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A B S T R A C T

As energy-intensive infrastructures, data centers (DCs) have become a pressing challenge for managers due to
their significant energy consumption and carbon emissions. Information technology (IT) and cooling systems
contribute the most to energy consumption. Energy-aware virtual machine (VM) scheduling methods have
been widely demonstrated to reduce energy consumption and operating costs in DCs. However, as realistic
DCs exhibit complex power and thermodynamic behaviors, existing works cannot provide efficient measures to
optimize computing and cooling power consumption simultaneously. To overcome this challenge, we construct
a holistic thermal model (including CPU and server inlet thermal models) to accurately represent the non-
uniform, dynamic thermal environment. Subsequently, this work proposes a thermal model-based energy-aware
VM placement method (TEVP) to minimize the holistic energy consumption of the DCs, considering resource
and thermal constraints. We develop a novel hybrid swarm intelligence algorithm (DE-ERPSO) combining
differential evolution (DE) and particle swarm optimization with an elite re-selection mechanism (ERPSO) to
explore more energy-efficient VM placement schemes. Extensive experiments are conducted on an extended
CloudSim to validate the performance of the proposed TEVP using real-world workload traces (PlanetLab and
Azure). Results show that TEVP saves over 5.6% of the total energy consumption over the advanced baselines
while maintaining low thermal violations.
1. Introduction

DCs, as contemporary digital infrastructures, significantly promoted
the transformation and advancement of the global digital industry.
Recently, governments have paid great attention to the data center
industry, increasing policy support and financial investment. According
to Gartner,1 the global public cloud market reached $491 billion in
2022, demonstrating a growth rate of 19%. Simultaneously, cloud
DCs’ huge energy consumption and carbon emissions have emerged
as pressing challenges for governments and industries. The journal
Science reported that global data center energy consumption was es-
timated at 1% of total global electricity usage in 2018, or about
205 TW⋅h [1]. Moreover, the data center industry contributes 0.3%
of global carbon emissions and will continue to grow over the next
decade [2]. Therefore, leading economies have begun formulating poli-
cies and taking measures to promote energy-efficient, low-carbon, and
sustainable development of DCs. For example, the Chinese government
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has announced it will achieve peak carbon emission and neutrality
by 2030 and 2060, respectively [3]. The US state of California intro-
duced a carbon-neutral law to reduce greenhouse gas emissions mainly
from electricity generation facilities [2]. Additionally, several European
cloud operators have pledged their commitment to the European Green
Deal, with the aim of achieving climate neutrality by 2030 [4]. A
series of green targets and policies are compelling DC owners to take
proactive measures to coordinate energy-intensive systems to enhance
the holistic energy efficiency of DCs.

IT and cooling systems are the two primary energy-consuming
facilities in DCs, accounting for about 80% of the total energy consump-
tion [5]. Numerous servers in DCs are under load or idle for a long time,
generating unwanted energy wastage [6]. Therefore, energy-aware VM
placement approaches are widely adopted to consolidate VMs to fewer
servers and shut down idle servers to save IT energy [7,8]. However,
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while VM consolidation significantly improves server resource utiliza-
tion and energy efficiency, it also leads to overloaded and overheated
hosts, which forces the cooling system to provide additional cooling
supplies to cool down. Consequently, it is imperative to address the ele-
vated cooling loads and thermal risks stemming from VM consolidation
to effectively reduce both computing and cooling energy consumption
in DCs.

However, the complex coupling of airflow organization and heat
transfer in realistic DCs poses great challenges for efficient thermal
management. Multiple variables, such as IT equipment’s heat gen-
eration characteristics, the cooling system’s heating extraction effi-
ciency, and the infrastructure layout in DCs combine to form a time-
varying, non-uniform thermal field [9]. Conventional static thermal
re-circulation models suffer from low predictive accuracy and fail to
capture the evolution and characteristics of the thermal field precisely.
Furthermore, thermal models based on computational fluid dynamics
(CFD) provide a comprehensive and precise representation of thermal
fields. Still, their suitability for real-time temperature assessment and
simulation is hindered by substantial computational requirements and
the need for extensive parameter inputs [10]. Hence, to tackle this
challenge, this work adopts a data-driven thermal modeling approach
to construct a server inlet temperature model to quickly and accurately
evaluate the thermal distribution of the server room. Furthermore, a
CPU thermal model based on the Resistor-Capacitance (RC) model is
used to simulate the thermal behavior of the chip. Subsequently, the
developed thermal models guide VM placement and migration to mini-
mize the energy consumption of the DCs’ IT and cooling systems while
meeting service level agrees (SLAs) and thermal constraints. Besides,
the existing heuristic-based methods [11,12] for solving large-scale
scheduling problems are susceptible to falling into the local optimum
trap. Some VM placement methods based on swarm intelligence al-
gorithms [8,13] have limitations in global optimal search. Therefore,
we design a hybrid swarm intelligence algorithm that incorporates
population diversity and elite reselection mechanisms to enhance the
optimal solution search capability of the particle swarm optimization
(PSO) algorithm. Moreover, most existing energy-aware VM placement
works [8,14,15] consolidate VMs to as few hosts as possible to reduce
IT energy consumption. However, these works make high-load active
hosts prone to localized hotspots, generating more cooling energy
consumption. Therefore, this work constructs a thermal model to guide
VM placement and cooling management while reducing the overall
energy consumption of computing and cooling facilities. In summary,
the noteworthy contributions of this work are highlighted below:

(1) This work designs a thermal model-based VM placement ap-
proach to reduce the holistic energy consumption of DCs by 5.6%
to 45.5% while maintaining acceptable SLA violation (SLAV) and
thermal critical violation (TCV).

(2) We develop a holistic thermal model (including CPU and server
inlet temperature models) to accurately represent the dynamic
thermodynamic environment of DCs for guiding VM placement
and dynamic cooling control.

(3) We design a novel hybrid swarm intelligence algorithm (DE-
ERPSO) combining DE and PSO with an elite re-selection mech-
anism to explore more energy-efficient VM placement solutions.

The remainder of this paper is organized as follows. Section 2
resents the research advances and challenges of the related work. The
ystem model and problem statement are given in Section 3. Section 4
etails the principle and implementation of the proposed DE-ERPSO.
ubsequently, the energy-aware VM placement method is presented
n Section 5. Section 6 shows the simulation experiments and results.
ection 7 discusses the conclusion and outlook. All abbreviations and
ull names in this manuscript can be found in Appendix.
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2. Related work

2.1. Heuristic algorithm

Traditional heuristic algorithms are widely used for thermal man-
agement in DCs. Tang et al. [16] first proposed a low-complexity ther-
mal re-circulation model to characterize the cross-interference behavior
between heat sources in a server room. Subsequently, a thermal-aware
workload scheduling method based on sequential quadratic program-
ming is designed to minimize the peak inlet temperature of the hosts,
thus reducing the cooling power. In addition, the work [17] developed
a thermal imbalance model to predict future thermal profiles. Subse-
quently, a proactive VM allocation and migration scheme was designed
to relocate and migrate more VMs to cooler servers. Similarly, Ilager
et al. [18] train an XGBoost-based CPU thermal model to evaluate the
thermal behavior of hosts based on server runtime records in a private
cloud. Subsequently, a heuristic algorithm based on the thermal model
was designed to allocate or migrate VMs to the coldest hosts, thus
reducing peak host temperatures and cooling demand.

