nario and 𝐸𝐹𝑇 (𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 ) represent the earliest finish time. In addition, 
let 𝑆𝑇 (𝑡𝑖,𝑘) represent the actual start time of the 𝑘th copy of task 𝑡𝑖 and 
𝐹𝑇 (𝑡𝑖,𝑘) represent the actual finish time of the 𝑘th copy of task 𝑡𝑖. The 
start time and finish time for comparing the execution results of three 
copies of task 𝑡𝑖 on 𝑐𝑜𝑟𝑒𝑗 can be calculated by

𝑆𝑇𝐶(𝑡𝑖, 𝑐𝑜𝑟𝑒𝑗 ) = max
1≤𝑘≤3

{𝐹𝑇 (𝑡𝑖,𝑘) + 𝑟𝑡𝑡𝑖,𝑘,𝑗} (29)

and

𝐹𝑇𝐶(𝑡𝑖, 𝑐𝑜𝑟𝑒𝑗 ) = 𝑆𝑇𝐶(𝑡𝑖, 𝑐𝑜𝑟𝑒𝑗 ) + 𝑣𝑐𝑡𝑖,𝑗,𝑙 , (30)

respectively. During the scheduling, let 𝐹𝑇𝐶(𝑡𝑖) represent the finish 
time of comparing the execution results of the three copies of task 𝑡𝑖 . 
When the copy 𝑡𝑖,𝑘 is assigned to 𝑐𝑜𝑟𝑒𝑗 , its earliest start time is related to 
the predecessor task. Assuming that the communication time overheads 
from the three copies 𝑡𝑥,1, 𝑡𝑥,2, and 𝑡𝑥,3 of the predecessor task 𝑡𝑥 to 
𝑐𝑜𝑟𝑒𝑗 are 𝑐𝑡1, 𝑐𝑡2, and 𝑐𝑡3, respectively, and 𝑐𝑡1 ≥ 𝑐𝑡2 ≥ 𝑐𝑡3. Because 
the copy 𝑡𝑖,𝑘 can obtain data from any correctly executed copy when 
executing on 𝑐𝑜𝑟𝑒𝑗 , the worst-case scenario is a transient fault occurred 
in 𝑡𝑥,3. In this case, 𝑡𝑖,𝑘 obtains data from 𝑡𝑥,2, resulting in a worst-case 
communication time overhead of 𝑐𝑡2. Since we do not know which copy 
will occur transient faults, this article calculates the earliest start time 
of 𝑡𝑖,𝑘 based on the worst-case communication time as

⎧⎪⎨⎪⎩
𝐸𝑆𝑇 (𝑡entry,𝑘, 𝑐𝑜𝑟𝑒𝑗 ) = 0

𝐸𝑆𝑇 (𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 ) = max

{
𝑎𝑣𝑎𝑖𝑙[𝑗],

max
𝑡𝑥∈𝑝𝑎𝑟𝑒𝑛𝑡(𝑡𝑖)

{𝐹𝑇𝐶(𝑡𝑥) +𝑤𝑐𝑐𝑡𝑥,𝑖,𝑗}

}
(31)

where 𝑎𝑣𝑎𝑖𝑙[𝑗] represents the earliest available time of 𝑐𝑜𝑟𝑒𝑗 and 
𝑤𝑐𝑐𝑡𝑥,𝑖,𝑗 represents the worst-case communication time of data trans-

mitting from task 𝑡𝑥 to 𝑐𝑜𝑟𝑒𝑗 for executing the copy of 𝑡𝑖.
Based on Eq. (31), the earliest finish time of 𝑡𝑖,𝑘 on 𝑐𝑜𝑟𝑒𝑗 can be 
6
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𝐸𝐹𝑇 (𝑡𝑥,𝑘, 𝑐𝑜𝑟𝑒𝑗 ) =𝐸𝑆𝑇 (𝑡𝑥,𝑘, 𝑐𝑜𝑟𝑒𝑗 ) +𝑤𝑥,𝑗 . (32)

Finally, the scheduling length of the application 𝐺 is given by

𝑆𝐿(𝐺) = 𝐹𝑇𝐶(𝑡exit ). (33)

4.1.4. Detailed design of the IHEFT algorithm

Based on the previous analysis, we designed the IHEFT algorithm as 
shown in Algorithm 1.

The IHEFT algorithm first determines the priority of the task (Line 
1), and then assigns three copies of the task to the appropriate core for 
execution. For each task, IHEFT first calculates its reliability require-

ment (Line 5) and then assigns its three copies (Lines 6-15). To avoid 
assigning different copies of a task to the same core, a matrix 𝑆 with 
𝑛 rows and 3 columns is defined to represent the processor cores to 
which each copy of the task is assigned, where 𝑛 denotes the number of 
tasks. The 𝑖-th row of the matrix corresponds to the processors to which 
the three copies of task 𝑡𝑖 are assigned. The IHEFT algorithm initializes 
all elements in matrix 𝑆 to 0 before assigning tasks (Line 2). When as-

signing a copy to a core, it first determines whether the core has been 
occupied by other copies. If the processor core is unoccupied (Line 8), 
IHEFT calculates the finish time and reliability of the copy (Lines 9-10). 
Then IHEFT assigns the copy to the core that can complete it earliest 
while satisfying the reliability requirement. After a copy is assigned, 
IHEFT adds the corresponding core to the matrix 𝑆 (Line 14). Finally, 
the execution results of the three copies are compared (Line 16), and if 
the completion time for this comparison exceeds the application’s dead-

line, the algorithm returns a ‘false’ value (Lines 17-19).

Algorithm 1 IHEFT.

Input: 𝑃𝐶 = {𝑐𝑜𝑟𝑒1, 𝑐𝑜𝑟𝑒2, ...𝑐𝑜𝑟𝑒𝑀}, application 𝐺, and 𝑅req(𝐺)
Output: the start time and finish time of all copies

1: sort the tasks to queue 𝑅𝑒𝑎𝑑𝑦𝑄 by non-ascending order of 𝑅𝑎𝑛𝑘
2: initialize all elements in matrix 𝑆 to 0
3: while 𝑅𝑒𝑎𝑑𝑦𝑄 is not empty do

4: 𝑡𝑖 ←𝑅𝑒𝑎𝑑𝑦𝑄.𝑜𝑢𝑡()
5: calculate 𝑅critical using Eq. (27)

6: for 𝑘 ← 1 to 3 do

7: for 𝑗← 1 to 𝑀 do

8: if 𝑗 is not in the 𝑖-th row of the matrix 𝑆 then

9: calculate 𝐸𝐹𝑇 (𝑡𝑥,𝑘, 𝑐𝑜𝑟𝑒𝑗 ) using Eq. (32)

10: calculate 𝑅(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,max) using Eq. (15)

11: end if

12: end for

13: assign copy 𝑡𝑖,𝑘 to the 𝑐𝑜𝑟𝑒𝑗 that minimizes EFT of copy 𝑡𝑖,𝑘 and satisfies 
𝑅(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,max) ≥ 𝑅critical // the start time and finish time of the 
copy 𝑡𝑖,𝑘 can be obtained

14: assign the element at the 𝑘-th column of the 𝑖-th row in matrix 𝑆 to 
the value of 𝑗

15: end for

16: Transfer the execution results of the two earlier-finished copies to the 
core where the third copy is assigned for voting comparison

17: if the completion time of the voting comparison is greater than the dead-

line 𝐷𝐿(𝐺) then

18: return false

19: end if

20: end while

HEFT has a time complexity of 𝑂(|𝑇 |2 ×𝑀), three copies of each 
task need to be assigned when using the TMR technique, so the time 
complexity of IHEFT is 𝑂((3 × |𝑇 |)2 ×𝑀).

