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Abstract
In supply chain network (SCN)management, multi-objective Pareto optimization means the network can meet the demand for
both minimal cost and minimal lead-time in SCN. Due to the compromise between cost and lead-time, it is a non-trivial issue
to search for multi-objective Pareto optimal solutions (POS) in SCN. Furthermore, with the wide application of the internet,
an increasing number of SCN applications have been based on the internet. As a result, the complexity of SCN increases
exponentially with the number of suppliers increasing. It is really a big challenge to find the global multi-objective POSwithin
a limited time in SCN management. In order to solve this problem, first, this paper proposes an artificial bee colony (ABC)
optimization algorithm with two improvements: (1) a novel solution framework designed to extend the application field of the
SCN based on complex network; (2) the acceleration of search speed by adopting naive Bayes classifier. Second, the paper
provides a case example of optimizing a three-echelon SCN with the objective of minimizing both cost and lead-time. After
the simulation with this example, it turns out that the enhanced ABC algorithm can satisfy the requirements of: (1) finding
the global multi-objective POS; (2) improving the speed of finding optimal solutions in SCN management.

Keywords Artificial bee colony · Complex network · Multi-objective optimization · Pareto optimal solutions · Three-echelon
supply chain

1 Introduction

Nowadays, with the drastic change of business environment,
corporations are required to evaluate and configure their sup-
ply chain management (SCN) to provide customers with
high-quality products/services at the lowest possible cost and
within the shortest possible lead-time (Gou et al. 2017; Pish-
vaee et al. 2011) to support their sustainable development
(Kleindorfer et al. 2005; Linton et al. 2007). The supply chain
ofmanufacturing, processing and delivering resources is typ-
ically a large complex network (Aslam and Ng 2010; Tan
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2001; Zhou et al. 2017), its operation management requir-
ing optimization based on complex network. Suppliers are
growing exponentially because of the wide application of e-
commerce systems, which makes the supply chain network
ever more complex and difficult to be optimized. Therefore,
multi-objective Pareto optimization in complex SCN is one
of the fundamental functions in e-commerce operation man-
agement.

The optimization in SCN management refers to discov-
ering the best flow patterns (i.e. choices of resources) for a
family of products (Goetschalckx et al. 2002). The flow pat-
tern in SCN management involves selections through which
materials (raw materials, partially processed, and finished
products) and information (demand data, due date, delivery,
assembly cost and lead-time) are allocated in order to satisfy
its multi-objective functions (Corner and Buchanan 1995;
Ke et al. 2017; Li et al. 2017; Nasiri et al. 2010; Nemati and
Alavidoost 2018; Schtz et al. 2009; Zhang et al. 2016).

In order to determine an efficient flow pattern for every
product in a family, it requires: (1) the selection of a supplier
(or suppliers) for every component used in the product port-
folio, (2) the selection of amanufacturing plant (or plants) for
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every sub or final component assembly, and (3) the selection
of transport options to deliver every product to customers
(Moncayo-Martnez and Zhang 2011). In a typical case of
SCN, there often exist many suppliers for the same raw
materials or components, as well as multiple manufactures to
conduct the sub or final assembly, and also a number of dis-
tributors to deliver products to customers. Different resource
selections in the flow pattern will generate different costs and
lead-times, thus it is necessary to design a multi-objective
optimization model to get the global optimal solution of
this combinatorial selection to reach an optimized balance
between total cost and lead-time for SCN management. This
is not an easy task due to high complexity, which requires
simultaneous optimization of cost and lead-time, both often
contradicting with each other. Moreover, it involves mutiple
products in different hierarchy sharing common components
and subassemblies, and the existence of a large number of
resource options across the supply chain (Goetschalckx et al.
2002). However, aggregating all these objectives through
weighted sumcan transform themulti-objective problem into
a single one. Every objective is multiplied by a weighted
factor, and the sum of the weighted object is the objective
function (Moncayo-Martnez and Zhang 2011; Kamali et al.
2011; Wang et al. 2011; Yuce et al. 2013, 2014, 2015). This
alternative method is a collection of different criteria under
certainty, which helps decision-makers to find the trade-off
proposals and Pareto optimal solutions.

Existing literatures have proposed various models to
solve the multi-objective optimization for SCN design. For
instance, (Shaw et al. 2012) proposed an integrated approach
for selecting appropriate suppliers in SCN through fuzzy-
AHP and fuzzy multi-objective linear programming, which
neglected the importance of complex network structure. Shen
et al. (2013) proposed a fuzzy multi-criteria approach for
green suppliers evaluation. Moncayo-Martnez and Zhang
(2013) proposed an approach based on ant colony optimiza-
tion (ACO) to minimize the total supply chain cost and
the products lead-time simultaneously to ensure delivery of
products without delay. Mastrocinque et al. (2013) adopted
the artificial bee colony (ABC) algorithm to deal with the
multi-objective supply chain model to find the optimum con-
figuration in a given SCN situation that could minimize
the total cost and the total lead-time. Hence, the nature-
inspired optimization algorithms for SCN management is a
hot topic. However, these algorithms neglected the influence
of exponential growth in suppliers to the convergence speed
of seeking multi-objective Pareto solutions.