Moreover, the work [11] selected the VM placement solution with
a minimal increase in server and CRAC power consumption. Like-
wise, Ilager et al. [12] mitigated the thermal gradient by dynamically
migrating the VMs of overloaded hosts while shutting down the under-
loaded hosts to reduce energy consumption. The proposed method uses
two greedy searches to find a VM placement scheme with minimum
power consumption and a global cooling set-point that avoids hotspots.
However, the work assumes that the flow field in the server room is
stable and the CRAC supply air temperature is fixed, ignoring the effect
of cooling variations on the thermal field. Moreover, to address the
resource and thermal heterogeneity of hosts in clusters, the work [19]
proposed a dynamic thermal management (DTM) technique that em-
ploys VM migration and dynamic voltage frequency scaling (DVFS)
methods to tune the power distribution of clusters to improve perfor-
mance and reduce the overall energy consumption. Note that the work
considers the performance impact of heat transfer from neighboring
servers to avoid local thermal risks. Overall, heuristic algorithms usu-
ally find sub-optimal scheduling solutions quickly for online scenarios.
However, as the problem size increases, the heuristic algorithm tends
to fall into local optimum, which reduces the possibility of reaching an
optimal solution.

2.2. Swarm intelligence algorithm

Compared to traditional heuristic algorithms, swarm intelligence
optimization algorithms exhibit more robust global search capabili-
ties by mimicking swarms’ social behavior and collective intelligence
in solving problems. Therefore, some works have applied swarm in-
telligence algorithms to thermal-aware VM placement optimization
scenarios [13,20,21]. For example, Feng et al. [22] proposed a two-
step algorithm to reduce data center overhead from three aspects:
cooling, computing, and networking. First, a simulated annealing (SA)
algorithm is taken to formulate a VM placement scheme that minimizes
the total power consumption. Subsequently, the migration distance
of VMs with high traffic overhead is shortened to reduce the net-
work overhead. Also, AghasiA et al. [21] proposed a VM placement
scheme based on a gravity search algorithm to minimize the computa-
tional and cooling power consumption, considering the heterogeneity
of the requested resources. Recently, Liu et al. [23] proposed a multi-
objective optimal VM placement scheme considering VM migration
cost and energy consumption. A swarm intelligence algorithm mixing
pathfinder and genetic algorithm (GA) is designed to explore a better
VM placement scheme. However, the single-set-point cooling control
method can easily lead to over-cooling. Moreover, the PSO algorithm
has been widely adopted to solve the energy-aware VM placement
optimization problem. The work [14] improves PSO by redefining the
parameters and encoding methods to find the optimal VM placement
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Fig. 1. System model.
scheme that minimizes the energy consumption of the server. Apart
from the computing power, the work [15] also considers the link
loss of VM placement and adopts the MOPSO algorithm to solve the
multi-objective optimization VM placement problem. However, these
works consolidate VMs to fewer hosts to reduce IT power, but high-
loaded hosts are prone to localized hotspots that consume more cooling
energy. Therefore, this work develops a holistic thermal model to
guide VM placement and cooling control while reducing the overall
energy consumption of computing and cooling facilities. Besides, a
hybrid algorithm combining DE and PSO is designed to explore more
energy-efficient VM placement schemes.

2.3. Machine learning algorithm

Some ML models are employed to predict system critical charac-
teristics and make scheduling decisions. For example, Xiao et al. [24]
adopted a Q-learning algorithm to determine the optimal host states
based on available resources and cooling states. Subsequently, a load-
balancing policy was executed for VM consolidation and migration.
This control decoupling scheme performs well regarding energy con-
sumption and latency metrics, but its host configuration only considers
three power states, which is insufficient for fine-grained thermal man-
agement. Further, the work [25] employs a long short-term memory
(LSTM) model to characterize server thermal behavior and power
consumption. Subsequently, a deep Q network (DQN) model is trained
to allocate workloads to minimize power consumption and temper-
ature. Similarly, Zhou et al. [26] designed a parameterized action-
space-based DQN algorithm that generates discrete and continuous
actions to control the IT and cooling systems. These works construct
a high-preserving digital twin system or environment to allow deep
reinforcement learning (DRL) agents to explore and learn scheduling
strategies. Reinforcement learning (RL) performs well in tackling online
optimization problems with large-scale solution spaces [27]. However,
the model’s training overhead and trial-and-error mechanism may lead
to unexpected SLAV and function failure.

3. System modeling and problem statement

As depicted in Fig. 1, the system model is divided into three layers.
The infrastructure layer mainly consists of servers, racks, and computer
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room air conditioners (CRACs). Numerous heterogeneous servers form
a cluster with powerful computing capabilities to provide cloud services
to users via the Internet. CRACs are responsible for exhausting heat
emitted from IT equipment and other heat sources to maintain a ther-
mal environment with constant temperature and humidity. The model
layer includes IT models, cooling models, and thermal models. Server
power models characterize heterogeneous server states with different
resource and power attributes. Secondly, SLAs, resource and thermal
constraints are formulated to ensure the quality of service (QoS),
performance, and security of the system for users. Chip and server inlet
temperature models are constructed to represent the thermal profiles of
the server room and hosts. The cooling power consumption depends
on the supply temperature and air speed. The system management
layer is responsible for scheduling submitted VM loads to the server
and operating the cooling knobs to minimize the operational overhead
of the system while ensuring efficiency, stability, and security. The
notation involved in system modeling is shown in Table 1.

3.1. Thermal model

Thermal-aware IT scheduling focuses on chip temperature, which
depends on the server’s ambient temperature, chip power, and fan
speed. Besides, the cooling system operates control knobs based on the
temperature profile of the room. According to the thermal guidelines
of ASHRAE [28], server inlet temperatures are often used to evaluate
the data center’s operating environment. The server inlet temperature
is determined by the supply temperature and air velocity of the CRACs,
and the power distribution of the heat source. The proposed CPU and
server inlet temperature modeling is described in the following.

3.1.1. Server inlet temperature model
This work used the commercial simulation software 6SigmaRoom

[29] to construct a CFD model of an air-cooled data center, as shown
in Fig. 2. The parameter setting is shown in Table 2. Specifically, 20
racks are divided into four rows and placed back-to-back to form hot
and cold aisles. Cold air enters from the front of the racks, absorbs the
heat from the servers, and then generates hot air back to the CRACs.
In addition, three thermal sensors at different heights are deployed on
the front of each rack to collect server inlet temperature data.

A complex and dynamic thermal field is formed in the server
room due to the heat sources heterogeneity, airflow organization,
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Table 1
Definition of notations.

Notation Definition Notation Definition

C,V, S Sets of CRACs, VMs and servers 𝑡 Time interval
𝐾,𝑁,𝑀 Numbers of CRACs, VMs, server 𝑢 CPU utilization
D Temperature distribution 𝑠𝑖, 𝑣𝑚𝑖 𝑖-th server, vm
R Resource type 𝑐𝑜𝑚𝑝∕𝑓𝑎𝑛 CRAC compressor/fan
𝑃 Power consumption (W) 𝑠𝑢𝑝 CRAC supply air
𝐸 Energy consumption (kW⋅h) 𝑖𝑛𝑙𝑒𝑡 Rack inlet
𝑇 Temperature (◦C) 𝑤 Weight
𝑄𝐶𝑅𝐴𝐶 Heat removed by CRACs (J) 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 Thermal critical value
𝑆𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_ℎ𝑜𝑡, 𝑆𝑡𝑎𝑟𝑔𝑒𝑡, 𝑆𝑎𝑐𝑡𝑖𝑣𝑒 List of overloaded, target and active servers 𝑇𝑠𝑢𝑝 Supply air temperature
𝑉𝑀𝑚𝑖𝑔𝑟𝑎𝑡𝑒 List of migrated VMs 𝑈𝑃 _𝑇𝐻𝑅 Upper CPU usage threshold
𝐵𝑆 CRAC Blower speed 𝐿𝑊 _𝑇𝐻𝑅 Lower CPU usage threshold
Table 2
Data center parameter settings.

