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A B S T R A C T

The rapid growth of medical data presents opportunities and challenges for healthcare professionals and re-
searchers. To effectively process and analyze this complex and heterogeneous data, we propose evolutionary
reinforcement learning with novelty-driven exploration and imitation learning for medical data processing
(ERLNEIL-MDP) algorithm, including a novelty computation mechanism, an adaptive novelty-fitness selection
strategy, an imitation-guided experience fusion mechanism, and an adaptive stability preservation module. The
novelty computation mechanism quantifies the novelty of each policy based on its dissimilarity to the population
and historical data, promoting exploration and diversity. The adaptive novelty-fitness selection strategy balances
exploration and exploitation by considering policies’ novelty and fitness during selection. The imitation-guided
experience fusion mechanism incorporates expert knowledge and demonstrations into the learning process,
accelerating the discovery of effective solutions. The adaptive stability preservation module ensures the stability
and reliability of the learning process by dynamically adjusting the algorithm’s hyperparameters and preserving
elite policies across generations. These components work together to enhance the exploration, diversity, and
stability of the learning process. The significance of this work lies in its potential to revolutionize medical data
analysis, leading to more accurate diagnoses and personalized treatments. Experiments on MIMIC-III and n2c2
datasets demonstrate ERLNEIL-MDP’s superior performance, achieving F1 scores of 0.933 and 0.928, respec-
tively, representing 6.0 % and 6.7 % improvements over state-of-the-art methods. The algorithm exhibits strong
convergence, high population diversity, and robustness to noise and missing data.

1. Introduction

Recently, the healthcare sector has experienced a notable increase in
the generation and accumulation of medical data, propelled by the
extensive implementation of electronic health records (EHRs), the
expansion of medical imaging technologies, and the growing accessi-
bility of wearable health monitoring devices [1–3]. This extensive
collection of medical data offers both benefits and challenges for
healthcare practitioners and researchers. The proliferation of data can

transform healthcare by facilitating personalized medicine, enhancing
disease diagnosis and prognosis, and refining treatment options [4–6].
Conversely, medical data’s varied, high-dimensional, and frequently
unstructured characteristics present considerable problems for conven-
tional data processing and analysis methods [7,8]. Advanced computa-
tional methods are essential for efficiently leveraging medical data and
extracting meaningful insights. Machine learning, especially deep
learning, has emerged as a viable approach for tackling the complexity
of medical data [9]. Convolutional neural networks (CNNs) and
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recurrent neural networks (RNNs), sophisticated variants of deep
learning algorithms, have demonstrated remarkable success across
multiple medical domains. These encompass medical image analysis,
electronic health record processing, and biological signal analysis
[10–12]. Nevertheless, deep learning models sometimes necessitate
significant amounts of labeled data for training, which can be costly and
labor-intensive to obtain in the medical domain [13].

Reinforcement learning (RL) is acknowledged as an effective
approach for agents to gain an understanding of the solution space
through actions and interactions with the environment. This enables
them to enhance their methodologies [14] perpetually. RL algorithms,
including Q-learning and policy gradient methods, have been success-
fully applied in diverse domains such as robotics, gaming, and autono-
mous navigation [15,16]. Ongoing improvements in approaches
considerably enhance RL capabilities through deep learning, enabling
the acquisition of complex strategies directly from high-dimensional
sensory inputs [17]. Deep RL (DRL), integrating DL and RL, has made
substantial progress in various domains, such as mastering the game of
Go and controlling robotic manipulators [18]. Even with the accom-
plishments of DRL in various applications, its potential in medical data
processing still needs to be investigated. Medical data has distinct ob-
stacles for DRL algorithms, including reward sparsity, confounding
variables, and the necessity for interpretability [19]. Furthermore, DRL
algorithms frequently experience sample inefficiency and instability,
necessitating numerous interactions with the environment to acquire
successful rules. Researchers have adopted evolutionary algorithms
(EAs) as a supplementary method to DRL to tackle these issues [20].

Recent studies have been undertaken to enhance EAs by including RL
approaches. This methodology is called RL-assisted EA (RL-EA) [21].
RL-EA employs acquired search information to improve solutions
collaboratively, demonstrating its efficacy across various domains,
including optimization, scheduling, and gaming. The use of RL in EAs
enhances the efficiency of search space exploration, directing the
evolutionary process toward attractive areas and expediting conver-
gence. Additionally, certain studies seek to include EAs in RL, referred to
as evolutionary RL (ERL). EA predominantly manages activities within
this algorithmic framework, including hyperparameter optimization,
policy search, exploration, and reward shaping. ERL has demonstrated
capability in managing extensive and intricate RL tasks, including ro-
botic control and autonomous driving. By implementing
population-based search and diversity maintenance methods, ERL can
proficiently navigate the policy space and surmount the constraints of
conventional RL algorithms, including sparse rewards and local optima.

Despite the successful use of RL-EA and ERL across several areas, the
theoretical examination of algorithms, benchmarks, training method-
ologies, and strategy formulation continues to be a vibrant field of
research. The amalgamation of RL and EAs for medical data processing
presents other challenges, such as the necessity for interpretability,
noise, uncertainty, and the demand for durable and reliable solutions
[22]. Therefore, it is essential to explore novel strategies to enhance
algorithmic efficiency and tailor these approaches to address the
particular requirements of medical data processing tasks.

ERLNEIL-MDP is distinguished by its distinctive amalgamation of
novelty-driven exploration and imitation learning within the framework
of ERL, specifically designed for medical data processing. This integra-
tion facilitates the effective investigation of intricate medical data
landscapes while utilizing expert knowledge, tackling the essential
challenge of reconciling innovation with conventional medical proced-
ures. The primary aim of this project is to create a resilient and novel
algorithm for medical data processing that tackles significant obstacles
in the domain. Our objective is to develop a system proficient in man-
aging various forms of medical data, encompassing structured electronic
health records and unstructured clinical notes, while markedly
enhancing the precision and efficacy of data analysis. We aim to facili-
tate more precise diagnoses and tailored treatment strategies through
sophisticated data processing methodologies. We want to create an

interpretable AI system that delivers explainable decisions, fulfilling the
essential requirement for transparency in healthcare applications.

Therefore, this paper proposes a novel ERL algorithm incorporating
novelty-driven exploration and imitation learning for processing com-
plex medical data. The proposed algorithm addresses the exploration-
exploitation dilemma in RL by introducing a novelty computation
mechanism and a combination selection strategy. Furthermore, we
employ an experience fusion imitation approach to enhance learning
efficiency and a training stability module to ensure stable convergence.
The architecture of the proposed algorithm is designed to handle the
high-dimensional and heterogeneous nature of medical data effectively.

The main contributions of this paper can be summarized as follows:

• We introduce a novelty computation mechanism that quantifies the
novelty of individuals based on their dissimilarity to the population
and the historical data, promoting efficient search space exploration.

• We propose a combination selection strategy that balances the
exploration and exploitation by considering individuals’ novelty and
fitness during the selection process.

• We employ an experience fusion imitation approach that preserves
and propagates useful knowledge across generations, accelerating
the learning process and improving overall performance.

• We design a training stability module that dynamically adjusts the
learning rate and mutation strength to ensure stable convergence
and avoid premature stagnation.

The remainder of this paper is organized as follows. Section 2 re-
views the related works in EAs and medical data processing. Section 3
provides an overview of the fundamental concepts. Section 4 presents
the proposed ERL algorithm with novelty-driven exploration and
imitation learning. Section 5 describes the experimental setup and dis-
cusses the results. Section 6 gives the limitation and discussion of the
work. Finally, Section 7 concludes the paper and outlines future research
directions.

2. Related work

2.1. Evolutionary reinforcement learning

EAs are a category of optimization techniques grounded in the
principles of natural evolution, encompassing reproduction, mutation,
recombination, and selection. EAs have effectively addressed several
challenges, including numerical optimization, combinatorial optimiza-
tion, and machine learning. EAs enhance exploration, diversity, and
robustness in the learning processes of ERL and medical data processing.
The fundamental principle of EAs is to repeatedly generate a population
of potential solutions, often depicted as chromosomes or genotypes, by
applying various genetic operators over multiple generations. The
assessment of each candidate solution’s fitness relies on a predetermined
objective function that measures the quality or performance of the so-
lution inside the defined problem area. The process of evolution entails
the continual selection of the most adapted individuals from the current
population, the utilization of genetic operators to generate new children,
and the substitution of less adapted individuals with newly created ones.

An established instance of an EA is the genetic algorithm (GA), which
utilizes a binary or real-valued representation of prospective solutions
[23,24]. Within the context of ERL, the prospective solutions in a GA can
denote the parameters linked to a policy or value function in RL. The GA
modifies the population of policies through selection, crossover, and
mutation operators to produce new policies that retain advantageous
characteristics from their predecessors while including specific alter-
ations. The selection operator identifies the most appropriate in-
dividuals from the current population to serve as parents for the next
generation. Two often employed selection strategies in EAs are tourna-
ment and roulette wheel selection. In tournament selection, individuals
are randomly chosen to compete against one another based on their
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fitness levels. In roulette wheel selection, individuals are selected with a
probability proportionate to their fitness level. EAs have been employed
in medical data processing for several objectives, including feature se-
lection, parameter optimization, and model selection. GAs have been
utilized to choose the most informative features from intricate medical
datasets, including gene expression data and electronic health records,
to improve the accuracy of predictive models [25]. EAs have been
employed to optimize the hyperparameters of machine learning models,
including support vector machines and deep neural networks, enhancing
their capacity to generalize medical data [26].

ERL integrates EAs with RL to resolve the exploration-exploitation
issue and enhance learning efficiency [27]. ERL algorithms sustain a
population of policies and refine them through EA operations, simulta-
neously utilizing RL principles to modify the policies depending on
environmental interactions. Hu et al. [28] introduced a DRL-assisted
co-evolutionary differential evolution method for addressing limited
optimization issues. Wu et al. [29] presented an innovative ERL algo-
rithm utilizing particle swarm optimization to identify optimal action
sequences. In quantitative trading, DRL agents have arisen to enhance
decision-making across various market conditions, formulating lucrative
trading strategies by integrating insights from historical data. Takara
et al. [30] presented a novel trading system based on the deep
Q-network. Parham et al. [31] presented an innovative deep clustering
method termed automatic deep sparse clustering, which employs a dy-
namic population-based EA utilizing RL and transfer learning. Bora et al.
[32] presented an enhanced version of the non-dominated sorting GA
that integrates a parameter-free self-tuning method utilizing RL. Bora
et al. [33] introduced an enhanced non-dominated sorting GA II that
integrates a parameter-free self-tuning mechanism through RL.

Even with the efficacy of current ERL algorithms, they frequently
encounter challenges due to medical data’s high-dimensional and varied
characteristics, resulting in sluggish convergence and unsatisfactory
outcomes.

2.2. Medical data processing

Medical data processing has significantly advanced in recent years,
with machine learning and artificial intelligence playing more vital roles
in various medical applications. These advancements have improved
diagnosis, tailored treatment alternatives, and superior patient care.

Numerous significant researches have arisen in the field of disease
prediction and classification. Mostafa et al. [34] provided a thorough
methodology for predicting hepatocellular carcinoma, evaluating the
efficacy of various machine learning algorithms. Their research on
feature reduction is especially pertinent to our study, as it tackles the
problem of high-dimensional medical data, a prevalent concern in
healthcare analytics. Likewise, Farghaly et al. [35] established a
machine-learning framework to predict the Hepatitis C Virus among
healthcare workers in Egypt, illustrating the applicability of these
techniques in practical clinical environments.

Data preparation and balancing methodologies in medical data
analysis are paramount. Khairy et al. [36] examined the efficacy of
rebalancing approaches in mitigating class imbalance within cyberbul-
lying datasets. Their findings offer significant insights applicable to
medical datasets, which frequently have analogous imbalance chal-
lenges. Omar et al. [37] introduced a novel method for optimizing
epileptic seizure recognition through deep learning models, utilizing
feature scaling and dropout layers to improve performance.

Advanced machine learning methodologies have been utilized in
numerous specialized medical domains. Hady et al. [38] used machine
learning to predict abdominal fat composition following cavitation
therapy, utilizing advanced hyperparameter optimization methods.
Hady and Abd El-Hafeez [39] transformed core muscle analysis in fe-
male sexual dysfunction by machine learning, showcasing the applica-
bility of these techniques in specific medical contexts.