The majority of studies on SCN have considered only one
product and onemanufacturing plant (Shu et al. 2016). But, in
reality, most enterprises involve more than one product and
multiple manufacturing plants in different regions. Hence,
our study is fit to be a solution for complex SCNwithmultiple
products andmanufacturingplants, inwhichboth the cost and

the lead-time are considered as the objective functions, and
are optimized in a three-echelon supply chain management.
With thewide application of internet-based e-commerce plat-
form, suppliers are increasing exponentially. Therefore, it
is significant to find global multi-objective POS in a three-
echelonSCN to supportmultiple products andmanufacturing
plants under such requirement of the age.

To solve these problems, the complex network structure is
for the first time taken into consideration as the basic solution
framework with the ABC algorithm. We proposed a novel
ABC algorithm based on complex network (ABC-CN) to
find POS in a three-echelon SCN. Now, to satisfy the need of
increasing suppliers in e-commerce platforms, we propose
a new ABC algorithm based on complex network and naive
Bayes classifier (ABC-CN-NBC), improving its capability of
accelerating the convergence speed of seeking global POS.
The major contributions of this paper can be highlighted as
follows:

– Solutions are modelled in complex network structures to
simulate the contemporary nature of SCN;

– The proposed ABC-CN and ABC-CN-NBC have the
capability of discovering global POS in a complex three-
echelon SCN;

– The speed of seeking global POS is further acceler-
ated to satisfy the need from the wide application of
e-commerce.

The organization of this paper is as follows: materials and
methods are depicted in Sect. 2; the optimized results of the
test example are given in Sect. 3; the simulated results are
analysed in Sect. 4; and the final conclusion is drawn in the
last section.

2 Materials andmethods

2.1 Problem representation

Theprevious researches onSCNhavemostly consideredonly
one product and one manufacturing plant, as Shukla et al.
(2013) did. Nowadays, multiple products and manufacturing
plants are explored, as is shown fromShu et al. (2016). Three-
echelon model has been adopted by many researchers (Shu
et al. 2016; Shukla et al. 2013; Pasandideh et al. 2015; Seifert
et al. 2012), which can construct a more complexed network.
To demonstrate the advantage of the proposed optimization
algorithm, three-echelon model with multiple products is
designed in this paper: wheel loader (WHL), track loader
(TRL), track-type tractor (TTT), and manufacturing plants
(main assembly in node a17, subassembly in node a20, com-
mon subassembly in node a12 etc.) as shown in Fig. 1. In this
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Fig. 1 This is a Bulldozer SCN topology, different nodes show differ-
ent assembling processes: (a) The black nodes represent the processing
of raw materials or intermediate materials. (b) The green nodes depict
the final assembly of products. (c) The red nodes represent the deliv-

ery of products to target markets. Arrow lines among nodes indicate
their supply relationship, and dotted lines in each node represent their
choices

SCN, every blackspot with its connected line in each node
represents a choice with its cost and lead-time.

The three-echelon SCN can be modelled as a com-
plex network with a set of individual nodes represented
by {a1, a2, a3, . . . , ai , . . . , an}, with each node containing
all possible blackspots as its links which can be marked
by ai j ( j = 0, 1, 2, . . . , Ni ), and Ni is the number of

blackspots available to a node ai . At the same time,
we use two objectives of cost and lead-time to represent
the degree of satisfaction of enterprises and customers,
and the following formulas are introduced to describe
this matter:

Z = ω1 × PC + ω2 × LT (1)
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Equation 1 shows the main objective function, where PC
is the total cost and LT is the total lead-time.ω1 andω2 are the
weights to balance importance between total cost and total
lead-time, and ω1 + ω2 = 1.

PCi = μi

Ni∑

j=1

Ci j × yi j (2)

PC = ξ

N∑

i=1

PCi (3)

Equations 2 and 3 show the summation of cost. ξ is the
interest per month or per week at ai , μi denotes the average
demand of products per unit time. The cost of each link in
ai j is represented by Ci j . If ai j is selected, yi j equals to 1, or
0 otherwise.

LTi =
Ni∑

j=1

Ti j × yi j + max
αk∈Si

LTk (4)

where Ti j is the processing lead-time of the j th resource
option in node ai , Si is the set of blackspots denoting input
to node ai , ak is the activity chosen from Si and LTk is the
cumulative lead-time of node ak .