Item Value or Range

Rack Number of racks 20
Number of servers each rack 40
Rack Power (𝑃𝑟𝑎𝑐𝑘) 6 kW–12 kW

CRAC Number of CRACs 4
Blower speed (𝐵𝑆) 40%–100%
Supply air temperature (𝑇𝑠𝑢𝑝) 18 ◦C–27 ◦C

Server Heat capacity of the CPU (𝐶) 340 J/K
Thermal resistance of the CPU (𝑅) 0.34 K/W
Initial temperature of the CPU 44.85 ◦C
Temperature threshold of the CPU 75 ◦C
Temperature threshold of the server inlet 30 ◦C

Fig. 2. Top view of the computer room CFD model and thermal sensor locations.

and facility layout. Traditional simplified physical models and CFD
simulation-based modeling approaches suffer from the limitations of
low prediction accuracy and high computational overhead, respec-
tively. Therefore, to achieve an acceptable trade-off between accuracy
and complexity, this work adopts a data-driven thermal modeling
approach to predict the thermal distribution of a server room. The
specific thermal modeling steps are as follows. A CFD model performs
simulation calculations under various parameter configurations, and
simulation records are collected to generate datasets. Subsequently, the
dataset is used to train the data-driven thermal model and verify the
prediction accuracy. Finally, the real-time temperature distribution is
evaluated based on the trained thermal model. The artificial neural
network (ANN)-based thermal modeling approach used in this work
avoids the traditional sense of mechanical models. ANNs with good
self-learning and fitting ability have apparent advantages in modeling
nonlinear systems [30].

As shown in Fig. 3, the supply temperature vector 𝑻 𝒔𝒖𝒑=[𝑇𝑠𝑢𝑝,1,
. . . , 𝑇𝑠𝑢𝑝,𝑖] and the blower air speed vector 𝑩𝑺=[𝐵𝑆1, . . . , 𝐵𝑆𝑖] of
the CRACs, and the rack power vector𝑷 𝒓𝒂𝒄𝒌=[𝑃𝑟𝑎𝑐𝑘,1, . . . , 𝑃𝑟𝑎𝑐𝑘,𝑖], are
inputted into the ANN-based thermal prediction model. Subsequently,
the thermal model outputs a temperature distribution that includes the
305
Fig. 3. Illustration of the ANN-based thermal model.

inlet temperatures at the top, middle, and bottom positions of each
rack, expressed as,

Dinlet = 𝑓
(

𝑻 sup,𝑩𝑺,𝑷 rack
)

. (1)

The experiment uses the Latin hypercube sampling (LHS) method
[31] to generate 1100 sets of random parameter combinations that
uniformly cover the multi-dimensional parameter space. Subsequently,
CFD numerical simulation calculations were carried out to generate
1100 sets of sample data, each containing 28 variables (blower speed
𝑩𝑺 and supply temperature 𝑻 𝒔𝒖𝒑 for four CRACs and operating power
𝑷 𝒓𝒂𝒄𝒌 for 20 racks) and 60 dependent variables (sensor temperature).
The dataset is sliced into training and testing sets according to 10:1.
Moreover, 10-fold cross-validation and Dropout methods are used to
train the model to enhance the neural network’s generalization ability.
The adopted ANN model has three network layers with 28, 100, and
60 nodes, ReLU activation function, dropout rate of 0.5, batch size of
12, and learning rate of 0.01. The prediction results show that the root
mean square error (RMSE) of the ANN-based thermal model is about
1.1 ◦C, the mean absolute percentage error (MAPE) is 3.1%, and the
computation time is 3.5 ms, which can satisfy the prediction accuracy
and efficiency demand.

3.1.2. CPU temperature model
The RC circuit model is commonly employed to construct a CPU

thermal model owing to the inherent duality between the chip’s thermal
phenomena and the dynamic circuitry. Concretely, RC model estab-
lishes a quantitative relationship between the CPU temperature 𝑇𝑐𝑝𝑢
and two key variables, power 𝑃𝑐𝑝𝑢, and server inlet temperature 𝑇𝑖𝑛𝑙𝑒𝑡,
expressed as [32],

𝑇𝑐𝑝𝑢(𝑡 + 𝛥𝑡) = 𝑇∞
𝑐𝑝𝑢(𝑡 + 𝛥𝑡) + (𝑇𝑐𝑝𝑢(𝑡) − 𝑇∞

𝑐𝑝𝑢(𝑡 + 𝛥𝑡))

⋅ 𝑒−
𝛥𝑡

𝑅⋅(𝑡+𝛥𝑡)⋅𝐶
(2)

where 𝛥𝑡 is a prediction time step. Besides, 𝑅, 𝐶 denote the thermal re-
sistance and specific heat capacity of the CPU, respectively. Therefore,
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𝑐𝑝𝑢(𝑡) is the steady state temperature denoted as,

∞
𝑐𝑝𝑢(𝑡) = 𝑃𝑐𝑝𝑢(𝑡) ⋅ 𝑅(𝑡) + 𝑇𝑖𝑛𝑙𝑒𝑡(𝑡) (3)

3.2. IT system

Assume that the data center has 𝑀 servers forming a cluster de-
noted as ∼ = (𝑠1, 𝑠2,… , 𝑠𝑚). The cluster runs 𝑁 VMs defined as
V = (𝑣𝑚1, 𝑣𝑚2,… , 𝑣𝑚𝑛). The resource type of each server is R =
(𝐶𝑃𝑈,𝑅𝐴𝑀,𝐵𝑊 ,𝑆𝑅), denoting CPU, memory, bandwidth, and stor-
age resources, respectively. Note that a VM is allowed to be placed on
only one server. 𝑥𝑖,𝑗 denote the mapping of VMs to servers, defined as,

𝑥𝑖,𝑗 =
{

1, if 𝑣𝑚𝑗 ∈ 𝑉 𝑚𝐿𝑖𝑠𝑡𝑖
0, else , (4)

𝑠.𝑡.
𝑀
∑

𝑖=1
𝑥𝑖,𝑗 = 1 (4a)

where 𝑉 𝑚𝐿𝑖𝑠𝑡𝑖 is the VMs running on 𝑠𝑖. Besides, the resource utiliza-
tion of the server depends on the amount of resource requests of the
running VMs, expressed as,

𝑢R𝑖 =
∑

R𝑟𝑒𝑞
𝑘

R𝑐𝑎𝑝
𝑖

, 𝑣𝑚𝑘 ∈ 𝑉 𝑚𝐿𝑖𝑠𝑡𝑖, (5)

where R𝑟𝑒𝑞
𝑘 and R𝑐𝑎𝑝

𝑖 are the amount of resource requests for running
Ms and the total resource capacity in 𝑠𝑖, respectively. Therefore, the
M placement must satisfy the following server resource constraints,

R𝑟𝑒𝑞
𝑘 ≤ R𝑐𝑎𝑝

𝑖 ,∀𝑠𝑖 ∈ S, 𝑣𝑚𝑘 ∈ 𝑉 𝑚𝐿𝑖𝑠𝑡𝑖, (6)

his work uses a local linear-based server power model to evalu-
te server power consumption for different hardware configurations
nd operating states. The model assumes that server power correlates
inearly with CPU utilization in each interval. Therefore, the CPU
tilization is divided into 𝑝 sub-intervals [0, 1/𝑝), [1/𝑝, 2/𝑝), . . . , [(𝑝-

1)/𝑝, 1], so express the power consumption 𝑃𝑗 of server 𝑠𝑗 by the CPU
tilization as [33],

𝑗

(

𝑢𝑐𝑝𝑢𝑗

)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛼1 ⋅ 𝑢
𝑐𝑝𝑢
𝑗 + 𝛽1, 0 ≤ 𝑢𝑐𝑝𝑢𝑗 < 1∕𝑝

𝛼2 ⋅ 𝑢
𝑐𝑝𝑢
𝑗 + 𝛽2, 1∕𝑝 ≤ 𝑢𝑐𝑝𝑢𝑗 < 2∕𝑝

𝛼𝑝 ⋅ 𝑢
𝑐𝑝𝑢
𝑗 + 𝛽𝑝, (𝑝 − 1)∕𝑝 ≤ 𝑢𝑐𝑝𝑢𝑗 ≤ 1

, (7)

where 𝛼𝑖, 𝛽𝑖 (𝑖 = 1, 2, . . . , 𝑝) are constants that depend on the hardware
configuration and power attributes of the server. Subsequently, we
adopt the real power consumption data of the server provided by
SPECpower [34] to fit the constant parameters. Therefore, from Eq. (7),
the total energy consumption 𝐸𝐼𝑇 of the cluster can be estimated as,

𝐸𝐼𝑇 =
𝑁
∑

𝑗=1
𝛾𝑗 ⋅ 𝑃𝑗

(

𝑢𝑐𝑝𝑢𝑗 (𝑡)
)

, (8)

where 𝛾𝑗= 1, 0 denote the active and sleep modes of the server,
respectively.