Integrating deep learning models with medical imaging has

advanced the frontiers of illness diagnosis and categorization. Eliwa
et al. [40] suggested amethod utilizing CNNs to classify monkeypox skin
lesions, enhancing their model with the grey wolf optimizer algorithm.
This study illustrates the capability of integrating sophisticated neural
network topologies with evolutionary optimization methods, a notion
that closely corresponds with our ERLNEIL-MDP framework.

Natural language processing techniques have demonstrated consid-
erable utility in studying medical data. Hassan et al. [41] investigated
transformer models and bidirectional long short-term memory networks
for illness prediction based on symptom descriptions, underscoring the
efficacy of language models in medical diagnosis. This study highlights
the significance of managing unstructured textual data in healthcare, a
difficulty our ERLNEIL-MDP method seeks to resolve.

Hady and Abd El-Hafeez [42] utilized machine learning to forecast
female pelvic tilt and lumbar angle in instances of urine incontinence
and sexual dysfunction. Their methodology of employing many scales
rather than exclusively depending on imaging data illustrates the po-
tential of machine learning in developing non-invasive diagnostic
instruments.

In addition to conventional medical applications, machine learning
has been utilized in associated domains that affect public health and
safety. Shams et al. [43] introduced an innovative deep learning model
that integrates a self-attention layer into a convolutional neural network
for the detection of audio data in emergency vehicle sirens and road
noise. This work demonstrates the adaptability of advanced machine
learning algorithms in analyzing intricate sensory input, but it is not
directly associated with medical diagnosis. This skill is particularly
pertinent to medical signal processing.

These several studies demonstrate the rapidly expanding applica-
bility of machine learning technology in the medical area. They eluci-
date the challenges of feature selection, data balance, model
optimization, and the application of domain-specific knowledge to
develop effective algorithms for medical data processing. The breadth of
these enhancements inspires the creation of the ERLNEIL-MDP algo-
rithm, which amalgamates elements of evolutionary strategies and RL to
address the complexities inherent in medical datasets. The approach
incorporates exploration strategies, including novelty-driven explora-
tion and imitation learning, to enhance medical data analysis and
eliminate previously established treatment boundaries, thereby facili-
tating improved diagnosis, targeted treatment, and optimized patient
recovery.

3. Fundamental concepts

3.1. Reinforcement learning

RL is a specialized area in machine learning that specifically deals
with teaching intelligent agents how to make a series of decisions in a
given environment to maximize a cumulative reward. Within the RL
framework, an agent engages with the environment by perceiving the
present state, making decisions according to its policy, and receiving a
reward and the subsequent state from the environment. The agent’s
objective is to acquire an optimal strategy that maximizes the antici-
pated total reward over time.

The RL problem is commonly expressed as a Markov decision pro-
cess, represented by a tuple (S ,A ,P ,R , γ). Here, S denotes the state
space, A represents the action space, P is the transition probability
function, R stands for the reward function, and γ ∈ [0, 1] is the discount
factor [44]. At each time step t, the agent perceives the current state
st ∈ S , selects an action at ∈ A based on its policy π(at |st), and obtains a
reward rt = R (st , at) and the subsequent state st+1 ∼ P (⋅|st ,at).

The value function Vπ(s) denotes the anticipated total reward ob-
tained by beginning from state s and adhering to policy π:
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Vπ(s) = Eπ
[
∑∞

k=0

γkrt+k|st = s

]

(1)

where Eπ represents the expectation calculated over the trajectories
produced by policy π.

Similarly, the action-value function Qπ(s, a) denotes the anticipated
total reward when starting from state s, executing action a, and subse-
quently adhering to policy π:

Qπ(s, a) = Eπ
[
∑∞

k=0

γkrt+k|st = s, at = a

]

(2)

The value function V(s) and action-value function Q(s, a) are defined
as follows:

V∗(s) = maxπVπ(s) (3)

Q∗(s, a) = maxπQπ(s, a) (4)

The objective of RL is to identify an optimal policy π∗ that maximizes
the predicted cumulative reward.

π∗ = argmaxπEπ
[
∑∞

t=0
γtrt

]

(5)

Several RL algorithms have been suggested to acquire the best policy.
These algorithms estimate the value functions or explicitly optimize the
policy using the observed rewards and state transitions. Nevertheless,
conventional RL algorithms frequently encounter difficulties when
dealing with state and action spaces with many dimensions, which is a
regular occurrence in real-world applications like medical data pro-
cessing. DRL integrates RL with deep neural networks (DNNs) to acquire
intricate policies and value functions from unprocessed input data.

The deep Q-network (DQN) is a widely used DRL approach that es-
timates the action-value function by employing a deep neural network
Qθ(s, a), with θ denoting the network parameters [45]. The DQN is
trained to minimize the error in the difference between predicted and
actual values over time.

L (θ) = E(s, a, r, ś ) ∼ D
[
(r + γmaxaʹQθʹ(ś , aʹ) − Qθ(s, a))2

]
(6)

where D refers to the replay buffer, which stores the agent’s experiences
as state-action-reward-next state tuples (s, a, r, ś ). The parameter θʹ

represents the target network parameters, which are regularly changed
to ensure the stability of the learning process.

Another notable DRL technique is proximal policy optimization
(PPO) [46], an on-policy approach specifically designed to optimize the
policy directly. PPO incorporates a surrogate goal function to restrict
policy updates and avoid significant changes that could disrupt the
learning process. The surrogate objective function is formally specified
as:

where πθ refers to the current policy, πθold refers to the previous policy,
Aπθold (s, a) represents the advantage function estimated using the previ-
ous policy, and ϵ is a hyperparameter that determines the range of
clipping.

DRL algorithms have succeeded remarkably in diverse fields,
including game-playing, robotics, and autonomous driving. Neverthe-
less, the use of machine learning algorithms in medical data processing

tasks requires further enhancement due to the distinctive difficulties
presented by medical data, including the limited availability of labeled
data, the existence of noise and artifacts, and the want for solutions that
are both interpretable and dependable. In order to tackle these diffi-
culties, scientists have investigated the combination of EAs with DRL,
resulting in the emergence of the discipline known as ERL. ERL utilizes
the search and diversity maintenance skills of EAs to improve the
exploration and resilience of DRL algorithms.

3.2. Imitation learning

Imitation learning (IL) is a machine learning approach that seeks to
acquire a policy by emulating the actions of an expert or a collection of
demonstrations [47]. Unlike RL, which relies on trial and error and a
reward signal, imitation learning involves learning from an expert’s
activities. This approach reduces the need for lengthy exploration and
speeds up learning. IL has proven effective in various applications,
including robotics, autonomous driving, and game-playing.

In ERL andmedical data processing, imitation learning can be crucial
in guiding the learning process, providing a good starting point for the
policy search, and incorporating domain knowledge from experts. By
leveraging expert demonstrations, ERL algorithms can focus the search
on promising regions of the policy space, reducing the computational
cost and improving the sample efficiency of the learning process.

Moreover, imitation learning can be used to initialize the population
of policies in ERL, providing a good starting point for the search process.
By seeding the population with pre-trained policies using expert dem-
onstrations, ERL can accelerate the learning process and focus the search
on promising regions of the policy space. This is particularly useful in
complex and high-dimensional environments, where random initiali-
zation may lead to policies far from the desired behavior.

In medical data processing, imitation learning can be used to learn
from expert clinicians and incorporate their knowledge into decision-
making. For example, in the task of sepsis treatment recommendation,
an ERL algorithm can be initialized with a policy that mimics experi-
enced clinicians’ treatment decisions [48]. However, applying imitation
learning to medical data processing tasks presents several challenges.
First, expert demonstrations may be scarce or expensive, especially in
critical care settings where clinicians need more time and resources.
Second, expert decisions may be subject to bias or variability, requiring
careful selection and preprocessing of the demonstration data. Third, the
learned policies must be interpretable and reliable, as they can have
significant implications for patient safety and well-being.

Researchers have proposed various techniques to address these
challenges, such as active learning to efficiently collect expert demon-
strations, domain adaptation to transfer knowledge from related tasks or
populations, and interpretable machine learning to explain the learned
policies. By incorporating these techniques into the ERL framework,
imitation learning can be vital in guiding the learning process, incor-

porating domain knowledge, and improving the interpretability and
reliability of the learned policies in medical data processing tasks.

3.3. Evolutionary reinforcement learning

The ERL method is a synergistic combination of EAs and RL, effec-
tively addressing intricate sequential decision-making challenges. ERL
algorithms combine the population-based search abilities of EAs with

L
CLIP

(θ) = E(s, a) ∼ πθold

[

min
(

πθ(a|s)
πθold (a|s)

Aπθold (s, a), clip
(

πθ(a|s)
πθold (a|s)

,1 − ϵ,1+ ϵ
)

Aπθold (s, a)
)]

(7)
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RL’s temporal credit assignment and value function approximation
techniques. This integration allows ERL algorithms to efficiently explore
state-action spaces that are large and have many dimensions, handle
rewards that are sparse and delayed, and adapt to environments that
change over time [49].

The main idea behind ERL is to use an EA to evolve a population of
policies or value functions while using RL techniques to evaluate and
update the individuals based on their performance in the environment.
The evolutionary process operates at a higher level, searching for the
optimal policy or value function parameters, while the RL process
operates at a lower level, fine-tuning the parameters based on the
agent’s interactions with the environment.

One of the key advantages of ERL is its ability to maintain a diverse
population of policies, which can help prevent premature convergence
to suboptimal solutions and promote exploration of the policy space. By
maintaining a pool of policies with different behaviors and character-
istics, ERL algorithms can effectively balance the exploration-
exploitation trade-off and adapt to environmental changes.

Another advantage of ERL is its flexibility in defining the fitness
function used to evaluate the policies. In contrast to traditional RL al-
gorithms, which typically rely on a single scalar reward signal, ERL al-
gorithms can incorporate multiple objectives and constraints into the
fitness function, such as the agent’s performance, sample efficiency, and
robustness. This multi-objective optimization capability allows ERL to
find policies that satisfy multiple criteria and can be particularly useful
in real-world applications, such as medical data processing, where the
decision-making process must balance various factors, such as patient
outcomes, resource utilization, and treatment costs.

ERL algorithms can be divided into two main categories: (1) algo-
rithms that utilize EAs to optimize the parameters of a policy or value
function with a fixed structure, and (2) algorithms that employ EAs to
simultaneously develop both the structure and parameters of the policy
or value function. ERL has demonstrated encouraging outcomes in many
medical data processing applications, including dynamic therapy re-
gimes, patient monitoring, and clinical trial design. ERL algorithms
leverage the exploratory skills of EAs and the sequential decision-
making powers of RL to uncover tailored treatment methods that
enhance patient outcomes while minimizing adverse effects and
expenses.

4. The proposed algorithm

This section presents the ERL algorithm with novelty-driven explo-
ration and imitation learning for medical data processing (ERLNEIL-
MDP). The key components of the algorithm include the architecture,
novelty computation, combination selection strategy, experience fusion
imitation, and training stability module.

The novelty computation strategy is driven by the need to thoroughly
explore the complex policy space inherent in medical data processing
tasks. In these domains, the optimal policy is often not immediately
apparent due to the intricacy and high dimensionality of the data. The
strategy quantifies the uniqueness of each policy by comparing it to the
current population and historical policies. This approach encourages the
discovery of innovative solutions by rewarding policies that exhibit
distinct behaviors, thereby preventing premature convergence to sub-
optimal solutions and maintaining a diverse set of policies throughout
the evolutionary process.

The combination selection strategy addresses the crucial balance
between exploration and exploitation in the algorithm. It is motivated
by the need to efficiently navigate the vast search space of potential
policies while still focusing computational resources on promising areas.
This strategy adaptively weighs the importance of novelty and fitness
when selecting policies for reproduction, allowing the algorithm to shift
its focus between exploring new solutions and refining existing ones as
the search progresses.

The valuable role of expert knowledge in medical domains inspires

experience fusion imitation. This strategy aims to accelerate learning
and improve the quality of solutions by incorporating domain expertise
into the evolutionary process. It combines parent policies’ experiences
with expert demonstrations, allowing offspring policies to benefit from
evolutionary discoveries and established medical knowledge.

The training stability module is motivated by the need for reliable
and consistent performance in medical applications, where stability and
reproducibility are paramount. This module dynamically adjusts key
algorithm parameters and preserves elite policies across generations. It
aims to maintain a stable learning process while allowing for necessary
adaptations to medical data’s complex and often noisy nature.

Together, these strategies form a comprehensive approach to ERL in
medical data processing. They work in concert to promote exploration,
leverage domain knowledge, maintain diversity, and ensure stability -
all crucial aspects for developing effective and reliable algorithms in the
medical field. The synergy between these components allows ERLNEIL-
MDP to navigate the unique challenges posed by medical data, poten-
tially leading to more accurate diagnoses, personalized treatment plans,
and improved patient outcomes.