LT =
N∑

i=1

LTi (5)

where LTi is the total lead-time of node ai , and LT represents
the total lead-time of the SCN.

yi j =
{
1, if j s selected
0, otherwise

, ∀i ∈ N , j ∈ Ni (6)

Ni∑

j=1

yi j = 1 (7)

For any ai (i = 1, 2 . . . N ), Eqs. 6 and 7 aim to ensure that
only one option (blackspot) can be selected.

N∑

i=1

Ti j + max
αk∈Si

LTk − LTi = 0 (8)

Equation 8 validates its relationships of lead-time among
nodes.

2.2 Expressed solutions

Optimization of a complex supply chain network refers to a
combinatorial optimization issue.Many sub-networks can be
extracted from a complex SCN. In the proposed algorithms
of ABC-CN and ABC-CN-NBC, a set of feasible solutions,
named as “solution vector”, is defined. The solution vector is
structured as fragments of supply chain network. As a com-
plex supply chain network in this paper, themajor hypothesis
includes: (1) multiple products in multiple assembling cen-
tres; (2) multiple objective optimization; (3) one-way pro-
duction flow. For instance, a three products supply chain
illustrated in Fig. 2, there will be different sub-networks for a
complex network, includes: (1) sub-network for all products
A, B and C; (2) sub-network for unique product A, B or C;
(3) sub-network for product A∪B, A∪C, or B∪C.

In the Bulldozer SCN topology illustrated in Fig. 1, nodes
a35, a22 and a26 are three final assembling nodes for products
WHL, TRL and TTT, respectively, and these three products
are assembled by a range of common supply nodes, e.g.
{a1, a2, a3, . . . , a16, a17}. Hence, it is the first type of sub-
network for all products, such as the fragment from node a1
to a17. Sub-network for two products is the second type, such
as the fragment nodes for both TRL and TTT for nodes a18 to
a20. The sub-network for a unique product is the third type,
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Fig. 3 Feasible Solution for sub-networks of a SCN

and its fragment can range from node a31 to a38, fragment
from node a21 to a24, and fragment from node a25 to a30. For
a more universal complex network-oriented solutions, it can
be modelled as Fig. 2.

Every sub-network in Fig. 2 can be modelled as feasible
solutions as Fig. 3. In Fig. 3, {SV1,SV2, . . . ,SVL} repre-
sents all possible solution vectors (SV) for the solution space
of the SCN optimization problem, SVi (i ∈ L) indicates the
ith iteration of the maximal iteration of L . For any solution
vector SVi , it has three parts, such as option sequence, fitness
value and Bayesian probability sequence. Option sequence
of {O1, O2, . . . , Ok} is the selection sequence formed by its
selection of each node ai in a sub-network, and Bayesian
probability sequence of {P1, P2, . . . , Pk} is the probability
sequence with its initial probability of equal chance for each
selection.

Based on the nature of SCN, the cost and lead-time should
be computed from its topology. When calculating the cost of
a product, it can be considered as a combinatorial optimiza-
tion issue (Moncayo-Martnez andZhang2011). The complex
network topology should be taken into consideration when
the lead-time of a node is computed, since it is influenced by
its sub-nodes directly.

In Fig. 1, each node refers to an activity, each blackspot in
a node indicates an available option of a certain activity and
each arrow line refers to the mutual relations between two
nodes. The ABC algorithm is fit for solving the combinato-
rial optimization issue (Moncayo-Martnez and Zhang 2011;
Bolaji et al. 2013; Zhang et al. 2017, 2016). Hence, it is the
most crucial to design a good solution expressed based on
complex networks for the ABC algorithm.

As a combinatorial issue, solutions in the ABC algorithm
can be expressed as Ai = (a1, a2, a3, . . . , an)T . The com-
bination of different nodes forms the distribution routing
in a SCN of its corresponding products. At the same time,
node ai = (ai1, ai2, ai3, ai4, ai5)T is also a five-dimensional
vector including the sequence number of nodes, options of
blackspots, lead-times of blackspots, costs of blackspots and
chosen probabilities of blackspots.

2.3 Methods

In this paper, to solve these problems mentioned in Sect. 2.1
with solutions expressed in Sect. 2.2, basic ABC algorithm
(ABC), proposed ABC algorithm based on complex network
(ABC-CN), and the enhanced ABC algorithm based on com-
plex network and naive Bayes classifier (ABC-CN-NBC) are
adopted to evaluate their capability and feasibility.

