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A B S T R A C T

Reliability is a crucial index of the system, and many safety-critical applications have reliability requirements
and deadline constraints. In addition, in order to protect the environment and reduce system operating costs,
it is necessary to minimize energy consumption as much as possible. This paper considers parallel applications
on heterogeneous distributed systems and proposes two algorithms to minimize energy consumption for
meeting the deadline and satisfying the reliability requirement of the applications. The first algorithm is called
minimizing scheduling length while satisfying the reliability requirement (MSLSRR). It first transforms the
reliability requirement of the application into the reliability requirement of the task and then assigns the task
to the processor with the earliest finish time. Since the reliability generated by MSLSRR is often higher than the
reliability requirement of the application, and the scheduling length is also less than the deadline, an algorithm
called improving energy efficiency (IEE) is designed, which redefined the minimum reliability requirement for
the task and applied dynamic voltage and frequency scaling (DVFS) technique for energy conservation. The
proposed algorithms are compared with existing algorithms by using real parallel applications. Experimental
results demonstrate that the proposed algorithms consume the least energy.
1. Introduction

Heterogeneous distributed platforms are widely used in many fields
such as automotive electronics, medical health monitoring, and ware-
house logistics, among others. The execution efficiency of parallel ap-
plications on such platforms is closely related to task scheduling meth-
ods [1]. Therefore, in order to make the resources of heterogeneous
platforms more effectively utilized, scheduling algorithms that meet
special requirements should be developed. For many safety-critical
systems, the reliability and deadline requirements must be satisfied,
otherwise, it may lead to disastrous consequences [2]. The reliability of
an application (task) is defined as the probability that the application
(task) can be executed correctly [3]. There are many safety standards
for reliability, such as ISO 26262 and DO-178C [3]. For example, ISO
26262 introduces the concept of Exposure (E) to quantify the likelihood
that drivers or other road users may encounter hazardous events under
normal driving conditions and further categorizes exposure levels into
four distinct classifications: very low (E1), low (E2), medium (E3), and
high (E4). The reliability requirements corresponding to exposure levels
E1, E2, E3, and E4 are respectively at least 0.99, 0.99, 0.9, and lower
than or equal to 0.9 [3]. In general, enhancing the reliability of a system
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will also increase its energy consumption. For energy conservation
and environmental concerns, many systems use dynamic voltage and
frequency scaling (DVFS) techniques to reduce processor execution
frequency and thus reduce energy consumption [4–7]. However, pre-
vious studies have demonstrated that decreasing processor execution
frequency can negatively affect system reliability [2,8,9]. In addition,
reducing the processor execution frequency will increase the scheduling
length of the application, which may result in deadlines no longer
being met. Therefore, a tradeoff has to be made between the degree
of reliability, scheduling length, and energy consumption. Specifically,
in the system design phase, energy consumption should be minimized
while ensuring that both reliability and scheduling length requirements
are met.

From the perspective of system design, parallel applications are
composed of precedence-constrained tasks, which are typically mod-
eled as directed acyclic graphs (DAGs) [5,33,34]. Many energy-efficient
algorithms with DVFS techniques have been proposed for DAG-based
parallel applications on heterogeneous systems [5,35–37]. However,
these algorithms do not consider the application’s reliability require-
ments. While ensuring that the application satisfies the reliability re-
quirement, many researchers have designed algorithms to optimize
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Table 1
Review of relevant researches.

System Platform Reference Application Model Optimization Goal Constraint Fault-tolerant Technique

homogeneous
Haque et al. [9] periodic tasks energy reliability replication

Salehi et al. [10] DAG energy deadline and reliability N-modular redundancy

Wu et al. [11], Cui et al. [12] DAG energy deadline and reliability replication

heterogeneous

Huang et al. [13] DAG energy deadline and original reliability re-execution

Kumar et al. [14] periodic tasks energy reliability replication

Xie et al. [3] DAG resource reliability

Xu et al. [15], Ye et al. [16] DAG energy reliability

Xie et al. [17], Han et al. [18] DAG energy reliability replication

Xie et al. [19], Wang et al. [20] DAG redundancy reliability replication

Liu et al. [21], Mao et al. [22] DAG reliability deadline replication

Zhang et al. [23] DAG energy and reliability deadline

Huang et al. [24] DAG schedule length and energy reliability

Chen et al. [25] DAG schedule length energy

Zhang et al. [26] DAG reliability energy

Peng et al. [27] DAG schedule length and reliability energy

Tang et al. [28] DAG deadline miss ratio reliability and ECU cost replication

Han et al. [29], Kumar et al. [30] periodic tasks energy deadline and reliability replication

Zhao et al. [31] DAG resource deadline and reliability replication

Hu et al. [32] DAG energy deadline and reliability

Ours DAG energy deadline and reliability
system resource (energy) consumption [3,15,17]. However, these al-
gorithms do not consider the application’s deadline constraints.

At present, several approaches address both reliability requirements
and deadline constraints. For instance, there are methods to optimize
energy consumption for parallel applications on homogeneous plat-
forms [10–12], strategies to optimize energy consumption for periodic
tasks on heterogeneous platforms [29,30], as well as techniques to
optimize energy (resource) consumption for parallel applications on
heterogeneous platforms [31,32].

The problem addressed in this paper is akin to those studied in [31,
32], which reduces system energy consumption while meeting dead-
lines and satisfying the reliability requirements of the applications.
In [31], the author did not discuss using DVFS techniques to re-
duce energy consumption. In [32], the reliability requirements of the
application are transformed into the reliability requirements of the
task. However, the obtained reliability requirements of tasks are not
balanced, which does not effectively reduce the scheduling length
and save energy consumption. Therefore, this paper proposes several
algorithms to overcome these issues, which can further improve en-
ergy efficiency and meet relatively tight deadlines or relatively higher
reliability requirements compared to [31,32].

This paper focuses on task assignment during the system design
phase, and its main contributions are as follows:

(1) This paper transforms the reliability requirement of the appli-
cation into the reliability requirement of each task and proposes an
algorithm that minimizes the scheduling length while satisfying the
reliability requirement (MSLSRR) of the application.

(2) When the scheduling length obtained by the MSLSRR algorithm
is less than the application’s deadline, this paper designs an algorithm
to reassign processor and execution frequency for each task, which can
further reduce energy consumption while meeting the deadline and
reliability requirement.

(3) Experiments with real parallel applications are conducted in
different scenarios. Experimental results confirm that the proposed
algorithms consume less energy than other approaches.

2. Related work

In recent years, many researchers have studied scheduling problems
related to system energy consumption, scheduling length, and relia-
bility. They have explored different optimization problems based on
2

different system platforms, application models, and constraints, and
have achieved many excellent results. Table 1 reviews some research
related to this paper.

Haque et al. [9] introduced methods to obtain the degree of repli-
cation and the corresponding execution frequency for a set of periodic
tasks on multi-core platforms. Salehi et al. [10] proposed a two-phase
scheme for reducing system energy consumption under the n-modular
redundancy mechanism. In [11,12], the authors investigated methods
with task replication to improve energy efficiency while meeting the
application’s deadline and reliability requirement. However, the above
studies are all based on homogeneous platforms.

For heterogeneous platforms, many algorithms that optimize en-
ergy consumption (resource, or redundancy) while satisfying system
reliability requirements have also been investigated [3,15–20]. In [3],
the reliability requirement of the application is first transformed into
the reliability requirement of each task, and then the system resources
are minimized. In [15], the authors proposed two energy-efficient
scheduling approaches under reliability constraints. In [16], the au-
thors first decomposed the workflow reliability constraint into the
task sub-reliability constraint and then minimized the system energy
consumption. In [17,18], the authors adopted an active replication
method to meet the reliability requirement of the task. In [19], the
authors defined the concept of the reliability increment ratio and then
designed a redundancy minimization algorithm. In [20], the authors
introduced a fast task assignment approach to find the minimum redun-
dancy of parallel applications with reliability requirements. However,
these studies did not take into account the application’s deadline.
There are also some studies that optimize the reliability or energy con-
sumption of applications while considering deadline constraints [21–
23]. Some authors have also designed algorithms to minimize energy
consumption while meeting deadlines constraints and reliability re-
quirements [29–32]. Among them, [29,30] are based on periodic tasks,
while [31,32] are based on parallel applications. Furthermore, some
temperature-aware scheduling techniques have also been proposed,
such as FATS-2TC [38], RT-SEAT [39], and TMDS [40].

In recent years, the energy-efficient scheduling technique in standby-
sparing systems has attracted the attention of some researchers. The
standby-sparing is a special case of a heterogeneous system composed
of primary processors and spare processors. Niu et al. [41] proposed
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Fig. 1. Distributed system platform.

an energy-aware scheduling algorithm for periodic task sets on a
dual processor standby-sparing system. Zhang et al. [42] designed a
partitioning scheduling algorithm in which tasks requiring access to
shared resources are assigned to the primary processor, while tasks
with no resource requirements are assigned to the spare processor.
Safari et al. [43] introduced the low energy standby-sparing technique
in mixed-criticality systems. Zhang et al. [44] designed an energy-
aware scheduling algorithm for periodic real-time task sets with shared
resources on a standby-sparing system. These task allocation methods
based on standby-sparing systems have lower time complexity and
can achieve good results. However, these studies mainly focus on
independent tasks or mixed-criticality tasks, which is different from the
research in this paper.

The research in this paper is similar to [31,32], which minimize
energy consumption while meeting the deadline and reliability require-
ments of applications with precedence constraints. Compared to [31,
32], our proposed method consumes less energy while meeting the
relatively tighter deadline or higher reliability requirement.

3. System model and problem formulation

3.1. Heterogeneous system model

The heterogeneous distributed system studied in this work is com-
posed of 𝑚 DVFS-enabled processor nodes, which are represented by
a set as 𝑃𝑁 = {𝑝𝑛1, 𝑝𝑛2,… , 𝑝𝑛𝑚}. The system architecture is shown
in Fig. 1, where the processors are connected via a bus [17]. These
processor nodes can jointly execute parallel applications, and the exe-
cution results generated by any node can be transmitted to other nodes
as input. For example, when task 𝑡1 on processor 𝑝𝑛1 is completed, it
will send data (message) to its successor task 𝑡2 located in processor
𝑝𝑛6.