4.1. Architecture of the ERLNEIL-MDP

The architecture of the ERLNEIL-MDP algorithm is designed to
effectively address the challenges associated with processing complex
and heterogeneous medical data while leveraging the strengths of EAs
and RL. As depicted in Fig. 1, the ERLNEIL-MDP algorithm consists of
two main components: the EA and RL modules.

The EA module maintains a population of policies, each represented
by DNN. These policies are evolved through selection, crossover, and
mutation operators, guided by their novelty scores and fitness values.
The novelty scores are calculated using the individual policy novelty
(IPN) and population diversity novelty (PDN) methods, which quantify
the dissimilarity between a policy and the population, as well as the
historical data. The fitness values are determined by evaluating the
policies’ performance on the medical data processing task, such as the
accuracy of disease diagnosis or the effectiveness of treatment
recommendations.

The RL module employs a modified version of the PPO algorithm to
train the policies based on their interactions with the medical data
environment. Each policy processes medical data instances, such as
EHRs or medical images, and generates corresponding actions or pre-
dictions. The environment provides feedback through rewards, which
are used to update the policies’ parameters. The experiences generated
by the policies are stored in a shared experience replay buffer, which is
used to stabilize the training process and improve sample efficiency.

The ERLNEIL-MDP algorithm introduces several key components to
enhance the performance and adaptability of the ERL process in the
context of medical data processing:

1. Novelty computation: The novelty computation component quan-
tifies the novelty of each policy based on its dissimilarity to the
population and the historical data, using the IPN and PDN methods.
The combined novelty score promotes exploration and maintains
diversity in the population.

2. Adaptive novelty-fitness selection strategy: The adaptive novelty-
fitness selection strategy balances the exploration and exploitation
trade-off by considering policies’ novelty and fitness during the se-
lection process. The relative importance of novelty and fitness is
adjusted based on the progress of the evolutionary process.

3. Imitation-guided experience fusion: The imitation-guided expe-
rience fusion mechanism incorporates expert knowledge and dem-
onstrations into the offspring policies’ learning process. The
experiences of the parent policies are fused with expert demonstra-
tions to create a rich and diverse set of experiences for the offspring
policies to learn from.
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4. Adaptive stability preservation: The adaptive stability preserva-
tion module ensures the stability of the learning process by dynam-
ically adjusting the algorithm’s hyperparameters, such as the
learning rate and mutation strength, based on the progress and sta-
bility of the learning process. The elite policy preservation strategy
maintains the best-performing policies across generations, prevent-
ing the loss of valuable knowledge.

The EA and RL modules exchange information in a bi-directional
manner. The EA module provides diverse and promising policies to
the RL module for further optimization, while the RL module sends the
trained policies back to the EA module for evaluation and evolution.

This iterative process continues until a satisfactory policy is found or a
maximum number of generations is reached.

The architecture of the ERLNEIL-MDP algorithm is designed to be
modular and flexible, allowing for easy integration of different medical
data modalities and adaptation to various medical data processing tasks.
By combining the strengths of EAs and RL and incorporating novelty-
driven exploration, imitation learning, and stability preservation
mechanisms, the ERLNEIL-MDP algorithm is well-equipped to handle
the complexities and challenges of medical data processing, ultimately
leading tomore accurate, reliable, and efficient decision support systems
in healthcare.

The ERLNEIL-MDP algorithm is designed to handle various types of

Fig. 1. Architecture of the ERLNEIL-MDP algorithm.

J. Lv et al. Swarm and Evolutionary Computation 91 (2024) 101769 

6 



structured and semi-structured medical data, including:

• EHRs: containing patient demographics, diagnoses, medications, lab
results, and treatment outcomes.

• Medical imaging data, such as X-rays, CT scans, and MRI images, are
represented by pixel or voxel values.

• Time-series data: including vital signs monitoring, ECG readings, and
continuous glucose monitoring data.

• Genomic data: such as gene expression profiles and single nucleotide
polymorphisms.

• Clinical notes: preprocessed and converted into a structured format
using natural language processing techniques.

The algorithm’s flexibility in handling these diverse data types stems
from its neural network-based policy representation, which can be
adapted to different input formats, and its novelty computation mech-
anism, which can be customized to capture domain-specific notions of
novelty in medical data.

The ERLNEIL-MDP algorithm has been specifically designed to
address the unique challenges medical data processing presents. It
tackles the data sparsity issue by using an experience replay buffer and
imitation learning component. This approach allows the algorithm to
use limited data points efficiently by reusing available information and
incorporating expert knowledge, which is particularly beneficial when
working with sparse electronic health record datasets.

To address the high dimensionality often encountered in medical
data, ERLNEIL-MDP employs a novelty computation mechanism. This
feature encourages the exploration of diverse solutions by identifying
and promoting unique combinations of features that traditional methods
might overlook. This is especially valuable in high-dimensional medical
imaging tasks, where important patterns may be hidden in complex
feature interactions. The algorithm’s adaptive selection strategy com-
plements this by focusing computational resources on the most prom-
ising regions of the solution space.

While interpretability can be challenging with deep learning com-
ponents, ERLNEIL-MDP mitigates this issue through its evolutionary
process. By tracking the lineage of successful policies, the algorithm
provides insights into how effective strategies develop over time. This
feature allows for transparency in the decision-making process, which is
crucial in medical applications where understanding the reasoning
behind a recommendation is often as important as the recommendation
itself.

For instance, when applied to a sparse electronic health record
dataset, ERLNEIL-MDP can leverage its experience replay buffer to
extract maximum value from the limited available data. In high-
dimensional medical imaging tasks, the novelty computation mecha-
nism can identify unique feature combinations that might be critical for
accurate diagnosis but could be noticed by more sophisticated analysis
methods. These capabilities make ERLNEIL-MDP particularly well-
suited to the complexities of medical data processing, offering a robust
approach to handling the sparsity, high dimensionality, and interpret-
ability challenges inherent in this field.

4.2. Novelty computation in ERLNEIL-MDP

Novelty computation plays a crucial role in the ERLNEIL-MDP al-
gorithm, as it promotes exploration and maintains diversity in the
population of policies. By encouraging the discovery of novel solutions,
the algorithm can effectively navigate medical data processing tasks’
complex and high-dimensional search space. This subsection introduces
two novelty computation methods: the IPN and the PDN.

4.2.1. IPN
The IPN quantifies the novelty of a single policy based on its

dissimilarity to the historical data encountered during the learning
process. The IPN score of a policy πi is calculated as the average

dissimilarity between the actions taken by πi and the actions stored in
the experience replay buffer B :

IPN(πi) =
1

|B |

∑

(st ,at )∈B

d(πi(st), at) (8)

where st and at are the state and action pairs sampled from the experi-
ence replay buffer B , and d(⋅, ⋅) is a dissimilarity measure, e.g., the
Euclidean distance or the Kullback-Leibler divergence, depending on the
nature of the action space (e.g., continuous or discrete).

The IPN score encourages policies to explore actions different from
those encountered in the past, promoting the discovery of novel treat-
ment strategies or decision-making patterns in medical data processing
tasks.

Algorithm 1 outlines the process of computing the IPN scores for a
population of policies:

The historical experience replay buffer is a crucial component of the
ERLNEIL-MDP algorithm, serving as a repository for past interactions
between policies and the environment. It stores state-action-reward-next
state tuples, enabling off-policy learning and improving sample effi-
ciency by allowing the algorithm to learn from a diverse set of past
experiences. This buffer plays a key role in computing the IPN by
providing a reference point for comparing current policy actions with
historical data. Additionally, it enhances learning stability by breaking
temporal correlations in the training data and facilitates knowledge
transfer among different policies in the population through experience
sharing. These functions collectively contribute to the algorithm’s
ability to efficiently explore the solution space and adapt to complex
medical data processing tasks.

4.2.2. PDN
The PDN quantifies the novelty of a policy based on its dissimilarity

to the other policies in the current population. The PDN score of a policy
πi is calculated as the average dissimilarity between the actions taken by
πi and the actions taken by the other policies in the population Π:

PDN(πi) =
1

|Π| − 1
∑

πj∈Π,j∕=i

1
|S|

∑

st∈S
d
(
πi(st), πj(st)

)
(9)

where S is a set of states sampled from the medical data environment,
and d(⋅, ⋅) is a dissimilarity measure, as defined in the IPN computation.

The PDN score encourages policies to explore different regions of the
action space compared to the other policies in the population, main-
taining diversity and preventing premature convergence to suboptimal
solutions.

Algorithm 2 outlines the process of computing the PDN scores for a
population of policies:

4.2.3. Combined novelty score
To leverage the advantages of both the IPN and the PDN, the

ERLNEIL-MDP algorithm computes a combined novelty score for each
policy. The combined novelty score CN(πi) of a policy πi is calculated as
the weighted sum of its IPN and PDN scores:

CN(πi) = α⋅IPN(πi) + (1 − α)⋅PDN(πi) (10)

where α ∈ [0,1] is a hyperparameter that controls the relative impor-
tance of the IPN and PDN scores. A higher value of α places more
emphasis on the novelty of the policy concerning the historical data,
while a lower value of α prioritizes the novelty of the policy for the
current population.

The combined novelty score provides a comprehensive measure of a
policy’s novelty, considering its exploration of new actions and diversity
within the population. This balanced approach helps the ERLNEIL-MDP
algorithm maintain a healthy level of exploration while avoiding
excessive divergence from promising solutions.

J. Lv et al. Swarm and Evolutionary Computation 91 (2024) 101769 

7 



4.2.4. Novelty-based selection
The combined novelty scores are used in the selection process of the

EA to promote the survival and reproduction of novel policies. In the
ERLNEIL-MDP algorithm, a novelty-based tournament selection is
employed, where policies compete against each other based on their
combined novelty scores. The selection process is performed as follows:

• Randomly sample a subset of policies from the population.
• Select the policy with the highest combined novelty score from the
subset.

• Repeat steps 1 and 2 until the desired number of policies is selected.

The novelty-based tournament selection ensures that policies with
higher novelty scores are more likely to be selected for reproduction,
thus promoting the exploration of novel solutions in the evolutionary
process.

Furthermore, the ERLNEIL-MDP algorithm incorporates a novelty-
based elitism strategy, where a fixed number of policies with the high-
est combined novelty scores are directly preserved in the next genera-
tion without undergoing crossover or mutation. This elitism strategy
helps maintain the most novel solutions throughout the evolutionary
process and prevents the loss of valuable information.

4.2.5. Novelty computation in medical data processing
The novelty computation methods described above in medical data

processing can be applied to various tasks, such as disease diagnosis,
treatment recommendation, or patient stratification. The dissimilarity
measure d(⋅, ⋅) can be adapted to the specific nature of the medical data
and the action space of the policies.

For example, in a disease diagnosis task, the actions of a policy may
represent the predicted disease labels for a given set of patient features.
In this case, the dissimilarity measure can be based on the Hamming
distance between the predicted labels and the ground truth labels stored
in the experience replay buffer or the predicted labels of other policies in

the population.
In a treatment recommendation task, the actions of a policy may

represent the recommended treatment options for a given patient state.
The dissimilarity measure can be based on the Euclidean distance be-
tween the continuous treatment parameters (e.g., medication dosage) or
the Jaccard distance between the discrete treatment options (e.g., sur-
gery, chemotherapy, or radiation therapy).

By capturing the novelty of policies in the context of medical data
processing tasks, the ERLNEIL-MDP algorithm can effectively explore
new diagnostic strategies, treatment recommendations, or patient
stratification criteria, potentially leading to improved patient outcomes
and more efficient healthcare decision-making processes.

In conclusion, the novelty computation methods introduced in this
section, namely the IPN and the PDN, play a vital role in the ERLNEIL-
MDP algorithm by promoting exploration and maintaining diversity in
the population of policies. The combined novelty score provides a
comprehensive measure of a policy’s novelty, considering its explora-
tion of new actions and diversity within the population. The novelty-
based selection and elitism strategies ensure that novel policies are
prioritized and preserved throughout the evolutionary process. This
enables the algorithm to effectively navigate the complex search space
of medical data processing tasks and discover innovative solutions.

4.3. Adaptive novelty-fitness selection strategy in ERLNEIL-MDP

The selection of policies for reproduction is a crucial step in the
evolutionary process of the ERLNEIL-MDP algorithm. It determines
which policies will serve as parents for the next generation, conse-
quently influencing the algorithm’s ability to explore novel solutions
and exploit promising ones. In this section, we introduce the adaptive
novelty-fitness selection strategy (ANFSS), which balances the explora-
tion and exploitation trade-off by considering the novelty and fitness of
policies during the selection process.