3.3. Cooling system

Assume that the cooling system consists of 𝐾 CRACs, denoted as
C = (𝐶𝑅𝐴𝐶1, 𝐶𝑅𝐴𝐶2,… , 𝐶𝑅𝐴𝐶𝑘), where 𝐶𝑅𝐴𝐶𝑘 is the 𝑘th CRAC.
CRACs contribute 30%–40% of the energy consumption of the cooling
system [5]. The power consumption of each CRAC mainly originates
from the compressor and fan, so the power consumption of CRACk is
defined as,
𝐶𝑅𝐴𝐶 𝑐𝑜𝑚𝑝 𝑓𝑎𝑛
306

𝑃𝑘 = 𝑃𝑘 + 𝑃𝑘 (9)
where the fan power consumption 𝑃 𝑓𝑎𝑛 shows a cubic exponential
growth relationship with the speed 𝑓𝑠 [35], denoted as 𝑃 𝑓𝑎𝑛 ∝ 𝑓𝑠3.
Besides, the power consumption of the compressor is defined as,

𝑃 𝑐𝑜𝑚𝑝 =
𝑄𝐶𝑅𝐴𝐶

COP
(

𝑇𝑠𝑢𝑝
) (10)

where 𝑄𝐶𝑅𝐴𝐶 indicates the amount of heat removed from the server
room by the cooling system, which is related to the total IT power
𝑃𝐼𝑇 [36]. A higher coefficient of performance (COP) indicates a more
efficient cooling of the CRAC. Data measured by HP labs show that
COP is positively correlated with the air supply temperature 𝑇𝑠𝑢𝑝 of the

RAC [11], expressed as,

OP
(

𝑇𝑠𝑢𝑝
)

= 0.0068 ⋅ 𝑇𝑠𝑢𝑝2 + 0.0008 ⋅ 𝑇𝑠𝑢𝑝 + 0.458. (11)

q. (11) reveals that the higher the CRAC supply temperature 𝑇𝑠𝑢𝑝, the
igher the cooling efficiency. Moreover, the total energy consumption
f the cooling system is estimated as,

𝑐𝑜𝑜𝑙𝑖𝑛𝑔 =
𝐾
∑

𝑘=1
𝑃𝐶𝑅𝐴𝐶
𝑘 (12)

3.4. Problem statement

The thermal-aware VM placement problem for DCs is formulated
as a multi-constrained holistic energy minimization problem. Specifi-
cally, given cluster server states S, air conditioning set-points C, and
VM workloads V. The objective is to find an optimal VM placement
scheme and cooling supply temperature to minimize the total energy
consumption of IT and cooling facilities while satisfying resource and
thermal constraints, denoted as,

𝐆𝐢𝐯𝐞𝐧 ∶ S,C,V

𝐅𝐢𝐧𝐝 ∶ V → S, 𝑇𝑠𝑢𝑝 of S

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐢𝐧𝐠 ∶ 𝐸𝑡𝑜𝑡𝑎𝑙 ∶ 𝐸𝐼𝑇 + 𝐸𝑐𝑜𝑜𝑙𝑖𝑛𝑔 , (13)

∑

R𝑟𝑒𝑞
𝑣𝑚𝑠 in 𝑠𝑒𝑟𝑣𝑒𝑟𝑖

≤ R𝑐𝑎𝑝
𝑠𝑒𝑟𝑣𝑒𝑟𝑖

𝑖 ∈ [1,… ,𝑀], (13a)

𝑇𝑖𝑛𝑙𝑒𝑡 ≤ 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙. (13b)

4. Swarm intelligence algorithm

4.1. Basic algorithm

Differential evolution is a swarm intelligence optimization algo-
rithm that simulates the evolutionary pattern of heredity, mutation,
and selection of biological populations in nature [37]. DE updates
and evolves the population through mutation, crossover, and selection.
Define the individuals of a population in the 𝐷-dimensional space
as [38],

𝑋𝑔
𝑖 =

[

𝑥𝑔𝑖,1, 𝑥
𝑔
𝑖,2,… , 𝑥𝑔𝑖,𝐷

]

, 𝑖 = 1, 2,… , 𝑁𝑃 , (14)

where 𝑋𝑔
𝑖 = denotes the 𝑖th individual of the 𝑔th iteration. 𝑁𝑃 is

the population size. The mutation operation randomly selects three
different individuals 𝑋𝑔

𝑟1, 𝑋𝑔
𝑟2, and 𝑋𝑔

𝑟3 and generates the mutated
individuals according to the DE/rand/bin strategy, denoted as,

𝑀𝑔
𝑖 = 𝑋𝑔

𝑟1 + 𝐹
(

𝑋𝑔
𝑟2 −𝑋𝑔

𝑟3
)

, 𝑖 ≠ 𝑟1 ≠ 𝑟2 ≠ 𝑟3, (15)

where 𝐹 is the variation factor, which is used to control the vector dif-
ference. Besides, the crossover operation takes the parent individual 𝑋𝑔

𝑖
and the mutated individual 𝑀𝑔

𝑖 to produce a new individual according
to Eq. (16).

𝐶𝑔
𝑖,𝑗 =

{

𝑀𝑔
𝑖,𝑗 , if (𝑟𝑎𝑛𝑑 ≤ 𝐶𝑅) or (𝑟𝑎𝑛𝑑(1, 𝐷) = 𝑗)
𝑔 , (16)
𝑋𝑖,𝑗 , else
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Fig. 4. Flowchart of proposed ERPSO algorithm.

where 𝐶𝑅 is the crossover factor and 𝑟𝑎𝑛𝑑 is a random number between
0 and 1. The selection operation uses a greedy strategy to decide
whether the crossover individual replaces the parent as the following
generation population individual based on fitness, denoted as,

𝑋𝑔+1
𝑖 =

{

𝐶𝑔
𝑖 , 𝑖𝑓

(

𝐹 𝑖𝑡
(

𝐶𝑔
𝑖
)

< 𝐹 𝑖𝑡
(

𝑋𝑔
𝑖
))

𝑋𝑔
𝑖 , otherwise

, (17)

where 𝐹 𝑖𝑡() is the fitness function related to the optimization objective.
Particle Swarm Optimization (PSO) is a swarm intelligence opti-

mization algorithm that simulates the foraging behavior of the bird
swarm [39]. PSO is widely adopted in combination optimization prob-
lems due to its simple principle, few dependent parameters, and fast
convergence speed. The particles update their speed and position by in-
dividual and global optimal solutions during the evolutionary process,
as shown in Eqs. (18), (19) [40].

𝑉 𝑔+1
𝑖 = 𝑤𝑉 𝑔

𝑖 + 𝑐1𝑟1
(

𝑋𝑔,𝑝𝑏𝑒𝑠𝑡
𝑖 −𝑋𝑔

𝑖

)

+ 𝑐2𝑟2
(

𝑋𝑔,𝑔𝑏𝑒𝑠𝑡
𝑖 −𝑋𝑔

𝑖

)

, (18)

𝑋𝑔+1
𝑖 = 𝑋𝑔

𝑖 + 𝑉 𝑔+1
𝑖 , (19)

where 𝑐1, 𝑐2 are learning factors and 𝑟1, 𝑟2 are random numbers uni-
formly distributed from 0 to 1. Also, 𝑤 denotes the inertia weight that
balances the exploitation and exploration capabilities of the algorithm.
The encoding of particles uses a multi-dimensional vector to represent
the mapping of VMs and servers. Specifically, the location number and
value of the particle encoding are used as the VM and server number,
respectively. For example, the particle 𝑋𝑖=[2, 5, 1, 4, 2] indicates that
the 𝑣𝑚1 at location 1 is assigned to server 𝑠2. Similarly, 𝑣𝑚2 is assigned
to server 𝑠5.