2.3.1 Basic ABC algorithm

The basic ABC algorithm is a novel optimization approach
in 2006 by Karaboga, which mimicks the behaviour of bees
in collecting honey (Pham et al. 2006). Karaboga et al.
(2014) have shown that ABC has been widely applied in fea-
ture selection (Schiezaro and Pedrini 2013), real-parameter
optimization (Akay and Karaboga 2012), job scheduling
(Banharnsakun et al. 2012), travelling salesman issues (Yang
and Pei 2013), and combinatorial problems (Bolaji et al.
2013). In previous work, it is proved that the ABC algorithm
has better performance in handling optimization for contin-
uous problems than other classical optimization algorithms,
such as stochastic simulated annealing, genetic algorithm, ant
colony optimization (Ebubekir 2010), etc. Various UCI data
sets have been used to demonstrate the effectiveness of ABC
compared with ant colony optimization, particle swarm opti-
mization, and bat algorithm (Schiezaro and Pedrini 2013).
Sharma and Bhambu (2016) have found its advantages in 35
objective functions. Bolaji et al. (2013) have drawn a con-
clusion that it is a potential advantage for this to be easily
hybridized with different metaheuristic algorithms and data
structures. Therefore, we adopt ABC algorithm as the fun-
damental approach of our proposed algorithms.

2.3.2 ABC algorithm based on complex network

The research on complex networks begins with the effort
of defining new concepts and measures to characterize the
topology of real networks (Boccaletti et al. 2006). Out
degree, Uni-assembly node,Multi-assembly node and Final-
assembly node are defined in Definitions 1, 2, 3 and 4.
Based on these definitions, different types of nodes can be
detected with its OutDegree(ai ) value and relationships.
Sub-networks can be detected and extracted from the SCN
with the procedure expressed in the Step 1 in the proposed
Algorithms 1 and 2.

Definition 1 Out degree of node ai . OutDegree(ai ) equals
the number of arrow lines that start from node ai to other
nodes.

Definition 2 Uni-assembly node. The node ai belongs to a
uni-assembly node when its OutDegree(ai ) = 1.
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Definition 3 Multi-assembly node. The node ai belongs to a
multi-assembly node when its OutDegree(ai ) = k to sup-
port assembling k products, k �= 1.

Definition 4 Final-assembly node. The node ai belongs to a
final-assembly node when its child nodes are all delivering
nodes.

The ABC algorithm can carry on parallel processing
via sub-network decomposition. Employed bees and scout
bees cooperate to detect, evaluate, and identify best solution
obtained so far with greedy principle to filter the generated
solutions. After exceeding certain limited iterations, a new
solutionwill be generated to avoid falling into a local optimal
solution. The parallel computing model and greedy princi-
ple in the proposed ABC-CNwill accelerate the convergence
speed of seeking global POS in a SCN. The detailed proce-
dure is depicted in the Step 2 of Algorithm 1.

Algorithm 1 ABC algorithm based on complex network
(ABC-CN)
Input: 5-dimensional vector in Table 1 and 2, including their number
of groups, sequence number of nodes, lead-times, costs and chosen
probabilities of blackspots, ABCOpts.Limit = 50.
Step 1: Extract sub-networks from a SCN
1.1 Calculate OutDegree(ai ) for each node ai based on Definition
1;
1.2 Classify node types based on Definition 2, 3 and 4;
1.3 Extract sub-networks based on these three type of nodes as Fig.
2;
1.4 Form the solution vector of Sub-Network as Fig. 3.
Step 2: Search the global POS using the ABC algorithm
for Each sub-network in a SCN do

while Cycle �= MaxCycles do
STEP 2.1: Send employed bees to find a nectar
2.1.1. Generate initial solutions in a random way;
2.1.2. Evaluate the value of the objective function based on Eq.

1;
2.1.3. Calculate the fitness value based on Z(SV t+1)−Z(SV t ).
STEP 2.2: Send scout bees to search neighbourhoods of the

nectar
2.2.1. Generate a new nectar in the neighbourhood;
2.2.2. Evaluate the value of the objective function based on Eq.

1;
2.2.3. Calculate the fitness value based on Z(SV t+1)−Z(SV t );
2.2.4. Select the optimal solution based on greedy principle

max(|Z(SV t+1) − Z(SV t )|);
2.2.5. Record the best solution obtained so far.
STEP 2.3: Jump out from local optimums
if max(Bas) > ABCOpts.Limit then

2.3.1. Generate a new solution to replace the original solu-
tion;

2.3.2. Evaluate the value of the objective function based on
Eq. 1;

2.3.3. Calculate the fitness value based on Z(SV t+1) −
Z(SV t ).

Cycle=Cycle+1.
Record the global optimal solution with Global Params;
Calculate the value of GlobalBestCost and GlobalBest Leadtime.
return Global Params,GlobalBestCost,GlobalBest Leadtime

2.3.3 ABC algorithm based on complex network and naive
Bayes classifier

In Algorithm 1 mentioned in Sect. 2.3.2, it is a good solution
to solve the problemwith a complexnetwork.However, it still
needs to be accelerated as the number of suppliers increases.
The chosen probabilities of blackspots in each node is equal
in the basic ABCAlgorithm 1. TheABC algorithm generates
solutions randomly, which will increase the cost of seeking
the global POS. Henceforth, it is necessary to search for a
solution with metaheuristics.