4.2. The EET algorithm

When the IHEFT algorithm is completed, the scheduling length 
𝑆𝐿IHEFT(𝐺) can be obtained. If the given deadline 𝐷𝐿(𝐺) > 𝑆𝐿IHEFT(𝐺),
there is a slack time between each task. The slack time can be used to 
reduce the execution frequency and thus save energy. To more intu-
itively describe the degree of relaxation, the slack ratio (SR) is defined 
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as the ratio of the given deadline to the scheduling length generated by 
IHEFT, which is expressed as

𝑆𝑅(𝐺) = 𝐷𝐿(𝐺)
𝑆𝐿IHEFT(𝐺)

. (34)

After all copies of all tasks are scheduled with the IHEFT algorithm, 
the start time and finish time of each copy can be obtained. If the ex-

ecution time of the task is extended by 𝑆𝑅(𝐺) times, the application 
can still meet the deadline requirements. Therefore, we can reduce the 
execution frequency and extend the execution time of all copies for im-

proving energy efficiency. The extended finish time (ExFT) of the 𝑘th 
copy of task 𝑡𝑖 is given by

𝐸𝑥𝐹𝑇 (𝑡𝑖,𝑘)=𝐹𝑇 (𝑡𝑖,𝑘) ×𝑆𝑅(𝐺). (35)

For any 𝑖 and 𝑘, if the finish time of the copy 𝑡𝑖,𝑘 does not exceed 
𝐸𝑥𝐹𝑇 (𝑡𝑖,𝑘), the application can meet the deadline. Because the tasks 
with extended execution time may not be suitable for the frequency 
level requirements or may not satisfy the reliability requirements, it is 
necessary to adjust the execution frequency of all the copies of all tasks. 
During the scheduling, if the copy 𝑡𝑖,𝑘 is assigned to 𝑐𝑜𝑟𝑒𝑗 with the 
execution frequency 𝑓𝑗,𝑙 , the finish time should not exceed 𝐸𝑥𝐹𝑇 (𝑡𝑖,𝑘); 
Otherwise, the application may not meet the deadline. Therefore, the 
EET algorithm for adjusting the execution frequency can be designed as 
Algorithm 2.

Algorithm 2 EET.

Input: core set {𝑐𝑜𝑟𝑒1, 𝑐𝑜𝑟𝑒2, ...𝑐𝑜𝑟𝑒𝑀}, 𝑅req(𝐺), 𝑆𝑅(𝐺), and the results of 
IHEFT

Output: 𝐸(𝐺), 𝑆𝐿(𝐺) and 𝑅(𝐺)
1: reload the ready queue 𝑅𝑒𝑎𝑑𝑦𝑄
2: obtain extended finish time (ExFT) of each copy using Eq. (35)

3: while 𝑅𝑒𝑎𝑑𝑦𝑄 is not empty do

4: 𝑡𝑖 ←𝑅𝑒𝑎𝑑𝑦𝑄.𝑜𝑢𝑡()
5: calculate 𝑅critical using Eq. (27)

6: for 𝑘 ← 1 to 3 do

7: 𝑐𝑜𝑟𝑒𝑗 ← get the core that executes copy 𝑡𝑖,𝑘
8: calculate 𝐸𝑆𝑇 (𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 ) using Eq. (31) //the earliest start time of the 

copy 𝑡𝑖,𝑘 on the core 𝑐𝑜𝑟𝑒𝑗
9: for frequency 𝑓𝑗,𝑙 ← 𝑓𝑗,low to 𝑓𝑗,max do

10: if 𝑤𝑖,𝑗 × 𝑓𝑗,𝑚𝑎𝑥

𝑓𝑗,𝑙
≤ 𝐸𝑥𝐹𝑇 (𝑡𝑖,𝑘) − 𝐸𝑆𝑇 (𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 ) and

𝑅(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,𝑙) ≥𝑅critical then

11: 𝑆𝑇 (𝑡𝑖,𝑘) ←𝐸𝑆𝑇 (𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 )
12: 𝐹𝑇 (𝑡𝑖,𝑘) ← 𝑆𝑇 (𝑡𝑖,𝑘) +𝑤𝑖,𝑗 ×

𝑓𝑗,max

𝑓𝑗,𝑙

13: break

14: end if

15: end for

16: end for

17: Transfer the execution results of the two earlier-finished copies to the 
core where the third copy is assigned for voting comparison

18: end while

19: calculate 𝐸(𝐺), 𝑆𝐿(𝐺), and 𝑅(𝐺) using Eqs. (14), (33), and (19), respec-

tively

The EET algorithm saves energy by reducing the execution fre-

quency of the tasks, the details of which are explained as follows.

The input part of the EET algorithm is core set 𝑃𝐶 , 𝑅req(𝐺), 𝑆𝑅(𝐺), 
and the results of IHEFT, the output part is 𝐸(𝐺) and 𝑆𝐿(𝐺). Line 
1 reloads the ready queue 𝑅𝑒𝑎𝑑𝑦𝑄. Line 2 indicates that the execu-

tion time of the tasks is extended. Lines 3-18 are a nested loop, which 
traverses all the tasks in the application 𝐺. For any task 𝑡𝑖, the EET al-

gorithm first calculates the reliability requirement and then traverses 
the execution frequency to make each copy meets the deadline and sat-

isfies the reliability requirement (Lines 5-16). Line 17 compares the 
execution results by voting. Line 19 calculates 𝐸(𝐺), 𝑆𝐿(𝐺), and 𝑅(𝐺)
7

respectively.
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Fig. 3. Example of three copies of tasks 𝑡𝑖 .

The EET algorithm needs to traverse all copies of all tasks. Line 8 cal-

culates 𝐸𝑆𝑇 (𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 ), which needs to traverse all the precursor tasks 
of 𝑡𝑖,𝑘. Lines 9-15 traverse all frequencies of 𝑐𝑜𝑟𝑒𝑗 . Therefore, the time 
complexity of EET is 𝑂(3 × |𝑇 | × (3 × |𝑇 | + 𝐹𝐿)), where 𝐹𝐿 represents 
the maximum number of frequency levels of all cores.

4.3. The MEOTC algorithm

When the IHEFT algorithm is completed, the start time and finish 
time of all copies for all tasks can be obtained. Because the cores are 
heterogeneous, the start time and finish time of different copies of the 
same task may be different. In a TMR system, as long as two copies 
of a task are executed correctly, the results of the task will be correct. 
Therefore, it may not be necessary to complete the execution of the 
third copy, which can save more energy. The main design idea of the 
MEOTC algorithm using this mechanism is as follows.