3.2. Application model

Parallel applications are composed of tasks constrained by prede-
cessors, which are typically modeled as directed acyclic graphs (DAGs).
Similar to [3,15,17,27,33,36], the parallel application is represented as
DAG 𝐴 = (𝑇 , 𝐶), where 𝑇 and 𝐶 are explicated as follows:

𝑇 = {𝑡1, 𝑡2,… , 𝑡𝑛} is a vertex set of DAG, which indicates that there
are 𝑛 tasks in parallel application 𝐴. 𝐶 is an edge set of DAG, which
indicates the data communication relationship between different tasks.
The value of 𝑐𝑖,𝑗 represents the time required for data transmission from
𝑡𝑖 to 𝑡𝑗 . If 𝑡𝑖 and 𝑡𝑗 are assigned to the different processors, then the data
transmission time is 𝑐𝑖,𝑗 . For conveniently describing the relationship
between tasks in a parallel application, the direct predecessor tasks of
𝑡𝑖 are denoted as 𝑝𝑟𝑒𝑑(𝑡𝑖), and the direct successor tasks of 𝑡𝑖 are denoted
as 𝑠𝑢𝑐𝑐(𝑡𝑖). Tasks without precursor tasks and successor tasks are called
𝑡entry and 𝑡exit , respectively. An example of a parallel application repre-
sented by DAG is shown in Fig. 2(a) [3,15,17,27,33,36], which consists
of ten tasks and fifteen data transmission edges. The edge 𝑐1,2 = 18
indicates that if 𝑡1 and 𝑡2 are assigned to the different processors, then
the data transmission time is 18; otherwise, the data transmission time
is 0.
3

Fig. 2. An example of a parallel application.

Table 2
Symbol definitions.

Symbol Definition

𝑐𝑖,𝑗 time required for data transmission from 𝑡𝑖 to 𝑡𝑗
𝑤𝑖,𝑗 worst case execution time of 𝑡𝑖 on 𝑝𝑛𝑘
𝐸d(𝑡𝑖 , 𝑝𝑛𝑘 , 𝑓𝑘,𝑙) dynamic energy consumption of 𝑡𝑖 on 𝑝𝑛𝑘 with

execution frequency 𝑓𝑘,𝑙
𝐸t (𝑡𝑖 , 𝑝𝑛𝑘) data transmission energy consumption of 𝑡𝑖 on 𝑝𝑛𝑘
𝐸dt (𝑡𝑖) sum of dynamic energy consumption and data

transmission energy consumption consumed by
task 𝑡𝑖

𝐸dt (𝐴) sum of dynamic energy consumption and data
transmission energy consumption consumed by
application 𝐴

𝐸s(𝐴) static energy consumption of application 𝐴
𝐸(𝐴) total energy consumption of application 𝐴
𝑅(𝑡𝑖) reliability of task 𝑡𝑖
𝑅req(𝑡𝑖) reliability requirement of task 𝑡𝑖
𝑅(𝐴) reliability of application 𝐴
𝑅req(𝐴) reliability requirement of application 𝐴
𝐸𝑆𝑇 (𝑡𝑖 , 𝑝𝑛𝑘) earliest start time of task 𝑡𝑖 on 𝑝𝑛𝑘
𝐸𝐹𝑇 (𝑡𝑖 , 𝑝𝑛𝑘) earliest finish time of task 𝑡𝑖 on 𝑝𝑛𝑘
𝐴𝐸𝑇 (𝑡𝑖 , 𝑝𝑛𝑘) available execution time of 𝑡𝑖 on 𝑝𝑛𝑘
𝑆𝑇 (𝑡𝑖 , 𝑝𝑛𝑘) actual start time of task 𝑡𝑖 on 𝑝𝑛𝑘
𝐹𝑇 (𝑡𝑖 , 𝑝𝑛𝑘) actual finish time of task 𝑡𝑖 on 𝑝𝑛𝑘
𝑆𝐿(𝐴) scheduling length (execution time) of application 𝐴

Because the processors in the system are heterogeneous, the re-
quired execution time of the same task on different processors may
be different. An 𝑛 × 𝑚 matrix is used to represent the worst-case
execution time (WCET) of each task execution on different processors
with maximum execution frequency [3,15,17,27,33,36]. 𝑤𝑖,𝑘 represents
the WCET of the task 𝑡𝑖 executes on processor 𝑝𝑛𝑘. The WCET of ten
tasks on three processors is shown in Fig. 2(b), where the WCET of 𝑡1
on 𝑝𝑛1, 𝑝𝑛2, and 𝑝𝑛3 is 14, 16, and 9, respectively.

Table 2 shows the symbol definitions used in this paper.

3.3. Energy consumption model

Based on [2,5,26,36,45], the power dissipation of the processor
operating at frequency 𝑓 is calculated as

𝑃 (𝑓 ) = 𝑃st + ℎ(𝑃in + 𝑃dy) = 𝑃st + ℎ(𝑃in + 𝐶sw𝑓
𝑎). (1)

In (1), 𝑃st and 𝑃in represent the static power and the leakage power
dissipation, respectively. 𝑃dy is the dynamic power dissipation, which
is related to the execution frequency of the processor. 𝐶sw is the
switching capacitance and 𝑎 indicates the dynamic energy exponent.
If the processor is running, ℎ = 1; otherwise, ℎ = 0.

As 𝑃st is always consumed [17], similar to [5,15,17,36], this work
focuses on optimizing dynamic energy consumption, but we still in-
clude static energy when calculating system energy consumption. Due
to the influence of 𝑃in, reducing the execution frequency will extend the
task execution time, thereby increasing static power consumption [46].
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Hence, the minimum energy-efficient frequency, known as the critical
frequency, can be calculated as [5,15,17,36]

𝑓critical =
𝑎

√

𝑃in
(𝑎 − 1)𝐶sw

. (2)

When the execution frequency is lower than 𝑓critical, the energy
consumption generated by the processor will actually increase. Because
the execution frequency of the processor can be dynamically adjusted
at runtime, assuming the available discrete execution frequency of
processor 𝑝𝑛𝑘 is {𝑓𝑘,min,⋯ , 𝑓𝑘,𝑙 , 𝑓𝑗,𝑙+1,⋯ , 𝑓𝑘,max}. When task 𝑡𝑖 executes
on processor 𝑝𝑛𝑘 with execution frequency 𝑓𝑘,𝑙, the dynamic energy
consumption 𝐸d(𝑡𝑖, 𝑝𝑛𝑘, 𝑓𝑘,𝑙) can be calculated by

𝐸d(𝑡𝑖, 𝑝𝑛𝑘, 𝑓𝑘,𝑙) = (𝑃𝑘,in + 𝐶𝑘,sw𝑓𝑘,𝑙
𝑎𝑘 ) ×𝑤𝑖,𝑘 ×

𝑓𝑘,max

𝑓𝑘,𝑙
. (3)

When the processor adjusts the voltage/frequency, there is a corre-
sponding switching overhead. According to [44,47], when the execu-
tion frequency of processor 𝑝𝑛𝑘 is adjusted from 𝑓𝑘,𝑖𝑛𝑖 to 𝑓𝑘,𝑔𝑜𝑎𝑙, the time
overhead can be represented as

𝑇𝑂(𝑝𝑛𝑘, 𝑓𝑘,𝑖𝑛𝑖, 𝑓𝑘,𝑔𝑜𝑎𝑙) = 𝛽𝑘 ⋅
|

|

|

𝑉𝑘,𝑔𝑜𝑎𝑙 − 𝑉𝑘,𝑖𝑛𝑖
|

|

|

, (4)

and the energy overhead can be represented as

𝐸𝑂(𝑝𝑛𝑘, 𝑓𝑘,𝑖𝑛𝑖, 𝑓𝑘,𝑔𝑜𝑎𝑙) = 𝜒𝑘 ⋅
|

|

|

𝑉 2
𝑘,𝑔𝑜𝑎𝑙 − 𝑉 2

𝑘,𝑖𝑛𝑖
|

|

|

, (5)

where 𝛽𝑘 and 𝜒𝑘 are constants, with 𝑉𝑘,𝑖𝑛𝑖 and 𝑉𝑘,𝑔𝑜𝑎𝑙 being the initial
voltage corresponding to 𝑓𝑘,𝑖𝑛𝑖 and the goal voltage corresponding
to 𝑓𝑘,𝑔𝑜𝑎𝑙, respectively. Therefore, when task 𝑡𝑖 is assigned to proces-
sor 𝑝𝑛𝑘 with execution frequency 𝑓𝑘,𝑙, the energy overhead of volt-
age/frequency switching can be represented as

𝐸sw(𝑡𝑖, 𝑝𝑛𝑘, 𝑓𝑘,𝑙) =

{

𝜒𝑘 ⋅
|

|

|

𝑉 2
𝑘,𝑙 − 𝑉 2

𝑘,𝑙0
|

|

|

𝑉𝑘,𝑙 ≠ 𝑉𝑘,𝑙0
0 𝑉𝑘,𝑙 = 𝑉𝑘,𝑙0

, (6)

where 𝑉𝑘,𝑙0 represents the voltage used by processor 𝑝𝑛𝑘 in its last
executed task.

Considering that different tasks may be executed on different pro-
cessors, the data transmission between two processors will consume
energy. Assuming that the data transmission energy consumption is
proportional to the transmission time, the energy consumption rate per
unit time is expressed as 𝑒𝑐𝑟 [3]. Therefore, when task 𝑡𝑖 executes on
processor 𝑝𝑛𝑘, the data transmission energy consumption is given by

𝐸t (𝑡𝑖, 𝑝𝑛𝑘) =
∑

𝑡𝑗∈𝑝𝑟𝑒𝑑(𝑡𝑖)
𝑒𝑐𝑟 × 𝑐′𝑗,𝑖. (7)

In Eq. (7), if the task 𝑡𝑖 and the direct predecessor task 𝑡𝑗 are
assigned to the same processor, then the value of 𝑐′𝑗,𝑖 is 0; otherwise
the value of 𝑐′𝑗,𝑖 is 𝑐𝑗,𝑖.