The ANFSS combines the novelty scores, computed using the IPN and

Algorithm 1
IPN computation.

Input: Population of policies Π = π1,π2,…,πN; Historical experience replay buffer B ; Dissimilarity measure d(⋅, ⋅)
Output: IPN scores for each policy IPN(π1), IPN(π2),…, IPN(πN)

01: Initialize an empty list IPNscores to store the novelty scores
02:: For each policy πi in the population Π:
03: Initialize a variable noveltysum to 0
04: For each state-action pair (st , at) in the historical experience replay buffer B :
05: Compute the dissimilarity d(πi(st), at) between the action taken by the policy πi in state st and the action at stored in the buffer
06: Add the dissimilarity to noveltysum
07: End for
08: Compute the IPN score for policy πi as Eq. (8)
09: Append IPN(πi) to the IPNscores list
10: End for
11: Return the IPNscores list containing the IPN scores for each policy in the population

Algorithm 2
PDN computation.

Input: Population of policies Π = π1,π2,…,πN; Set of states S = s1, s2,…, sM sampled from the medical data environment; Dissimilarity measure d(⋅, ⋅)
Output: PDN scores for each policy PDN(π1),PDN(π2),…,PDN(πN)

01: Initialize an empty matrix D of size N× N to store pairwise dissimilarities between policies
02: For each pair of policies

(
πi, πj

)
in the population Π:

03: Initialize a variable dissimilaritysum to 0
04: For each state st in the sampled set of states S:
05: Compute the dissimilarity d

(
πi(st), πj(st)

)
between the actions taken by policies πi and πj in state st

06: Add the dissimilarity to dissimilaritysum
07: End for
08: End for
09: For each policy πi in the population Π:
10: Compute the PDN score for policy πi using Eq. (9)
11: Append PDN(πi) to the PDNscores list
12: End for
13: Return the PDNscores list containing the PDN scores for each policy in the population
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PDN methods, with the fitness values of the policies to create a
comprehensive selection criterion. The fitness value of a policy πi is
determined by its performance on the medical data processing task, such
as the accuracy of disease diagnosis, the effectiveness of treatment
recommendations, or the quality of patient stratification.

The adaptive novelty-fitness selection strategy in ERLNEIL-MDP is
designed to balance exploration and exploitation dynamically
throughout the learning process. This balance is crucial for effectively
navigating the complex landscape of medical data processing tasks.

To ensure that the algorithm maintains a balance between explora-
tion and exploitation, it continuously monitors two key metrics: popu-
lation diversity and the average fitness improvement rate. If the
population diversity drops below a predetermined threshold or the
fitness improvement rate stagnates, the strategy temporarily increases
the weighting towards novelty. This adaptive mechanism helps prevent
premature convergence to suboptimal solutions and allows the algo-
rithm to escape local optima when necessary.

By dynamically adjusting the balance between novelty and fitness,
this strategy enables ERLNEIL-MDP to efficiently explore the vast solu-
tion space characteristic of medical data processing tasks while also
focusing computational resources on refining the most promising solu-
tions. This approach is particularly valuable in medical applications
where innovative solutions and optimization of existing strategies are
crucial for improving patient outcomes.

To balance the importance of novelty and fitness, the ANFSS employs
an adaptive weighting scheme that adjusts the relative contributions of
the novelty and fitness components based on the progress of the
evolutionary process. The combined selection score CSS(πi) of a policy πi
is calculated as follows:

CSS(πi) = βt⋅ĈN(πi) + (1 − βt)⋅f̂ (πi) (11)

where ĈN(πi) is the normalized combined novelty score of policy πi,
f̂ (πi) is the normalized fitness value of policy πi.

The normalized combined novelty score ĈN(πi) and the normalized
fitness value f̂ (πi) are obtained using min-max normalization:

ĈN(πi) =
CN(πi) − CNmin

CNmax − CNmin
(12)

f̂ (πi) =
f(πi) − fmin

fmax − fmin
(13)

where CNmin and CNmax represent the lowest and highest combined
novelty scores in the population, whereas fmin and fmax represent the
lowest and highest fitness values in the population, respectively.

The adaptive weighting factor βt is updated at each generation based
on the progress of the evolutionary process. In the early stages of evo-
lution, a higher weight is assigned to the novelty component to
encourage exploration, while in the later stages, a higher weight is

assigned to the fitness component to focus on exploiting the most
promising solutions. The adaptive weighting factor is calculated using a
simple linear decay function:

βt = β0 − (β0 − βT)⋅
t
T

(14)

where β0 represents the initial weighting factor, βT represents the ulti-
mate weighting factor, t represents the current generation, and T rep-
resents the total number of generations.

The ANFSS selects policies for reproduction using a tournament se-
lection mechanism based on the combined selection scores. The tour-
nament selection process is performed as follows:

• Randomly sample a subset of policies from the population.
• Select the policy with the highest combined selection score from the
subset.

• Repeat steps 1 and 2 until the desired number of parent policies is
selected.

The policies selected through the ANFSS are then subjected to
crossover and mutation operations to create the next generation of
policies. The adaptive weighting scheme ensures that the algorithm
maintains a balance between exploring novel solutions and exploiting
the most promising ones throughout the evolutionary process.

Algorithm 3 outlines the adaptive novelty-fitness selection strategy:
In medical data processing, the ANFSS helps the ERLNEIL-MDP al-

gorithm strike a balance between discovering novel diagnostic strate-
gies, treatment recommendations, or patient stratification criteria and
refining the most effective ones. By adopting the importance of novelty
and fitness during the selection process, the algorithm can effectively
explore the vast search space of medical data processing tasks while
converging towards high-performing solutions.

The fitness values used in the ANFSS can be tailored to the specific
medical data processing task. For example, in a disease diagnosis task,
the fitness value may represent the accuracy of the predicted disease
labels compared to the ground truth labels. In a treatment recommen-
dation task, the fitness value may represent the expected patient out-
comes or the adherence to clinical guidelines. In a patient stratification
task, the fitness value may represent the quality of the identified patient
subgroups in terms of their clinical relevance and statistical significance.

By adopting the novelty scores and fitness values, the ANFSS enables
the ERLNEIL-MDP algorithm to effectively navigate the complex land-
scape of medical data processing tasks, discover innovative solutions
that improve patient care, and optimize healthcare decision-making
processes.

4.4. Imitation-guided experience fusion in ERLNEIL-MDP

In this subsection, we introduce the imitation-guided experience
fusion (IGEF) mechanism, which combines the experiences of the parent

Algorithm 3
ANFSS.

Input: Population of policies Π = π1,π2,…,πN; IPN scores for each policy IPN(π1),IPN(π2),…,IPN(πN); PDN scores for each policy PDN(π1),PDN(π2),…,PDN(πN); Fitness values for each
policy f(π1), f(π2),…, f(πN); Initial novelty weight β0; Final novelty weight βT; Current generation number t; Total number of generations T
Output: Selected parent policies for reproduction
01: Initialize an empty list combinedscores to store the combined novelty-fitness scores
02: Compute the minimum and maximum values of IPN, PDN, and fitness scores:
03: Compute the adaptive novelty weight for the current generation using Eq. (14)
04: For each policy πi in the population Π:
05: Normalize the IPN, PDN, and fitness scores:
06: Compute the combined novelty score
07: Compute the combined novelty-fitness score
08: Append combinedscore(πi) to the combinedscores list
09: End for
10: Select the parent policies for reproduction using tournament selection based on the combinedscores
11: Return the selected parent policies
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policies with expert demonstrations. The IGEF mechanism operates
during the crossover step of the evolutionary process, where the selected
parent policies generate offspring policies by exchanging and combining
their genetic information. In the context of the ERLNEIL-MDP algorithm,
the genetic information of a policy consists of its neural network pa-
rameters and the experiences stored in its individual experience replay
buffer.

To incorporate expert knowledge into the offspring policies, the IGEF
mechanism introduces an expert experience replay buffer B E, which
contains a collection of expert demonstrations for the medical data
processing task at hand. These demonstrations can be obtained from
various sources, such as electronic health records, clinical guidelines, or
domain experts, and they represent optimal or near-optimal solutions to
the task.

The imitation-guided experience fusionmechanism in ERLNEIL-MDP
is designed to effectively incorporate expert knowledge while main-
taining the algorithm’s ability to discover novel and potentially superior
solutions. This mechanism employs a multi-faceted approach to ensure
that expert knowledge remains relevant and beneficial throughout the
evolutionary process.

A key feature of this mechanism is the adaptive imitation weight. As
the algorithm progresses, the influence of expert demonstrations is
gradually reduced. This allows the algorithm to emphasize novel solu-
tions discovered through the evolutionary process. By dynamically
adjusting the balance between expert knowledge and evolved strategies,
the algorithm can leverage expert insights in the early stages while still
having the freedom to explore and refine potentially superior ap-
proaches as learning progresses.

The mechanism also incorporates selective imitation. Rather than
unthinkingly incorporating all expert knowledge, the algorithm
continuously compares the performance of expert demonstrations with
that of evolved policies. Expert knowledge is only integrated when it
demonstrably outperforms the current population. This selective
approach ensures that only truly beneficial expert insights are incor-
porated, preventing the algorithm from being constrained by potentially
outdated or suboptimal expert strategies.

The mechanism employs periodic re-evaluation to maintain the
relevance of expert knowledge further. Expert demonstrations are
regularly reassessed against the current best policies in the population.
This ongoing evaluation ensures that the incorporated expert knowledge
remains valuable as the algorithm’s performance improves. If previously
useful expert demonstrations become less effective than evolved stra-
tegies, their influence can be reduced or eliminated appropriately.

Finally, the mechanism preserves diversity through the selective
application of imitation. When incorporating expert knowledge, the
algorithm applies imitation selectively to only a subset of the popula-
tion. This approach maintains diverse policies, some closely aligned
with expert knowledge and others more explorative. By preserving this
diversity, the algorithm retains its ability to explore novel solutions
while still benefiting from expert insights.

Through these features, the imitation-guided experience fusion
mechanism strikes a balance between leveraging valuable expert
knowledge and fostering the discovery of innovative solutions. This
balance is particularly crucial in the medical domain, where established
expert knowledge is invaluable but where there is also significant po-
tential for discovering novel, data-driven approaches to improve patient
care and outcomes.

During the crossover step, the IGEF mechanism creates an offspring
policy πo by combining the experiences of the parent policies πp and πq
with the expert demonstrations from B E. The fusion of experiences is
performed using a weighted averaging approach, where the weights
determine the relative importance of the parent experiences and the
expert demonstrations. The fused experience eo for the offspring policy
πo is calculated as follows:

eo = λ1⋅ep + λ2⋅eq + (1 − λ1 − λ2)⋅eE (15)

where ep and eq are the experiences of the parent policies πp and πq,
respectively, eE is an expert demonstration sampled from B E, and λ1,
λ2 ∈ [0,1] are weighting factors that control the contributions of the
parent experiences and the expert demonstration, with λ1 + λ2 ≤ 1.

To ensure that the offspring policy πo effectively learns from the
fused experiences, the IGEF mechanism employs an imitation learning
objective that minimizes the difference between the actions that πo and
those suggested by the fused experiences. The imitation learning
objective L IL(θo) for the offspring policy πo with parameters θo is
defined as:

L IL(θo) =
1

|B o|
∑

(st , at) ∈ B oℓ(πo(st), at) (16)

where st and at represent the state and action pairs randomly selected
from the offspring’s experience replay buffer, the symbol B o represents
a set of possible actions. The function ℓ(⋅, ⋅) is a loss function that
quantifies the discrepancy between the predicted action πo(st) and the
desired action at. The specific loss function used, such as mean squared
error or cross-entropy loss, depends on the characteristics of the action
space, such as whether it is continuous or discrete.

The imitation learning objective is combined with the RL objective
L RL(θo) to form the overall learning objective for the offspring policy πo:

L (θo) = L RL(θo) + α⋅L IL(θo) (17)

where α ∈ [0,1] is a hyperparameter that controls the relative impor-
tance of the imitation learning objective compared to the RL objective.

Algorithm 4 outlines the imitation-guided experience fusion
mechanism:

In medical data processing, the IGEF mechanism enables the
ERLNEIL-MDP algorithm to incorporate domain knowledge and expert
insights into learning effectively. For example, in a disease diagnosis
task, the expert demonstrations can include clinical features and the
corresponding disease labels provided by experienced physicians. By
fusing these demonstrations with the experiences of the parent policies,
the offspring policies can learn to emulate the diagnostic reasoning of
the experts while also exploring new diagnostic strategies based on their
parents’ experiences.