(1) The execution frequency of the three copies should be reduced 
as much as possible to reduce energy consumption. When the first two 
copies are completed, their execution results will be voted in advance. 
If no transient fault occurs, terminate the execution of the third copy. 
Otherwise, after the third copy is completed, their execution results will 
be voted together again.

(2) Because the third copy may be terminated prematurely, its exe-

cution overhead should be minimized.

We will use Fig. 3 to illustrate the implementation methods of the 
three main design ideas mentioned above.

Fig. 3 shows an example of three copies of tasks 𝑡𝑖 after using the 
IHEFT algorithm. Since the three copies are independent of each other, 
it is advisable to assume that copy 𝑡𝑖,3 has the maximum finish time of 
the three copies of 𝑡𝑖, and similarly, copy 𝑡𝑖,2 has the maximum fin-

ish time among the remaining two copies (i.e. 𝐹𝑇 (𝑡𝑖,3) ≥ 𝐹𝑇 (𝑡𝑖,2) ≥
𝐹𝑇 (𝑡𝑖,1)). In addition, assuming that the three copies 𝑡𝑖,1, 𝑡𝑖,2, and 𝑡𝑖,3 are 
assigned to 𝑐𝑜𝑟𝑒𝑎, 𝑐𝑜𝑟𝑒𝑏, and 𝑐𝑜𝑟𝑒𝑐 , respectively. The energy-efficient 
methods that use the TMR mechanism are as follows.

(1) If the execution results of 𝑡𝑖,1 and 𝑡𝑖,2 are voted in advance, the 
actual finish time of all copies should not exceed the extended finish 
time, otherwise it may result in the deadline not being met. Therefore, 
the available execution time for each copy should be determined.

For the copy 𝑡𝑖,1, its available execution time should not exceed 
𝐸𝑥𝐹𝑇 (𝑡𝑖,1) −𝐸𝑆𝑇 (𝑡𝑖,1, 𝑐𝑜𝑟𝑒𝑎). If the execution results of 𝑡𝑖,1 and 𝑡𝑖,2 are 
voted in advance on 𝑐𝑜𝑟𝑒𝑏, it is necessary to transfer the results of 𝑡𝑖,1 to 
𝑐𝑜𝑟𝑒𝑏. In this case, the available execution time of 𝑡𝑖,1 should not exceed 
𝐸𝑥𝐹𝑇 (𝑡𝑖,2) −𝐸𝑆𝑇 (𝑡𝑖,1, 𝑐𝑜𝑟𝑒𝑎) − 𝑟𝑡𝑡𝑖,1,𝑏 − 𝑣𝑐𝑡𝑖,𝑏,𝑙 . Therefore, the available 
execution time of 𝑡𝑖,1 is given by

𝑎𝑒𝑡1 = min
(
𝐸𝑥𝐹𝑇 (𝑡𝑖,1)−𝐸𝑆𝑇 (𝑡𝑖,1,𝑐𝑜𝑟𝑒𝑎),
𝐸𝑥𝐹𝑇 (𝑡𝑖,2)−𝐸𝑆𝑇 (𝑡𝑖,1,𝑐𝑜𝑟𝑒𝑎)−𝑟𝑡𝑡𝑖,1,𝑏−𝑣𝑐𝑡𝑖,𝑏,𝑙

)
. (36)

When the previous two copies 𝑡𝑖,1 and 𝑡𝑖,2 are completed, their ex-

ecution results are voted on 𝑐𝑜𝑟𝑒𝑏, the available execution time of 𝑡𝑖,2
should not exceed 𝐸𝑥𝐹𝑇 (𝑡𝑖,2) −𝐸𝑆𝑇 (𝑡𝑖,2, 𝑐𝑜𝑟𝑒𝑏) − 𝑣𝑐𝑡𝑖,𝑏,𝑙 . In addition, if 
a transient fault occurs in one of the copies 𝑡𝑖,1 and 𝑡𝑖,2, the execution 
results of these two copies need to be transmitted to 𝑐𝑜𝑟𝑒𝑐 to compare 
the results of the three copies again. In this case, the available execution 
time of 𝑡𝑖,2 should not exceed 𝐸𝑥𝐹𝑇 (𝑡𝑖,3) − 𝐸𝑆𝑇 (𝑡𝑖,2, 𝑐𝑜𝑟𝑒𝑐 ) − 𝑟𝑡𝑡𝑖,1,𝑐 −

𝑣𝑐𝑡𝑖,𝑏,𝑙 . Therefore, the available execution time of 𝑡𝑖,2 is given by
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𝑎𝑒𝑡2 = min
(
𝐸𝑥𝐹𝑇 (𝑡𝑖,2)−𝐸𝑆𝑇 (𝑡𝑖,2, 𝑐𝑜𝑟𝑒𝑏) − 𝑣𝑐𝑡𝑖,𝑏,𝑙 ,

𝐸𝑥𝐹𝑇 (𝑡𝑖,3)−𝐸𝑆𝑇 (𝑡𝑖,2, 𝑐𝑜𝑟𝑒𝑏)−𝑟𝑡𝑡𝑖,1,𝑐−𝑣𝑐𝑡𝑖,𝑏,𝑙

)
. (37)

For the copy 𝑡𝑖,3, its finish time should not exceed 𝐸𝑥𝐹𝑇 (𝑡𝑖,3), so its 
available execution time is given by

𝑎𝑒𝑡3 =𝐸𝑥𝐹𝑇 (𝑡𝑖,3) −𝐸𝑆𝑇 (𝑡𝑖,3). (38)

(2) If both copies 𝑡𝑖,1 and 𝑡𝑖,2 have no faults and the completion 
time for voting on their execution results is 𝑓𝑡𝑐, the copy 𝑡𝑖,3 is not 
necessary to be executed in the time interval [𝑓𝑡𝑐, 𝐹𝑇 (𝑡𝑖,3)]. In this case, 
the execution time 𝑒𝑡 of 𝑡𝑖,3 is 𝑓𝑡𝑐−𝑆𝑇 (𝑡𝑖,3), so the energy consumption 
of execution 𝑡𝑖,3 is given by

𝐸𝐶(𝑡𝑖,3) =
{

(𝑃𝑐,ind +𝐶𝑐,ef𝑓
𝑚𝑐
𝑐,𝑙

) × 𝑒𝑡 𝑒𝑡 > 0
0 𝑒𝑡 ≤ 0

. (39)

Then, we set the finish time of 𝑡𝑖,3 to 𝐸𝑥𝐹𝑇 (𝑡𝑖,3) and try to increase 
the execution frequency of 𝑡𝑖,3, thereby delaying its start time and re-

calculating the energy consumption. In this way, the minimum energy 
consumption for executing 𝑡𝑖,3 can be found.

(3) If the first two copies cannot vote in advance due to insufficient 
available execution time, or if a transient fault occurs in the first two 
copies, the execution results of the three copies will be voted on 𝑐𝑜𝑟𝑒𝑐

Based on the above analysis, the MEOTC algorithm is designed as 
shown in Algorithm 3, and its details are explained as follows.

