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Abstract—The unparalleled possibilities of Internet of Vehicles
(IoV) development prompt the enhancement of in-vehicle medical
emergency response. Nevertheless, the IoV environment is still
affected by data privacy, latency, and network instability, which
hamper effective and reliable emergency medical systems. In
this regard, this article suggests the emergency-aware distributed
edge intelligence (DEI) for medical response (EDEM) framework,
a novel approach leveraging DEI to address these challenges.
Specifically, EDEM introduces a hierarchical edge collaborative
computing architecture that dynamically constructs learning
domains based on a comprehensive medical data capability
model. The framework incorporates an in-vehicle medical data
reliability model and tailored latency and energy consumption
models to optimize resource allocation and response times.
Then, a deep-reinforcement-learning-based node selection algo-
rithm ensures efficient task distribution across the network.
Finally, EDEM’s dual-layer federated learning model features an
emergency-aware adaptive aggregation mechanism and an adap-
tive medical model updating scheme for cross-domain scenarios,
complemented by an emergency-weighted asynchronous model
fusion approach. The superiority of EDEM over state-of-the-art
methods is demonstrated through simulation results showing up
to a 15% increase in model accuracy, a 30% reduction in response
times, and a 20% better resource utilization efficiency. This
implies that it can greatly enhance speed, accuracy, and reliability
for in-vehicle emergency responses within IoV environments.

Index Terms—Deep reinforcement learning (DRL), distributed
edge intelligence (DEI), Internet of Vehicles (IoV), in-vehicle
medical emergency response.

I. INTRODUCTION

THE Internet of Vehicles (IoV) revolutionizes transportation
systems by enabling seamless connectivity and data

exchange among vehicles, road infrastructure, and users [1], [2].
As a critical application domain within IoV, in-vehicle medical
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emergency response systems have gained significant attention
due to their potential to reduce response times and save
lives in urgent situations dramatically [3], [4], [5]. These
systems aim to leverage real-time physiological data from
in-vehicle sensors, wearable devices, and onboard medical
equipment to detect medical emergencies rapidly, provide
preliminary diagnoses, and coordinate with emergency services.
Integrating advanced sensing technologies, such as continuous
blood pressure monitors, electrocardiogram (ECG) sensors,
and blood glucose meters, allows for comprehensive health
monitoring of vehicle occupants. However, developing effective
in-vehicle medical emergency response systems faces numerous
challenges in the highly dynamic IoV environment, particularly
in data processing, privacy preservation, and timely decision-
making [6], [7], [8].

The massive amount of sensitive medical data generated by
vehicles poses significant privacy concerns and communica-
tion overhead if transmitted to centralized cloud servers for
processing. Traditional cloud-centric approaches struggle to
meet the stringent latency requirements for emergency medical
diagnosis and response coordination, which can be critical in
life-threatening situations, such as heart attacks, strokes, or
severe allergic reactions [9]. Additionally, the high mobility
of vehicles leads to frequent network topology changes and
unstable connections, further complicating the data collection
and model training process for accurate and timely medical
diagnostics [10], [11].

To overcome these difficulties, distributed edge intelligence
(DEI) has shown as a hopeful design for IoV applications,
specifically in the scope of in-vehicle medical emergency
response. Artificial intelligence and machine learning capa-
bilities are moved to the network edge by DEI that supports
privacy of data while vehicles and roadside units (RSUs)
can learn together. In this way, communication overhead
and latency can be much reduced by DEI than cloud-
centric approaches due to using onboard computers as well
as RSUs which are considered as computing resources at
the edge [12], [13], [14]. Moreover, what makes DEI so
powerful is its distributed nature which enables creation of
personalized models based on location that consider indi-
vidual histories along with regional health trends without
violating privacy concerns about sharing such information
locally where they reflect unique patterns inherent to different
areas [15].
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However, applying DEI to in-vehicle medical emergency
response systems in IoV introduces several domain-specific
challenges that require careful consideration [16], [17]. First,
the high mobility of vehicles leads to frequent changes in the
spatial distribution of edge nodes, requiring adaptive mecha-
nisms for constructing and maintaining effective collaborative
learning domains. This is particularly important for ensuring
continuous monitoring and rapid response capabilities as
vehicles move through different areas with varying medical
resources and environmental factors. Second, the heterogeneity
in vehicles’ computing capabilities and medical data qual-
ity necessitates intelligent client selection and aggregation
strategies to ensure model convergence and reliability. For
example, some vehicles may be equipped with more advanced
medical sensors or have access to more comprehensive patient
data, while others may have limited capabilities or potentially
unreliable data. Third, the critical nature of medical emergency
response demands both high accuracy and low latency in
model training and inference, requiring careful balancing of
these conflicting objectives to provide timely and accurate
diagnoses.

As an emerging distributed machine learning framework,
federated learning (FL) can be applied to highly dynamic
IoV scenarios. It allows vehicle terminals to download models
from a central server and train them locally. Simultaneously,
the model parameters are uploaded to the central server to
achieve global aggregation of the model under the condition
of data privacy protection [18]. Wen et al. [19] proposed a
resource-aware many-objective vehicle selection model (RA-
MaOVSM) to optimize resource efficiency. Ye et al. [20]
proposed a federated double deep-Q-network-based computa-
tion task offloading (FDTO) strategy to minimize latency in
completing computing tasks for vehicle clusters. Mo et al. [21]
proposed FedDQ, a communication-efficient FL approach
for IoV. Xu et al. [22] proposed PSDF, a method for
privacy-aware IoV service deployment with FL in cloud-edge
computing. Wang et al. [23] proposed a swarm-federated deep-
learning framework in the IoV (IoV-SFDL) that integrates
swarm learning into the federated deep-learning framework.
Zhou et al. [24] proposed a robust hierarchical FL frame-
work named RoHFL, allowing hierarchical FL to be suitably
applied in the IoV with robustness against poisoning attacks.
However, vehicles will switch between domains during high-
speed movement. When using traditional FL methods, the
terminal will discard the existing training model, which may
cause high-quality models to be overwritten by low-quality
models.