Similarly, in a treatment recommendation task, the expert demon-
strations can include patient characteristics, treatment options, and the
corresponding patient outcomes obtained from clinical trials or real-
world evidence. The IGEF mechanism allows the offspring policies to
combine the treatment strategies learned by their parents with the best
practices suggested by the expert demonstrations, leading to more
effective and personalized treatment recommendations.

The weighting factors λ1 and λ2 in the IGEF mechanism can be
adjusted based on the quality and relevance of the expert demonstra-
tions for the specific medical data processing task. Higher weights can be
assigned to the expert demonstrations if they are known to be highly
reliable and relevant to the task, while lower weights can be assigned if
the demonstrations are noisy or less applicable to the current problem
setting.

Furthermore, the IGEF mechanism can be extended to incorporate
multiple sources of expert knowledge, such as clinical guidelines,
medical literature, and patient feedback, by maintaining separate expert
experience replay buffers for each source and combining their demon-
strations using appropriate weighting schemes. This multi-source
imitation learning approach can help the ERLNEIL-MDP algorithm
leverage a rich and diverse set of domain knowledge to guide the
learning process and discover effective solutions for complex medical
data processing tasks.

4.5. Adaptive stability preservation in ERLNEIL-MDP

Ensuring the stability of the training process is crucial for the success
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of the ERLNEIL-MDP algorithm in tackling complex medical data pro-
cessing tasks. Instability in the learning process can lead to suboptimal
solutions, slow convergence, and even divergence, hindering the algo-
rithm’s ability to discover effective strategies for diagnosis, treatment
recommendation, or patient stratification. In this section, we introduce
the adaptive stability preservation (ASP) module, which aims to main-
tain the stability of the ERL process by dynamically adjusting the algo-
rithm’s hyperparameters and preserving the elite policies across
generations.

The ASP module consists of two main components: (1) the adaptive
hyperparameter adjustment (AHA) mechanism and (2) the elite policy
preservation (EPP) strategy.

4.5.1. AHA
The AHA mechanism dynamically adjusts the key hyperparameters

of the ERLNEIL-MDP algorithm based on the progress and stability of the
learning process. The main hyperparameters considered by the AHA
mechanism include the learning rate, the mutation rate, and the imita-
tion learning weight.

The learning rate, denoted as α, governs the magnitude of the policy
updates made throughout the RL process. An elevated learning rate can
expedite the convergence process but may introduce instability, whereas
a reduced learning rate might lead to delayed convergence but enhanced
stability. The AHA mechanism adjusts the learning rate by considering
the rate of improvement in the population’s average fitness across a
sliding window ofw generations. If the rate of improvement falls below a
specified threshold δ, the learning rate is reduced by a factor of γα, which
leads to more consistent updates. On the other hand, if the rate of
progress exceeds the threshold, the learning rate is augmented by 1 /γα
to expedite convergence.

The mutation rate μ controls the probability of applying random
perturbations to the offspring policies during the evolutionary process. A
high mutation rate promotes exploration but may disrupt the stability of
the learning process, while a low mutation rate encourages exploitation
but may limit the algorithm’s ability to escape local optima. The AHA
mechanism adjusts the mutation rate based on the diversity of the
population, measured by the average pairwise distance between the
policies. If the diversity falls below a threshold δμ, the mutation rate is
increased by γμ to introduce more variability into the population.
Conversely, if the diversity exceeds the threshold, the mutation rate is
decreased by 1/γμ to maintain stability.

The imitation learning weight αIL determines the relative importance
of the imitation learning objective compared to the RL objective during
the training of the offspring policies. A high imitation learning weight
encourages the policies to closely follow the expert demonstrations,
while a low weight allows for more exploration and adaptation. The
AHA mechanism adjusts the imitation learning weight based on the
similarity between the actions taken by the offspring policies and the
expert demonstrations. If the average similarity falls below a threshold

δIL, the imitation learning weight is increased by γIL to promote closer
adherence to the expert knowledge. Conversely, if the similarity exceeds
the threshold, the imitation learning weight is decreased by 1/γIL to
allow for more flexibility in the learning process.

By dynamically adjusting these hyperparameters based on the
progress and stability of the learning process, the AHA mechanism helps
maintain a balance between exploration and exploitation, as well as
between the influence of expert knowledge and the adaptation to the
specific medical data processing task.

4.5.2. EPP
The EPP strategy aims to preserve the best-performing policies across

generations, preventing the loss of valuable knowledge due to the sto-
chastic nature of the evolutionary process. In medical data processing,
the elite policies represent the most effective strategies for diagnosis,
treatment recommendation, or patient stratification discovered by the
algorithm at each generation.

The EPP strategy maintains an elite pool E of size Ne, which contains
the top-performing policies based on their fitness values. After each
generation’s evaluation of the policies, the elite pool is updated by
comparing the fitness of the current policies with the fitness of the elite
policies. If a current policy outperforms an elite policy, it replaces the
elite policy in the pool.

To ensure that the elite policies are preserved across generations, the
EPP strategy introduces an elite policy injection mechanism during the
crossover step of the evolutionary process. With a probability pe, an
offspring policy is generated by directly inheriting the parameters of an
elite policy sampled from the elite pool instead of being created through
the standard crossover operation. This mechanism allows the elite pol-
icies to be propagated to the next generation without being disrupted by
the crossover and mutation operations.

Furthermore, the EPP strategy employs an elite policy protection
mechanism during the mutation step. With a probability pp, an elite
policy is exempted from the mutation operation, preserving its genetic
information intact. This mechanism prevents the elite policies from
being corrupted by random perturbations and helps maintain their
effectiveness throughout the evolutionary process.

By preserving the elite policies across generations and protecting
them from disruptive operations, the EPP strategy helps the ERLNEIL-
MDP algorithm retain the most effective strategies for medical data
processing tasks, ensuring the stability and continuity of the learning
process.

The ASP module, incorporating the AHA mechanism and the EPP
strategy, is seamlessly integrated into the ERLNEIL-MDP algorithm to
enhance its stability and performance in tackling complex medical data
processing tasks. The module continuously monitors the progress and
stability of the learning process. It adapts the algorithm’s hyper-
parameters and evolutionary operations accordingly while preserving
the most valuable knowledge discovered by the algorithm.

Algorithm 4
Imitation-guided experience fusion (IGEF).

Input: Population of policies Π = π1,π2,…,πN; Expert experience replay buffer B E; Weighting factors λ1 and λ2; Offspring experience replay buffer size No

Output: Offspring policy πo with fused experiences
01: Initialize an empty experience replay buffer B o for the offspring policy πo

02: While |B o | <No:
03: Sample an experience ep from the parent policy πp’s experience replay buffer
04: Sample an experience eq from the parent policy πq’s experience replay buffer
05: Sample an expert demonstration eE from the expert experience replay buffer B E

06: Compute the fused experience eo using the weighting factors λ1 and λ2: eo = λ1⋅ep + λ2⋅eq + (1 − λ1 − λ2)⋅eE
07: Add the fused experience eo to the offspring’s experience replay buffer B o

08: End while
09: Initialize the offspring policy πo with the same architecture as the parent policies

10: Train the offspring policy πo using the fused experiences in B o and the imitation learning objective: L IL(θo) =
1

|B o|
∑

(st ,at) ∈ B oℓ(πo(st),at)

11: Fine-tune the offspring policy πo using the RL objective: L (θo) = L RL(θo)+ α⋅L IL(θo)
12: Return the trained offspring policy πo
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The adaptive stability preservation module in ERLNEIL-MDP is
designed to dynamically adjust key hyperparameters throughout the
learning process, ensuring stability while allowing for necessary adap-
tations to the complex nature of medical data. This module focuses on
three critical hyperparameters: the learning rate (α), mutation rate (μ),
and imitation weight (ω).

The learning rate α is adjusted based on the rate of improvement in
average population fitness. The adjustment follows the equation:

αnew = α⋅
(
1+ β⋅

(
Δf − Δftarget

))
(18)

where Δf is the current fitness improvement rate, Δftarget is the target
rate, and β is a scaling factor. If the improvement rate slows, α is
decreased to stabilize learning and prevent overshooting optimal solu-
tions.

The mutation rate μ is adapted based on population diversity,
following:

μnew = μ⋅
(
1+ γ⋅

(
Dtarget − Dcurrent

))
(19)

where Dcurrent is the current diversity, Dtarget is the target diversity, and γ
is a scaling factor. If diversity decreases, μ is increased to promote
exploration and prevent premature convergence.

The imitation weight $\omega$ is adjusted based on the relative
performance of imitation-based policies versus evolved policies:

ωnew = ω⋅(1+ δ⋅(Pimitation − Pevolution)) (20)

where Pimitation and Pevolution are the average performances of imitation-
based and evolved policies, respectively, and δ is a scaling factor.

To prevent overfitting, the module employs early stopping based on
validation performance. It monitors the performance on a separate
validation set and stops training if performance begins to degrade,
indicating potential overfitting. Additionally, regularization techniques
such as L1 or L2 are applied to the policy networks to mitigate over-
fitting risks further.

This adaptive approach allows ERLNEIL-MDP to maintain stability in
the face of medical data’s noisy and complex nature while allowing for
the flexibility needed to discover optimal solutions. By continuously
adjusting these key parameters, the algorithm can adapt to different
phases of learning and characteristics of various medical datasets,
ensuring robust and reliable performance across a wide range of medical
data processing tasks.

4.6. The complete ERLNEIL-MDP algorithm

This subsection presents the complete ERLNEIL-MDP algorithm,
which integrates the key components described in the previous sections,

including the architecture, novelty computation, adaptive novelty-
fitness selection strategy, imitation-guided experience fusion, and
adaptive stability preservation.

The ERLNEIL-MDP algorithm is designed to tackle complex medical
data processing tasks by leveraging the strengths of EAs and RL while
incorporating novel mechanisms for exploration, imitation learning, and
stability preservation. The algorithm maintains a population of policies,
each represented by a deep neural network, and evolves them over
generations using a combination of RL and evolutionary operations.

The policies interact with the medical data environment at each
generation, processing patient records, medical images, or other rele-
vant data to generate actions or predictions. The environment provides
feedback in the form of rewards, which are used to evaluate the fitness of
the policies. The novelty of each policy is computed using the IPN and
PDNmeasures, which quantify the policy’s dissimilarity to the historical
data and the other policies in the population, respectively.

The adaptive novelty-fitness selection strategy is employed to select
the parent policies for reproduction, balancing the exploration of novel
solutions and the exploitation of high-performing ones. The imitation-
guided experience fusion mechanism is used during the crossover
operation to create offspring policies that inherit their parents’ experi-
ences while being guided by expert demonstrations.

Algorithm 5 presents the complete ERLNEIL-MDP algorithm, inte-
grating the components and mechanisms described in the previous
sections.

The ERLNEIL-MDP algorithm starts by initializing a population of
policies, each represented by a deep neural network with randomly
initialized parameters. The policies are evaluated on the medical data
processing task, and their fitness values are computed based on the re-
wards obtained from the environment. The novelty of each policy is
computed using the IPN and PDN measures, which are then combined
with the fitness values using the adaptive novelty-fitness selection
strategy. The parent policies are selected based on their combined
novelty-fitness scores, and the offspring policies are generated through
the imitation-guided experience fusion mechanism, which incorporates
expert demonstrations to guide the learning process. The offspring
policies are further subjected to mutation operations, introducing vari-
ability and promoting exploration.

The RL component of the algorithm trains the policies using the PPO
algorithm, with the adaptive stability preservation module dynamically
adjusting the learning rate, mutation rate, and imitation learning weight
based on the progress and stability of the learning process. The elite
policies are preserved across generations using the elite policy injection
and protection mechanisms. The evolutionary process continues for
several generations until a satisfactory policy is found. The best policy
discovered during the evolutionary process is returned as the final so-
lution for the medical data processing task.

Algorithm 5
ERLNEIL-MDP.