The input part of the MEOTC algorithm is the core set, the applica-

tion 𝐺, and the results of the IHEFT algorithm, the output part is 𝐸(𝐺), 
𝑆𝐿(𝐺), and 𝑅(𝐺). Line 1 initializes ready queue 𝑅𝑒𝑎𝑑𝑦𝑄. Line 2 ob-

tains the extended finish time of each copy. Lines 3-38 are a nested 
loop, which traverses all the tasks in the application 𝐺. For any task 𝑡𝑖, 
MEOTC first obtains the available execution time of each copy (Lines 
9-15), and then MEOTC enters the inner loop, which traverses the exe-

cution frequency of the core to find the minimum energy consumption 
of each copy (Lines 16-21). If the first two copies complete execution 
and immediately vote, MEOTC will reconsider the possible minimum 
energy consumption of the third copy (Lines 23-34). If the first two 
copies cannot be voted or if a transient fault occurs, the execution re-

sults of the three copies will be voted (Lines 35-37).

The time complexity of the MEOTC algorithm is analyzed as follows. 
The MEOTC algorithm is mainly loop nesting, the outer loop traverses 
each task, and the inner loop needs to calculate the earliest start time of 
each copy, which requires traversing each copy of the task. In addition, 
the inner loop also needs to traverse the core’s execution frequency for 
each copy. Therefore, the time complexity of MEOTC is 𝑂(3 × |𝑇 | × (3 ×|𝑇 | + 𝐹𝐿)), where 𝐹𝐿 represents the maximum number of frequency 
levels of all cores.

4.4. Case study

The following is a case study of the proposed algorithms to execute 
the motivation example (see section 3.2). Assuming that the parameters 
of the three types of cores in the motivation example are in Table 3, 
where each core type has two cores and is assigned to the same group. 
To transmit the execution results to a certain core for voting, the trans-

mission time 𝑟𝑡𝑡𝑖,𝑘,𝑗 is set as the maximum communication time between 
task 𝑡𝑖 and the direct successor tasks. In addition, 𝑟𝑡𝑡5,𝑘,𝑗 is set to 2. If 
the execution result is within the same group, the transmission time 
𝑟𝑡𝑡𝑖,𝑘,𝑗 = 0. The voting comparison time is set to 1, and the communica-

tion energy consumption rate 𝑐𝑟 is set to 0.2. The maximum frequency 
of each core is 1.0, and the difference between adjacent frequencies is 
0.1. The reliability requirement of the application is 𝑅req(𝐺) = 0.99.

Table 4 shows the results of the IHEFT algorithm scheduling motiva-

tion application 𝐺 in Fig. 2, where ST, FT, FTC, 𝐸co, 𝐸dy , 𝐸rt , 𝐸vc, and 
𝐸dcrv represent the start time, finish time, voting finish time, communi-

cation energy consumption with the predecessor task, dynamic energy 
consumption of the core, energy consumption for transmitting execu-
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Algorithm 3 MEOTC.

Input: core set {𝑐𝑜𝑟𝑒1, 𝑐𝑜𝑟𝑒2, ...𝑐𝑜𝑟𝑒𝑀}, the application 𝐺, and the results of 
IHEFT

Output: 𝐸(𝐺), 𝑆𝐿(𝐺) and 𝑅(𝐺)
1: reload the ready queue 𝑅𝑒𝑎𝑑𝑦𝑄
2: obtain extended finish time (ExFT) of each copy using Eq. (35)

3: while 𝑅𝑒𝑎𝑑𝑦𝑄 is not empty do

4: 𝑡𝑖 ←𝑅𝑒𝑎𝑑𝑦𝑄.𝑜𝑢𝑡()
5: calculate 𝑅critical using Eq. (27)

6: obtain the copy 𝑡𝑖,3 , 𝑡𝑖,2, and 𝑡𝑖,1 that have 𝐹𝑇 (𝑡𝑖,3) ≥ 𝐹𝑇 (𝑡𝑖,2) ≥ 𝐹𝑇 (𝑡𝑖,1)
7: 𝑣𝑜𝑡𝑒_𝑖𝑛_𝑎𝑑𝑣𝑎𝑛𝑐𝑒 ← true

8: for 𝑘 ← 1 to 3 do

9: 𝑐𝑜𝑟𝑒𝑗 ← the core that executes copy 𝑡𝑖,𝑘
10: calculate 𝐸𝑆𝑇 (𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 ) using Eq. (31)

11: calculate the available execution time 𝑎𝑒𝑡𝑘 according to Eqs. (36), 
(37), and (38)

12: if 𝑎𝑒𝑡𝑘 < 𝑤𝑖,𝑗 ) then

13: 𝑎𝑒𝑡𝑘 ←𝐸𝑥𝐹𝑇 (𝑡𝑖,𝑘) −𝐸𝑆𝑇 (𝑡𝑖,𝑘)

14: 𝑣𝑜𝑡𝑒_𝑖𝑛_𝑎𝑑𝑣𝑎𝑛𝑐𝑒 ← false

15: end if

16: for frequency 𝑓𝑗,𝑙 ← 𝑓𝑗,low to 𝑓𝑗,max do

17: if 𝑤𝑖,𝑗 ×
𝑓𝑗,𝑚𝑎𝑥

𝑓𝑗,𝑙
≤ 𝑎𝑒𝑡𝑘 and 𝑅(𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 , 𝑓𝑗,𝑙) ≥𝑅critical then

18: 𝑆𝑇 (𝑡𝑖,𝑘) ←𝐸𝑆𝑇 (𝑡𝑖,𝑘, 𝑐𝑜𝑟𝑒𝑗 )
19: 𝐹𝑇 (𝑡𝑖,𝑘) ← 𝑆𝑇 (𝑡𝑖,𝑘) +𝑤𝑖,𝑗 ×

𝑓𝑗,max

𝑓𝑗,𝑙

20: end if

21: end for

22: end for

23: if 𝑣𝑜𝑡𝑒_𝑖𝑛_𝑎𝑑𝑣𝑎𝑛𝑐𝑒 is true then

24: transfer the execution result of 𝑡𝑖,1 to the core where 𝑡𝑖,2 is located for 
voting

25: obtain 𝑐𝑜𝑟𝑒𝑗 to execute the copy 𝑡𝑖,3
26: 𝑒𝑐← +∞
27: for execution frequency 𝑓 ← 𝑓𝑗,𝑙 to 𝑓𝑗,max do

28: calculate 𝐸𝐶(𝑡𝑖,3) using Eq. (39)

29: if 𝐸𝐶(𝑡𝑖,3) < 𝑒𝑐 then

30: 𝑒𝑐←𝐸𝐶(𝑡𝑖,3)
31: mark 𝑓𝑗,𝑙 and 𝐴𝑆𝑇 (𝑡𝑖,3)
32: end if

33: end for

34: end if

35: if 𝑣𝑜𝑡𝑒_𝑖𝑛_𝑎𝑑𝑣𝑎𝑛𝑐𝑒 is false or a transient fault occurs in the first two 
copies then

36: transfer the execution results of 𝑡𝑖,1 and 𝑡𝑖,2 to the core where 𝑡𝑖,3 is 
located for voting

37: end if

38: end while

39: calculate 𝐸(𝐺), 𝑆𝐿(𝐺), and 𝑅(𝐺) using Eqs. (14), (33), and (19), respec-

tively

Table 3

The parameters of the processor cores in motivation example.