According to Eqs. (3), (6), and (7), when the task 𝑡𝑖 is assigned to a
processor, the sum of processor dynamic energy consumption and data
transmission energy consumption can be calculated by

𝐸dt (𝑡𝑖) = 𝐸d(𝑡𝑖, 𝑝𝑛𝑎𝑝(𝑖), 𝑓𝑎𝑝(𝑖),𝑎𝑓 (𝑖))

+ 𝐸sw(𝑡𝑖, 𝑝𝑛𝑎𝑝(𝑖), 𝑓𝑎𝑝(𝑖),𝑎𝑓 (𝑖))

+ 𝐸t (𝑡𝑖, 𝑝𝑛𝑎𝑝(𝑖)), (8)

where 𝑝𝑛𝑎𝑝(𝑖) and 𝑓𝑎𝑝(𝑖),𝑎𝑓 (𝑖) represent the assigned processor and corre-
ponding execution frequency of task 𝑡𝑖, respectively.

From the above analysis, when all tasks in application 𝐴 are as-
signed to the processor, the total dynamic energy consumption can be
calculated by

𝐸dt (𝐴) =
𝑛
∑

𝑖=1
𝐸dt (𝑡𝑖). (9)

The static energy consumption of application 𝐴 is denoted as 𝐸s(𝐴),
which can be calculated by

𝐸s(𝐴) =
𝑚
∑

𝑃𝑘,sta × 𝑆𝐿(𝐴), (10)
4

𝑗=1 𝐸
here 𝑆𝐿(𝐴) is the scheduling length of application 𝐴, which is the
time from the beginning of the first task execution to the completion
of the last task. According to Eqs. (9) and (10), the total energy
consumption of application 𝐴 can be given by

𝐸(𝐴) = 𝐸dt (𝐴) + 𝐸s(𝐴). (11)

.4. Reliability model

The faults might occur during the execution of an application,
hich can be divided into transient faults and permanent faults. Since

ransient faults occur more commonly than permanent faults [2,8], only
ransient faults are considered in this study. In general, the arrival of
ransient faults during task execution follows a Poisson distribution [2,
,8,17]. The reliability of an event within 𝑡 unit times is 𝑒−𝜆𝑡, where 𝜆
ndicates the transient failure rate per unit time of the processor [3].

hen task 𝑡𝑖 executes on processor 𝑝𝑛𝑘 with the maximum frequency,
he reliability of which is given by

(𝑡𝑖, 𝑝𝑛𝑘, 𝑓𝑘,max) = 𝑒−𝜆𝑘,max×𝑤𝑖,𝑘 , (12)

here 𝜆𝑘,max indicates the transient fault rate per unit time of processor
𝑛𝑘 execution with the maximum frequency.

According to [2,8,26,45], the transient faults rate 𝜆𝑘,𝑙 of the proces-
or 𝑝𝑛𝑘 with execution frequency 𝑓𝑘,𝑙 is given by

𝑘,𝑙 = 𝜆𝑘,max × 10
𝑑𝑘×(𝑓𝑘,max−𝑓𝑘,𝑙 )
𝑓𝑘,max−𝑓𝑘,min , (13)

where 𝑑𝑗 is the sensitivity fault rate to the corresponding execution
voltage and frequency scaling of the processor 𝑝𝑛𝑘, which is greater
than 0.

Based on Eqs. (12) and (13), when task 𝑡𝑖 is assigned to the processor
𝑝𝑛𝑘 with execution frequency 𝑓𝑘,𝑙, the reliability of task 𝑡𝑖 is given by

𝑅(𝑡𝑖) = 𝑅(𝑡𝑖, 𝑝𝑛𝑘, 𝑓𝑘,𝑙)

= 𝑒
−𝜆𝑘,max×10

𝑑𝑘×(𝑓𝑘,max−𝑓𝑘,𝑙 )
𝑓𝑘,max−𝑓𝑘,min ×

𝑤𝑖,𝑘×𝑓𝑘,max
𝑓𝑘,𝑙 . (14)

When all the tasks are assigned to the processor, the reliability of
the application is given by

𝑅(𝐴) =
𝑛
∏

𝑖=1
𝑅(𝑡𝑖, 𝑝𝑛𝑎𝑝(𝑖), 𝑓𝑎𝑝(𝑖),𝑎𝑓 (𝑖)). (15)

Based on Eq. (14), the obtainable maximum reliability of task 𝑡𝑖 can
e given by

max(𝑡𝑖) = max
𝑝𝑛𝑘∈𝑃𝑁

{𝑅(𝑡𝑖, 𝑝𝑛𝑘, 𝑓𝑘,max)}. (16)

If all the tasks are assigned with the obtainable maximum reliability,
he reliability of application 𝐴 will reach the maximum, which can be

calculated by

𝑅max(𝐴) =
𝑛
∏

𝑖=1
𝑅max(𝑡𝑖). (17)

.5. Problem description

Considering a parallel application 𝐴 execution on a heterogeneous
istributed system, the deadline and reliability requirements are 𝐷𝐿(𝐴)
nd 𝑅req(𝐴) ≤ 𝑅max(𝐴), respectively. The problem of this work is to
etermine the processor and frequency assignments for each task in

so that the total energy consumption can be minimized while the
eadline constraint and the reliability requirement of the application
re satisfied. We refer to this problem as the energy consumption opti-
ization problem under deadline and reliability constraints (ECODRC),

nd the formal description is to minimize

(𝐴) = 𝐸 (𝐴) + 𝐸 (𝐴) (18)
dt s
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subject to

𝑆𝐿(𝐴) <= 𝐷𝐿(𝐴), (19)

(𝐴) ≥ 𝑅req(𝐴), (20)

nd

𝑎𝑝(𝑖),min ≤ 𝑓𝑎𝑝(𝑖),𝑎𝑓 (𝑖) ≤ 𝑓𝑎𝑝(𝑖),max (21)

or all 𝑖: 1 ≤ 𝑖 ≤ 𝑛, 𝑝𝑛𝑎𝑝(𝑖) ∈ 𝑃𝑁 .

. The proposed algorithms

In this section, two algorithms are proposed to solve the ECODRC
roblem. The first algorithm aims to minimize the scheduling length
hile satisfying the reliability requirement (MSLSRR), the second al-
orithm mainly aims to further improve energy efficiency (IEE) with
VFS. The algorithms MSLSRR and IEE are introduced as follows.

.1. The MSLSRR algorithm

In order to introduce the design method of the MSLSRR algorithm,
e will explain three aspects: how to determine the priority of tasks,
ow to satisfy the reliability requirement, and how to minimize the
cheduling length.

.1.1. Priority of tasks
In order to ensure the order of the tasks during the scheduling

rocess, it is necessary to introduce the priority of tasks. Similar to [3,
7,33], the upward rank value is used to generate the task execution
equence, and the rank value is calculated as

𝑎𝑛𝑘(𝑡𝑖) = 𝑤𝑖 + max
𝑡𝑗∈𝑠𝑢𝑐𝑐(𝑡𝑖)

{𝑐𝑖,𝑗 + 𝑅𝑎𝑛𝑘(𝑡𝑗 )}. (22)

In Eq. (22), the 𝑤𝑖 is average WCET of task 𝑡𝑖 on each processor,
which can be calculated by

𝑤𝑖 =

( 𝑚
∑

𝑗=1
𝑤𝑖,𝑗

)

∕𝑚. (23)

The rank values of each task in the motivational parallel application
are shown in Fig. 2(b), tasks with greater rank values have higher
priority. Therefore, before the application is executed, we sort the task
in a non-increasing order of rank values, which can make the task
execution in the correct order. In the subsequent sections of this paper,
it is assumed that the tasks have been prioritized.

4.1.2. Satisfying reliability requirement
The use of the DVFS technique has a negative impact on the

reliability of tasks and also prolongs execution time, for this reason,
DVFS is not used in the MSLSRR algorithm. Because the reliability of
the application is determined by the reliability of all the tasks, the
reliability requirement of the application can be transferred into the
reliability requirement of each task. The main idea of the MSLSRR
algorithm is to determine a reliability requirement for each task, and
then assign it to the processor with the earliest finish time while
satisfying its reliability requirement.

To determine the reliability requirement of each task, we define
the reliability ratio 𝑅𝑟 as the ratio of the application’s reliability
requirement to the maximum reliability that can be achieved.

𝑅𝑟 =
𝑅req(𝐴)
𝑅max(𝐴)

. (24)

Obviously, 0 < 𝑅𝑟 ≤ 1, Eq. (24) can be decomposed into the
following form

𝑅 (𝐴) = 𝑅𝑟 × 𝑅 (𝑡 ) × 𝑅 (𝑡 ) ×⋯ × 𝑅 (𝑡 ). (25)
5

req max 1 max 2 max 𝑛 o
Similarly, 𝑅𝑟 can be decomposed into the following form

𝑅𝑟 = 𝑅𝑟
𝑟𝑤1
𝑆 × 𝑅𝑟

𝑟𝑤2
𝑆 ×⋯ × 𝑅𝑟

𝑟𝑤𝑛
𝑆 , (26)

where 𝑆 =
∑𝑛

𝑖=1 𝑟𝑤𝑖.
Based on Eqs. (25) and (26), we have

𝑅req(𝐴) =
𝑛
∏

𝑖=1
𝑅max(𝑡𝑖)𝑅𝑟

𝑟𝑤𝑖
𝑆 . (27)

Now, the reliability requirement of task 𝑡𝑖 is given by

𝑅req(𝑡𝑖) = 𝑅max(𝑡𝑖) × 𝑅𝑟
𝑟𝑤𝑖
𝑆 , (28)

From Eq. (28), it can be seen that the reliability requirements for
each task are different. Because the reliability of the task is related to
execution time, we can set lower reliability requirements for tasks with
long execution times. To do this, a simple idea is to make 𝑟𝑤𝑖 = 𝑤𝑖 (the
average WCET of task 𝑡𝑖 on each processor). However, when assigning
asks to processors, the actual reliability of the task may be much higher
han its reliability requirements because DVFS is not used. This will
esult in low reliability requirements for tasks assigned later, which
eans that the reliability requirements for tasks assigned earlier are

oo high. To overcome this deficiency, we introduce a compensation
equence 𝑆𝐸 as {𝑠𝑒1, 𝑠𝑒2,⋯ , 𝑠𝑒𝑛}, where 𝑠𝑒𝑖 = 𝑤𝑖. Then, we sort 𝑆𝐸

in non-ascending order and make 𝑟𝑤𝑖 = 𝑤𝑖 + 𝑠𝑒𝑖. Now, that is to give
a larger compensation to the early assigned tasks, while the later as-
signed tasks are only given a smaller compensation. This compensation
method is beneficial for reducing the reliability requirements of early
assigned tasks. In Eq. (28), 0 < 𝑅𝑟 ≤ 1, 𝑟𝑤𝑖 > 0, and 𝑆 =

∑𝑛
𝑖=1 𝑟𝑤𝑖,

o 𝑅req(𝑡𝑖) ≤ 𝑅max(𝑡𝑖). That is to say, the processor that satisfies the
eliability requirement of task 𝑡𝑖 can always be found. Therefore, the
eliability requirement of the applications can always be satisfied.