Input: Medical data environment; Expert experience replay buffer B E; Population size N; Number of generations T; RL algorithm (e.g., PPO); Hyperparameters for novelty
computation, selection, imitation learning, and stability preservation
Output: Best policy π∗ for the medical data processing task
01: Initialize a population of policies Π = π1, π2,…, πN with random parameters
02: Initialize an empty historical experience replay buffer B

03: For each generation t = 1,2,…,T:
04: Evaluate the policies in the population on the medical data processing task and compute their fitness values f(π1), f(π2),…, f(πN)

05: Compute the IPN scores for each policy using Algorithm 1
06: Compute the PDN scores for each policy using Algorithm 2
07: Select the parent policies for reproduction using the ANFSS from Algorithm 3
08: Generate offspring policies using the IGEF mechanism from Algorithm 4
09: Train the offspring policies using the RL algorithm and the adaptive stability preservation module
10: Update the historical experience replay buffer B with the experiences generated by the policies during evaluation
11: Replace the population with the offspring policies
12: Add the fused experience
13: Add the fused experience
14: End for
15: Return the best policy π∗ found during the evolutionary process
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The ERLNEIL-MDP algorithm effectively combines the strengths of
EAs and RL, leveraging novelty-driven exploration, imitation learning,
and stability preservation to tackle the challenges of medical data pro-
cessing. The algorithm’s modular and flexible design allows for easy
integration of different medical data modalities, such as electronic
health records, medical images, or time-series data, and adaptation to
various medical data processing tasks, including disease diagnosis,
treatment recommendation, patient stratification, and clinical trial
design.

ERLNEIL-MDP incorporates multiple components to enhance inter-
pretability and explainability, which are crucial aspects of medical ap-
plications. The algorithm employs policy lineage tracking to record how
successful policies evolved, allowing for backtracking of decision ori-
gins. It utilizes feature importance analysis techniques like shapley ad-
ditive explanations to identify which input features most influence
policy decisions. Decision path visualizations are provided for tree-
based policy representations. The algorithm also generates counterfac-
tual explanations, demonstrating how input changes would affect the
output. Additionally, a natural language explanation module translates
policy decisions into human-readable form. For instance, a diagnosis
task might explain: "The model predicted condition X primarily due to
the combination of elevated biomarker Y and patient history Z, with
feature A contributing 40 % to this decision." These features collectively
ensure that ERLNEIL-MDP’s decision-making process is transparent and
understandable to medical professionals.

4.7. Theoretical analysis

Theoretically analyzing the ERLNEIL-MDP algorithm’s complexity
provides crucial insights into its computational efficiency and scalabil-
ity. The algorithm’s time complexity can be broken down into several
key components, each contributing to the overall computational burden.

The policy evaluation stage, with a complexity of O(N⋅M⋅T), where N
is the population size,M is the number of samples per policy evaluation,
and T is the time complexity of a single forward pass through the policy
network, represents a significant portion of the computational cost. This
step is crucial for assessing the fitness of each policy in the population.

Novelty computation, an essential aspect of the algorithm’s explo-
ration mechanism, has a complexity of O

(
N2⋅S

)
, where S is the number

of states sampled for novelty calculation. This quadratic dependence on
the population size indicates that novelty computation could become a
bottleneck for large population sizes.

The selection and reproduction processes contribute O(NlogN) to the
overall complexity, which is relatively efficient compared to other
components. Experience fusion, with a complexity of O(N⋅E), where E is
the size of the experience replay buffer, plays a crucial role in knowledge
transfer between policies. The policy update step, with complexity
O(N⋅B⋅U), where B is the batch size and U is the number of update steps
per generation, represents the RL aspect of the algorithm.

Combining these components, the overall time complexity per gen-
eration is O

(
N⋅M⋅T+ N2⋅S+ N⋅E+ N⋅B⋅U

)
. This analysis reveals that the

algorithm’s scalability is primarily influenced by the population size N
and the complexity of policy evaluation T. The quadratic term N2⋅S from
novelty computation could become dominant for large population sizes,
suggesting that optimizing this step could significantly improve
scalability.

The space complexity, dominated by the experience replay buffer
and the population of policies, is O(N⋅P+ E), where P is the number of
parameters in each policy. This linear dependence on N and E indicates
that memory usage scales reasonably well with population and experi-
ence buffer sizes.

Future research directions to enhance the algorithm’s efficiency
include exploring parallel policy evaluation techniques to mitigate the
impact of large population sizes. Additionally, developing more efficient
novelty computation methods using approximate techniques or

dimensionality reduction could alleviate the quadratic complexity in
this step. Adaptive population sizing strategies could also be investi-
gated to dynamically balance computational cost and solution quality.

5. Experimental results and analysis

5.1. Experimental settings

To evaluate the performance of the proposed ERLNEIL-MDP algo-
rithm, we conducted experiments on two widely used medical datasets:
MIMIC-III (Medical Information Mart for Intensive Care) and n2c2
(National NLP Clinical Challenges) [50]. The MIMIC-III dataset contains
de-identified health-related data associated with over 40,000 patients
who stayed in intensive care units, while the n2c2 dataset consists of
clinical notes from various healthcare institutions. Table 1 presents the
key features and sizes of the MIMIC-III and n2c2 datasets used in our
experiments. The MIMIC-III dataset includes structured EHR data, while
n2c2 primarily consists of unstructured clinical notes.

We compared the ERLNEIL-MDP algorithm with six state-of-the-art
baseline methods: the out-of-the-box parameter control for evolu-
tionary and swarm-based algorithms with distributed RL (ES-DRL) [51],
the adaptive ERL (AERL) [52], the ERL with corresponding multi-agent
region protection method (MRPM) [53], the RL-based multifactorial EA
(RLMFEA) [54], the evolutionary computation and RL integrated algo-
rithm (ECRLIA) [55], the information entropy-driven EA based on RL
(RL-RVEA) for many-objective optimization with irregular Pareto fronts
[56], DRL-based medical supplies dispatching (MSD) model for major
infectious diseases (DRL-MSD) [57], and a novel DRL-LOA approach
integrates DRL with lion optimization algorithm (LOA), considering
both network structure and medical traffic-related data [58]. These
baseline methods represent different approaches to integrating EAs and
RL for optimization tasks.

The ERLNEIL-MDP algorithm is designed to be deployed on high-
performance computing infrastructure to handle the computational
demands of processing complex medical data. Our implementation uti-
lizes a distributed computing framework to leverage multiple GPUs for
parallel processing of the population of policies. On the hardware side,
we deployed ERLNEIL-MDP on a cluster of servers, each equipped with 4
NVIDIA V100 GPUs, 128 GB of RAM, and 32-core CPUs. This configu-
ration allows for efficient parallel execution of the algorithm’s evolu-
tionary and RL components. The distributed nature of the
implementation enables scaling the computation across multiple nodes
as needed, depending on the size and complexity of the medical dataset
being processed. We utilized Python 3.8 as the primary programming
language for the software stack, with PyTorch 1.9 as the deep learning
framework. The algorithm’s evolutionary components were imple-
mented using distributed EAs in Python, while the RL aspects leveraged
OpenAI Gym for environment simulations. Data preprocessing and
analysis were performed using NumPy, Pandas, and SciPy libraries.

To manage the distributed computing aspects, we employed Ray, a
distributed computing framework that allows for seamless algorithm
scaling across multiple nodes. Docker containers were used to ensure
consistency in the software environment across different machines in the
cluster. For data storage and management, we utilized a distributed file
system - Hadoop distributed file system to handle the large volumes of
medical data efficiently. The experience replay buffer, crucial for the

Table 1
Hyperparameters for the ERLNEIL-MDP algorithm.

Dataset Total
size

Train
size

Test
size

Key features

MIMIC-
III

58,976 47,180 11,796 Demographics, vital signs, lab tests,
diagnoses, procedures

n2c2 1254 1003 251 Clinical notes, medications,
diagnoses, lab values

J. Lv et al. Swarm and Evolutionary Computation 91 (2024) 101769 

13 



algorithm’s performance, was implemented using Redis, an in-memory
data structure store, to allow fast read and write operations. This
deployment strategy allows ERLNEIL-MDP to process large-scale medi-
cal datasets efficiently, with the flexibility to scale computational re-
sources based on the specific requirements of each task. The
combination of high-performance hardware and a robust, distributed
software stack enables the algorithm to tackle complex medical data
processing challenges while maintaining reasonable execution times.

First, we conducted a sensitivity analysis to assess the impact of key
hyperparameters on the algorithm’s performance. Hyperparameter
tuning was conducted using a combination of grid search and Bayesian
optimization. We varied the population size (25, 50, 100), learning rate
(0.0005, 0.001, 0.002), and novelty weight (0.3, 0.5, 0.7) while keeping
other parameters constant. Table 2 shows the effect of these variations
on the F1 score for the MIMIC-III dataset.

It can be observed that the algorithm is most sensitive to the learning
rate, with 0.001 providing the best balance between convergence speed
and stability. Population size had a moderate impact, with larger pop-
ulations generally performing better but at the cost of increased
computational time. The novelty weight showed less sensitivity, but 0.5
consistently produced the best results across different scenarios.

Therefore, the hyperparameters for the ERLNEIL-MDP algorithm are
summarized in Table 3.

We employed the following metrics to evaluate the performance of
ERLNEIL-MDP and baseline algorithms:

• Accuracy: Accuracy = TP+TN
TP+TN+FP+FN, where TP, TN, FP, and FN repre-

sent true positives, true negatives, false positives, and false negatives,
respectively.

• Precision: Precision = TP
TP+FP.

• Recall: Recall = TP
TP+FN.

• F1 Score: F1 = 2⋅ Precision⋅Recall
Precision+Recall.

• Running Time: RunningTime = Tend − Tstart , where Tstart is the algo-
rithm start time and Tend is the algorithm end time.

• Population Diversity: Diversity = 1
N(N− 1)

∑N
i=1

∑N
j=i+1 d

(
πi, πj

)
, where

N is the population size, πi and πj are policies, and d(⋅, ⋅) is a distance
metric.

• Gaussian Noise: xnoisy = x+ ϵ, where x is the original data point and ϵ
is the noise term drawn from a Gaussian distribution with mean
0 and variance σ2.

5.2. Performance evaluation

5.2.1. Novelty computation analysis
We first analyzed the effectiveness of the proposed novelty compu-

tation methods, IPN and PDN, in promoting exploration and maintain-
ing diversity in the population. Fig. 2(a) shows the average novelty
scores of the population policies over the evolutionary process on the
MIMIC-III dataset. Similar to the MIMIC-III dataset, the average novelty
scores of the policies in the population on the n2c2 dataset (Fig. 2(b))
exhibit an increasing trend in the early stages of the evolution, indi-
cating the effectiveness of the proposed novelty computation methods in

promoting exploration. As the evolution progresses, the novelty scores
stabilize, suggesting a balance between exploration and exploitation.

As shown in Fig. 2, the proposed novelty computation methods (IPN
and PDN) are effective in promoting exploration and maintaining di-
versity. Results show increasing novelty scores in the early stages,
indicating successful exploration, followed by stabilization, suggesting a
balance between exploration and exploitation. The combined novelty
score maintains a high level throughout the evolutionary process,
ensuring continuous exploration of promising solution spaces. This
analysis demonstrates that ERLNEIL-MDP effectively encourages the
discovery of novel solutions in complex medical data spaces, potentially
leading to innovative diagnostic and treatment strategies.

5.2.2. Accuracy, precision, recall, and F1 score comparison
We assessed the effectiveness of the ERLNEIL-MDP algorithm and the

baseline methods on the MIMIC-III dataset by employing four commonly
utilized assessment metrics: accuracy, precision, recall, and F1 score.
Fig. 3(a) displays the results and their corresponding standard de-
viations. We thoroughly assessed the ERLNEIL-MDP algorithm and the
baseline approaches on the n2c2 dataset. Fig. 3(b) displays the accuracy,
precision, recall, and F1 score outcomes, along with their respective
standard deviations.

The ERLNEIL-MDP algorithm outperforms all the baseline methods
across all evaluation metrics, achieving the highest accuracy, precision,
recall, and F1 score. The standard deviations of the ERLNEIL-MDP al-
gorithm are also the lowest among all methods, indicating its robustness
and consistency. The superior performance of ERLNEIL-MDP can be
attributed to its effective integration of novelty-driven exploration,
imitation learning, and stability preservation mechanisms, which enable
the algorithm to discover high-quality solutions while maintaining a
stable learning process. Similar to the results on the MIMIC-III dataset,
the ERLNEIL-MDP algorithm achieves the best performance on the n2c2
dataset across all evaluation metrics, demonstrating its effectiveness in
processing different types of medical data. The lower standard de-
viations of the ERLNEIL-MDP algorithm compared to the baseline
methods further highlight its stability and consistency. DRL-MSD and
DRL-LOA show relatively strong performance across these metrics due to
their ability to effectively learn complex patterns in medical data. Their
DRL approaches enable accurate predictions and classifications in
diverse healthcare scenarios.