Core type 𝑃s 𝑃ind 𝐶ef 𝑚 𝑓max 𝜆 𝑑

type 1 0.001 0.03 1.2 2.9 1.0 0.0002 2.3

type 2 0.001 0.05 0.9 2.8 1.0 0.0005 2.1

type 3 0.001 0.04 1.1 3.0 1.0 0.0009 2.2

total amount of the dynamic energy consumption, respectively. Finally, 
scheduling length 𝑆𝐿(𝐺) = 56 and 𝐸dcrv(𝐺) = 187.42. The static energy 
consumption is 0.001 × 6 × 56 = 0.34. Therefore, the total energy con-

sumption of the application is 187.42 + 0.34 = 187.76.

Assuming that the given 𝑆𝑅(𝐺) is 1.4 (i.e. the deadline of the appli-

cation is 78.4), the scheduling results of the EET algorithm are shown 
in Table 5, which shows the execution frequency of all copies of the 
task is reduced. Finally, the reliability of the application is 0.9915076, 
which is higher than 0.99. The scheduling length generated by EET is 
70.03, which is less than 1.4 ×𝑆𝐿IHEFT(𝐺) = 78.4. The total amount of 

the dynamic energy consumption of EET is 136.81, and the static en-
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Table 4

The results of the motivation example using IHEFT.

Task Core ST FT FTC Reliability 𝐸co 𝐸dy 𝐸rt 𝐸vc 𝐸dcrv

1 5 0 11 0 0.990149 0 12.54 0 0 12.54

1 6 0 11 0 0.990149 0 12.54 0 0 12.54

1 3 0 16 17 0.992032 0 15.2 1.2 0.95 17.35

2 3 19 29 0 0.995012 0 9.5 0 0 9.5

2 4 19 29 0 0.995012 0 9.5 0 0 9.5

2 1 19 33 34 0.997204 0.4 17.22 0.8 1.23 19.65

3 2 19 28 0 0.998202 0 11.07 0 0 11.07

3 5 17 29 0 0.989258 0 13.68 0 0 13.68

3 6 17 29 32 0.989258 0 13.68 0.6 1.14 15.42

4 3 29 37 0 0.996008 0 7.6 0 0 7.6

4 4 29 37 0 0.996008 0 7.6 0 0 7.6

4 2 28 41 42 0.997403 0 15.99 0.4 1.23 17.62

5 5 43 50 0 0.993720 0.6 7.98 0 0 8.58

5 6 43 50 0 0.993720 0 7.98 0 0 7.98

5 1 43 55 56 0.997603 0 14.76 0.8 1.23 16.79

𝑆𝐿(𝐺) = 56, 𝐸dcrv(𝐺) = 187.42, 𝑅(𝐺) = 0.999436

Table 5

The results of the motivation example using EET after IHEFT.

Task Core Frequency ST FT FTC Reliability 𝐸co 𝐸dy 𝐸rt 𝐸vc 𝐸dcrv

1 5 0.9 0 12.22 0 0.977573 0 10.29 0 0 10.29

1 6 0.9 0 12.22 0 0.977573 0 10.29 0 0 10.29

1 3 0.9 0 17.78 18.78 0.982421 0 12.80 1.2 0.95 14.95

2 3 0.8 20.78 33.28 0 0.975425 0 6.65 0 0 6.65

2 4 0.8 20.78 33.28 0 0.975425 0 6.65 0 0 6.65

2 1 0.8 20.78 38.28 39.28 0.984232 0.4 11.52 0.8 1.23 13.95

3 2 0.7 20.78 33.64 0 0.975425 0 5.87 0 0 5.87

3 5 0.9 18.78 32.11 0 0.975560 0 11.23 0 0 11.23

3 6 0.9 18.78 32.11 37.64 0.975560 0 11.23 0.6 1.14 12.97

4 3 0.8 33.28 43.28 0 0.980291 0 5.32 0 0 5.32

4 4 0.8 33.28 43.28 0 0.980291 0 5.32 0 0 5.32

4 2 0.8 33.64 49.89 50.89 0.985350 0 10.70 0.4 1.23 12.33

5 5 0.8 51.89 60.64 0 0.967072 0.6 5.28 0 0 5.88

5 6 0.8 51.89 60.64 0 0.967072 0 5.28 0 0 5.28

5 1 0.7 51.89 69.03 70.03 0.967368 0 7.83 0.8 1.23 9.86

𝑆𝐿(𝐺) = 70.03, 𝐸dcrv(𝐺) = 136.81, 𝑅(𝐺) = 0.9915076
ergy consumption is 0.001 ×6 ×70.03 = 0.42. Therefore, the total energy 
consumption is 136.81 + 0.42 = 137.23, which is 73.09% of the IHEFT 
algorithm.

Table 6 shows the results of the motivation example using MEOTC 
after IHEFT. When there are no faults in the first two completed copies 
of the tasks, the third copy can be terminated prematurely to save en-

ergy. For example, the copy 𝑡1,3 can be terminated at time 13.22 when 
the execution of 𝑡1,1 and 𝑡1,2 is completed at time 12.22 and their ex-

ecution results completed the voting at time 13.22. If any transient 
faults occur in the first two copies, the third copy 𝑡1,3 must be executed 
completely and its execution results must be voted together with the ex-

ecution results of the first two copies. We have marked the execution 
finish time and voting finish time of the third copy when fully executed 
in the brackets in columns 5 and 6 of Table 6, respectively. Considering 
that the probability of faults occurring in the first two copies is not high, 
the MEOTC algorithm tries to minimize the energy consumption of the 
third copy, so MEOTC delays the start time of the third copy to 4.62. 
When all copies are executed without any transient faults, the energy 
consumption for executing the copy 𝑡1,3 will be reduced from 12.80 
to 6.19. Finally, the reliability of the application is 0.993746, which 
satisfies the reliability requirement. The total amount of the dynamic 
energy consumption is 121.04, and the static energy consumption is 
9

0.001 × 6 × 78 = 0.47. Therefore, the total energy consumption of the 
application is 121.04 + 0.47 = 121.51, which is 64.72% of the IHEFT 
algorithm.

It should be noted that any failure must be considered from the per-

spective of reliability. However, from the perspective of average energy 
consumption, we do not need to consider the cases in which the system 
tolerates a fault [26]. For example, consider the task 𝑡1, the reliabil-

ity of the copies 𝑡1,1 and 𝑡1,2 are 0.977573 and 0.977573, respectively. 
Therefore, the probability of no fault occurs during execution 𝑡1,1 and 
𝑡1,2 is 0.977573 × 0.977573 = 0.955649. When no fault occurs, the en-

ergy consumption for executing task 𝑡1 is 10.29 + 11.43 + 6.19 = 27.91. 
If a fault occurs during the execution of 𝑡1,1 and 𝑡1,2, the copy 𝑡1,3
must be executed completely and hence the energy consumption is 
10.29 + 11.43 + 14.95 = 36.67. From the above analysis, it can be 
seen that the average energy consumption for executing task 𝑡1 is 
0.955649 × 27.91 + (1 − 0.955649) × 36.67 = 28.30, which is very close 
to the energy consumption when no faults occur (27.91).