4.2. Proposed DE-ERPSO

Two modified methods are adopted to strengthen the global opti-
mal search capability of PSO while maintaining the fast convergence
307
property. More specifically, the mutation, crossover, and selection op-
erations of the DE algorithm are employed to drastically perturb the
worse-performing particles and increase the randomness to generate
better solutions. Secondly, considering that populations are trapped in
local optima at later stages of evolution, leading to evolutionary stagna-
tion, a PSO with an elite re-selection mechanism is designed to provide
new guidance for populations searching for optimal solutions [41]. As
shown in Fig. 4, ERPSO introduces age 𝜃 and lifetime 𝛩 variables for
the global optimal particle 𝑋𝑔𝑏𝑒𝑠𝑡

𝑖 to simulate the life cycle. Specifically,
the initial age and lifetime of the particle 𝑋𝑔𝑏𝑒𝑠𝑡

𝑖 are set to be 𝜃= 0 and
𝛩 = 𝛩0, respectively. With each iteration, the age of 𝑋𝑔𝑏𝑒𝑠𝑡

𝑖 is added by
1, while the lifetime 𝛩 needs to be dynamically adjusted according to
the guidance capability. Eqs. (20) and (21) are designed to measure the
guidance capability.

𝛿𝑋𝑔𝑏𝑒𝑠𝑡
𝑖

= 𝐹 𝑖𝑡
(

𝑋𝑔,𝑔𝑏𝑒𝑠𝑡
𝑖

)

− 𝐹 𝑖𝑡
(

𝑋𝑔−1,𝑔𝑏𝑒𝑠𝑡
𝑖

)

, (20)

𝑀
∑

𝑖=1
𝛿𝑋𝑝𝑏𝑒𝑠𝑡

𝑖
=

𝑀
∑

𝑖=1

(

𝐹 𝑖𝑡
(

𝑋𝑔,𝑝𝑏𝑒𝑠𝑡
𝑖

)

− 𝐹 𝑖𝑡
(

𝑋𝑔−1,𝑝𝑏𝑒𝑠𝑡
𝑖

))

(21)

where 𝛿𝑋𝑔𝑏𝑒𝑠𝑡
𝑖

and 𝛿𝑋𝑝𝑏𝑒𝑠𝑡
𝑖

denote the global and local guidance capa-
bilities of particle 𝑋𝑖, respectively. 𝐹 𝑖𝑡() is the fitness function that
evaluates the solution, assuming the minimizing optimization objective.
If 𝛿𝑋𝑔𝑏𝑒𝑠𝑡

𝑖
< 0 in Eq. (20) means that the current 𝑋𝑔𝑏𝑒𝑠𝑡

𝑖 has good
leadership ability to guide the population to find a better solution.
Therefore, the lifetime of 𝑋𝑔𝑏𝑒𝑠𝑡

𝑖 increases by 2. When 𝛿𝑋𝑔𝑏𝑒𝑠𝑡
𝑖

= 0

and ∑𝑀
𝑖=1 𝛿𝑋𝑝𝑏𝑒𝑠𝑡

𝑖
< 0, it indicates that the optimal solution of the

population is not improved, but the solution of at least one particle is
enhanced, which means that the optimal particle still has the potential
and possibility to enhance the population. Thus, the lifetime of 𝑋𝑔𝑏𝑒𝑠𝑡

𝑖 is
only increased by 1. Once 𝛿𝑋𝑔𝑏𝑒𝑠𝑡

𝑖
= 0 and ∑𝑀

𝑖=1 𝛿𝑋𝑝𝑏𝑒𝑠𝑡
𝑖

= 0, it implies that
this optimal particle loses its leadership ability and cannot improve the
quality of the population particles, so the lifetime remains unchanged.
In summary, the lifetime 𝛩 adjusting strategy of 𝑋𝑔𝑏𝑒𝑠𝑡

𝑖 is designed as,

𝛩 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛩 + 2, if 𝛿𝑋𝑔𝑏𝑒𝑠𝑡
𝑖

< 0

𝛩 + 1, if 𝛿𝑋𝑔𝑏𝑒𝑠𝑡
𝑖

= 0 and ∑𝑀
𝑖=1 𝛿𝑋𝑝𝑏𝑒𝑠𝑡

𝑖
< 0

𝛩, if 𝛿𝑋𝑔𝑏𝑒𝑠𝑡
𝑖

= 0 and ∑𝑀
𝑖=1 𝛿𝑋𝑝𝑏𝑒𝑠𝑡

𝑖
= 0

. (22)

Moreover, once the age of 𝑋𝑔𝑏𝑒𝑠𝑡
𝑖 exceeds the lifespan, i.e., 𝜃 > 𝛩,

implying that the evolution of the population has stagnated. In this
case, a new elite particle 𝑋𝑒𝑙𝑖𝑡𝑒

𝑖 needs to be generated to try to replace
the old optimal particle, as shown in Eq. (23).

𝑋𝑒𝑙𝑖𝑡𝑒
𝑖,𝑗 =

{

random
(

𝐿𝑗 , 𝑈𝑗
)

, if (randj < 𝑝𝑟𝑜)
𝑋𝑔𝑏𝑒𝑠𝑡

𝑖,𝑗 , else (23)

A random number between 0 and 1 is generated to compare with 𝑝𝑟𝑜 to
determine whether the value of the 𝑗th dimension of 𝑋𝑒𝑙𝑖𝑡𝑒

𝑖,𝑗 is randomly
generated within the constraint range [𝐿𝑗 , 𝑈𝑗] or inherited from . Note
that the parameter pro is usually set to a small value to preserve the
structure of the old global optimal particle. Subsequently, the fitness
values of 𝑋𝑒𝑙𝑖𝑡𝑒

𝑖,𝑗 and 𝑋𝑔𝑏𝑒𝑠𝑡
𝑖,𝑗 are compared. If 𝐹 𝑖𝑡(𝑋𝑒𝑙𝑖𝑡𝑒

𝑖,𝑗 ) < 𝐹 𝑖𝑡(𝑋𝑔𝑏𝑒𝑠𝑡
𝑖,𝑗 ),

the new elite particle 𝑋𝑒𝑙𝑖𝑡𝑒
𝑖,𝑗 will replace the old optimal particle and

become the new leader of the population. Conversely, the old optimal
particle 𝑋𝑔𝑏𝑒𝑠𝑡

𝑖,𝑗 will be kept and the age will be reduced by 1.
The proposed DE-ERPSO is shown in Algorithm 1. Initialize the

velocity and position of the swarm particles in Line 1. Subsequently,
𝐺 iterations are started (Lines 2–17). The fitness of each particle
is calculated using Eq. (26) and sorted in ascending order (Lines
3–4). The sorted particle population was divided into 𝐵𝑒𝑡𝑡𝑒𝑟𝑆𝑤𝑎𝑟𝑚
and 𝑊 𝑜𝑟𝑠𝑒𝑆𝑤𝑎𝑟𝑚 according to 𝑃%. Mutation (Eq. (15)), crossover
(Eq. (16)), and selection (Eq. (17)) operations are performed on
𝑊 𝑜𝑟𝑠𝑒𝑆𝑤𝑎𝑟𝑚. The fitness of the newly generated individuals is calcu-
lated to update 𝑋𝑖𝑏𝑒𝑠𝑡 and 𝑋𝑔𝑏𝑒𝑠𝑡. A greedy strategy is used to select the
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1

1

1

1

1

1

better individuals to form 𝑛𝑒𝑤𝑊 𝑜𝑟𝑠𝑒𝑆𝑤𝑎𝑟𝑚 (Lines 6–9). Besides, the
velocity and position of the particles in the 𝐵𝑒𝑡𝑡𝑒𝑟𝑆𝑤𝑎𝑟𝑚 are updated
according to Eqs. (18) and (19) and the latest 𝑋𝑖𝑏𝑒𝑠𝑡 and 𝑋𝑔𝑏𝑒𝑠𝑡 are
determined. Then, the age of the 𝑋𝑔𝑏𝑒𝑠𝑡 is adjusted according to the
evaluated values of Eqs. (20) and (21). If the age exceeds the lifespan,
a re-select elite operation is performed. A greedy strategy is used to
determine the new leader of the population and individuals to form
𝑛𝑒𝑤𝐵𝑒𝑡𝑡𝑒𝑟𝑆𝑤𝑎𝑟𝑚. Finally, 𝑛𝑒𝑤𝑊 𝑜𝑟𝑠𝑒𝑆𝑤𝑎𝑟𝑚 and 𝑛𝑒𝑤𝐵𝑒𝑡𝑡𝑒𝑟𝑆𝑤𝑎𝑟𝑚 are
aggregated into a new swarm 𝑛𝑒𝑤𝑆𝑤𝑎𝑟𝑚. Loop all the above steps until
the maximum number of iterations or the end condition.