This article proposes the emergency-aware DEI for medical
response in IoV (EDEM) framework, designed for rapid
in-vehicle medical emergency response in IoV. The main
contributions of this article are organized as follows.

1) We design a hierarchical edge collaborative comput-
ing framework that adaptively constructs collaborative
domains among vehicles and RSUs based on their
mobility patterns, computing capabilities, and data
reliability. This framework enables efficient and privacy-
preserving distributed training of medical diagnosis
models while addressing the dynamic nature of IoV.
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Fig. 1. Edge collaborative computing framework for in-vehicle medical
emergency response in IoV.

2) We develop a deep-reinforcement-learning (DRL)-based
algorithm for optimal construction of edge collaborative
computing domains. The algorithm comprehensively
considers factors, such as vehicle mobility, computing
power, and data reliability to maximize the effectiveness
and stability of collaborative learning in highly dynamic
IoV environments.

3) We propose a dual-layer FL model for in-vehicle med-
ical emergency response. At the intradomain level,
we design an adaptive semi-asynchronous aggregation
mechanism that dynamically adjusts the client partici-
pation rate based on model accuracy and waiting time.
At the interdomain level, we introduce an asynchronous
aggregation scheme based on effective data volume to
accelerate global model convergence while accounting
for domain heterogeneity.

The remainder of this article is organized as follows.
Section II presents the proposed edge collaborative comput-
ing framework for in-vehicle medical emergency response.
Section III details the DRL-based algorithm for constructing
edge collaborative domains. Section IV describes the dual-
layer FL model and associated aggregation mechanisms.
Section V provides comprehensive performance evaluation
results and analysis. Finally, Section VI concludes this article.

II. EDGE COLLABORATIVE COMPUTING FRAMEWORK FOR

IN-VEHICLE MEDICAL EMERGENCY RESPONSE

We propose a novel edge collaborative computing frame-
work to address the challenges of rapid and accurate medical
emergency response in the highly dynamic IoV environ-
ment. This framework leverages DEI to enable efficient and
privacy-preserving training of medical diagnosis models across
vehicles and RSUs. The proposed framework comprises two
phases: 1) edge collaborative domain construction for medical
response and 2) dual-layer FL for emergency diagnosis. Fig. 1
illustrates the overall architecture of this framework.

In the first phase, we employ a DRL-based algorithm to
optimally group vehicles and RSUs into collaborative domains.
This grouping is based on several factors crucial for medi-
cal emergency response, including vehicle mobility patterns,
onboard medical sensor capabilities, computing power, and
the reliability of collected health data. Creating these adaptive
domains ensures stable and efficient collaborative learning
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in the highly dynamic IoV environment, which is essential
for maintaining continuous medical monitoring and rapid
emergency response capabilities.

The second phase utilizes a dual-layer FL model tailored
for training medical diagnosis models across the constructed
domains [25]. At the intradomain level, we implement a
semi-asynchronous aggregation mechanism that balances the
accuracy of medical diagnoses with the urgency of emergency
response. This approach allows quicker updates of critical
medical parameters while ensuring the overall model reliabil-
ity. We employ an asynchronous aggregation scheme at the
interdomain level based on the volume and quality of medical
data available in each domain. This helps to accelerate global
model convergence while accounting for the heterogeneity in
medical data distribution across different regions and vehicle
types.

This framework enables rapid and accurate medical diagno-
sis model training while preserving patient data privacy and
adapting to the dynamic nature of IoV environments. By incor-
porating domain-specific knowledge of medical emergencies
and considering the unique characteristics of in-vehicle health-
care monitoring, the approach aims to significantly improve
the speed and accuracy of emergency medical response in
challenging IoV scenarios. EDEM employs differential privacy
techniques to protect sensitive medical data during transmis-
sion and processing. Specifically, we add calibrated noise to
the aggregated model updates, ensuring that individual vehicle
data cannot be inferred while maintaining the overall model
utility for emergency response.

EDEM incorporates a robust blockchain-based reputation
system for edge nodes to mitigate security threats in the IoV
environment. This decentralized system continuously evaluates
nodes based on the consistency and reliability of their medical
data contributions. Each data transmission is cryptographically
signed and recorded on the blockchain, creating an immutable
audit trail. Nodes accumulate reputation scores over time, with
higher scores indicating greater trustworthiness. This approach
allows EDEM to adjust trust levels dynamically, prioritizing
data from more reliable nodes and quickly identifying potential
malicious actors.

Furthermore, EDEM incorporates a novelty detection mod-
ule based on one-class support vector machines. This module
flags unusual symptom combinations or sensor readings that
do not match known conditions. In such cases, EDEM prior-
itizes rapid connection to medical experts and increases the
frequency of vital sign monitoring.

EDEM is designed with open APIs that facilitate seamless
integration with existing emergency dispatch systems, hospi-
tal networks, and first responder communication platforms,
enabling a coordinated response across the entire emergency
services ecosystem.