The naive Bayes classifier is one of top 10 algorithms in
data mining (Wu et al. 2007). It is useful for extracting clas-
sification rules based on its Bayes probability. In order to
accelerate the speed of the proposed Algorithm 1, the prin-
ciple of the naive Bayes classifier is adopted as illustrated in
Algorithm 2 (ABC-CN-NBC).

3 Results

In order to evaluate the proposed two novel algorithms effec-
tively, a test example is used and the following situations are
put forward:

– A total of three products has to be made in the production
of Bulldozer SCN, [Wheel Loader (WHL), Track Loader
(TRL) and Track-Type Tractor (TTT)]. This SCN covers
the whole process from raw materials to manufacturers
and distributors.

– Each product can be assembled with a flow pattern that
requires the selection of a supplier (or suppliers) for every
component used by the product mix.

– Each node has a number of selective options, in which
each one of them represents a single decision that has its
own cost and lead-time for assembling this product.

– All the experimental data are under ideal conditions with
high stability. There are no other external influencing fac-
tors, such as the shortage of raw materials, bad weather
under uncertainty.

The network topology which represents the Bulldozer
SCN is depicted in Fig. 1. In Fig. 1, the entire SCN has a
total of 38 nodes, with a varying number of 2 to 4 blackspots
(choices) in each node. Each assembly node can represent an
enterprise. Among these nodes, a22, a26 and a35 are Final-
assembly nodes for assembling the final products, a17 and
a20 areMulti-assembly nodes, and most other nodes areUni-
assembly nodes. After extracting sub-networks from Fig. 1,
the set of {a1, a2, a3, . . . , a16, a17} can be formed as a sub-
network to provide public intermediate products of product
WHL, TRL and TTT. Nodes of a18, a19 and a20 can be
formed as another sub-network to serve the two products
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Algorithm 2ABC algorithm based on complex network and
naive Bayes classifier (ABC-CN-NBC)
Input: 5-dimensional vector in Table 1 and 2, including their number
of groups, sequence number of nodes, lead-times, costs and chosen
probabilities of blackspots, ABCOpts.Limit = 50.
Step 1: Extract sub-networks from a SCN
1.1 Calculate OutDegree(ai ) for each node ai based on Definition
1;
1.2 Classify node types based on Definition 2, 3 and 4;
1.3 Extract sub-networks based on these three type of nodes as Fig.
2;
1.4 Form the solution vector of sub-network as Fig. 3.
Step 2: Search the global POS using the ABC algorithm
for Each sub-network in a SCN do

while Cycle �= MaxCycles do
STEP 2.1: Send employed bees to find a nectar
2.1.1. Generate initial solutions in a random way according to

a certain probability;
2.1.2. Evaluate the value of the objective function based on Eq.

1;
2.1.3. Calculate the fitness value based on Z(SV t+1)−Z(SV t ).
STEP 2.2: Sent scout bees to search neighbourhoods of nectar
2.2.1. Generate a new nectar in its neighbourhoods;
2.2.2. Evaluate the value of the objective function based on Eq.

1;
2.2.3. Calculate the fitness value based on Z(SV t+1)−Z(SV t );
2.2.4. Select the optimal solution based on greedy principle

max(|Z(SV t+1) − Z(SV t )|);
2.2.5. Record the best solution obtained so far.
STEP 2.3: Update probability with naive Bayes classifier
if mod(si ze(BayesParams, 1), 50) = 0 then

2.3.1. Calculate the conditional probability of each choice( j)
in a node(ai j ) based on P(ai j )/P(ai );

2.3.2. Label the classification based on the fitness value based
on Z(SV t+1) − Z(SV t );

2.3.3. Update the probability of each choice with the naive
Bayes classifier.

STEP 2.4: Jump out from a local optimum
if max(Bas) > ABCOpts.Limit then

2.4.1. Generate a new solution to replace the original solu-
tion;

2.4.2. Evaluate the value of the objective function based on
Eq. 1;

2.4.3. Calculate the fitness value based on Z(SV t+1) −
Z(SV t ).

Cycle = Cycle + 1.
Record the global best solution with Global Params;
Calculate the value of GlobalBestCost and GlobalBest Leadtime.
return Global Params,GlobalBestCost,GlobalBest Leadtime

of TRL and TTT. The set of {a25, a26, a27, a28, a29, a30} can
be formed as a sub network for serving only one product
of TTT. The set of {a21, a22, a23, a24} can be aggregated as
a sub-network for serving the TRL product, and the set of
{a31, a32, a33, a34, a35, a36, a37, a38} can be clustered as a
sub-network for the WHL product.