5. Energy-aware VM placement method

As Fig. 5 shows, VM placement in IT systems is divided into five
major steps, including overloaded and hot server detection, migrated
VM selection, target server selection, VM placement, and underloaded
server processing. The CPU thermal model evaluates the CPU temper-
ature for overheated server detection and VM placement. Additionally,
the server inlet thermal model is employed to predict the server inlet
temperature distribution and to guide the supply air temperature con-
trol of the CRAC to satisfy the thermal constraint. The details of each
step are described below.

Algorithm 1: DE-ERPSO-based VM placement
input : 𝑆𝑡𝑎𝑟𝑔𝑒𝑡, 𝑉𝑀𝑚𝑖𝑔𝑎𝑟𝑡𝑒
output: 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑝: 𝑉𝑀𝑚𝑖𝑔𝑎𝑟𝑡𝑒 → 𝑆𝑡𝑎𝑟𝑔𝑒𝑡;

1 Initialize the 𝑆𝑤𝑎𝑟𝑚;
2 for 𝑔 ← 1 to 𝐺 do
3 Use Eq. (26) to evaluate Fit(𝑋𝑔

𝑖 ) of 𝑋𝑔
𝑖 ;

4 Sort 𝑆𝑤𝑎𝑟𝑚 by Fit(𝑋𝑔
𝑖 ) in ascending order;

5 𝐵𝑒𝑡𝑡𝑒𝑟𝑆𝑤𝑎𝑟𝑚,𝑊 𝑜𝑟𝑠𝑒𝑆𝑤𝑎𝑟𝑚 ← Split 𝑆𝑤𝑎𝑟𝑚 according to
𝑃%;

6 𝑀𝑔 ←Mutation(𝑊 𝑜𝑟𝑠𝑒𝑆𝑤𝑎𝑟𝑚);
7 𝐶𝑔 ←Crossover(𝑀𝑔);
8 Update 𝑋𝑖𝑏𝑒𝑠𝑡 and 𝑋𝑔𝑏𝑒𝑠𝑡 by 𝑀𝑔 and 𝐶𝑔 ;
9 𝑛𝑒𝑤𝑊 𝑜𝑟𝑠𝑒𝑆𝑤𝑎𝑟𝑚 ← GreedySelect(𝑊 𝑜𝑟𝑠𝑒𝑆𝑤𝑎𝑟𝑚, 𝑀𝑔 , 𝐶𝑔);
0 𝑉 𝑔 ←VelocityUpdate(𝐵𝑒𝑡𝑡𝑒𝑟𝑆𝑤𝑎𝑟𝑚);
1 𝑋𝑔+1 ←PositionUpdate(𝑉 𝑔);
2 Update 𝑋𝑖𝑏𝑒𝑠𝑡 and 𝑋𝑔𝑏𝑒𝑠𝑡 by 𝑋𝑔+1;
3 if 𝑋𝑔𝑏𝑒𝑠𝑡 has 𝜃 > 𝛩 then
14 𝐸𝑔 ←EliteReelection(𝑋𝑔𝑏𝑒𝑠𝑡);
5 end
6 𝑛𝑒𝑤𝐵𝑒𝑡𝑡𝑒𝑟𝑆𝑤𝑎𝑟𝑚 ←GreedySelection(𝐸𝑔 , 𝑋𝑔+1);
7 𝑛𝑒𝑤𝑆𝑤𝑎𝑟𝑚 ←Aggregate(𝑛𝑒𝑤𝐵𝑒𝑡𝑡𝑒𝑟𝑆𝑤𝑎𝑟𝑚, 𝑛𝑒𝑤𝑊 𝑜𝑟𝑠𝑒𝑆𝑤𝑎𝑟𝑚)
8 end
9 Construct and return the 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑝;

5.1. Overloaded server detection

VM consolidation and migration in clusters may lead to perfor-
mance degradation and thermal risks for a part of high-load servers.
Therefore, this work adopts a utilization-temperature-based overloaded
server detection strategy. We analyze the energy efficiency curves of
multiple types of servers in SPECpower [34], from which we find
that most servers have a specific CPU utilization 𝑢𝑐𝑝𝑢𝑜𝑝𝑡_𝑃𝑃𝑅 with optimal
performance-to-power ratio (PPR). The optimal utilization 𝑢𝑐𝑝𝑢𝑜𝑝𝑡_𝑃𝑃𝑅 of
most servers is distributed in [0.6, 0.9], with a few being fully loaded.
In other words, the server energy efficiency ratio increases at [0,
𝑢𝑐𝑝𝑢𝑜𝑝𝑡_𝑃𝑃𝑅] and decreases at [𝑢𝑐𝑝𝑢𝑜𝑝𝑡_𝑃𝑃𝑅, 1.0]. Therefore, to ensure that the
server is at a high energy efficiency level while avoiding overloading,
𝑢𝑐𝑝𝑢𝑜𝑝𝑡_𝑃𝑃𝑅 is set to the trigger threshold 𝑈𝑃 _𝑇𝐻𝑅 for overload detection.
In addition, a CPU critical temperature threshold 𝑇 𝑐𝑝𝑢

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 is given to
prevent overheating the server. Thus, if a server 𝑠𝑖 has a CPU utilization
𝑢𝑐𝑝𝑢𝑖 > 𝑈𝑃 _𝑇𝐻𝑅 or a temperature 𝑇 𝑐𝑝𝑢

𝑖 > 𝑇 𝑐𝑝𝑢
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, the server will be

added to the list of overloaded and overheated servers 𝑆 .
308

𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_ℎ𝑜𝑡
Fig. 5. Schematic diagram of energy-aware VM placement method.

5.2. Migrated VM selection

Considering that VM migration leads to performance degradation
and SLAV, this work adopts the migrated VM selection strategy based
on the migration value ratio (MVR) proposed in the work [7] to
reduce the number of VM migrations. MVR measures the overhead
of VM migration by considering three critical resources, namely, CPU,
memory, and bandwidth, defined as,

𝑀𝑉𝑅𝑘 = |(𝑈𝐶𝑃𝑈
𝑖 − 𝑈𝑃 _𝑇𝐻𝑅𝑖) ⋅ 𝐶𝑃𝑈max

𝑖 − 𝐶𝑃𝑈 𝑟𝑒𝑞
𝑘 |

⋅ 𝑅𝐴𝑀𝑟𝑒𝑞
𝑘 ∕𝐵𝑊 𝑎𝑣𝑎𝑖𝑙

𝑖 ,∀𝑠𝑖 ∈ S, 𝑣𝑚𝑘 ∈ VmList𝑖,
(24)

where 𝑢𝑐𝑝𝑢𝑖 , 𝑈𝑃 _𝑇𝐻𝑅𝑖 denote the CPU utilization and overload thresh-
old of server 𝑠𝑖, respectively. 𝐶𝑃𝑈max

𝑖 , 𝐵𝑊 avail
𝑖 denote the total CPU

resources and available bandwidth of server 𝑠𝑖, respectively; 𝐶𝑃𝑈 𝑟𝑒𝑞
𝑘

and 𝑅𝐴𝑀𝑟𝑒𝑞
𝑘 indicate the amount of CPU and memory resources re-

quested by 𝑣𝑚𝑘, respectively. For each overloaded host, the VM with
the smallest MVR on the overloaded host is selected to be added to the
migrated VM list 𝑉𝑀𝑚𝑖𝑔𝑟𝑎𝑡𝑒 for each operation until 𝑢𝑐𝑝𝑢𝑖 < 𝑈𝑃 _𝑇𝐻𝑅𝑖.