III. DRL-BASED EDGE COLLABORATIVE DOMAIN

CONSTRUCTION ALGORITHM

This section presents the DRL-based algorithm for con-
structing edge collaborative computing domains in IoV for
in-vehicle medical emergency response, as shown in Fig. 2.

Domain member node
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Domain member node

Domain member node
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Fig. 2. Edge collaborative computing domain construction.

The algorithm aims to group vehicles and RSUs into stable
and efficient collaborative domains by considering mobility,
computing capability, and medical data reliability.

A. Medical Data Capability Model

In the context of in-vehicle medical emergency response,
we define a comprehensive medical data capability model for
each vehicle [3]. This model considers the vehicle’s mobility,
onboard medical computing power, and the reliability of its
health monitoring systems. For a vehicle v at time slot t, we
represent its medical data capability model Mv(t) as

Mv(t) = Vv(t),Hv(t),Qv(t) (1)

where Vv(t) denotes the vehicle’s mobility, Hv(t) represents its
medical computing capacity, and Qv(t) indicates the quality of
its health monitoring data.

EDEM utilizes a multimodal learning approach that incor-
porates specialized submodels for different categories of
medical emergencies. The submodels are dynamically acti-
vated based on initial symptom assessment, allowing for
tailored response strategies across a spectrum of emergency
types.

The mobility Vv(t) of vehicle v is crucial for predicting its
trajectory and ensuring continuous medical monitoring. We
model this mobility as a Gaussian distribution, considering the
impact on medical data transmission and emergency response
times. Let sv be the instantaneous speed of vehicle v, with smax
and smin as its maximum and minimum speeds, respectively.
The probability density function of sv is given by

f (sv) =

⎧
⎪⎨

⎪⎩

2e
− (sv−s)2

2σ2
s

σs
√

2π
(

erf( smax−s
σs

√
2
)−erf(

smin−s

σs
√

2
)
) , smin ≤ sv ≤ smax

0, otherwise

(2)

where s is the mean speed and σs is the standard deviation of
vehicle speed. This distribution helps estimate the likelihood
of a vehicle remaining within the range of specific medical
resources or emergency response units.

To account for the critical nature of medical emergencies,
we introduce a medical urgency factor λv that influences the
vehicle’s behavior in the network. This factor is incorporated
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into the calculation of the vehicle’s dwell time τv within the
coverage area of an RSU with radius r

τv = 2r − dvr

sv
· (1 + λv · urgency(t)) (3)

where dvr is the horizontal distance between the vehicle and
the RSU, and urgency(t) is a function that returns a value
between 0 and 1 based on the current medical situation in
the vehicle. This modification allows the model to prioritize
connections and data transmissions for vehicles with ongoing
medical emergencies.

Furthermore, we define a health monitoring effectiveness
index ηv(t) to quantify the capability of a vehicle’s onboard
medical sensors [26]

ηv(t) = α ·
∑N

i=1 wi · accuracyi(t)
∑N

i=1 wi

+ β · sensorsactive(t)

sensorstotal
+ γ · datarate(t) (4)

where accuracyi(t) is the accuracy of sensor i at time t, wi is
the importance weight of sensor i, sensorsactive(t) is the number
of active sensors, sensorstotal is the total number of onboard
medical sensors, datarate(t) is the current data transmission
rate, and α, β, and γ are weighting factors.

This medical data capability model comprehensively rep-
resents a vehicle’s ability to contribute to DEI for medical
emergency response. It considers the vehicle’s movement
patterns and its capacity to collect, process, and transmit
critical health data in dynamic IoV environments.

To handle scenarios with multiple, potentially interacting
medical conditions, EDEM implements a sophisticated multi-
task learning approach. The system trains specialized neural
network models for common comorbidities, such as diabetes
with hypertension or chronic obstructive pulmonary disease
with heart disease. These models capture the complex inter-
actions between different conditions. EDEM then employs
a dynamic ensemble method, using a meta-learner to intel-
ligently combine the outputs of these specialized models.
This approach adjusts in real-time based on the specific
combination of symptoms and sensor data, providing more
accurate diagnoses for patients with multiple conditions.

B. In-Vehicle Medical Data Reliability Model

In the context of in-vehicle medical emergency response,
ensuring the reliability of collected health data is crucial for
accurate diagnosis and timely intervention. We propose a
comprehensive in-vehicle medical data reliability model that
considers various factors affecting the quality and trustwor-
thiness of health-related information gathered from onboard
sensors and devices.

We define a medical data reliability factor Qv(t) for vehicle v
at time t, which evaluates the overall reliability of the vehicle’s
health monitoring system

Qv(t) = α · MHI(
hv, φ)+ β · Pv,disconnect + γ · ψv (5)

where MHI(
hv, φ) represents the medical health index,
calculated based on the rate of change of vital signs 
hv

and the current medical context φ. This index helps identify
potential medical emergencies or anomalies in the collected
health data. Pv,disconnect is the probability of the vehicle losing
connection to the medical edge computing network, which is
crucial for continuous health monitoring. ψv is the trust rating
of the vehicle’s local medical model based on its historical
performance in health data analysis.

The medical health index MHI(
hv, φ) is computed as
follows:

MHI(
hv, φ) =
∑N

i=1 wi · fi
(

hv,i, φi

)

∑N
i=1 wi

(6)

where N is the number of monitored vital signs, wi is the
importance weight of vital sign i, 
hv,i is the rate of change
of vital sign i, φi is the medical context for vital sign i, and
fi(·) is a function that evaluates the significance of the change
in the vital sign within its medical context.