5.2.3. Ablation study
To investigate the contribution of each component in the ERLNEIL-

MDP algorithm, we conducted an ablation study on the MIMIC-III and
n2c2 datasets. We evaluated three variants of the ERLNEIL-MDP algo-
rithm: (1) ERLNEIL-MDP without novelty-driven exploration (ERLNEIL-
MDP-NoNovelty), (2) ERLNEIL-MDP without imitation learning (ERL-
NEIL-MDP-NoImitation), and (3) ERLNEIL-MDP without stability pres-
ervation (ERLNEIL-MDP-NoStability). Fig. 4(a) presents the results of
the ablation study on the MIMIC-III dataset, while Fig. 4(b) shows the
results on the n2c2 dataset.

Fig. 4 shows that removing any component (novelty-driven

Table 2
Impact of key hyperparameters on algorithm’s performance.

Parameter Value F1 score

Population size 25 0.8312
50 0.8531
100 0.8624

Learning rate 0.0005 0.8389
0.001 0.8531
0.002 0.8276

Novelty weight 0.3 0.8482
0.5 0.8531
0.7 0.8509

Table 3
Hyperparameters for the ERLNEIL-MDP algorithm.

Parameter Value

Population size 50
Number of generations 100
Learning rate 0.001
Discount factor 0.99
Novelty weight (initial) 0.7
Novelty weight (final) 0.3
Mutation rate 0.1
Crossover rate 0.8
Imitation learning weight 0.2
Experience replay buffer size 10,000
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exploration, imitation learning, or stability preservation) significantly
decreases performance across all metrics. The largest performance drop
is observed when removing the novelty-driven exploration component,
highlighting its crucial role. This study confirms the importance and
synergy of all components in ERLNEIL-MDP’s success, demonstrating
that each plays a vital role in addressing the complexities of medical
data processing.

5.2.4. Running time analysis
We analyzed the running time of the ERLNEIL-MDP algorithm and

the baseline methods on the MIMIC-III and n2c2 datasets. Fig. 5(a)
presents the running time of each method on the MIMIC-III dataset,
while Fig. 5(b) shows the running time on the n2c2 dataset.

The ERLNEIL-MDP algorithm achieves the lowest running time

among all methods on both datasets, demonstrating its computational
efficiency. The reduced running time can be attributed to the algo-
rithm’s effective balance between exploration and exploitation, as well
as its stability preservation mechanism, which helps avoid unnecessary
computations by maintaining a stable learning process. DRL-MSD and
DRL-LOA demonstrate relatively competitive running times, possibly
due to efficient implementations of DRL. Their ability to quickly process
and learn from medical data may be attributed to optimized neural
network architectures and effective training strategies.

5.2.5. Convergence analysis
To analyze the convergence behavior of the ERLNEIL-MDP algorithm

and the baseline methods, we plotted the average best fitness values over
the generations on both theMIMIC-III and n2c2 datasets. Fig. 6(a) shows

Fig. 2. Average novelty scores of the policies in the population. (a) MIMIC-III dataset; (b) n2c2 dataset.

Fig. 3. Accuracy, precision, recall, and F1 score comparison. (a) MIMIC-III dataset; (b) n2c2 dataset.
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the convergence plot on the MIMIC-III dataset, while Fig. 6(b) presents
the convergence plot on the n2c2 dataset.

This convergence experiment examines the learning stability and
efficiency of ERLNEIL-MDP compared to baselines. The ERLNEIL-MDP
algorithm demonstrates steady and stable convergence without prema-
ture stagnation, consistently achieving higher average best fitness values
throughout the evolutionary process. ERLNEIL-MDP’s convergence
curve shows a steeper initial climb and reaches a higher plateau than
baselines, indicating faster learning and better final performance. This
stable convergence behavior can be attributed to the algorithm’s effec-
tive balance between exploration and exploitation, as well as its adap-
tive stability preservation mechanism.

In contrast, the baseline methods exhibit varying convergence speed
and stability degrees. The ES-DRL method, which serves as the worst-

performing baseline, shows both datasets’ slowest convergence and
the lowest average best fitness values. The AERL, MRPM, RLMFEA, and
ECRLIA methods demonstrate improved convergence compared to ES-
DRL but still lag behind the ERLNEIL-MDP algorithm. The RL-RVEA
method, the best-performing baseline, exhibits convergence behavior
similar to ERLNEIL-MDP but with slightly lower average best fitness
values. DRL-MSD and DRL-LOA exhibit relatively good convergence
behavior, likely due to their RL components adapting well to the medical
data landscape. Their ability to balance exploration and exploitation
may contribute to steady improvement and stable convergence over
time.

5.2.6. Diversity analysis
To further investigate the effectiveness of the novelty-driven

Fig. 4. Ablation study results. (a) MIMIC-III dataset; (b) n2c2 dataset.

Fig. 5. Running time comparison. (a) MIMIC-III dataset; (b) n2c2 dataset.
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exploration mechanism in the ERLNEIL-MDP algorithm, we analyzed
the diversity of the population throughout the evolutionary process. We
measured the population diversity using the average pairwise distance
between the policies in the population, where the distance between two
policies is calculated as the Euclidean distance between their parameter
vectors.

Fig. 7(a) presents the population diversity over the generations on
the MIMIC-III dataset, while Fig. 7(b) shows the population diversity on
the n2c2 dataset.

This analysis evaluates ERLNEIL-MDP’s ability to maintain popula-
tion diversity throughout the evolutionary process. Results show that
ERLNEIL-MDP maintains significantly higher diversity levels than all
baseline methods on both datasets. The algorithm’s novelty-driven
exploration mechanism effectively encourages the discovery of diverse
solutions, preventing premature convergence to suboptimal solutions.
This high diversity is crucial in medical data processing, as it allows the

algorithm to explore a wide range of potential solutions, potentially
leading to innovative diagnostic strategies or treatment recommenda-
tions that less diverse populations might overlook.

In contrast, the baseline methods exhibit varying degrees of popu-
lation diversity. The ES-DRL method, which serves as the worst-
performing baseline, shows the lowest level of population diversity on
both datasets. The AERL, MRPM, RLMFEA, and ECRLIA methods
demonstrate improved diversity compared to ES-DRL but still lag behind
the ERLNEIL-MDP algorithm. The RL-RVEA method, the best-
performing baseline, exhibits population diversity similar to ERLNEIL-
MDP but with slightly lower values. DRL-MSD and DRL-LOA maintain
relatively high population diversity, possibly through inherent explo-
ration mechanisms in their RL approaches. This diversity allows them to
explore various solutions in the complex medical data space, avoiding
premature convergence to suboptimal solutions.

Fig. 6. Convergence comparison. (a) MIMIC-III dataset; (b) n2c2 dataset.

Fig. 7. Convergence comparison. (a) MIMIC-III dataset; (b) n2c2 dataset.
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5.2.7. Robustness analysis
Robustness is another important consideration in machine learning,

particularly when dealing with noisy or incomplete data, which is
common in real-world healthcare settings. To evaluate the robustness of
the ERLNEIL-MDP algorithm, we conducted experiments on the MIMIC-
III dataset with varying levels of artificially introduced noise and
missing values.

ERLNEIL-MDP demonstrates remarkable robustness to noise and
missing data, a critical feature for processing real-world medical data,
which often suffers from these issues. This robustness is achieved
through innovative mechanisms built into the algorithm’s architecture.
First, the algorithm maintains a diverse policy population, which acts as
a safeguard against data inconsistencies. By evolving multiple strategies
simultaneously, ERLNEIL-MDP ensures that some policies may be more
resistant to specific data issues than others. This diversity allows the
algorithm to adapt to various types of data corruption without signifi-
cant performance degradation. The experience replay mechanism
further enhances the algorithm’s resilience. Allowing learning from a
diverse set of past experiences reduces the impact of temporary data
corruption or missing values. This approach enables the algorithm to
draw insights from a broader data pool, mitigating the effects of local-
ized data issues. The adaptive stability preservation component plays a
crucial role in maintaining robustness. It dynamically adjusts learning
parameters in response to performance fluctuations that data in-
consistencies may cause.

We introduced Gaussian noise with zero mean and different standard
deviations (0.1, 0.2, and 0.3) to the numerical features of the MIMIC-III
dataset and randomly removed different percentages (10 %, 20 %, and
30 %) of the values from the dataset to simulate missing data. We then
evaluated the performance of the ERLNEIL-MDP algorithm and the
baseline methods on these noisy and incomplete datasets using the F1
score metric. Table 4 presents the results of the robustness analysis with
different levels of Gaussian noise on the MIMIC-III dataset and n2c2
datasets, respectively, while Table 5 shows the results with different
percentages of missing values on the MIMIC-III dataset and n2c2 data-
sets, respectively.

The ERLNEIL-MDP algorithmmaintains superior performance across
various levels of Gaussian noise (0.1, 0.2, 0.3 std) and missing data
percentages (10 %, 20 %, 30 %). While performance decreases for all
methods as data quality degrades, ERLNEIL-MDP consistently out-
performs baselines, demonstrating robustness. This resilience can be
attributed to the algorithm’s diverse policy population, experience
replay mechanism, and adaptive stability preservation component. It is
well-suited for real-world medical applications where data quality issues
are common. The results demonstrate that the ERLNEIL-MDP algorithm
maintains superior performance and exhibits greater robustness than the
baseline methods under different noise levels and missing values. While
DRL-MSD and DRL-LOA show resilience to noise and missing data, likely
due to their deep learning architectures’ ability to extract meaningful
features from imperfect inputs. Their RL components may contribute to
adaptability in varying data quality scenarios. As the noise level or the
percentage of missing values increases, the performance of all methods

declines. However, the ERLNEIL-MDP algorithm consistently achieves
the highest F1 scores, indicating its ability to handle noisy and incom-
plete data more effectively.

The robustness of the ERLNEIL-MDP algorithm can be attributed to
its stability preservation mechanism, which helps maintain a stable
learning process and prevents overfitting noise or spurious patterns in
the data. Additionally, the algorithm’s novelty-driven exploration and
imitation learning components help it discover robust and generalizable
solutions less sensitive to data quality issues.

5.2.8. Statistical analysis
To provide a comprehensive statistical analysis of ERLNEIL-MDP’s

performance, we conducted paired t-tests comparing our algorithm with
each baseline method across all metrics on both datasets. Additionally,
we performed a two-way ANOVA to examine the effects of algorithm
choice and dataset type on performance. Table 6 shows the paired t-test
results comparing ERLNEIL-MDP with baselines on the MIMIC-III
dataset.

Similar improvements were observed for the n2c2 dataset (p < 0.01
for all comparisons).

The two-way ANOVA revealed significant main effects for both al-
gorithm choice (F(8, 162) = 78.34, p < 0.0001) and dataset type (F(1,
162)= 12.57, p= 0.0005), as well as a significant interaction effect (F(8,
162) = 3.21, p = 0.002).

Post-hoc Tukey HSD tests showed that ERLNEIL-MDP significantly
outperformed all baseline methods (p < 0.01) on both datasets. The
interaction effect indicates that the performance gap between ERLNEIL-
MDP and baselines was more pronounced on the MIMIC-III dataset
compared to n2c2.

To assess the practical significance of these improvements, we
calculated Cohen’s d effect sizes. For the F1 score comparison with the
best-performing baseline (RL-RVEA) on MIMIC-III, we found a large
effect size (d = 1.86), indicating a substantial practical improvement.

These statistical analyses confirm that ERLNEIL-MDP’s performance
improvements are statistically significant and practically meaningful
across different metrics and datasets. The consistent outperformance,
coupled with the large effect sizes, demonstrates the robustness and
generalizability of ERLNEIL-MDP in various medical data processing
scenarios.

Furthermore, we conducted a reliability analysis using Cronbach’s
alpha to assess the internal consistency of ERLNEIL-MDP’s performance
across different runs and datasets. The resulting α = 0.93 indicates high
reliability, suggesting the algorithm’s performance is consistent and
reproducible.

In summary, these statistical analyses provide strong evidence for the
superior performance of ERLNEIL-MDP compared to state-of-the-art
baselines, with significant improvements across all evaluated metrics
and datasets.

6. Limitation and discussion

The ERLNEIL-MDP algorithm demonstrates significant potential in

Table 4
Robustness analysis results with different levels of Gaussian noise.