5.3. Target server selection

After determining the migrated VMs, 𝑉𝑀𝑚𝑖𝑔𝑟𝑎𝑡𝑒, some active servers
that satisfy the constraints are selected as target servers, 𝑆𝑡𝑎𝑟𝑔𝑒𝑡.

∀𝑠𝑖 ∈ 𝑆𝑎𝑐𝑡𝑖𝑣𝑒,∀𝑠𝑖 ∉ 𝑆𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_ℎ𝑜𝑡,∃𝑣𝑚𝑘 ∈ 𝑉𝑀𝑚𝑖𝑔𝑟𝑎𝑡𝑒, (25)

Eq. (25) indicates that the target server is not overloaded, while its
remaining resources need to satisfy the resource requests of at least
one migrated VM.

5.4. DE-ERPSO-based VM placement algorithm

Given a migrated VM list, 𝑉𝑀𝑚𝑖𝑔𝑟𝑎𝑡𝑒, and a target server list, 𝑆𝑡𝑎𝑟𝑔𝑒𝑡,
the proposed DE-ERPSO-based VM placement algorithm is employed to
generate a new VM and server mapping. The optimization objective of
VM placement is to minimize the overall energy consumption of the IT
and cooling systems. To this regard, the fitness function evaluates the
VM placement solution using a weighted metric considering the power
consumption and temperature of the servers, designed as,

𝐹 𝑖𝑡(𝑋𝑖) =
𝐷
∑

𝑖

√

(
𝑃𝑖

𝑃𝑚𝑎𝑥_𝑝𝑜𝑤𝑒𝑟
)2 + (

𝑇 𝑖
𝑐𝑝𝑢

𝑇𝑐𝑝𝑢_𝑚𝑎𝑥
)2, (26)

𝑃𝑚𝑎𝑥_𝑝𝑜𝑤𝑒𝑟 = 𝑀𝑎𝑥(𝑃 𝑝𝑒𝑎𝑘
𝑖 ,… , 𝑃 𝑝𝑒𝑎𝑘

𝐷 ), (26a)

𝑇 = 𝑀𝑎𝑥(𝑇 𝑖 ,… , 𝑇𝐷 ). (26b)
𝑐𝑝𝑢_max 𝑐𝑝𝑢 𝑐𝑝𝑢



Future Generation Computer Systems 161 (2024) 302–314J. Lin et al.

c
c
s

5

t
e
p
e

a
a

Table 3
Server and VM instances.

Type Model Cores Mips/coreRAM (GB) BW (Gb/s) Storage (GB) 𝑢𝑐𝑝𝑢𝑜𝑝𝑡_𝑃𝑃𝑅

Server HP ProLiant ML110 G3 2 300016 100 1000 1.0
Dell PowerEdge R240 6 370032 100 1000 0.6
ProLiant DL20 8 320016 100 1000 0.7
Acer AR380 F2 12 250032 100 1000 1.0

VM a1.m 1 23002 10 3
a1.l 2 23004 10 3
a1.xl 4 23008 10 3
g4dn.2xl 8 250016 10 3
w
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𝐶
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where 𝑃𝑖, 𝑃
𝑝𝑒𝑎𝑘
𝑖 , 𝑇 𝑖

𝑐𝑝𝑢 denote the real-time power consumption, maxi-
mum power consumption, and CPU temperature of 𝑠𝑖, respectively.
Besides, 𝑃𝑚𝑎𝑥_𝑝𝑜𝑤𝑒𝑟 and 𝑇𝑐𝑝𝑢_𝑚𝑎𝑥 represent the maximum peak power
onsumption and maximum temperature of all active servers in the
luster, respectively. Therefore, smaller fitness values indicate that the
olution is closer to the optimization objective.

.5. Low-loaded server processing

With the termination of the life cycle and relocation of some VMs,
he cluster will be left with underutilized servers that consume unnec-
ssary energy. Low-load or idle servers consume about 50% of the peak
ower [42]. Hence, to minimize the number of active servers to reduce
nergy consumption, a dynamic lower threshold (𝐿𝑊 _𝑇𝐻𝑅) is used to

detect low-loaded servers. Specifically, the average CPU utilization 𝑢𝑎𝑣𝑒𝑟𝑖
of each active server in the last 𝑙 time steps is calculated. Subsequently,

statistical method is used to calculate the quartiles of 𝑢𝑎𝑣𝑒𝑟 for all
ctive servers, and the lower threshold 𝐿𝑊 _𝑇𝐻𝑅 is set to the lower

quartile. Finally, all VMs in servers with 𝑢𝑎𝑣𝑒𝑟𝑖 < 𝐿𝑊 _𝑇𝐻𝑅 are added
to 𝑉𝑀𝑚𝑖𝑔𝑟𝑎𝑡𝑒, relocated to the target server, and shut down the source
server.

6. Simulation experiment and results

6.1. Experimental configuration

In this work, simulation experiments are conducted to evaluate the
performance and effectiveness of the proposed TEVP. We extend the
cloud simulation tool Cloudsim V4.0 [43] with a server thermal model,
a server inlet thermal model, and a cooling power model. All simula-
tion experiments and code are run on a laptop computer configured
with Intel (R) Core (TM) i7-12700H, 2.30 GHz, and 16 GB of RAM.
Additionally, the experiments use four VM instances from Amazon
EC2 [44] service and four servers from SPECpower [34] to simulate
a heterogeneous cluster. The VM instances and server configurations
are shown in Table 3. We select VM load traces from two real-world
workload datasets, PlanetLab [45] and Azure [46], to simulate the
cluster load. The PlanetLab dataset collects load traces from 1353
network nodes for 10 days from March to mid-April 2011 at 5-minute
intervals. The Azure public dataset covers a representative subset of
more than 2.6 million VM workloads from the 2019 Azure service
region. Five VM sets were constructed by extracting 800, 1000, 1200,
1400, and 1600 VM load traces from this dataset.

6.2. Experimental schemes and evaluation metrics

6.2.1. Baselines
This work selects six advanced heuristic and swarm intelligence-

based VM placement methods for baseline. FFD: First Fit Decreasing is
a heuristic algorithm [47] that sorts servers in descending order accord-
ing to CPU utilization and subsequently places VMs on the first server
that matches their resource requirements. PEAP: A heuristic-based VM
placement method [7], which places VMs on the server whose amount
of remaining CPU resources best matches its resource requirements.
If the VM placement fails due to insufficient RAM and Bandwidth
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b

resources, the VM is preferentially placed on the server with the highest
peak energy efficiency ratio. HGAPSO: A VM placement method based
on a swarm intelligence algorithm with hybrid GA and PSO [8] to min-
imize cluster energy consumption and maximize resource utilization.
GRANITE-MMT: Li et al. [11] proposed a thermal-aware VM placement
and migration scheme. The scheme always selects the VM placement
policy with minimum server and CRAC power consumption and uses a
minimum migration time (MMT) algorithm to determine migrated VMs
in hotspot servers. ETAS-MMT: Ilager et al. [12] proposed an energy
and thermal-aware VM consolidation approach to reduce overall energy
consumption while proactively preventing thermal risks. The approach
employs a meta-heuristic VM allocation method and an MMT-based VM
selection algorithm. PTACO-MM: Chen et al. [13] developed a power-
and thermal-aware VM placement scheme to reduce the total energy
consumption of IT and cooling systems. The scheme employs a VM
selection algorithm based on the minimization algorithm (MM) and a
VM placement algorithm based on improved ant colony optimization
(ACO).