The probability of disconnection Pv,disconnect is modeled as
a function of the vehicle’s speed and the density of available
medical edge computing nodes

Pv,disconnect = 1 − exp

(

− sv

λ · ρmed

)

(7)

where sv is the vehicle’s speed, λ is a scaling factor, and ρmed
is the density of medical edge computing nodes in the vicinity.

EDEM employs a robust caching mechanism that temporar-
ily stores critical medical data and partial model updates on
nearby edge nodes. In the event of sudden network discon-
nections, this allows for seamless resumption of emergency
response services once connectivity is restored.

The trust rating ψv of the vehicle’s local medical model
is calculated based on its performance in recent health data
analyses

ψv =
∑

v∈Domaini
xv

∑
v∈Domaini

xm
v

(8)

where xv is the accuracy score of vehicle v’s local medical
model in recent diagnoses, and m is a factor that emphasizes
the importance of consistently accurate performance.

Adaptive filtering techniques are implemented in EDEM
to address electromagnetic interference (EMI) from vehicle
systems. The framework continuously monitors EMI levels
using dedicated sensors strategically placed within the vehicle.
EDEM dynamically adjusts sensor gain and applies advanced
digital filtering algorithms in real-time based on the detected
interference patterns. This adaptive approach ensures optimal
signal-to-noise ratios for medical sensors, maintaining high
data quality even in electrically noisy environments, such as
those found in hybrid and electric vehicles.

C. Latency Model for In-Vehicle Medical Emergency
Response

In the context of in-vehicle medical emergency response,
minimizing latency is crucial for timely diagnosis and inter-
vention. We present a comprehensive latency model that
accounts for various stages of medical data processing and
model training in a DEI framework for IoV [27].
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For a vehicle v in medical edge computing domain MEDi,
the total latency Ttot,v(MEDi) for completing one round of
FL for medical diagnosis model training consists of three
main components: 1) initial model download latency; 2) local
medical model training latency; and 3) local model upload
latency. This can be expressed as

Ttot,v(MEDi) = Dinit,vr

Rvr
+ Dinit,vr · Xmed

Hv(t)
+ Dmod,vr

Rvr
(9)

where Dinit,vr is the size of the initial medical diagnosis model
downloaded from the medical edge computing unit (MECU) r,
Rvr is the data transmission rate between vehicle v and MECU
r, Xmed is the number of CPU cycles required to train the
medical diagnosis model on a unit of health data, Hv(t) is the
medical computing capacity of vehicle v at time t, and Dmod,vr

is the size of the uploaded local medical model.
The data transmission rate Rvr between the vehicle and

MECU is calculated using the Shannon formula, adapted for
medical data transmission

Rvr = Wvrlog2

(

1 + PvrGvr(Evr)
−θ

σ 2 + Imed

)

(10)

where Wvr is the channel bandwidth allocated for medical
data transmission, Pvr is the transmission power, Gvr is the
channel gain, Evr is the Euclidean distance between vehicle v
and MECU r, θ is the path loss exponent, σ 2 is the background
noise power, and Imed is the interference from other medical
devices in the vicinity.

The Euclidean distance Evr between the vehicle and MECU
is calculated as

Evr =
√

h2
r + (r − lv − svt)2 (11)

where hr is the height of MECU r, r is the coverage radius
of the MECU, lv is the initial position of vehicle v, and sv is
the speed of the vehicle.

To account for the urgency of medical situations, we intro-
duce a medical priority factor μv(t) that affects the resource
allocation and processing speed. The local medical model
training latency is then adjusted as follows:

Ttrain,v = Dlocal,vr · Xmed

Hv(t) · (1 + μv(t))
(12)

where Dlocal,vr is the size of the local health dataset used for
training.

The total latency for medical edge computing domain MEDi

is given by

T(MEDi) =
|MEDi|∑

v=1

Qv,i · Ttot,v(MEDi)

+
∑

v

pv,i · Ttot,v(MEDi)+ Tada(MEDi) (13)

where Qv,i represents the medical data reliability of vehicle
v in domain MEDi, pv,i is the probability of vehicle v
switching domains due to high mobility or changing medical
conditions, and Tada(MEDi) is the adaptive waiting time
for semi-asynchronous aggregation of medical models in the
domain.

To capture the impact of medical emergencies on the overall
system latency, we define an emergency-aware domain latency
factor ε(MEDi) [28]

ε(MEDi) = 1 +
∑

v∈MEDi
μv(t) · severityv(t)

|MEDi| (14)

where severityv(t) is a function that returns a value between 0
and 1 based on the severity of the medical condition in vehicle
v at time t.

Finally, we express the emergency-adjusted total latency for
the medical edge computing domain as

Te(MEDi) = T(MEDi)

ε(MEDi)
(15)

EDEM implements a dynamic resource allocation algo-
rithm that prioritizes and coordinates responses to multiple
simultaneous emergencies. This algorithm considers emer-
gency severity, proximity, available resources, and potential for
patient stabilization to optimize overall response effectiveness.

D. Energy Consumption Model for Medical Edge Computing

The energy consumption in DEI for in-vehicle medical
emergency response is a critical factor affecting system sus-
tainability and efficiency. This model accounts for the energy
expenditure of vehicles and MECUs during medical data
analysis and model training.

For a vehicle v in medical edge computing domain MEDi,
the energy consumption Ev(MEDi) for local medical model
training is expressed as

Ev(MEDi) = Pvr · Mr,v(qv)

Rvr
· (1 + λv · urgency(t)) (16)

where Pvr is the transmission power for uploading medical
data to MECU r, Mr,v(qv) is the size of the medical training
task uploaded by vehicle v, Rvr is the data transmission rate,
λv is a medical urgency factor, and urgency(t) is a function
returning a value between 0 and 1 based on the current medical
situation.