When assigning tasks to processors, let {𝑡1, 𝑡2,⋯ , 𝑡𝑖−1} represent the
reviously assigned tasks, 𝑡𝑖 represent the current task to be assigned,
nd {𝑡𝑖+1, 𝑡𝑖+2,⋯ , 𝑡𝑛} represent the tasks that have not been assigned.
he reliability requirement for the current task 𝑡𝑖 can be calculated as

req(𝑡𝑖) =
𝑅req(𝐴)

∏𝑖−1
𝑎=1 𝑅(𝑡𝑎) ×

∏𝑛
𝑏=𝑖+1 𝑅req(𝑡𝑏)

. (29)

In Eq. (29), the item ∏𝑖−1
𝑎=1 𝑅(𝑡𝑎) represents the reliability obtained from

the previously assigned 𝑖 − 1 tasks. The item ∏𝑛
𝑏=𝑖+1 𝑅req(𝑡𝑏) represents

the reliability requirement of 𝑛 − 𝑖 tasks that have not been assigned.

4.1.3. Minimizing scheduling length
The schedule length of parallel application 𝐴 is determined by the

finish time of the task. When parallel application 𝐴 is executed on
a heterogeneous system, the earliest start time (EST) and the earliest
finish time (EFT) of task 𝑡𝑖 on processor 𝑝𝑛𝑘 can be given by

⎧

⎪

⎨

⎪

⎩

𝐸𝑆𝑇 (𝑡entry , 𝑝𝑛𝑘) = 0

𝐸𝑆𝑇 (𝑡𝑖, 𝑝𝑛𝑘) = max

(

𝑒𝑎𝑡[𝑘],
max𝑡𝑗∈𝑝𝑟𝑒𝑑(𝑡𝑖){𝐸𝐹𝑇 (𝑡𝑗 , 𝑝𝑛𝑎𝑝(𝑗)) + 𝑐′𝑗,𝑖}

)

(30)

nd

𝐹𝑇 (𝑡𝑗 , 𝑝𝑛𝑎𝑝(𝑗)) = 𝐸𝑆𝑇 (𝑡𝑗 , 𝑝𝑛𝑎𝑝(𝑗)) +𝑤𝑗,𝑎𝑝(𝑗) (31)

n Eq. (30), 𝑒𝑎𝑡[𝑘] represents the earliest available time of processor 𝑝𝑛𝑘.
hen the task executed on processor 𝑝𝑛𝑘 is completed, the processor
ill become available. 𝑐′𝑗,𝑖 represents data transmission time. If task 𝑡𝑗

s not assigned to processor 𝑝𝑛𝑘, then 𝑐′𝑗,𝑖 = 𝑐𝑗,𝑖; otherwise, 𝑐′𝑗,𝑖 = 0.
n order to achieve a smaller scheduling length, this study assigns the
urrent task to the processor that can complete the task earliest while
eeting its reliability requirement. Finally, the scheduling length of the

pplication is given by

𝐿(𝐴) = max
1≤𝑖≤𝑛

𝐸𝐹𝑇 (𝑡𝑖, 𝑝𝑛𝑎𝑝(𝑖)). (32)

It should be noted that tasks can also be assigned to processors using

ther parameters such as the earliest start time, reliability metrics,
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or other relevant criteria. However, under common circumstances,
utilizing the earliest finish time for task allocation tends to yield rela-
tively shorter scheduling lengths. In Section 4.3, we present the results
obtained by different methods in allocating the parallel application
depicted in Fig. 2, where the scheduling lengths derived from applying
the earliest finish time, earliest start time, and reliability metrics are
respectively 80, 90, and 136. This clearly demonstrates that using the
earliest finish time as a parameter leads to a smaller scheduling length.

4.1.4. Proposed MSLSRR algorithm
Based on the aforementioned, the MSLSRR algorithm is designed as

shown in Algorithm 1.

Algorithm 1 MSLSRR
Input: 𝑃𝑁 = {𝑝𝑛1, 𝑝𝑛2, ..., 𝑝𝑛𝑚}, application 𝐴, 𝐷𝐿(𝐴), and 𝑅req(𝐴)
Output: 𝑅(𝐴), 𝑆𝐿(𝐴), and 𝐸(𝐴)
1: sort the tasks to ready queue 𝑞 by non-increasing order of 𝑅𝑎𝑛𝑘

value
2: while 𝑞 is not empty do
3: 𝑡𝑖 ← 𝑞.𝑜𝑢𝑡()
4: calculate 𝑅req(𝑡𝑖) using Eq. (29)
5: 𝑒𝑓𝑡 = +∞
6: for each processor 𝑝𝑛𝑘 ∈ 𝑃𝑁 do
7: calculate 𝑅(𝑡𝑖, 𝑝𝑛𝑘, 𝑓𝑘,max) using Eq. (12)
8: if 𝑅(𝑡𝑖, 𝑝𝑛𝑘, 𝑓𝑘,max) ≥ 𝑅req(𝑡𝑖) then
9: calculate 𝐸𝐹𝑇 (𝑡𝑖, 𝑝𝑛𝑘) using Eq. (31)

10: if 𝑒𝑓𝑡 > 𝐸𝐹𝑇 (𝑡𝑖, 𝑝𝑛𝑘) then
11: 𝑒𝑓𝑡 ← 𝐸𝐹𝑇 (𝑡𝑖, 𝑝𝑛𝑘)
12: 𝑢 ← 𝑘
13: end if
14: end if
15: end for
16: if 𝑒𝑓𝑡 > 𝐷𝐿(𝐴) then
17: return false
18: end if
19: assign task 𝑡𝑖 to processor 𝑝𝑛𝑢
20: end while
21: 𝑆𝐿(𝐴) = 𝑒𝑓𝑡
22: calculate 𝑅(𝐴) using Eq. (15)
23: calculate 𝐸(𝐴) using Eq. (11)

The details of MSLSRR are explained as follows.
(1) Line 1 sorts the tasks into the queue according to their priority.
(2) Lines 2–20 are a loop structure that assigns tasks to the appro-

riate processor.
(3) For each task, MSLSRR first calculates the reliability requirement

Line 4) and then assigns it to the processor that has the earliest finish
ime while satisfying the reliability requirements (Lines 6–19).

.1.5. Time complexity of MSLSRR
MSLSRR initially sorts tasks into queue 𝑞, which takes O(𝑛log𝑛)

ime. When assigning a task, MSLSRR needs to traverse all processors,
hich can be done in O(𝑚) time. For each processor, MSLSRR calculates

he earliest finish time for the task, which requires traversing all its
redecessor tasks, with a time complexity of O(𝑛). There are 𝑛 tasks that

need to be assigned, hence the time complexity of MSLSRR is O(𝑚×𝑛2),
which is equal to that of the HEFT algorithm [33].

4.2. The IEE algorithm

Because the MSLSRR algorithm does not use DVFS, the actual
reliability of the application may be higher than the reliability require-
ments. In addition, the scheduling length obtained by the MSLSRR
algorithm may also be less than the deadline. At this point, the IEE
algorithm attempts to adjust the processor and frequency combination
for executing tasks to improve energy efficiency.
6

m

4.2.1. Minimum reliability requirement
To ensure that the application still meets the reliability requirement

and deadline constraint, it is still necessary to calculate its minimum
reliability requirement and available execution time when assigning a
task. Assuming that after the completion of the MSLSRR algorithm, the
actual reliability of the application is 𝑅(𝐴), which is higher than the
reliability requirement 𝑅req(𝐴), i.e. 𝑅(𝐴) > 𝑅req(𝐴). In this case, the
reliability of the task can be appropriately reduced to further improve
energy efficiency.

To obtain the minimum reliability requirements of the tasks, similar
to Section 4.1.2, define a new reliability ratio 𝑁𝑟 as the ratio of the
application’s reliability requirement to the reliability obtained by the
MSLSRR algorithm.

𝑁𝑟 =
𝑅req(𝐴)
𝑅(𝐴)

(33)

In the IEE algorithm, we still use a method similar to that in
Section 4.1.2, the minimum reliability requirement of task 𝑡𝑖 is given
by

𝑅minreq(𝑡𝑖) = 𝑅(𝑡𝑖) ×𝑁𝑟
𝑟𝑤𝑖
𝑆 , (34)

where 𝑆 =
∑𝑛

𝑖=1 𝑟𝑤𝑖 with 𝑟𝑤𝑖 = 𝑤𝑖 + 𝑠𝑒𝑖. Unlike the MSLSRR algorithm,
he compensation sequence 𝑆𝐸 in the IEE algorithm is arranged in a
on-descending order.

When adjusting the processor and execution frequency of the task
sing the upward method, the minimum reliability requirement of the
urrent task 𝑡𝑖 is calculated as

minreq(𝑡𝑖) =
𝑅req(𝐴)

∏𝑖−1
𝑎=1 𝑅new(𝑡𝑎) ×

∏𝑛
𝑏=𝑖+1 𝑅minreq(𝑡𝑏)

. (35)

In Eq. (35), the item ∏𝑖−1
𝑎=1 𝑅new(𝑡𝑎) represents the new reliability

btained by 𝑖 − 1 tasks that have been reassigned. The item ∏𝑛
𝑏=𝑖+1

minreq(𝑡𝑏) represents the minimum reliability requirement of 𝑛− 𝑖 tasks
hat have not been reassigned.

It should be noted that the actual reliability of the task will slightly
xceed the reliability requirement when using DVFS. Therefore, we
till use compensation sequences in the IEE algorithm to recalculate
he reliability requirement of the task. In this way, the new reliability
equirement of the task will not be too high or too low, so that all
asks have the opportunity to choose processors with lower energy
onsumption for execution.