Method MIMIC-III dataset n2c2 dataset

No noise Noise (std=0.1) Noise (std=0.2) Noise (std=0.3) No noise Noise (std=0.1) Noise (std=0.2) Noise (std=0.3)

ES-DRL 0.8091 0.7845 0.7612 0.7394 0.7853 0.7618 0.7396 0.7187
AERL 0.8237 0.8014 0.7806 0.7613 0.7993 0.7779 0.7579 0.7392
MRPM 0.8311 0.8102 0.7908 0.7729 0.8063 0.7862 0.7675 0.7501
RLMFEA 0.8370 0.8174 0.7993 0.7827 0.8120 0.7931 0.7756 0.7594
ECRLIA 0.8422 0.8236 0.8065 0.7909 0.8169 0.7990 0.7825 0.7673
DRL-MSD 0.8460 0.8261 0.8112 0.7915 0.8201 0.7803 0.7864 0.7660
RL-RVEA 0.8468 0.8292 0.8131 0.7985 0.8214 0.8044 0.7888 0.7745
DRL-LOA 0.8502 0.8268 0.8165 0.8091 0.8215 0.7927 0.7934 0.7812
ERLNEIL-MDP 0.8531 0.8368 0.8220 0.8087 0.8272 0.8114 0.7970 0.7839
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advancing the field of medical data processing, as evidenced by its su-
perior performance across multiple metrics on the MIMIC-III and n2c2
datasets. The algorithm’s success can be attributed to its novel inte-
gration of evolutionary strategies and RL, particularly its adaptive
novelty-fitness selection and imitation-guided experience fusion mech-
anisms. These components allow for efficient exploration of the complex
solution space inherent in medical data while leveraging valuable expert
knowledge, a crucial aspect in healthcare applications.

The adaptive novelty-fitness selection strategy proves particularly
effective in maintaining a balance between exploration and exploitation
throughout the learning process. This balance is critical in medical data
processing, where the algorithm must navigate a vast and often noisy
feature space to identify relevant patterns and relationships. By
dynamically adjusting the emphasis on novelty versus fitness, ERLNEIL-
MDP can adapt its search strategy as the learning progresses, potentially
uncovering innovative solutions that more traditional approaches might
overlook.

The imitation-guided experience fusion mechanism represents
another key strength of the algorithm. By incorporating expert knowl-
edge through demonstrations, ERLNEIL-MDP can leverage medical
expertise. This accelerates the learning process and helps ensure that the
algorithm’s decisions align with established medical practices. The
adaptive nature of this mechanism, which gradually reduces the influ-
ence of expert demonstrations as the algorithm discovers potentially
superior solutions, strikes a delicate balance between respecting expert
knowledge and fostering innovation.

However, despite its strengths, ERLNEIL-MDP has limitations. One
significant challenge is the algorithm’s computational intensity. While
powerful, the combination of evolutionary strategies and RL requires
substantial computational resources. This may limit the algorithm’s
applicability in resource-constrained environments, such as smaller
healthcare facilities or regions with limited access to high-performance
computing infrastructure. Future research should explore optimizing the
algorithm’s efficiency, possibly through distributed computing strate-
gies or by developing lightweight versions suitable for deployment on
less powerful hardware.

Another limitation lies in the algorithm’s reliance on expert knowl-
edge for its imitation learning component. While this is a strength in

many scenarios, it also introduces a potential bottleneck. The quality
and availability of expert demonstrations can significantly impact the
algorithm’s performance. Obtaining high-quality expert demonstrations
may be challenging in some medical specialties or for rare conditions.
Additionally, there is a risk that incorporating expert knowledge could
perpetuate existing biases or outdated practices in medical decision-
making. Future work should investigate active learning approaches for
efficiently acquiring expert knowledge and methods for validating and
updating the expert demonstration database.

Interpretability remains a challenge despite efforts to enhance the
algorithm’s explainability. While ERLNEIL-MDP incorporates features
like policy lineage tracking and feature importance analysis, the deep
learning components at its core may still present interpretability chal-
lenges in some scenarios. This is particularly crucial in medical appli-
cations, where understanding the reasoning behind a decision can be as
important as the decision itself. Developing more advanced interpret-
ability techniques and leveraging recent advancements in explainable AI
should be a priority for future research.

The practical implementation of ERLNEIL-MDP in clinical settings
requires addressing several key challenges. From a regulatory stand-
point, the algorithm would need to pursue FDA approval through the
software as a medical device pathway and ensure compliance with data
protection regulations like HIPAA and GDPR. Ethical considerations
necessitate the establishment of an ethics board to oversee development
and deployment, as well as implementing fairness-aware learning
techniques to mitigate potential biases. Integration challenges include
developing standardized APIs for compatibility with various EHRs and
creating user-friendly interfaces for healthcare providers. Comprehen-
sive training programs for healthcare providers and patient education
materials would be essential to ensure responsible use. Continuous
monitoring, regular updates, and a feedback loop with clinicians would
be crucial for ongoing refinement and improvement. Finally, scalable
cloud-based solutions with robust security measures would be necessary
for widespread deployment across healthcare systems.

Ethical considerations are paramount in the deployment of AI sys-
tems in healthcare. Establishing an ethics board to oversee the devel-
opment and deployment of ERLNEIL-MDP would be essential to ensure
that the algorithm’s decisions align with ethical standards and do not
perpetuate or exacerbate existing biases in healthcare. Implementing
fairness-aware learning techniques within the algorithm is another
important step in mitigating potential biases.

Integration with existing healthcare IT infrastructure presents its
own set of challenges. Developing standardized APIs to ensure
compatibility with various Electronic Health Record systems is crucial
for widespread adoption. Additionally, creating user-friendly interfaces
for healthcare providers is essential to ensure that the algorithm’s out-
puts can be effectively interpreted and utilized in clinical decision-
making.

Comprehensive training programs for healthcare providers would be
necessary to ensure responsible use of the algorithm. These programs
should cover the technical aspects of using ERLNEIL-MDP, its limita-
tions, and the importance of human oversight in medical decision-

Table 5
F1 scores with different levels of Gaussian noise.

Method MIMIC-III dataset n2c2 dataset

No missing 10 % missing 20 % missing 30 % missing No missing 10 % missing 20 % missing 30 % missing

ES-DRL 0.8091 0.7912 0.7748 0.7597 0.7853 0.7684 0.7528 0.7385
AERL 0.8237 0.8079 0.7935 0.7804 0.7993 0.7843 0.7706 0.7581
MRPM 0.8311 0.8165 0.8033 0.7915 0.8063 0.7923 0.7796 0.7681
RLMFEA 0.8370 0.8235 0.8114 0.8006 0.8120 0.7989 0.7871 0.7765
ECRLIA 0.8422 0.8297 0.8186 0.8088 0.8169 0.8047 0.7938 0.7841
DRL-MSD 0.8452 0.8365 0.8204 0.8153 0.8265 0.8094 0.7984 0.7904
RL-RVEA 0.8468 0.8352 0.8250 0.8161 0.8214 0.8101 0.8001 0.7913
DRL-LOA 0.8481 0.8378 0.8330 0.8155 0.8248 0.8126 0.8026 0.7985
ERLNEIL-MDP 0.8531 0.8426 0.8335 0.8257 0.8272 0.8169 0.8079 0.8001

Table 6
Paired t-test results comparing ERLNEIL-MDP with baselines (MIMIC-III
dataset).

Metric Baseline ERLNEIL-MDP
mean (SD)

Baseline
mean (SD)

t-
statistic

p-value

F1 Score RL-
RVEA

0.933 (0.009) 0.881
(0.015)

8.76 <0.0001

Accuracy RL-
RVEA

0.891 (0.012) 0.853
(0.018)

5.32 0.0005

Precision DRL-
LOA

0.929 (0.011) 0.877
(0.016)

7.94 <0.0001

Recall DRL-
MSD

0.937 (0.010) 0.885
(0.014)

9.12 <0.0001
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making. Patient education materials would also be crucial to help pa-
tients understand how AI is used in their care and maintain trust in the
healthcare system.

Continuous monitoring and improvement of the algorithm post-
deployment is another critical aspect. Regular updates based on new
medical knowledge and emerging best practices would be necessary to
maintain the algorithm’s effectiveness. Establishing a feedback loop
with clinicians using the system in practice would provide valuable in-
sights for ongoing refinement and improvement.

Finally, scalable cloud-based solutions with robust security measures
would be necessary to enable widespread deployment across healthcare
systems. This approach would allow healthcare providers of various
sizes to access the benefits of ERLNEIL-MDP without the need for sig-
nificant on-premises infrastructure investments.

In conclusion, while ERLNEIL-MDP shows great promise in
advancing medical data processing, addressing these limitations and
implementation challenges will be crucial for realizing its full potential
in improving patient care and healthcare outcomes. Future research
should optimize the algorithm’s efficiency, enhance its interpretability,
and develop strategies for seamless and ethical integration into clinical
workflows.

7. Conclusions

In this study, we proposed the ERLNEIL-MDP algorithm that com-
bines the strengths of EAs, RL, novelty-driven exploration, and imitation
learning to address the challenges of processing complex and hetero-
geneous medical data. The ERLNEIL-MDP algorithm introduced several
key components, including a novelty computation mechanism, an
adaptive novelty-fitness selection strategy, an imitation-guided experi-
ence fusion mechanism, and an adaptive stability preservation module
to enhance the learning process’s exploration, diversity, and stability.
Extensive experiments were conducted on two real-world medical
datasets, MIMIC-III and n2c2, to evaluate the performance of the
ERLNEIL-MDP algorithm. The results demonstrated the superior per-
formance of the proposed algorithm compared to state-of-the-art base-
line methods in terms of accuracy, precision, recall, and F1 score,
showing improvements of 6.0 % and 6.7 % on MIMIC-III and n2c2
datasets, respectively, demonstrating ERLNEIL-MDP’s potential to
enhance medical data processing tasks significantly. The ablation study
confirmed the contribution of each component to the algorithm’s overall
performance, highlighting the importance of novelty-driven explora-
tion, imitation learning, and stability preservation in medical data
processing. The analysis of convergence behavior, population diversity,
and robustness showcased the ERLNEIL-MDP algorithm’s ability to
maintain a stable and diverse population, generate concise and inter-
pretable explanations, and effectively handle noisy and incomplete data.

However, there are still several limitations and opportunities for
future research. One limitation of the current study is the focus on
structured medical data, such as electronic health records and medical
images. Extending the ERLNEIL-MDP algorithm to handle unstructured
data, such as clinical notes and patient-reported outcomes, could further
enhance its applicability in real-world healthcare settings. Additionally,
the interpretability of the algorithm could be further improved by
incorporating more advanced techniques, such as counterfactual ex-
planations and concept-based explanations, to provide more intuitive
and actionable insights for healthcare professionals.

The ERLNEIL-MDP algorithm demonstrates significant potential in
advancing medical data processing, yet several promising avenues
remain for future research and development. One key area for explo-
ration is the extension of the algorithm to handle multi-modal medical
data, incorporating not only structured electronic health records but
also medical imaging, genomic information, and real-time sensor data
from wearable devices. This integration could provide a more compre-
hensive view of patient health and enable more accurate predictions and
personalized treatment recommendations. Another crucial direction for

future work is the development of more advanced interpretability
techniques. While ERLNEIL-MDP incorporates some explainability fea-
tures, there is a need for more sophisticated methods to elucidate the
algorithm’s decision-making process in a manner that is both informa-
tive and accessible to healthcare professionals. This could involve
developing novel visualization techniques, natural language explana-
tion generators, or interactive exploration tools that allow clinicians to
probe the algorithm’s reasoning. The application of ERLNEIL-MDP to
real-time clinical decision support systems represents another exciting
frontier. This would involve optimizing the algorithm for low-latency
inference, developing strategies for continuous learning from stream-
ing data, and creating intuitive interfaces for seamless integration into
clinical workflows. Such a system could provide immediate, context-
aware recommendations to healthcare providers, improving the speed
and accuracy of diagnosis and treatment decisions. Furthermore,
exploring federated learning approaches with ERLNEIL-MDP could
address privacy concerns in multi-institutional collaborations. This
would allow the algorithm to learn from diverse datasets across multiple
healthcare institutions without centralizing sensitive patient data.
Developing privacy-preserving techniques that maintain the algorithm’s
performance while ensuring compliance with data protection regula-
tions will be crucial for widespread adoption in healthcare settings.
Lastly, investigating the algorithm’s adaptability to rare diseases and
personalized medicine applications could significantly impact patient
care. This might involve developing techniques for efficient learning
from limited data, incorporating domain knowledge for rare conditions,
and creating adaptive models that can tailor their predictions and rec-
ommendations to individual patient characteristics and treatment re-
sponses. These future directions aim to enhance ERLNEIL-MDP’s
capabilities, broaden its applicability, and address current limitations,
ultimately working towards more effective, efficient, and personalized
healthcare delivery through advanced medical data processing.
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