The energy consumption of MECU, r for processing med-
ical data and aggregating models, is given by

Er(MEDi) = π · (fr(qr))
3 · (1 + ωr · emergencyload(t)

)
(17)

where π is the effective switched capacitance related to the
chip architecture, fr(qr) is the number of CPU cycles required
for all medical computing tasks qr at MECU r, ωr is an
emergency scaling factor, and emergencyload(t) represents the
current emergency processing load.

The total energy consumption for medical edge computing
domain MEDi is calculated as

E(MEDi) =
|MEDi|∑

v=1

Qv,i · Ev(MEDi)

+
m∑

r=1

θi,r · π · (fr(qr))
3

· (1 + ωr · emergencyload(t)
)

+
∑

v

pv,i · Ev(MEDi) (18)
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where Qv,i represents the medical data reliability of vehicle v
in domain MEDi, θi,r is the proportion of vehicles covered by
MECU r in domain MEDi, and pv,i is the probability of vehicle
v switching domains due to changing medical conditions or
mobility.

An additional factor in the energy consumption model is
the medical data processing efficiency ηmed(t), which affects
the overall energy usage

ηmed(t) =
∑

v∈MEDi
accuracyv(t) · datavolumev(t)
∑

v∈MEDi
Ev(MEDi)

(19)

where accuracyv(t) is the current accuracy of vehicle v’s
medical model, and datavolumev(t) is the amount of medical
data processed.

E. DRL-Based Medical Model Training Node Selection
Algorithm

The selection of optimal nodes for medical model training in
a DEI framework for in-vehicle emergency response is crucial
for system performance. This section outlines a DRL-based
algorithm for node selection that meets the unique require-
ments of medical emergencies in IoV environments [29].

The node selection problem for medical model training is
formulated as an optimization problem

minφt
v

L(xtrain, ytrain; wmed)

s.t. φt
v ∈ 0, 1 ∀v ∈ MEDi
(
Lx,v(t)− Lx,r(t)

)2 + (
Ly,v(t)− Ly,r(t)

)2 ≤ r2
r

0 ≤ Qv ≤ 1 ∀v ∈ MEDi

E(MEDi) ≤ Ereq

T(MEDi) ≤ Treq

|MEDi|∑

r=1

CRr(t) ≥ Comtot (20)

where L(xtrain, ytrain; wmed) is the loss function for the medical
diagnosis model, φt

v is the indicator vector for vehicle selec-
tion, rr is the coverage radius of MECU r, Qv is the medical
data reliability of vehicle v, Ereq and Treq are the maximum
energy consumption and latency thresholds, and Comtot is the
total computing requirement for all vehicles in the medical
edge computing domain.

The twin delayed deep deterministic policy gradient (TD3)
algorithm is employed to solve this optimization problem.
Our study employs the TD3 algorithm for several reasons.
First, the action space in our edge collaborative domain
construction problem is continuous, representing the degree
of participation for each vehicle in the FL process. TD3 is
well-suited for such continuous action spaces. Additionally,
TD3’s use of a deterministic strategy with Gaussian noise
provides advantages in our dynamic IoV environment. This
approach helps avoid local optima and reduces the risk of
overfitting, which is crucial given the constantly changing
network conditions and varying medical data distributions
across vehicles. Furthermore, TD3’s delayed strategy updates
are particularly beneficial in our scenario. We can achieve a
more stable learning process by updating the action network

at a lower frequency while maintaining a higher update rate
for the evaluation network. This is especially important in
medical emergency response, where maintaining consistent
performance is critical. The twin critic networks in TD3 also
help to reduce overestimation bias, leading to more reliable
Q-value estimates. This is particularly valuable in our medical
diagnosis model training, where accurate estimation of action
values can significantly impact the quality and reliability of the
resulting diagnostic capabilities. The target policy is defined
as

μθ ′
(
s′) = clip

(
μθ ′(s′)+ clip(ε,−c, c), alow, ahigh

)
(21)

where ε ∼ N (0, σ ). The TD3 algorithm selects the minimum
Q-value from two target critic networks as the target value

y(s, a) = r(s, a)+ γmin
(
Qφ1′ (s

′, μθ ′(s′)),Qφ2′ (s
′, μθ ′(s′))

)
.

(22)

The loss function Fi(wmed) for all vehicles in the medical
dataset is defined as

Fi(wmed) =
∑

(xi,yi)∈MEDi

fi((xi, yi),wmed)

|Hi,vr|
· (1 + λi · urgencyi(t)

)
(23)

where xi and yi are the actual and predicted values for the
medical diagnosis model in domain MEDi, |Hi,vr| is the total
amount of medical data for vehicle v covered by MECU r,
λi is an urgency scaling factor, and urgencyi(t) represents the
current medical urgency in the domain.

The objective of the node selection algorithm is to find
the optimal domain construction decision w∗

med that minimizes
Fi(wmed)

w∗
med = argminwmed

Fi(wmed). (24)

The reward function for the DRL algorithm is designed to
incorporate medical emergency considerations

rewardt = −L(xtest, ytrain; wmed) · (1 + β · emergencyfactor(t)
)

∑
v ∈ MEDiφt

v
(25)

where β is a weighting factor and emergencyfactor(t) represents
the current level of medical emergency in the system.

The state space of the DRL agent includes the medical data
capability model Mv(t) = Vv(t),Hv(t),Qv(t) for each vehicle,
incorporating mobility, medical computing capacity, and health
monitoring data quality.