.2.2. Available execution time
If the scheduling length obtained by the MSLSRR algorithm is less

han the deadline, there is a slack time between consecutive tasks. The
lack time can be used to reassign processor and execution frequency
or tasks, thereby improving energy efficiency. Before using slack time,
e first employ the upward (i.e., from 𝑡exit to 𝑡entry [36]) method to

adjust the execution time of all tasks.
After tasks are assigned by MSLSRR, for any task 𝑡𝑖, its start time

is represented as 𝑆𝑇 (𝑡𝑖, 𝑝𝑛𝑎𝑝(𝑖)), and its finish time is represented as
𝑇 (𝑡𝑖, 𝑝𝑛𝑎𝑝(𝑖)), respectively. Thus, the execution time of task 𝑡𝑖 is given
y

𝑇 (𝑡𝑖) = 𝐹𝑇 (𝑡𝑖, 𝑝𝑛𝑎𝑝(𝑖)) − 𝑆𝑇 (𝑡𝑖, 𝑝𝑛𝑎𝑝(𝑖)). (36)

e adjust the finish time of task 𝑡𝑖 to its latest finish time 𝐿𝐹𝑇 (𝑡𝑖, 𝑝𝑛𝑎𝑝(𝑖)),
hich can be calculated by

⎧

⎪

⎨

⎪

⎩

𝐿𝐹𝑇 (𝑡exit , 𝑝𝑛𝑘) = 𝑆𝐿MSLSRR(𝐴)

𝐿𝐹𝑇 (𝑡𝑖, 𝑝𝑛𝑘) = min

(

min𝑡𝑗∈𝑠𝑢𝑐𝑐(𝑡𝑖)
{

𝑆𝑇 (𝑡𝑗 , 𝑝𝑛𝑎𝑝(𝑗)) − 𝑐′𝑖,𝑗
}

,

min𝑗>𝑖,𝑎𝑝(𝑗)=𝑘
{

𝑆𝑇 (𝑡𝑗 , 𝑝𝑛𝑎𝑝(𝑗))
}

)

,

(37)

here 𝑆𝐿MSLSRR(𝐴) represents the scheduling length obtained by the
SLSRR algorithm. Since the processor associated with the task re-

ains unchanged, it is easy to calculate the start time of the task, which
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is the finish time minus the execution time. According to Eq. (37), after
adjusting the start time and finish time of tasks, the scheduling length
of the application will still not exceed 𝑆𝐿MSLSRR(𝐴).

The following introduces how to utilize slack time. To make good
use of slack time, we first introduce the slack ratio 𝑆𝑟, then apply 𝑆𝑟
to distribute slack time to each task, and finally reassign tasks to the
processor while meeting time constraints and reliability requirements.
The slack ratio 𝑆𝑟 is defined as the ratio of the deadline (𝐷𝐿(𝐴)) to the
scheduling length (𝑆𝐿MSLSRR(𝐴)) obtained by the MSLSRR algorithm,
which is expressed as

𝑆𝑟 =
𝐷𝐿(𝐴)

𝑆𝐿MSLSRR(𝐴)
. (38)

If the start time of all tasks are extended by 𝑆𝑟 times, the application
can still meet the deadline. The extended start time and finish time are

𝑆𝑇 (𝑡𝑖, 𝑝𝑛𝑎𝑝(𝑖)) = 𝑆𝑟 × 𝑆𝑇 (𝑡𝑖, 𝑝𝑛𝑎𝑝(𝑖)) (39)

and

𝐹𝑇 (𝑡𝑖, 𝑝𝑛𝑎𝑝(𝑖)) = 𝑆𝑇 (𝑡𝑖, 𝑝𝑛𝑎𝑝(𝑖)) + 𝐸𝑇 (𝑡𝑖), (40)

respectively. When the IEE algorithm reassigns a task, it is assumed
that all other tasks have been assigned. If task 𝑡𝑖 is reassigned to
processor 𝑝𝑛𝑘, the earliest start time 𝐸𝑆𝑇 (𝑡𝑖, 𝑝𝑛𝑘) can still be calculated
y Eq. (30). Simultaneously, by replacing ‘𝑆𝐿MSLSRR(𝐴)’ with ‘𝐷𝐿(𝐴)’
n Eq. (37), the latest finish time 𝐿𝐹𝑇 (𝑡𝑖, 𝑝𝑛𝑘) can also be obtained.

When task 𝑡𝑖 is completed before time 𝐿𝐹𝑇 (𝑡𝑖, 𝑝𝑛𝑘), it will not affect
he execution time of subsequent tasks, which will ensure that the
pplication’s deadline is met. Therefore, the available execution time
AET) of task 𝑡𝑖 on processor 𝑝𝑛𝑘 is given by

𝐸𝑇 (𝑡𝑖, 𝑝𝑛𝑘) = 𝐿𝐹𝑇 (𝑡𝑖, 𝑝𝑛𝑘) − 𝐸𝑆𝑇 (𝑡𝑖, 𝑝𝑛𝑘). (41)

If 𝐴𝐸𝑇 (𝑡𝑖, 𝑝𝑛𝑘) −𝑇𝑂(𝑝𝑛𝑘, 𝑓𝑘,𝑙0 , 𝑓𝑘,𝑙) ≥ 𝑤𝑖,𝑘 ×
𝑓𝑘,max
𝑓𝑘,𝑙

, then task 𝑡𝑖 can be
xecuted on processor 𝑝𝑛𝑘 with execution frequency 𝑓𝑘,𝑙, and its start
ime and finish time are calculated as

𝑇 (𝑡𝑖, 𝑝𝑛𝑘) = 𝐸𝑆𝑇 (𝑡𝑖, 𝑝𝑛𝑘) + 𝑇𝑂(𝑝𝑛𝑘, 𝑓𝑘,𝑙0 , 𝑓𝑘,𝑙), (42)

and

𝐹𝑇 (𝑡𝑖, 𝑝𝑛𝑘) = 𝑆𝑇 (𝑡𝑖, 𝑝𝑛𝑘) +𝑤𝑖,𝑘 ×
𝑓𝑘,max

𝑓𝑘,𝑙
, (43)

respectively. Finally, the scheduling length generated by the IEE algo-
rithm can be obtained by

𝑆𝐿′(𝐴) = max
1≤𝑖≤𝑛

𝐹𝑇 (𝑡𝑖, 𝑝𝑛𝑎𝑝(𝑖)). (44)

4.2.3. Proposed IEE algorithm
Based on the aforementioned, the IEE algorithm is proposed as

shown in Algorithm 2.
The main ideas of the IEE algorithm are as follows.
IEE first obtains the latest finish time and start time for tasks in

upward order, then calculates the extended start time and finish time
for each task, and finally assigns tasks to processors in downward
order while setting their respective execution frequencies. For each
task 𝑡𝑖, IEE first calculates its minimum reliability requirement and
available execution time and then assigns the task to the processor
with the minimum energy consumption while satisfying the reliability
requirement and meeting the deadline. The details of the main idea are
explained as follows.

(1) Line 1 sorts the tasks to list 𝑞.
(2) Line 2 calculates the latest finish time and start time for tasks

in upward order.
(3) Line 3 calculates the extended start time and finish time for each

task.
(4) Lines 5–24 constitute a nested loop, in which IEE reassigns

processor and execution frequency for each task.
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Algorithm 2 IEE
Input: 𝑃𝑁 = {𝑝𝑛1, 𝑝𝑛2, ..., 𝑝𝑛𝑚}, application 𝐴, 𝐷𝐿(𝐴), 𝑅req(𝐴), and task

assignment results of the MSLSRR algorithm
utput: 𝑅(𝐴), 𝑆𝐿(𝐴), and 𝐸(𝐴)

1: sort the tasks to list 𝑞 by non-increasing order of Rank value
2: from 𝑡𝑛 to 𝑡1, set each task’s finish time to its latest finish time based

on Eq. (37), and assign the corresponding start times
3: for each task 𝑡𝑖, calculate extended start time and finish time by

Eqs. (39) and (40)
4: define an array 𝑓𝑟 to record the frequency at which processors

execute their previous tasks, initializing all values within 𝑓𝑟 to the
maximum frequency.

5: for each task 𝑡𝑖 in 𝑞 (from 𝑡1 to 𝑡𝑛) do
6: calculate 𝑅minreq(𝑡𝑖) using Eq. (35)
7: 𝑒 = +∞
8: for each processor 𝑝𝑛𝑘 ∈ 𝑃𝑁 do
9: for execution frequency 𝑓𝑘,𝑙 ← 𝑓𝑘,min to 𝑓𝑘,max do
0: calculate 𝑅(𝑡𝑖, 𝑝𝑛𝑘, 𝑓𝑘,𝑙) using Eq. (14)
1: calculate 𝐴𝐸𝑇 (𝑡𝑖, 𝑝𝑛𝑘) using Eq. (41)
2: if 𝑅(𝑡𝑖, 𝑝𝑛𝑘, 𝑓𝑘,𝑙) ≥ 𝑅minreq(𝑡𝑖) and 𝐴𝐸𝑇 (𝑡𝑖, 𝑝𝑛𝑘) −

𝑇𝑂(𝑝𝑛𝑘, 𝑓𝑟[𝑘], 𝑓𝑘,𝑙) ≥ 𝑤𝑖,𝑘 ×
𝑓𝑘,max
𝑓𝑘,𝑙

then
3: calculate 𝐸dt (𝑡𝑖) using Eq. (8)
4: if 𝑒 > 𝐸dt (𝑡𝑖) then
5: 𝑒 ← 𝐸dt (𝑡𝑖)
6: 𝑢 ← 𝑘 and 𝑣 ← 𝑙
7: end if
8: end if
9: end for
0: end for
1: assign task 𝑡𝑖 to processor 𝑝𝑛𝑢 with execution frequency 𝑓𝑢,𝑣
2: 𝑓𝑟[𝑢] ← 𝑓𝑢,𝑣
3: use Eqs. (42) and (43) to set the start time and finish time for

task 𝑡𝑖, respectively.
4: end for
5: calculate 𝑅(𝐴) using Eq. (15)
6: calculate 𝐸(𝐴) using Eq. (11)

(5) Line 6 calculates the minimum reliability requirement of the
task.

(6) Lines 8–20 traverse all processors and execution frequencies to
search for the processor and frequency combination with the lowest
energy consumption, which satisfies the reliability requirement and
meets the deadline of the task.

(7) Line 21 assigns a task to the selected processor and sets the
execution frequency.

(8) Lines 22–23 update array 𝑓𝑟 as well as the start and finish times
f the tasks.