In Table 1, we list 30 nodes of raw materials or intermedi-
ate products. Every node has 2 to 5 options, and each option
has a different cost Ci j (in $) and lead-time Ti j (in days)
required.

Table 1 Data for solving the Bulldozer SCN

N(ai ) SN(i) OP( j) LT(Ti j ) C(Ci j ) ICP(Pj )

Platform group 1 1 11 575 1/4

2 0 690 1/4

3 5 592 1/4

4 3 630 1/4

Wing group 2 1 4 575 1/3

2 9 897 1/3

3 0 912 1/3

Roll over group 3 1 7 4459 1/4

2 3 1161 1/4

3 0 1167 1/4

4 3 1150 1/4

Frame 4 1 17 609 1/4

2 10 618 1/4

3 19 605 1/4

4 0 622 1/4

Case 5 1 12 2241 1/3

2 7 2263 1/3

3 15 2200 1/3

Brake group 6 1 11 575 1/3

2 11 575 1/3

3 11 575 1/3

Drive group 7 1 8 1553 1/4

2 3 1571 1/4

3 9 1550 1/4

4 5 1563 1/4

Plant carrier 8 1 9 155 1/2

2 1 157 1/2

Frame assembly 9 1 5 620 1/4

2 12 612 1/4

3 19 605 1/4

4 0 622 1/4

Transmission 10 1 15 7450 1/2

2 10 7618 1/2

Drive/brake assembly 11 1 4 1551 1/4

2 0 1571 1/4

3 9 1550 1/4

4 3 1568 1/4

Common assembly 12 1 5 8000 1/2

2 2 8070 1/2

Engine 13 1 6 4596 1/5

2 3 4763 1/5

3 0 4804 1/5

4 5 4676 1/5

5 7 4500 1/5

Fans 14 1 12 650 1/3

2 0 662 1/3

3 8 659 1/3

123



J. Jiang et al.

Table 1 continued

N(ai ) SN(i) OP( j) LT(Ti j ) C(Ci j ) ICP(Pj )

Chassis 15 1 7 4320 1/2

2 2 4395 1/2

Dressed-out engine 16 1 10 4100 1/2

2 3 4175 1/2

Main assembly 17 1 8 12000 1/2

2 2 12150 1/2

Track roller frame 18 1 6 3005 1/3

2 10 3000 1/3

3 2 3045 1/3

Suspension T 19 1 7 3600 1/2

2 2 3675 1/2

Subassembly T 20 1 4 8000 1/3

2 1 8300 1/3

3 3 8150 1/3

Shovel-T 21 1 35 90 1/3

2 20 95 1/3

3 18 93 1/3

Track Loader-TRL 22 1 6 725 1/3

2 2 732 1/3

3 5 730 1/3

Blade 25 1 35 90 1/3

2 20 95 1/3

3 18 93 1/3

track-type tractor-TTT 26 1 6 725 1/3

2 2 732 1/3

3 5 730 1/3

Wheels 31 1 6 725 1/3

2 2 732 1/3

3 4 730 1/3

Suspensions WHL 32 1 7 3600 1/2

2 2 3675 1/2

Shovel-W 33 1 35 90 1/3

2 20 95 1/3

3 18 93 1/3

Subassembly WHL 34 1 4 8000 1/3

2 1 8300 1/3

3 3 8150 1/3

Wheel Loader-WHL 35 1 6 725 1/3

2 2 732 1/3

3 5 730 1/3

Table 2 is the set of target markets for the three final prod-
ucts, and each delivery node has 2 options with parameters
of lead-time Ti j (in days) and delivery cost Ci j (in $). In the
following Tables 1 and 2, N (ai ) represents a node, SN(i)
is sequence number, OP( j) means options in each node,
LT(Ti j ) is the lead-time of each option, C(Ci j ) represents

Table 2 Data for target markets

N(ai ) SN(i) OP( j) LT(Ti j ) C(Ci j ) ICP(Pj )

R1-TRL 23 1 20 300 1/2

2 10 7000 1/2

R2-TRL 24 1 1 500 1/2

2 8 1000 1/2

R1-TTT 27 1 10 1200 1/2

2 1 2000 1/2

R2-TTT 28 1 20 3000 1/2

2 10 7000 1/2

R3-TTT 29 1 15 1500 1/2

2 2 3000 1/2

R4-TTT 30 1 1 500 1/2

2 8 0 1/2

R1-WHL 36 1 10 1200 1/2

2 1 2000 1/2

R2-WHL 37 1 15 1500 1/2

2 2 3000 1/2

R3-WHL 38 1 1 500 1/2

2 8 1000 1/2

the cost of each option, and ICP(Pj ) is initial choosen prob-
ability for each option.