4.5. Online energy management

We observe Table 6 and find that when the three copies of the first 
task are completed at time 13.22, the copies of the second task are not 
executed immediately, and the corresponding start times are 25.4, 25.4, 

and 28.7 respectively. When the task is executed online, we can make 
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Table 6

The results of the motivation example using MEOTC after IHEFT.

Task Core Frequency ST FT FTC Reliability 𝐸co 𝐸dy 𝐸rt 𝐸vc 𝐸dcrv

1 5 0.9 0 12.22 0 0.977573 0 10.29 0 0 10.29

1 6 0.9 0 12.22 13.22 0.977573 0 10.29 0 1.14 11.43

1 3 0.9 4.62 13.22 [22.4] [23.4] 0.982421 0 6.19 0 0 6.19

2 3 0.8 25.4 37.9 0 0.975425 0.4 6.65 0 0 7.05

2 4 0.8 25.4 37.9 38.9 0.975425 0 6.65 0 0.95 7.60

2 1 0.8 28.7 38.9 [46.2] [47.2] 0.984232 0.4 6.71 0 0 7.11

3 2 0.9 25.4 35.4 0 0.995747 0 9.14 0 0 9.14

3 5 1 23.4 35.4 39.4 0.989258 0 13.68 0.6 1.14 15.42

3 6 0.9 27.27 39.4 [40.6] [41.6] 0.975560 0 10.22 0 0 10.22

4 3 0.8 37.9 47.9 0 0.980291 0 5.32 0 0 5.32

4 4 0.8 38.9 48.9 49.9 0.980291 0 5.32 0 0.95 6.27

4 2 0.7 38.83 49.9 [57.4] [58.4] 0.964697 0 5.05 0 0 5.05

5 5 1 59.4 66.4 0 0.993720 0.6 7.98 0 0 8.58

5 6 0.8 59.4 68.15 69.4 0.967072 0 5.28 0 1.14 6.42

5 1 0.7 59.86 69.4 [77] [78] 0.967368 0.6 4.36 0 0 4.96

𝑆𝐿(𝐺) = 78, 𝐸dcrv(𝐺) = 121.04, 𝑅(𝐺) = 0.993746

Table 7

The results of online energy management after MEOTC.

Task Core Frequency ST FT FTC Reliability 𝐸co 𝐸dy 𝐸rt 𝐸vc 𝐸dcrv

1 5 0.9 0 12.22 0 0.977573 0 10.29 0 0 10.29

1 6 0.9 0 12.22 13.22 0.977573 0 10.29 0 1.14 11.43

1 3 0.9 4.62 13.22 0 0.982421 0 6.19 0 0 6.19

2 3 0.8 14.22 26.72 0 0.975425 0.4 6.65 0 0 7.05

2 4 0.8 14.22 26.72 27.72 0.975425 0 6.65 0 0.95 7.60

2 1 0.8 28.70 28.70 0 0.984232 0.4 0.00 0 0 0.4

3 2 0.9 14.22 24.22 0 0.995747 0 9.14 0 0 9.14

3 5 1 13.22 25.22 29.22 0.989258 0 13.68 0.6 1.14 15.42

3 6 0.9 27.27 29.22 0 0.975560 0 1.65 0 0 1.65

4 3 0.8 26.72 36.72 0 0.980291 0 5.32 0 0 5.32

4 4 0.8 27.72 37.72 38.72 0.980291 0 5.32 0 0.95 6.27

4 2 0.7 38.83 38.83 0 0.964697 0 0.00 0 0 0

5 5 1 38.72 45.72 0 0.993720 0.6 7.98 0 0 8.58

5 6 0.8 38.72 47.47 48.72 0.967072 0 5.28 0 1.14 6.42

5 1 0.7 59.86 59.86 0 0.967368 0.6 0 0 0 0.6

𝑆𝐿(𝐺) = 48.72, 𝐸dcrv(𝐺) = 96.35, 𝑅(𝐺) = 0.993746
the first two copies of the second task start at 14.22 (the communication 
time between 𝑡1 and 𝑡2 is 1), and the third copy still starts at 28.7. By 
doing so, the first two copies can be completed in advance. If there 
are no faults in these two copies, the execution time of the third copy 
will be shortened, thus saving more energy. If any fault occurs during 
the execution of the first two copies, the execution result of the third 
copy will be voted together with the first two copies. In this way, the 
application can still meet the deadline. Based on this idea, when no 
fault occurs, the scheduling results of the online energy management 
(OEM) are shown in Table 7.

As can be seen from Table 7, the execution time of the third copy 
becomes shorter except for the first task, so they consume less energy. 
Even if the third copy and other copies are assigned to the same type 
of core, it can still save energy when scheduling online. For example, 
two copies 𝑡3,2 and 𝑡3,3 of task 𝑡3 are assigned to the same type of cores 
(the third type of core, that is 𝑐𝑜𝑟𝑒5 and 𝑐𝑜𝑟𝑒6), the third copy 𝑡3,3
(assigned to 𝑐𝑜𝑟𝑒6) can still delay the start execution time to 27.27 and 
terminate at time 29.22. So the energy consumed by the copy 𝑡3,3 can 
be reduced from 10.22 to 1.65. Note that some copies may not need to 
be executed at all, for example, the copies 𝑡4,3 and 𝑡5,3 do not need to be 
executed. Finally, the dynamic energy consumption of the application 
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is 96.35, and the static energy consumption is 0.001 × 6 × 48.72 = 0.29. 
Therefore, the total energy consumption is 96.35 + 0.29 = 97.64, which 
is 52.00% of the IHEFT algorithm.

5. Experimental performance evaluation

5.1. Experimental parameters

We a use C++ program to simulate the proposed algorithms. The pa-

rameter values of the multi-core platform, power consumption of core, 
transient faults rate of core, and the WCET of a task on each core are 
taken from [4], [35], [36], and [37]. These parameters are shown in 
Table 8, where cores within the same group have the same parameters. 
During the experiment, we saved the core parameters, parallel applica-

tion DAG parameters, and the worst-case execution time of each task 
on each type of core to files separately, so that different algorithms are 
based on the same platform and parallel applications.

Since IHEFT does not adjust the execution frequency of the core and 
all copies of all tasks are completely executed, IHEFT is treated as the 
original TMR algorithm. Because no similar algorithm is found for par-

allel application on heterogeneous platforms with TMR, we compared 
our algorithms with a recently proposed AFTSA algorithm [14], which 
uses task replication techniques to maximize system reliability within a 

given deadline on heterogeneous platforms. To be fair, we consider the 
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Table 8

The value range of each experimental parameter.