.2.4. Time complexity of IEE
In Line 1, IEE sorts the tasks into list 𝑞, with a time complexity of

(𝑛log𝑛). In Line 2, IEE calculates the latest finish time and start time
f tasks. For each task, IEE needs to traverse all its direct successor
asks. Therefore, the time complexity of Line 2 is O(𝑛2). Lines 3–4 can
e completed in O(𝑛) time. IEE then needs to traverse all processors
nd execution frequencies when assigning a task, which can be done
n O(𝑚 × 𝑓𝑙𝑠) time, where 𝑓𝑙𝑠 represents the maximum number of
iscrete frequency levels of the processor. For each task, IEE calculates
he earliest start time and latest finish time, which requires traversing
ll predecessor tasks and all successor tasks separately, so its time
omplexity is O(𝑛). There are 𝑛 tasks that need to be assigned, hence

2
he time complexity of IEE is O(𝑚 × 𝑛 × 𝑓𝑙𝑠).
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Table 3
Parameters for three processors.
𝑝𝑛𝑘 𝑃𝑘,st 𝑃𝑘,in 𝐶𝑘,sw 𝑎𝑘 𝜆𝑘,max 𝑑𝑘
𝑝𝑛1 0.01 0.03 1.2 2.8 0.0003 1.4
𝑝𝑛2 0.01 0.05 1.0 2.7 0.0002 1.6
𝑝𝑛3 0.01 0.07 1.1 2.6 0.0001 1.8

Table 4
The results of the MSLSRR algorithm.
𝑡𝑖 𝑅(𝑡𝑖) 𝑝𝑛𝑘 EF ST FT 𝐸d(𝑡𝑖) 𝐸t (𝑡𝑖) 𝐸dt (𝑡𝑖)

𝑡1 0.9991004 3 1 0 9 10.53 0 10.53
𝑡3 0.9981018 3 1 9 28 22.23 0 22.23
𝑡4 0.9984013 2 1 18 26 8.4 1.8 10.2
𝑡2 0.9961076 1 1 27 40 15.99 3.6 19.59
𝑡5 0.9990005 3 1 28 38 11.7 0 11.7
𝑡6 0.9968051 2 1 26 42 16.8 2.8 19.6
𝑡9 0.9976029 2 1 56 68 12.6 5.8 18.4
𝑡7 0.9989006 3 1 38 49 12.87 0 12.87
𝑡8 0.9985011 1 1 57 62 6.15 8.4 14.55
𝑡10 0.9986010 2 1 73 80 7.35 5.6 12.95

𝑅(𝐴) = 0.98127749, 𝐸dt (𝐴) = 152.62, 𝑆𝐿(𝐴) = 80

Table 5
The results of the IEE algorithm.
𝑡𝑖 𝑅(𝑡𝑖) 𝑝𝑛𝑘 EF ST FT 𝐸d(𝑡𝑖) 𝐸sw(𝑡𝑖) 𝐸t (𝑡𝑖) 𝐸dt (𝑡𝑖)

𝑡1 0.9981939 3 0.9 0.07 10.07 9.06 0.03 0 9.09
𝑡3 0.9961909 3 0.9 10.07 31.19 19.14 0 0 19.14
𝑡4 0.9942861 2 0.8 19.22 29.22 5.97 0.05 1.8 7.83
𝑡2 0.9931557 1 0.9 28.15 42.59 13.34 0.03 3.6 16.97
𝑡5 0.9959233 3 0.8 31.26 43.76 8.57 0.02 0 8.6
𝑡6 0.9931557 1 0.9 42.59 57.04 13.34 0 2.8 16.14
𝑡9 0.9954964 2 0.9 58.67 72 10.7 0.02 5.8 16.52
𝑡7 0.9977929 3 0.9 43.83 56.06 11.08 0.02 0 11.1
𝑡8 0.9973620 1 0.9 57.04 62.59 5.13 0 5.4 10.53
𝑡10 0.9986010 2 1.0 73.67 80.67 7.35 0.03 5.6 12.98

𝑅(𝐴) = 0.96084714, 𝐸dt (𝐴) = 128.88, 𝑆𝐿(𝐴) = 80.67

4.3. Case study

In the motivational example, we assume that the power dissipation
and reliability parameters for all processors are known and shown
in Table 3, where the maximum execution frequency 𝑓𝑘,max of each
processor are normalized to 1.0. Given that the execution frequency
is proportional to the voltage, and the voltages corresponding to the
minimum and maximum frequencies are 1.2 V and 3.8 V, respectively.
The frequency switching constants are 𝛽𝑘 = 0.2 and 𝜒𝑘 = 0.01, which
are consistent with the processor frequency switching scenario [47].
It should be noted that the time unit and energy unit corresponding
to these parameters are milliseconds and millijoules, respectively. The
communication energy consumption rate 𝑒𝑐𝑟 is 0.2. The maximum
reliability of the application is 0.9860975, which can be obtained by
Eq. (17). The given reliability requirement for the application is 0.96,
and the deadline is 90.

Table 4 shows the results of the motivation application using the
MSLSRR algorithm, where 𝑅(𝑡𝑖), EF, ST, and FT represent actual relia-
bility, execution frequency, start time, and finish time, respectively. The
MSLSRR algorithm has calculated the energy consumption of the pro-
cessor and the data transmission energy consumption of the network.
Finally, the actual reliability of the application is 𝑅(𝐴) = 0.98127749,
the scheduling length is 80, and the total amount of energy consump-
tion is 𝐸(𝐴) = 𝐸dt (𝐴)+𝐸s(𝐴) = 152.62+(0.01×3×80) = 155.02. It should
be noted that when the reliability requirements of the application are
not too high, the scheduling length generated by MSLSRR is the same
as that of HEFT.

Table 5 shows the results of the IEE algorithm, where task 𝑡6 is
reassigned to processor 𝑝𝑛1, and the execution frequency of tasks 𝑡1 to
𝑡 is reduced. Finally, the reliability and scheduling length constraints
8
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Table 6
The results of the earliest start time algorithm.
𝑡𝑖 𝑅(𝑡𝑖) 𝑝𝑛𝑘 EF ST FT 𝐸d(𝑡𝑖) 𝐸t (𝑡𝑖) 𝐸dt (𝑡𝑖)

𝑡1 0.9968051 2 1 0 16 16.8 0 16.8
𝑡3 0.9974034 2 1 16 29 13.65 0 13.65
𝑡4 0.9961076 1 1 25 38 15.99 1.8 17.79
𝑡2 0.9962072 2 1 29 48 19.95 0 19.95
𝑡5 0.9990005 3 1 27 37 11.7 2.2 13.9
𝑡6 0.9991004 3 1 37 46 10.53 2.8 13.33
𝑡9 0.9976029 2 1 61 73 12.6 7.2 19.8
𝑡7 0.9979022 1 1 52 59 8.61 4.6 13.21
𝑡8 0.9985011 1 1 67 72 6.15 6.8 12.95
𝑡10 0.9986001 2 1 83 90 7.35 5.6 12.95

𝑅(𝐴) = 0.97745796, 𝐸dt (𝐴) = 154.33, 𝑆𝐿(𝐴) = 90

Table 7
The results of the reliability metrics algorithm.
𝑡𝑖 𝑅(𝑡𝑖) 𝑝𝑛𝑘 EF ST FT 𝐸d(𝑡𝑖) 𝐸t (𝑡𝑖) 𝐸dt (𝑡𝑖)

𝑡1 0.9968051 2 1 0 16 16.8 0 16.8
𝑡3 0.9967054 1 1 28 39 13.53 2.4 15.93
𝑡4 0.9961076 1 1 39 52 15.99 1.8 17.79
𝑡2 0.9961076 1 1 52 65 15.99 3.6 19.59
𝑡5 0.9964065 1 1 65 77 14.76 2.2 16.96
𝑡6 0.9961076 1 1 77 90 15.99 2.8 18.79
𝑡9 0.9976029 2 1 90 102 12.6 10.4 23
𝑡7 0.9979022 1 1 90 97 8.61 0 8.61
𝑡8 0.9985011 1 1 97 102 6.15 0 6.15
𝑡10 0.9937198 1 1 115 136 25.83 2.6 28.43

𝑅(𝐴) = 0.96647485, 𝐸dt (𝐴) = 172.05, 𝑆𝐿(𝐴) = 136

of the application are satisfied, which are 𝑅(𝐴) = 0.96084714 and
𝑆𝐿(𝐴) = 80.67, respectively. The total amount of energy consumption
is 𝐸(𝐴) = 𝐸dt (𝐴) +𝐸s(𝐴) = 128.88 + (0.01 × 3 × 80.67) = 131.30, which is
4.7% of the MSLSRR algorithm.

Table 6 shows the results of tasks assigned to processors with
he earliest start times while satisfying their reliability requirements,
here the reliability requirements for these tasks are derived from the
SLSRR algorithm.

Table 7 shows the results of assigning tasks to processors that satisfy
eliability requirements, where the reliability requirement for tasks is
iven by 𝑛

√

𝑅req(𝐴).

.4. Implementation issues

The findings from our research can be practically implemented
n distributed heterogeneous system platforms, where processors are
onnected via the same communication bus, such as controller area
etworks. For optimal deployment, it is imperative that the processors
n the platform support DVFS techniques, with their discrete execution
requency levels being accessible. Moreover, the transient fault rate of
he processor is explicitly defined, so that our proposed algorithm can
e applied and seamlessly integrated into the existing system through
he following reference deployment methodology:

(1) Before the application starts, a specific processor and its cor-
esponding frequency level should be associated with each task or
pplication module based on the scheduling results.

(2) A dedicated software module is needed that can communicate
ith the power management unit to adjust or fine-tune the voltage and

requency during the runtime.
(3) A system call will be needed during the runtime to use the soft-

are module to set the desired voltage and frequency before executing
ach task.

Additionally, attention is needed to the order of processor voltage
nd frequency adjustment. If the frequency needs to be lowered, it is
mportant to first decrease the frequency and subsequently lower the
oltage. Conversely, if the frequency needs to be raised, the voltage
hould be raised first, followed by the frequency adjustment.
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Fig. 3. Examples of GE and FT.