3.1 The capability of searching global optimal
solution with different methods

In order to measure the global optimization effect of the pro-
posed algorithms, we, respectively, draw the Pareto front line
chart of the basicABC, theproposedABC-CNandABC-CN-
NBC algorithms, as shown in Fig. 4. In Fig. 4, we can clearly
observe the Pareto frontal value of three different methods
in the same data set optimization where the abscissa is the
total lead-time (LT), and the ordinate is the total cost of the
business (PC). And with the increase in LT, PC shows a grad-
ual downward trend. Moreover, it is obvious that the curve
of Pareto fronts obtained by the ABC-CN algorithm is lower
than that of the basic ABC algorithm, which proves that the
proposed ABC-CN algorithm has a stronger advantage than
ABC in finding the global optimal solution. The curve of
Pareto peak obtained by ABC-CN-NBC algorithm is lower
than that of the ABC-CN algorithm, which proves that the
ABC-CN-NBC algorithm has a better advantage than the
ABC-CN algorithm in finding the global optimal solution.
Therefore, in the same data set, the ABC-CN-NBC algo-
rithm has a better global optimum than the ABC algorithm,
and it has a stronger global search capability.

To facilitate the observation and comparison of the search
results of the proposed algorithms, we list the results of
9 different weights of PC and LT. In Tables 3 and 4,
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Fig. 4 Pareto fronts

we can see the different results based on these two pro-
posed approaches. Each approach takes into account the
different weights of cost and lead-time. Each weight cor-
responds to a different solution. Table 3 shows the results
of using the proposed ABC-CN. When the weight ranges
from ω1 = 0.1 to ω1 = 0.9, the PC (in $) is obtained
for 129,445,800, 129,042,720, 128,847,720, 127,200,600,
127,253,100, 126,444,600, 12,592,448, 125,809,512 and
125,830,608, and the LT (in days) is 30, 35, 42, 40, 43, 54, 57,
30 and 54, respectively. Table 4 gives the results of using the
proposed ABC-CN-NBC. When the weight of the PC (in $)
ranges from ω1 = 0.1 to ω1 = 0.9, the PC (in $) is obtained
for 129,130,020, 129,025,980, 128,411,820, 127,350,300,
126,512,292, 126,038,328, 125,816,928, 125,764,500 and
125,715,660, and LT (in days) is 30, 30, 40, 40, 49, 51, 52,
57 and 61, respectively.

Mastrocinque et al. (2013) use the basic ABC algorithm
to solve the same problem (Mastrocinque et al. 2013). Using
the same raw data, when the weight of the PC (in $) changes
from ω1 = 0.1 to ω1 = 0.9, PC (in $) are obtained
from 129,652,620, 129,051,300, 128,485,608, 128,332,908,
127,023,480, 126,821,568, 126,500,100, 126,421,236 and
126,572,640, and the LT (in days) are 30, 31, 34, 36, 46, 54,
58, 70 and 60, respectively. In Fig. 5, we adopt three algo-
rithms for global optimal solutions under different weights
of PC (in $). Figure 5a is a line graph of global optimal solu-
tions for PC (in $) with the changing weight of PC (in $).
Each point on the line is the global optimal solutions when
the weight of PC (in $) changes from ω1 = 0.1 to ω1 = 0.9.
When the weight of the objective function of PC (in $) is
increasing, the global optimal solutions have a tendency to
decrease. Figure 5b is a line graph of global optimal solutions
for LT (in days) with the varying weight of PC (in $). When
the weight of the PC (in $) objective function is increasing,
theweight of LT (in days) in the objective function decreases,
and the global optimal solutions value is gradually increased.

Through Fig. 5, both ABC-CN and ABC-CN-NBC have
achieved better optimal solutions, while the ABC-CN-NBC

has better global POS compared with ABC-CN. The results
show that our proposed algorithms have achieved a better
feasibility and efficiency.

3.2 The convergence speed of searching global POS
with different algorithms

In order to test the efficiency of our proposed algorithms,
we test the convergence speed of finding global POS with
the metric of minimal iterations(δ), defined in Definition 5,
with different weights of ω1 and ω2. Figure 6 illustrates the
capability of searching global POS with Boxplot graph. The
ABC-CN with the red Boxplot can reduce the number of
minimal iterations to search the global POS in the Bulldozer
SCN. Moreover, the ABC-CN-NBC has good performance
with its heuristic optimization of the naive Bayes classifier.

Definition 5 (Minimal iterations δ) It refers tominimal num-
ber of iterations when their fitness values have micro change.