The action space is [φt
v], where φt

v = 1 indicates selection
and φt

v = 0 indicates nonselection of a vehicle for medical
model training.

To address the dynamic nature of medical emergencies, an
adaptive learning rate ηmed(t) is introduced

ηmed(t) = η0 · exp(−κ · stability(t)) (26)

where η0 is the initial learning rate, κ is a decay factor, and
stability(t) measures the current stability of the medical edge
computing domain.
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Domain member node

Domain head node

Central server

Selected terminal

Malicious terminal

Inter-domain aggregation
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Fig. 3. Dual-layer FL model aggregation process for in-vehicle medical
emergency response.

IV. EDGE COLLABORATIVE DOMAIN-BASED

DUAL-LAYER FL MODEL

This section presents the dual-layer FL model for in-vehicle
medical emergency response in IoV. The model leverages
the edge collaborative domains constructed in the previous
section to enable efficient and privacy-preserving training of
medical diagnosis models. Fig. 3 illustrates the dual-layer FL
model aggregation process.

A. Emergency-Aware Adaptive Aggregation for In-Vehicle
Medical Models in IoV

In the context of in-vehicle medical emergency response
within IoV environments, the aggregation of local medical
models plays a crucial role in developing accurate and timely
diagnostic capabilities.

EDEM incorporates an ethics module that ensures all
automated medical decisions adhere to established medical
protocols and ethical guidelines. This module also flags high-
stakes decisions for human review, maintaining a balance
between rapid response and ethical considerations.

The mean absolute error (MAE) serves as a key met-
ric for evaluating the accuracy of local medical diagnosis
models [30], [31]

MAE = 1

|di|
|di|∑

j=1

|yj − wv(xv)| · (1 + λj · severityj

)
(27)

where di represents the total amount of medical data in domain
MEDi, xv is the initial model accuracy of vehicle v, yj is the
accuracy of the domain model in MEDi, wv is the proportion of
vehicle v’s medical data in the total data of domain MEDi, λj

is an urgency scaling factor, and severityj indicates the severity
of the medical condition for data point j.

The medical diagnosis model uses features from the med-
ical information mart for intensive care III (MIMIC-III)
dataset, including vital signs (e.g., heart rate, blood pres-
sure, and oxygen saturation), and laboratory test results.
The model is trained to predict the likelihood of various
medical emergencies, such as cardiac arrest or respiratory
failure.

Algorithm 1 Distributed Gossip-Based Local Medical Model
Update Mechanism
Input: Set of local medical models mi(t)
Output: Updated set of local medical models mi(t + 1)
01: for each vehicle v in NMEDi do
02: if t ≤ T then
03: Vehicle v receives noisy medical models w̃i(t) from
other vehicles
04: Vehicle v trains new local medical model: mi(t + 1) =
mi(t)+ w̃i(t)
05: Vehicle v calculates local model MAE and evaluates
model quality
06: Vehicle v updates its noisy model: w̃i(t + 1) = w̃i(t)+
Noise
07: Vehicle v broadcasts new noisy model w̃i(t + 1) and
MAE to other vehicles
08: Other vehicles receive noisy model and return to step 3
09: if Vehicle v‘s error is below emergency threshold then
10: Stop model update
11: end if
12: end if
13: end for
14: return mi(t + 1)

An adaptive aggregation factor J(MEDi) is designed to bal-
ance waiting time and model accuracy in medical emergency
scenarios

J(MEDi) = ρTtot,v + ξMAE + ωEmergencyIndex(MEDi) (28)

where ρ, ξ , and ω are weights representing the impact of
latency, model accuracy, and medical emergency severity on
the aggregation factor, respectively. EmergencyIndex(MEDi)

quantifies the overall emergency level in the medical edge
computing domain.

B. Adaptive Medical Model Updating for Cross-Domain
Emergency Response in IoV

The high mobility of vehicles in IoV environments presents
unique challenges for maintaining consistent and accurate
medical diagnosis models across different edge computing
domains. This section describes a partial conditional update
mechanism for cross-domain vehicle local models, specifically
tailored for in-vehicle medical emergency response scenarios.

Algorithm 1 outlines the distributed gossip-based local
medical model update mechanism.

Our method incorporates a reputation-based system to detect
and mitigate the impact of malicious nodes. Nodes with
consistently poor performance or those that submit anomalous
updates are assigned lower weights in the aggregation process,
effectively reducing their influence on the global model.

A context-aware model adaptation mechanism is integrated
into EDEM to handle transitions between areas with differ-
ing health risk profiles. This intelligent system continuously
monitors real-time environmental data, including air quality
indices, pollen counts, and local disease outbreak information.
EDEM dynamically adjusts its diagnostic models and sensor
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Algorithm 2 Cross-Domain Medical Model Partial
Conditional Update Mechanism
Input: Current medical model mi(v); Next domain model
mi+1(v); General model block G(v); Specialized medical
model block S(v)
Output: Updated local medical model Ui(v)
01: for vehicle v in NMEDi do
02: Train current local medical model mi(v) =
[G(v); Si(v)]{Ns × Nd}
03: Vehicle v enters MEDi+1, receives mi+1(v) =
[G(v); Si+1(v)]{Ns × Nd}
04: Calculate MAE for Si(v) and Si+1(v)
05: Select specialized model block with lower MAE
06: Vehicle joins MEDi+1 for continued emergency response
training
07: end for
08: return Ui(v)

sensitivities based on these inputs. For instance, when a vehicle
moves from a low-pollution to a high-pollution area, the
system increases the sensitivity of respiratory monitoring. It
updates the diagnostic thresholds for conditions like asthma
exacerbations.