5. Experimental performance evaluation

5.1. Experimental parameters

The proposed algorithms are intended for execution in heteroge-
neous computing environments, where the scheduled applications do
not compete for processor cycles with other regular tasks. To simu-
late accurately and comprehensively the algorithms’ performance and
adaptability, this simulation is carefully designed to reflect the com-
plexities of real-world computing systems as closely as possible. In
particular, we utilize three shared files in the simulation: the Parallel
Application file, the Processor Parameters file, and the Worst-Case
Execution Time file. By leveraging these shared files, the algorithms can
always access a consistent and comprehensive dataset, ensuring that the
simulation results are reliable. The experimental parameters are mainly
taken from [3,5,17] and listed as follows:

(1) Parallel applications: The WCET of task 𝑡𝑖 on processor 𝑝𝑛𝑘 is
10 ms ≤ 𝑤𝑖,𝑘 ≤ 100 ms, and the required data transmission time
between 𝑡𝑖 and 𝑡𝑗 is 10 ms ≤ 𝑐𝑖,𝑗 ≤ 100 ms.

(2) Processors: The static power, leakage power, switching capac-
itance, dynamic energy exponent, and the maximum frequency of
processor 𝑝𝑛𝑘 are 𝑃𝑘,sta = 0.01, 0.03 ≤ 𝑃𝑘,ind ≤ 0.07, 0.8 ≤ 𝐶𝑘,swi ≤ 1.2,
and 2.5 ≤ 𝑎𝑘 ≤ 3.0, respectively. For processor 𝑝𝑛𝑘, the maximum
frequency is 𝑓𝑘,max = 1.0 GHz and the difference between adjacent
frequency levels is 0.1 GHz. These parameter values basically simulate
the characteristics of some high-performance processors, such as ARM
Cortex-A9 and Intel Mobile Pentium III [5].

(3) Reliabilities: The transient fault rate of processor 𝑝𝑛𝑘 is 0.000001
≤ 𝜆𝑗,max ≤ 0.000009, and the sensitivity faults rate of voltage/frequency
scaling is 1.0 ≤ 𝑑𝑘 ≤ 3.0.

(4) The data transmission energy consumption rate is 𝑒𝑐𝑟 = 0.2 Watt.
(5) Similar to [3], a simulated heterogeneous platform with 32

processors is constructed to execute parallel applications.
The algorithm in [31] that considers Deadline constraints based on

the least Resources to meet the Reliability requirement (DRR), and the
DVFS technique on the Task level (DVFS-T) as described in [32], both
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aim to reduce energy consumption while meeting deadlines and satisfy-
ing the reliability requirements of the applications. Consequently, these
two algorithms were used as benchmarks to evaluate our proposed
algorithms. In the experiments, our proposed algorithm is called the
MSLSRR-IEE algorithm, which first executes MSLSRR and then IEE. In
addition, to ensure that the reliability requirements are not higher than
the highest reliability that the application can achieve, the reliability
ratio 𝑅𝑟 is used to describe the reliability requirements (see Eq. (24),
𝑅𝑟 =

𝑅req(𝐴)
𝑅max(𝐴)

), and the slack ratio 𝑆𝑟 is also used to describe the
deadline constraints (see Eq. (38), 𝑆𝑟 = 𝐷𝐿(𝐴)

𝑆𝐿MSLSRR(𝐴)
).

It should be noted that, in the experiment, the reliability parameters
corresponding to the ISO 26262 standard mentioned in the introduction
were not directly adopted but instead replaced by 𝑅𝑟 for the following
reasons:

(1) The parameter 𝑅𝑟 can reflect all the reliability levels that
the application can achieve, and it can also prevent specifying reli-
ability requirements that exceed the actual scope of the application.
For instance, if the directly provided 𝑅req(𝐴) exceeds 𝑅max(𝐴) in the
experiment, it would render all algorithms unable to properly assign
tasks, making the experiment meaningless. Using 𝑅𝑟 will not result in
this situation.

(2) For a given specific reliability requirement, it is straightfor-
ward to convert it into a reliability ratio 𝑅𝑟. Similarly, although the
experiment employs the reliability ratio 𝑅𝑟, it is easily convertible
into the corresponding explicit reliability requirement. Consequently,
we display both the reliability requirements and the actual reliability
achieved by all algorithms in all experiments (as shown in SubFig. (b)
of Figs. 4 and 9).

(3) Although the parameter 𝑅𝑟 is used, all reliability values in
the experiment essentially fall within the range of 0.9 to 0.99, which
still conforms to the reliability requirements corresponding to exposure
levels in ISO 26262 mentioned in the introduction.

In addition, differing from most works that use reliability or failure
probabilities (per hour) to evaluate the performance of algorithms, the
simulation time in this work refers to the time required to execute the
scheduled applications. The reliability achieved by each algorithm will
be calculated using Eq. (15).

Gaussian elimination (GE) and Fourier transform (FT) are widely
used as parallel applications for algorithm evaluation [3,17,26,36],
because these two applications have the characteristics of low and high
parallelism respectively. Therefore, GE and FT are used to evaluate
the algorithms, and a brief introduction to these two applications is
as follows.

GE application: A nonnegative integer 𝑠 is used to describe the scale
size of the application, the total number of tasks is 𝑛 = (𝑠2 + 𝑠 − 2)∕2.
Fig. 3(a) shows an example of GE with scale size 𝑠 = 5.

FT application: A nonnegative integer 𝑠 is used to describe the scale
size of the FT application, the total number of tasks is 𝑛 = (2 × 𝑠 − 1) +
𝑠 × log𝑠2 with 𝑠 = 2𝑦, where 𝑦 is a nonnegative integer. Fig. 3(b) shows
an example of FT with scale size 𝑠 = 4.

5.2. Different reliability requirements

Experiment 1: This experiment uses GE applications with different
reliability requirements to compare the algorithms. Scale size parame-
ter 𝑠 = 32 (i.e., 527 tasks), the slack ratio 𝑆𝑟 is 1.5, and the reliability
ratio 𝑅𝑟 is changed from 0.95 to 0.99 with each increment of 0.005.
The scheduling results of different algorithms are shown in Fig. 4.

As shown in Fig. 4(a), as the reliability ratio 𝑅𝑟 increases, the
energy consumption generated by all algorithms will increase. Overall,
MSLSRR-IEE generates the lowest energy consumption. When 𝑅𝑟 is less
than 0.96, the energy consumption generated by DRR is greater than
that of DVFS-T. However, when 𝑅𝑟 is greater than 0.96, the energy
consumption generated by DRR is less than that of DVFS-T. In this
experiment, it should be noted that when 𝑅𝑟 reaches 0.985, the DRR
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Fig. 4. Results of the GE application for different reliability requirements. (Experiment 1).
Fig. 5. Results of the FT application for different reliability requirements. (Experiment 2).
algorithm will not be able to assign tasks correctly. Therefore, the
schedule results at 𝑅𝑟 = 0.985 and 𝑅𝑟 = 0.99 using DRR are not plotted
in the figure.

Fig. 4(b) shows the reliability obtained by each algorithm. In order
to clarify the relationship between the reliability obtained by each
algorithm and the reliability requirements, we have added the reliabil-
ity requirement (RR) to the figure. When the application is scheduled
with DVFS-T and MSLSRR-IEE, the obtained reliabilities are about the
same and slightly higher than the reliability requirement. When the
application is scheduled with DRR, the reliability of the application is
obviously higher than the reliability requirement of the application.

Fig. 4(c) shows the scheduling length generated by each algorithm,
in which we also added a deadline constraint (DC). When the reliability
requirement of the application is increased, the changes in schedul-
ing length generated by all algorithms are not significant. However,
the scheduling length generated by DRR is the shortest, followed by
MSLSRR-IEE, and the scheduling length generated by DVFS-T is the
longest and very close to the deadline constraint.

Experiment 2: This experiment uses FT applications with different
reliability requirements to compare the algorithms. The scale size
parameter 𝑠 = 64 (i.e., 511 tasks), the slack ratio 𝑆𝑟 is 1.5, and the
reliability ratio 𝑅𝑟 is increased from 0.95 to 0.99 with each increment
of 0.005. Fig. 5 shows the scheduling results of different algorithms.

The results of Experiment 2 are similar to Experiment 1. As the
reliability ratio 𝑅𝑟 increases, the energy consumption generated by all
algorithms will increase, while the energy consumption generated by
MSLSRR-IEE is the lowest. It should be noted that when the reliability
ratio 𝑅𝑟 reaches 0.98, DVFS-T will not be able to assign tasks correctly,
and when the reliability ratio 𝑅𝑟 reaches 0.985, DRR will also not be
able to assign tasks correctly. Based on the results of Experiment 1 and
10
Experiment 2, when the task can be properly scheduled, the energy
consumption generated by MSLSRR-IEE is about 95.2% of DRR, and
92.3% of DVFS-T.

The main reasons for the above two experimental results can be
explained as follows.

(1) As the reliability requirement increases, the reliability require-
ment for each task within the application will also increase, which
will result in a decrease in the number of processors that satisfy
the reliability requirement of the task. At the same time, due to the
higher reliability requirement of tasks, it is more difficult to reduce
the processor execution frequency. Therefore, the energy consumption
generated by each algorithm will increase.

(2) DRR assumes that tasks that are not assigned are all executed
with the same reliability requirement 𝑅req(𝑡𝑖) = 𝑛

√

𝑅req(𝐴). Therefore,
when the reliability requirements of an application are relatively high,
the reliability of some tasks cannot achieve 𝑅req(𝑡𝑖), which will result
in tasks not being assigned correctly.

(3) DVFS-T assumes that tasks that are not assigned are executed
with maximum reliability 𝑅max(𝑡𝑖) during initial allocation, which will
result in high-reliability requirements for later assigned tasks. There-
fore, for the later assigned tasks, there are too few processors available
for assignment, which leads to a significant increase in scheduling
length.

(4) MSLSRR-IEE uses the average execution time of tasks on each
processor as a reference and designs compensation sequences to cal-
culate the reliability requirement of tasks. Therefore, the reliability
requirements of each task are neither too high nor too low, resulting in
a relatively short initial scheduling length. In addition, due to the more
balanced reliability requirement of tasks in MSLSRR-IEE compared
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Fig. 6. Results of the GE application for different deadline constraints. (Experiment 3).
Fig. 7. Results of the FT application for different deadline constraints. (Experiment 4).
to tasks in DVFS-T, when using DVFS to improve energy efficiency,
MSLSRR-IEE has a better effect than DVFS-T.

In summary, DRR may make the task unable to satisfy the reliability
requirement, and DVFS-T may make the application unable to meet the
deadline constraint.