Experimental parameters Value ranges

Number of groups |𝑆𝐺| 3

Number of cores 𝑛𝑠𝑔 within each group 4

Leakage power 𝑃𝑗,in [0.03, 0.07]

Switching capacitance 𝐶𝑗,sw [0.8, 1.2]

Dynamic energy exponent 𝑚𝑗 [2.5, 3.0]

Maximum frequency 𝑓𝑗,max 1.0 GHz

Precision of frequency adjustment 0.1 GHz

Communication energy consumption rate 𝑐𝑟 0.2 Watt

Transient faults rate per ms of 𝑐𝑜𝑟𝑒𝑗 execution 
with the maximum frequency

[0.000001, 0.000009]

Sensitivity fault rate 𝑑𝑗 to frequency scaling of 
𝑐𝑜𝑟𝑒𝑗

[1.0, 3.0]

WCET of task 𝑡𝑖 assigned to 𝑐𝑜𝑟𝑒𝑗 [10, 100] ms

Communication time between 𝑡𝑖 and 𝑡𝑗 [1, 10] ms

Execution results transmission (for voting) time 
𝑟𝑡𝑡𝑖,𝑘,𝑗

the maximum 
communication time 
between task 𝑡𝑖 and its 
direct successor

Reliability requirement of the application 𝐺 at least exceeds 0.99

fault detection overhead in AFTSA and the result comparison overhead 
in our experiments.

According to the overhead of fault detection for some benchmark 
applications in [26], the average time overhead of light fault detection 
(LFD) and heavy fault detection (HFD) mechanism is about 28% and 
85% of the application execution time, respectively. To obtain the time 
overhead for comparing execution results (CER) of different copies of 
a task, we measured the execution time and result comparison time 
for some benchmarks by using the 𝑐𝑙𝑜𝑐𝑘() function in C++. Table 9

shows that the comparison overhead of most applications is less than 
3%. Therefore, the overhead of LFD, HFD, and CER is set to 28%, 85%, 
and 3% of the task execution time, respectively. In addition, in order to 
reduce the energy consumption of AFTSA, we have made the following 
improvements.

(1) AFTSA improves reliability by increasing the number of copies of 
tasks. When the application’s reliability value reaches the requirements, 
we will not increase the number of copies of any task.

(2) When a copy of a task is completed and no fault is found after 
fault detection, the execution of other copies of this task is also termi-

nated immediately.

(3) If a task has only one copy, it will not be fault detected.

In experiments, AFTSA with LFD is called AFTSA-LFD and with HFD 
is called AFTSA-HFD.

Gaussian elimination and Fourier transform are used as the bench-

mark, which has been widely used in the field of parallel comput-

ing to evaluate the performance of algorithms [17][35][36][37]. To 
describe the number of tasks in applications, a parameter 𝜌 is intro-

duced. For Gaussian elimination applications, the total number of tasks 
is |𝑇 | = 𝜌2+𝜌−2

2 . Fig. 4 shows a Gaussian elimination application with 
𝜌 = 5. For Fourier transform applications, the total number of tasks is |𝑇 | = (2 × 𝜌 − 1) + 𝜌 × log2𝜌 with 𝜌 = 2𝑛, where 𝑛 is a positive integer. 
Fig. 5 shows a Fourier transform application with 𝜌 = 4.

5.2. Different deadline constraints of applications

Experiment 1: The small-scale, medium-scale, and large-scale Gaus-

sian applications are used to evaluate different algorithms. The value 𝜌
of these three sizes of applications is 16, 32, and 48, and the corre-

sponding task numbers of which are 135, 527, and 1175 respectively. 
The reliability requirement of the application is 0.995 and the values 
of slack ratio 𝑆𝑅 increase from 1.1 to 2.0 with 0.1 increments. Figs. 6

and 7 show the energy consumptions and actual reliabilities generated 
by different algorithms.

As shown in Fig. 6, as the increase of slack ratio 𝑆𝑅, the energy con-
11

sumptions generated by IHEFT, AFTSA-LFD, and AFTSA-HFD remain 
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Fig. 4. A Gaussian elimination application with 𝜌 = 5.

Fig. 5. A Fourier transform application with 𝜌 = 4.

unchanged, and the energy consumption generated by MEOTC and 
OEM algorithms is significantly reduced. When 𝑆𝑅 ≥ 1.3 the energy 
consumption generated by EET, MEOTC, and OEM is lower than that of 
AFTSA-LFD and AFTSA-HFD. Among the three algorithms EET, MEOTC, 
and OEM, OEM generates the lowest energy consumption and EET gen-

erates the highest energy consumption. In addition, when 𝑆𝑅 ≥ 1.3, the 
energy consumption generated by EET does not significantly change as 
𝑆𝑅 increases. Another interesting phenomenon in this experiment is 
that the energy consumption of IHEFT in Fig. 6 (a) is higher than that 
of AFTSA-HFD, while the energy consumption of the IHEFT algorithm 
in Fig. 6 (b) and (c) is lower than that of AFTSA-HFD. On average, 
the energy consumption generated by MEOTC and OEM is 79.0% and 
68.9% of AFTSA-LFD, and 56.8% and 49.5% of AFTSA-HFD.

Fig. 7 shows the reliability generated by different algorithms, where 
the reliability requirements are satisfied by all algorithms. IHEFT gen-

erates the highest reliability because it does not reduce the execution 
frequency. AFTSA-LFD and AFTSA-HFD generate almost the same re-

liability, and they are slightly higher than the reliability requirement. 
However, the reliabilities generated by EET, MEOTC, and OEM are sig-

nificantly higher than the reliability requirement when 𝑆𝑅 < 1.3. There 
is no significant difference in the reliability generated by all algorithms 
except IHEFT when 𝑆𝑅 > 1.4.

The main reasons for these results are as follows.

(1) When the reliability requirements of the application are satisfied, 
AFTSA-LFD and AFTSA-HFD will not increase the number of copies of 
any task, so the energy consumption generated by these two algorithms 
will not change with 𝑆𝑅.

(2) When 𝑆𝑅 is greater than 1.0, there will be a slack time that can 
be used to reduce the execution frequency of the copies. EET reduces 
the execution frequency as much as possible while meeting the deadline 
and satisfying the reliability requirement of the application. MEOTC 
can also reduce the execution frequency and terminate the third copy 

in advance, so MEOTC can also effectively reduce energy consumption.
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Table 9

Overhead of comparing execution results.

Benchmark Execution Time (ms) Comparison Time (ms) Overhead (%) Parameter Description

Qsort 90 2 2.2% 100000 elements of string type

Qsort 198 2 1.0% 1000000 elements of float type

Matrix Multiple 382 1 0.3% 500 × 500 elements of integer type

SusanCorners 192 2 1.0% image size 640*480

SusanEdges 504 2 0.4% image size 640*480

Fig. 6. The energy consumption generated by different algorithms.

Fig. 7. The actual reliability generated by different algorithms.
(3) EET tends to reduce the execution frequency of the copies, while 
MEOTC tends to delay the start time of the third copy and also reduces 
the execution frequency. When there are no transient faults in the first 
two copies of the task, MEOTC will terminate the execution of the third 
copy. Therefore, the energy consumption generated by MEOTC is lower 
than that of EET.

(4) When a task is completed ahead of schedule, OEM immediately 
executes the first two copies of the subsequent task, so that the third 
copy will be terminated earlier or the third copy does not need to be 
executed. Therefore, OEM consumes less energy than MEOTC.