Figure 7b is the value of GlobalMins for WHL prod-
uct obtained by ABC-CN under different weights of PC.
When the value of GlobalMins becomes unchangeable, it
indicates that the global optimal solution is obtained. From
ω1 = 0.1, ω2 = 0.9 to ω1 = 0.9, ω2 = 0.1 , the iterations
of the global optimal solution are 169, 58, 147, 143, 179,
89, 116, 139 and 284. Figure 7c is the value of GlobalMins
for WHL product obtained by ABC-CN-NBC under differ-
ent weights of PC (in $). When the value of GlobalMins
becomes unchangeable, it indicates that the global opti-
mal solution is obtained. From ω1 = 0.1, ω2 = 0.9 to
ω1 = 0.9, ω2 = 0.1 , the iterations of the optimal solu-
tion are 180, 145, 122, 107, 251, 157, 74, 109 and 52. The
results show that our proposed ABC-CN and ABC-CN-NBC
algorithms with its better capability that can accelerate the
convergence speed of searching better global multi-objective
POS.
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Fig. 5 Global optimal solutions
with ABC, ABC-CN and
ABC-CN-NBC

(a)

(b)

4 Discussion

Asmentioned in Sect. 3 of experimental results, we fully take
into account the real situation (a three-echelon SCN supports
assembling multiple products and multiple manufacturing
centres). The experimental results show that the proposed
two algorithms have achieved a faster convergence speed
of finding better global POS when compared with the basic
ABC algorithm.

Complex network-oriented solution can improve the capa-
bility of finding global POS for multi-objective optimization
in a SCN. As explained in Sect. 2.3.2, the objective of cost is
a combinatorial issue, while the objective of lead-time should
be computedbasedon the assemblingflow in theSCN.There-
fore, it will be not effective when it is simply regarded as an
optimization of combinatorial issuewith these two objectives
of cost and lead-time. In Sect. 2.3.2,we have defined different
types of nodes to extract sub-networks from a SCN. Finding
global POS from sub-networks is more efficient as illustrated
in Fig. 5. The results are much effective with the use of the
principle of divide and conquer (DC). The DC technique is

the basis of efficient algorithms for all kinds of problems,
such as sorting, multiplying large numbers, finding closest
pair of points, and many others.

The complexity of solutions can be decreased efficiently
when extracting sub-networks from a complex SCN. In
Fig. 1, the Bulldozer SCN is composed of 38 nodes and
105 options for a total possible solutions of 1.284 × 1016

from Eq. 9. That is to say, it is really a non-trivial problem.
Hence, the DC technique should be adopted to decrease its
complexity.

38∏

i=1

ai = 1.284 × 1016 (9)

Naive Bayes classifier can accelerate the convergence
speed based on information of classification. Metaheuris-
tics is an efficient approach to an optimization problem.
As depicted in Eq. 9, the set of solutions is too large to
be completely sampled. Bayesian theory is to estimate sub-
jective probability for partial unknowns under incomplete
information, and then to use Bayesian formula to update
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(a)

(b)

(c)

Fig. 6 Minimal iterations (δ) with ABC,ABC-CN andABC-CN-NBC.
The convergence speed of searching global POS is accelerated with
ABC-CN and ABC-CN-NBC in Fig. 6a–c obviously

the probability of occurrence. Finally, the optimal decision
is made by using expected value and updated probability.
However, the traditional ABC does not update its proba-
bility of each option in a node, and the probability of an
option to be selected is generated randomly. In this way,
the previous result will not have an active effect on the
next solution which results in a certain amount of waste of
resources.

(a) ABC

(b) ABC-CN

(c) ABC-CN-NBC

Fig. 7 Global min(Z) value
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5 Conclusions

Optimization of three-echelon SCN with multiple products
and multiple manufacture centres is really a challenge to
get multi-objective Pareto solutions. To solve this problem,
this paper proposes a novel ABC algorithm with complex
network to satisfy the optimization requirement of SCN
structure. After exemplifying with a real Bulldozer SCN, our
proposed ABC-CN can find better global POS than the tra-
ditional ABC.

In addition, with the increase of suppliers in a SCN, the
optimizationmethod should be accelerated to support a more
complex SCN. This paper adopts naive Bayes classifier to
update the selection probability of options in each node. The
proposed ABC algorithm with complex network and naive
Bayes classifier (ABC-CN-NBC) can get the multi-objective
Pareto optimal solutions within a limited time.

We hope that the proposed algorithm of ABC-CN-NBC
is a small step to solve the complex three-echelon SCN opti-
mization issue. It will help logistics managers in making
operation management decision for their suppliers. For engi-
neers, this paper proposes an interesting approach to find a
global bi-objective optima in SCN problems. Based on the
guidance from naive Bayes classifier, the convergence speed
can be accelerated in limited time.

The limitations and disadvantages of this paper can be
summarized as: only two objective functions are consid-
ered in the three-echelon SCN management problems, and
only naive Bayes classifier is adopted to give guidance. In
the future, we recommend the following research directions:
(1) more heuristic approaches should be proposed to solve
three-echelonSCNmanagement issue; (2) other optimization
objectives should be investigated; (3) inventory problems in a
complex SCN should be considered to validate its extension
capability.
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