5.3. Different deadline constraints

Experiment 3: This experiment uses the GE application with dif-
ferent deadline constraints to compare the algorithms. The scale size
parameter 𝑠 and the reliability ratio 𝑅𝑟 are fixed at 32 (i.e., 527 tasks)
and 0.97, respectively. The slack ratio 𝑆𝑟 increases from 1.1 to 1.9
with increments of 0.1. Fig. 6 shows the scheduling results of different
algorithms.

As shown in Fig. 6(a), when the slack ratio 𝑆𝑟 is less than 1.5, the
energy consumption generated by all algorithms tends to decrease as 𝑆𝑟
increases. However, after 𝑆𝑟 exceeds 1.5, there is no significant change
in the energy consumption generated by all algorithms. In all cases, the
energy consumption generated by MSLSRR-IEE is distinctly lower than
that of the other two algorithms.

As shown in Fig. 6(b), when 𝑆𝑟 > 1.1, all algorithms can satisfy the
reliability requirement of the application, among which DRR achieves
the highest reliability, while DVFS-T and MSLSRR-IEE generate slightly
higher reliability than the reliability requirement.

As shown in Fig. 6(c), the scheduling length generated by DRR is the
shortest, followed by MSLSRR-IEE, and the scheduling length generated
by DVFS-T is the longest. When the slack ratio 𝑆𝑟 reaches 1.5, there
will be no significant change in the scheduling length generated by all
algorithms as 𝑆𝑟 increases.
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The reasons for the experimental results are as follows. When 𝑆𝑟
increases, DRR does not reduce the processor’s execution frequency,
while DVFS-T and MSLSRR-IEE are constrained by reliability con-
straints, thereby preventing them from arbitrarily reducing the exe-
cution frequency without limitations. Therefore, when 𝑆𝑟 is less than
1.5, the energy consumption generated by these algorithms tends to
decrease, while when 𝑆𝑟 is greater than 1.5, the energy consumption
generated by them remains almost unchanged.

Experiment 4: This experiment uses the FT application with dif-
ferent deadline constraints to compare the algorithms. The scale size
parameter 𝑠 is fixed to 64 (i.e., 511 tasks) and other parameters are
the same as in Experiment 3. Fig. 7 shows the scheduling results of
different algorithms.

As shown in Fig. 7(a), as the slack ratio 𝑆𝑟 increases, the energy
consumption generated by all algorithms will decrease. However, when
𝑆𝑟 reaches 1.3, the energy consumption generated by DRR no longer
significantly decreases. Among the three algorithms, MSLSRR-IEE gen-
erates the lowest energy consumption. It should be noted that when
𝑆𝑟 is less than or equal to 1.3, DVFS-T will not be able to assign tasks
correctly.

As shown in Figs. 7(b) and 7(c), the reliability and scheduling
length obtained by each algorithm are similar to those obtained in
Experiment 3.

The reason for the experimental results is that the parallelism of
the FT application is relatively high (compared to the GE application),
and the initial scheduling length generated by MSLSRR-IEE is relatively
short. 𝑆𝑟 needs to exceed 1.3 for DVFS-T to schedule tasks correctly.

It is noteworthy that in Experiments 3 and 4, the parameter slack
ratio 𝑆𝑟 essentially characterizes the system workload status, where
a larger 𝑆𝑟 value denotes a lower level of system workload, while a
smaller 𝑆𝑟 indicates a correspondingly higher system workload.
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Fig. 8. Results of the GE applications with different number of tasks. (Experiment 5).
Fig. 9. Results of the FT application on different platforms. (Experiment 6).
Fig. 10. Results of the GE application on different platforms. (Experiment 7).
5.4. Different number of tasks

Experiment 5: This experiment uses the GE application with a
different number of tasks to compare the algorithms. The slack ratio
𝑆𝑟 and the reliability ratio 𝑅𝑟 are fixed at 1.5 and 0.97, respectively.
Scale size parameter 𝑠 increases from 12 to 40 with increments of 4
(i.e., the number of tasks is 77, 135, 209, 299, 405, 527, 665, and 819
respectively).

Fig. 8(a) shows the energy consumption of the different algorithms.
As the total number of tasks increases, the energy consumption of
all three algorithms also increases. Overall, MSLSRR-IEE generates the
least energy consumption.
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Fig. 8(b) shows the reliability of the different algorithms. The relia-
bility obtained by DVFS-T and MSLSRR-IEE is almost the same, which
is slightly higher than the reliability requirement. However, when the
number of tasks is less than or equal to 665, the reliability obtained by
DRR is much higher than the reliability requirement.

Fig. 8(c) shows the scheduling lengths of the different algorithms.
As the number of tasks in the application increases, the scheduling
length generated by all algorithms will increase. However, when the
number of tasks reaches 405, the scheduling length generated by DVFS-
T is closer to the deadline constraint and significantly greater than the
scheduling length generated by DRR and MSLSRR-IEE.
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5.5. Different number of processors

Experiment 6: This experiment uses the FT application to compare
the algorithms on the different number of processor platforms. The
scale size parameter 𝑠, slack ratio 𝑆𝑟, and the reliability ratio 𝑅𝑟 are
fixed to 7 (1151 tasks), 2.0, and 0.95, respectively. When the number
of processors is 4, 8, 16, 32, 64, and 128, the scheduling results of the
three algorithms are shown in Fig. 9.

Fig. 9(a) shows the energy consumption generated by each algo-
rithm. As the number of processors increases, the energy consumption
generated by MSLSRR-IEE gradually decreases. However, when the
number of processors is less than or equal to 32, DRR cannot assign
tasks correctly, and when the number of processors is 16 and 32, DVFS-
T also cannot assign tasks correctly. The reason for this result is that
when the number of processors is small (such as less than or equal to
32), some tasks in DRR cannot meet the reliability requirement. When
the initial scheduling length generated by MSLSRR-IEE is relatively
short (such as with 16 and 32 processors), DVFS-T cannot meet the
deadline constraint.

Fig. 9(b) shows the reliability obtained by each algorithm. As
the number of processors increases, the reliability requirement also
increases, indicating that the highest reliability that an application
can achieve also increases. The reliability generated by DVFS-T and
MSLSRR-IEE is very close to the reliability requirement, while the
reliability generated by DRR is significantly higher than the reliability
requirement.

Fig. 9(c) shows the scheduling length generated by each algorithm.
As the number of processors increases, the scheduling length generated
by each algorithm will decrease. However, when the number of proces-
sors exceeds 64, there will be no significant change in the scheduling
length generated by each algorithm.

It should be noted that if we reduce the slack ratio 𝑆𝑟 or increase the
reliability ratio 𝑅𝑟 in Experiment 6, there will be more cases where
DVFS-T or DRR cannot assign tasks correctly.

5.6. Different number of processor types

Experiment 7: This experiment evaluates the impact of varying
processor types on algorithms. GE applications with a scale size of s =
32 (i.e., 527 tasks) are used. The slack ratio 𝑆𝑟 is 1.5, and the reliability
requirement is 0.95. Assume that there are 𝑡𝑝 types of processors, with
each type having 𝑚∕𝑡𝑝 processors, where 𝑚 is the total number of
processors in the system. In the experiment, 𝑚 is set to 32. When 𝑡𝑝
is respectively 1, 2, 4, 8, 16, and 32, the scheduling results of different
algorithms are shown in Fig. 10.

From Fig. 10(a), it can be seen that the energy consumption gener-
ated by all algorithms significantly decreases as the type of processor
increases. This indicates that tasks have a greater opportunity to be ex-
ecuted on processors with lower energy consumption when the type of
processor is incremented. Among all algorithms, MSLSRR-IEE generates
the lowest energy consumption.

From Fig. 10(b), it can be seen that the reliability generated by all
algorithms satisfies the reliability requirements.

From Fig. 10(c), it can be observed that the scheduling lengths
produced by all algorithms will decrease as the type of processor
increases.

The results of the above seven experiments can be summarized as
follows:

(1) Under different application scenarios, MSLSRR-IEE always gen-
erates the least energy consumption among all the algorithms.

(2) When the DVFS technique is used to reduce the execution
frequency of some tasks, the energy consumption may be increased.
However, MSLSRR-IEE can effectively apply the DVFS technique to
reduce energy consumption.

(3) Compared to DVFS-T, MSLSRR-IEE can meet relatively tight
deadline constraints. Compared to DRR, MSLSRR-IEE can satisfy rel-
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atively higher reliability requirements.
5.7. Discussion on slack time

The slack time can be divided into static slack time and dynamic
slack time. This paper focuses on the system design phase, primarily
addressing how to efficiently utilize static slack time. Dynamic slack
time is determined during task execution and is typically generated
when tasks complete earlier than expected. In the parallel application
studied in this paper, the task will have dynamic slack time when its
direct predecessor tasks are completed earlier than expected. If the
reliability constraint of the task is not considered, the dynamic slack
time can be used to reduce the processor’s execution frequency and
thus reduce energy consumption. However, in the IEE algorithm, we
have calculated the reliability requirement for each task and set the
execution frequency accordingly. From the scheduling results of the
IEE algorithm, it can be seen that the final reliability of the application
is only slightly higher than its reliability requirement. Consequently,
using dynamic slack time to further reduce the execution frequency of
tasks will lead to their reliability being lower than that generated by
the IEE algorithm, thereby failing to satisfy the reliability requirements
of the application.

If we want to further use dynamic slack time, the task currently
utilizing such dynamic slack time needs to be assigned to other proces-
sors, thus reducing energy consumption further while satisfying their
reliability requirements. However, this course of action generates an
additional challenge. Since each task also needs to obtain data from its
predecessor task, after reassigning the task to a new processor, it also
needs to transfer data from the processor where the predecessor tasks
are located to the newly allocated processor, which will delay the start
time of the task and result in energy consumption when retransmitting
data. Therefore, this is an extremely intricate process that we will
further investigate in the future.

6. Conclusions

Low-power design is crucial for many systems. This paper presents
two algorithms to minimize energy consumption while satisfying the
reliability requirement and deadline constraint of the applications.
Experimental results demonstrate that the proposed algorithms not
only consume less energy than the state-of-the-art algorithms but also
adapt to relatively higher reliability requirements and relatively tighter
deadline constraints. Since our proposed algorithms do not consider
task replication, it may be necessary to apply task replication for some
systems with particularly high reliability requirements. Therefore, in
future work, we will study how to minimize energy consumption while
ensuring that the application’s reliability requirement and deadline are
met under task replication.
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