(5) Due to the high fault detection overhead of the AFTSA-LFD and 
AFTSA-HFD algorithms and the fact that they do not use DVFS, these 
two algorithms generate high energy consumption.

(6) In IHEFT, even though each task has three copies to be executed, 
they have lower voting overhead. In AFTSA-HFD, the total number of 
copies of the task is less than IHEFT, but this algorithm has high fault 
detection overhead and the number of copies is related to the scale and 
12

reliability requirement of the application. For example, in Fig. 7 (a), 
the total number of tasks is 135, and there are 102 tasks that need to be 
replicated. The total number of tasks in Fig. 7 (b) is 527, and 499 tasks 
need to be replicated to satisfy the reliability requirement. Therefore, 
when the reliability requirement remains unchanged, as the applica-

tion scale increases, the energy consumption generated by AFTSA-HFD 
increases more than that of IHEFT.

(7) When the execution frequency is reduced, the reliability of the 
application will also be reduced. However, due to reliability constraints, 
although there is enough relaxation time, the execution frequency can-

not be reduced indefinitely. Therefore, the reliability change trend gen-

erated by each algorithm is not obvious when 𝑆𝑅 > 1.3.

Experiment 2: The small-scale, medium-scale, and large-scale 
Fourier applications are used to evaluate different algorithms. The value 
𝜌 of these three sizes of applications is 32, 64, and 128, and the corre-

sponding task numbers of which are 223, 511, and 1151 respectively. 
The reliability requirement of the application is 0.995 and the values 

of slack ratio 𝑆𝑅 increase from 1.0 to 2.0 with 0.1 increments. Figs. 8
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Fig. 8. The energy consumption generated by different algorithms.

Fig. 9. The actual reliability generated by different algorithms.
and 9 show the energy consumptions and actual reliabilities generated 
by different algorithms.

As shown in Fig. 8, the energy consumptions generated by EET, 
MEOTC, and OEM are lower than that of AFTSA-HFD and AFTSA-LFD 
when 𝑆𝑅 ≥ 1.2. Among the three algorithms of EET, MEOTC, and OEM, 
OEM generates the lowest energy consumption. On average, the energy 
consumption generated by MEOTC and OEM is 80.8% and 74.6% of 
AFTSA-LFD, and 64.9% and 59.9% of AFTSA-HFD.

As shown in Fig. 9, all algorithms can make the application sat-

isfy the reliability requirement. IHEFT generates the highest reliability, 
the reliability generated by the AFTSA-HFD and AFTSA-LFD remains 
unchanged and slightly higher than the reliability requirements. The 
reliability generated by EET, MEOTC, and OEM is significantly higher 
than the reliability requirement when 𝑆𝑅 < 1.4.

5.3. Different reliability requirements of applications

Experiment 3: The medium-scale Gaussian applications with 𝜌 =
32 (527 tasks) are used to evaluate different algorithms. The value of 
slack ratio 𝑆𝑅 = 1.5 and the reliability requirements of the application 
increase from 0.990 to 0.999 with 0.001 increments. Fig. 10 shows the 
results of different algorithms with different reliability requirements.

As shown in Fig. 10 (a), AFTSA-HFD generates the highest energy 
consumption, while OEM generates the lowest energy consumption. The 
energy consumption generated by MEOTC is higher than that of OEM 
but lower than that of other algorithms. With the improvement of re-

liability requirements, the energy consumption generated by IHEFT re-
13

mains unchanged, and the energy consumption generated by the other 
five algorithms is gradually increased. The main reason for this result is 
that with the improvement of reliability requirements, EET and MEOTC 
will run tasks at a higher frequency and AFTSA needs to assign more 
task copies. Therefore, the energy consumption of these algorithms will 
increase.

It should be noted that in Fig. 10 (a), a diagram OEM+ is added 
to indicate the energy consumption generated by OEM when the time 
overhead for comparing execution results of different copies of a task 
increases from 3% to 10%. At this time, the energy consumption gener-

ated by OEM is still the lowest.

As shown in Fig. 10 (b), all algorithms can make the application 
satisfy the reliability requirements.

5.4. Different platform scales

Experiment 4: This experiment evaluates the energy consumption 
and reliability of each algorithm on different platforms. The medium-

scale Fourier application with 𝜌 = 64 (511 tasks) is used in this ex-

periment, the reliability requirement of which is 0.995 and slack ratio 
𝑆𝑅 = 1.5. There are four different types of cores within the platform, 
which are divided into four groups and each group has the same core 
type. When the number of cores in each group is 4, 8, 16, and 32 (i.e., 
the total number of cores is 16, 32, 64, and 128 respectively), the en-

ergy consumption and actual reliability generated by each algorithm 
are shown in Fig. 11.

As shown in Fig. 11 (a), as the total number of core increases, the en-

ergy consumption generated by all algorithms will decrease. The main 

reason for this result is that as the number of cores in each group 
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Fig. 10. Results of different algorithms with different reliability requirements.

Fig. 11. Results of different algorithms with different numbers of cores.
increases, the communication energy consumption between tasks will 
decrease. Overall, AFTSA-HFD generates the highest energy consump-

tion, while OEM generates the lowest energy consumption.

The results of the above four experiments are summarized as fol-

lows.

• The TMR technique can also be applied to heterogeneous multi-

core real-time systems.

• When the cores support DVFS, with the application’s deadline in-

creasing, the energy consumption generated by the algorithms EET, 
MEOTC, and OEM will be significantly reduced.

• In cases where the deadline of the application is relatively relaxed, 
such as when 𝑆𝑅 > 1.3, MEOTC exhibits obvious advantages over 
both AFTSA-LFD and AFTSA-HFD. To ensure that the deadline con-

straint and reliability requirement of the application are met, the 
OEM algorithm based on MEOTC can be used in the actual environ-

ment. On average, the energy consumption generated by MEOTC 
and OEM is 80% and 72% of that of AFTSA-LFD, and 61% and 55% 
of that of AFTSA-HFD.

6. Conclusion

TMR technique can perfectly tolerate the faults in task execution, 
but the system energy consumption will increase dramatically due to 
multiple copies of execution. This paper studies the problem of mini-

mizing energy consumption for parallel applications on heterogeneous 
multi-core real-time systems with TMR. First, the IHEFT algorithm is 
designed to assign three copies of a task to different cores, and then 
according to the given application’s deadline, the EET algorithm is de-

signed to extend the execution time of the tasks, so as to reduce the 
execution frequency of copies. Based on the task assignment informa-
14

tion of IHEFT, the MEOTC algorithm is designed. Finally, considering 
the actual scenarios during task execution, an online energy manage-

ment method is proposed. Simulation results show that OEM based on 
MEOTC is more energy efficient than the original TMR method and the 
existing task replication algorithm AFTSA in most cases. We believe that 
the proposed algorithms can be applied to heterogeneous multi-core 
real-time systems with the TMR technique. In future work, we will dis-

cuss how to minimize energy consumption under the TMR mechanism 
in clusters where multiple cores share the same execution frequency 
while ensuring both the deadline and the reliability requirement of ap-

plications are met.
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