EDEM includes a dynamic device integration module that
can interface with various consumer wearable devices. The
system can incorporate data from smartwatches, continuous
glucose monitors, and other personal medical devices using
standardized protocols like Bluetooth Low Energy.

C. Emergency-Weighted Asynchronous Model Fusion for IoV
Medical Domains

The valid emergency data coverage (VEDC) for each
medical edge computing domain in a training round is defined
as

VEDCi(t) =
∑

r∈MEDi

|Dr| · (1 + λr · emergencyr(t)
)

(29)

where Dr represents the total amount of effective local model
medical data for all vehicles covered by MECU r in domain
MEDi, λr is an emergency scaling factor, and emergencyr(t)
quantifies the current level of a medical emergency in the area
covered by MECU r.

The aggregation weight for each medical domain is set
based on the proportion of its VEDC

weightVEDCi
(t) =

∑
k∈i VEDCk(t)

VEDC(t)
· urgencyi(t)∑

j urgencyj(t)
. (30)

Algorithm 2 outlines the partial conditional update mech-
anism for cross-domain vehicle local models in medical
emergency scenarios.

This mechanism ensures that the global medical diagnosis
model remains responsive to the varying emergency levels
across different domains while maintaining the accuracy
and relevance of local models in the highly dynamic IoV
environment.

EDEM integrates with vehicle crash detection systems to
automatically initiate emergency protocols in the event of an

TABLE I
SIMULATION PARAMETERS

Parameter Value

Background noise power density -174 dBm/Hz

Channel bandwidth 100 kHz

Actor learning rate 0.001

Critic learning rate 0.01

Local dataset size [100, 2000]

Proportion of malicious terminals [10%, 40%]

Local iteration rounds 5

Number of convolutional layers 2

Emergency severity levels [Low, Medium, High]

Vehicle speed range [0, 120] km/h

Medical sensor types

[ECG, blood pressure, 

oxygen saturation, 

temperature]

Edge node computing capacity [10, 50] GFLOPS

Cloud computing capacity 500 LOPS

accident. The system immediately prioritizes transmission of
crash severity data, occupant vital signs, and vehicle location
to emergency services. EDEM successfully transmitted critical
data in crash test simulations within 3 s of impact detection,
even in scenarios with partial system damage.

Furthermore, to address privacy concerns when sharing
medical data across administrative domains, EDEM imple-
ments an FL approach with differential privacy guarantees.
Each domain trains local models using only its data, preserving
patient privacy. Only encrypted model updates are exchanged
between domains, never raw medical data. EDEM employs a
dynamic epsilon selection mechanism for differential privacy,
balancing privacy protection with model utility.

V. PERFORMANCE EVALUATION

A. Simulation Settings

We simulated an IoV environment using Python 3.8 and
TensorFlow 2.3.1. The simulation models a 10 × 10 grid
representing an urban area, with each grid cell approximately
100 m long. We used the MIMIC-III clinical database, a large,
freely available database comprising de-identified health-
related data associated with over 40 000 patients who stayed in
critical care units, to train the medical diagnosis models [32].
This dataset is particularly suitable for simulating in-vehicle
medical emergency scenarios due to its comprehensive nature
and focus on critical care. We employ a deep-Q-network
for our DRL approach. The network consists of three fully
connected layers with 64, 32, and 16 neurons using ReLU
activation functions. The input layer size corresponds to the
state space dimension, while the output layer size matches the
action space. Table I lists the key simulation parameters.

The proposed EDEM framework is compared with six
state-of-the-art baseline methods: RA-MaOVSM [19], FDTO
(federated double deep-Q-network-based task offloading) [20],
federated-deep-Q-learning (FedDQ) [21], PSDF (privacy-
aware service deployment with FL) [22], IoV-SFDL [23], and
RoHFL [24].
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Fig. 4. Global model accuracy.

Fig. 5. Training delay.

B. Simulation Results Analysis

We use a separate, independent test set that is not used
during the training or optimization process to evaluate model
accuracy. The RL algorithm optimizes based on a validation
set, distinct from the training and test sets, to prevent data
leakage.

Fig. 4 illustrates the impact of the number of vehicles on
the global model accuracy for medical diagnosis in IoV.

As shown in Fig. 4, EDEM consistently outperforms all
baseline methods across different numbers of vehicles. When
the number of vehicles is around 20, EDEM achieves an
accuracy of 97.2%, compared to 95.8% for RoHFL (the
best performing baseline) and 91.5% for RA-MaOVSM
(the worst-performing baseline). As the number of vehi-
cles increases to 50, EDEM maintains a high accuracy of
95.8%, while RoHFL drops to 93.1% and RA-MaOVSM
to 88.3%.

Fig. 5 presents the training delay and the number of partic-
ipating vehicles over increasing iteration times.

The left y-axis shows the latency in milliseconds, while the
right y-axis indicates the number of vehicles participating in
the training process. EDEM demonstrates the lowest overall
latency, starting at 62 ms for ten iterations and gradually
increasing to 84 ms at 80 iterations. In contrast, RA-MaOVSM
shows the highest latency, ranging from 78 to 102 ms over the
same period.

Fig. 6 illustrates the model accuracy with 30% malicious
terminals, while Fig. 7 shows the model accuracy when only
10% of terminals are malicious. The performance gap between
methods narrows, but EDEM maintains a clear advantage,
which is crucial for accurate medical diagnosis in emergencies.

Fig. 8 presents the loss function values with 30% malicious
terminals, while Fig. 9 shows the loss function values with
10% malicious terminals.

Fig. 6. Model accuracy with 30% malicious terminals.

Fig. 7. Model accuracy with 10% malicious terminals.

Fig. 8. Loss function with 30% malicious terminals.

The faster convergence and lower loss demonstrate EDEM’s
efficiency in leveraging high-quality medical data for improved
diagnosis accuracy.

We measured the average response time to critical medical
events to further evaluate EDEM’s performance in rapid
medical emergency response. Table II illustrates the average
response time to simulated heart attack scenarios across
different traffic densities. EDEM’s superior performance is
attributed to its emergency-aware adaptive aggregation mech-
anism and the distributed nature of its edge intelligence.
The slight increase in response time under higher traffic
(e.g., a small jump between medium and high traffic) reflects
the increased complexity of data routing and processing in
congested scenarios.
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Fig. 9. Loss function with 10% malicious terminals.

TABLE II
AVERAGE RESPONSE TIME TO HEART ATTACK SCENARIOS

Densit

y

EDE

M

RoH

FL

IoV

-

SFD

L

PSD

F

FedD

Q

FDT

O

RA-

MaOV

SM

Low 2.8 3.5 3.9 4.2 4.5 4.8 5.2

Mediu

m
3.4 4.2 4.7 5.1 5.5 5.9 6.4

High 4.2 5.1 5.7 6.2 6.7 7.2 7.8

Fig. 10. Resource utilization efficiency.

To demonstrate EDEM’s efficiency in utilizing distributed
edge resources, we evaluate the resource utilization ratio across
different numbers of edge nodes. Fig. 10 shows the resource
utilization efficiency for computing and storage resources.
While Comp stands for computing resources, and Store stands
for storage resources. The fluctuations in EDEM’s curves (e.g.,
a slight dip in computing resource utilization at 30 nodes
before rising again) reflect its dynamic resource allocation
strategy, adapting to changing network conditions and medical
data processing requirements.

To evaluate the effectiveness of our DRL-based node
selection approach, we conducted an ablation study com-
paring it with two rule-based methods: 1) random selection
and 2) greedy selection based on data quality. We assessed
these methods across three key metrics: 1) model accu-
racy; 2) response time; and 3) resource utilization efficiency.
Table III presents the results of this comparison.

Table III shows that our DRL-based approach consistently
outperforms both rule-based methods across all metrics.

TABLE III
ABLATION STUDY: COMPARISON OF NODE SELECTION METHODS

Method

Model 

accuracy 

(%)

Response 

time (ms)

Resource 

utilization 

(%)

DRL-based 95.8 84 92

Greedy selection 89.2 112 85

Random selection 82.5 156 73

TABLE IV
ABLATION STUDY: COMPARISON OF FL MODELS

Method

Model 

Accura

cy (%)

Communicat

ion Overhead 

(MB/round)

Convergen

ce Speed 

(rounds)

Robustness 

to 

Heterogene

ity (%)

Dual-layer 

FL 

(Proposed)

95.8 2.3 18 92.5

Single-layer 

FL
93.2 3.8 27 85.7

TABLE V
EDEM PERFORMANCE UNDER VARIOUS 5G NETWORK

CONGESTION LEVELS

Congestion 

level

Response 

time (s)

Diagnosis 

accuracy (%)

Data transmission 

success rate (%)

0%

(Baseline)
2.8 97.2 100

30% 3.1 96.8 98.5

50% 3.5 95.9 96.2

70% 4.2 94.5 92.8

90% 5.7 91.2 85.3

Regarding model accuracy, the DRL-based method achieves
95.8%, significantly higher than the greedy selection (89.2%)
and random selection (82.5%) methods. This improved accu-
racy can be attributed to the DRL algorithm’s ability to learn
and adapt to the complex dynamics of the IoV environment
and medical data distribution.

Additionally, to evaluate the effectiveness of our dual-layer
FL model, we conducted an ablation study comparing it
with a single-layer FL approach. We assessed these methods
across four key metrics: 1) model accuracy; 2) communication
overhead; 3) convergence speed; and 4) robustness to hetero-
geneity. Table IV presents the results of this comparison.

Table IV shows that our dual-layer FL model outperforms
the single-layer approach across all metrics. Regarding model
accuracy, the dual-layer method achieves 95.8%, 2.6% higher
than the single-layer approach (93.2%). This improved accu-
racy can be attributed to the dual-layer model’s ability better
to handle data heterogeneity across domains in the IoV
environment.

To assess EDEM’s resilience to network congestion, we
simulated various 5G network load levels. We evaluated
EDEM’s performance across different congestion levels, mea-
suring key metrics, such as response time, diagnosis accuracy,
and data transmission success rate. Table V presents the
results of our network congestion simulations. Table V shows
that EDEM demonstrates robust performance even under
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high network congestion levels. At 70% network congestion,
EDEM maintains 90% of its baseline performance across all
measured metrics.

VI. CONCLUSION

This article presented EDEM, an emergency-aware DEI
framework for medical response in IoV environments.
Simulation results demonstrate that the proposed EDEM
framework performs well regarding global model accuracy,
training delay, robustness against malicious terminals, emer-
gency response time, and resource utilization efficiency.
However, the framework’s performance in extremely dense
urban environments with high interference levels needs fur-
ther investigation. Additionally, the impact of the long-term
evolution of medical conditions on model accuracy and adap-
tation mechanisms requires more extensive study. Future work
should focus on integrating EDEM with emerging 6G and
beyond technologies to reduce latency further and improve
connectivity.
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