6.2.2. Evaluation metrics
Referring to the evaluation metrics of related works [11–13], the

experiments use five metrics such as overall energy consumption (IT
and cooling energy), SLAV, VM migrations, number of active hosts and
thermal critical violations to evaluate the performance of the proposed
TEVP. SLAV indicates that if a VM is allocated fewer CPU resources
than its requested resources in a time slice, it is determined that the
VM has a service violation in the current time slice. SLAV adopts the
definition in CloudSim 4.0 as,

𝑆𝐿𝐴𝑉 =

∑𝑇
𝑘=1

∑𝑆𝑘
𝑗=1

((

𝐶𝑃𝑈𝑅𝑒𝑞
𝑘,𝑗 − 𝐶𝑃𝑈𝐴𝑙𝑙𝑜

𝑘,𝑗

)

⋅ 𝑡 ⋅ 𝑆𝑘

)

∑𝑇
𝑘=1

∑𝑆𝑘
𝑗=1

(

𝐶𝑃𝑈𝑅𝑒𝑞
𝑘,𝑗 ⋅ 𝑡 ⋅ 𝑆𝑘

) , (27)

here 𝑇 denotes the number of time slices for the whole simulation,
nd 𝑆𝑘 indicates the number of overloaded VMs in the 𝑘th time slice.
𝑃𝑈𝑅𝑒𝑞

𝑘,𝑗 , 𝐶𝑃𝑈𝐴𝑙𝑙𝑜
𝑘,𝑗 denote the amount of CPU resources requested and

ctually allocated to 𝑉𝑀𝑗 in time slice 𝑘, respectively. 𝑡 ⋅ 𝑆𝑘 repre-
ents the time slice length between two CloudSim events. In addition,
onsidering that VM migration leads to performance degradation, the
imulation experiments set the performance degradation rate to 10%,
hich indicates that each VM migration only allocates 90% of the

equested CPU and RAM resources. Therefore, the higher the VM
igrations, the higher the SLAV.

.3. Experimental results and analysis

.3.1. Experiments on the PlanetLab dataset
The results in Fig. 6 show that the total energy consumption of

he proposed TEVP outperforms the other baselines under different VM
oads, with an average of 29.2% lower. Specifically, compared to the
orst benchmark (FFD) and the best benchmark (PEAP), the 10-day

otal energy consumption of the proposed TEVP is 45.5% and 5.6%
ower, respectively. Besides, it can be seen from Fig. 7 that the proposed
EVP saves 5.7% to 45.7% of IT energy consumption and 6.8% to
5.3% of cooling energy consumption over ten days compared to the

enchmarks. This illustrates that TEVP uses an efficient VM placement
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Fig. 6. Total energy consumption for scheduling schemes on different workload dates.

Fig. 7. Total IT and cooling energy consumption for all workload dates.

approach to reduce the power consumption of IT equipment while also
reducing the cooling demand under satisfying thermal constraints.

From the distribution of VM migrations and SLAV demonstrated in
Fig. 8, it can be inferred that the higher the number of VM migrations,
the more severe the performance degradation, which ultimately leads
to high SLAV. Since the HGAPSO scheme reschedules all VMs at each
scheduling operation to find a better VM placement scheme, it leads
to frequent VM migration and high SLAV. However, the VM migration
and SLAV of the proposed TEVP are kept at a low level, mainly due
to the fact that setting the overload threshold based on the energy-
efficiency characteristics of the servers can leverage the load capacity of
the energy-efficient servers to run more VMs, which effectively reduces
the VM migration. Moreover, the MVR-based VM selection strategy
considers three key resources (CPU, memory, and bandwidth) to more
accurately evaluate the overhead of VM migration, thus mitigating
performance degradation. Fig. 9 shows that TEVP raises the cold air
supply temperature, resulting in a slightly higher TCV than PEAP,
GRANITE-MMT, and ETAS-MMT, but also within the low risk range.

The curve of variation in the number of active hosts in Fig. 10
shows that most VM placement methods consolidate VMs to fewer
active hosts and shut down idle hosts to save IT energy. However, over-
consolidation leads to some hosts being overloaded and overheated.
Combined with the TCV distribution in Fig. 9, it can be inferred that
GRANITE-MMT and ETAS-MMT start more hosts to maintain a low
TCV, which also results in higher overall energy consumption. Note
that PTACO-MM achieves the minimum number of active hosts, but
the active hosts are overloaded and overheated due to excessive VM
310
Fig. 8. Distribution of VM migrations and SLAV.

Fig. 9. Thermal critical violations and supply air temperature.

Fig. 10. Number of active hosts of different schemes on 2022-04-03.

consolidation. Note that PTACO-MM achieves the minimum number
of active hosts, but the active hosts are overloaded and overheated
due to excessive VM consolidation. Moreover, overheated hosts force
the cooling system to lower the supply air temperature, increasing
cooling energy consumption. Overall, the proposed TEVP significantly
outperforms the baseline regarding energy consumption while main-
taining lower SLAV and TCV, thus achieving a trade-off between energy
consumption, SLA, and thermal risk.

As seen from the thermal profile in Fig. 11, the higher the position,
the higher the rack inlet temperature. The main reason is that the top
of the rack inlet is more significantly affected by the hot air return



Future Generation Computer Systems 161 (2024) 302–314J. Lin et al.
Fig. 11. Thermal profiles of bottom, middle and upper rack.
Fig. 12. Distribution of average CPU utilization for servers in the bottom, middle, and top of the rack.
Fig. 13. Comparison of six performance metrics under five VM-scale datasets.
from the server outlet. The mixing of hot and cold air leads to higher
inlet temperatures, especially more apparent at the ends of the rack
rows. Besides, the cold aisle temperature between Row_A and Row_B is
significantly lower than that of Row_C and Row_D due to the impact of
the airflow organization and building layout of the server room.

Fig. 12 shows that the higher the server placement, the lower the
average CPU utilization. Specifically, the average load of servers at the
rack’s bottom, middle, and top is 20.1%, 10.7%, and 5.1%, respectively.
311
The average load at the bottom is 15.0% higher than that at the top.
Also, the average load of servers in Row_A and Row_B is 9.6% higher
than Row_C and Row_D. It can be inferred that the proposed thermal-
aware VM placement policy prefers to place VMs on servers with lower
inlet temperatures. The strategy improves heat transfer efficiency by
increasing the temperature difference between the cold air and the
surface of the IT equipment, which reduces the servers’ temperature
gradient and the cooling supply.
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Fig. 14. Fitness curves of the three algorithms under different VM-scale.
6.3.2. Experiments on the Azure dataset
The following simulation experiments compare six performance

metrics of the various schemes under five VM-scale datasets. Fig. 13
shows that as the cluster VM size increases, the energy consumption
and active hosts increase significantly for all scheduling schemes. The
proposed TEVP consumes less energy than the other baselines at dif-
ferent VM sizes, while SLAV, TCV, and VM migration are kept low.
GRANITE-MMT and ETAS-MMT outperform in SLAV and TCV, but since
these two schemes emphasize the thermal risk of hosts, the number of
active hosts is higher and consumes more energy than other baselines.
More specifically, as the VM size increases from 800 to 1600, the energy
consumption of TEVP increases by 83.5%, while PTACO increases by a
whopping 139%. Besides, compared to the average energy consumption
of the benchmark, the energy saving ratio of TEVP increases from
34.6% to 38.1%. This indicates that the proposed DE-ERPSO is superior
and energy-efficient for solving large-scale problems. However, the
computational overhead of the proposed method is more than the
other baselines since the swarm intelligence algorithms (DE-ERPSO,
HGAPSO, PTACO) need to perform multiple iterations and operations
to explore better solutions. For this issue, we use the multi-threading
technique to reduce the algorithm time overhead and ensure it is within
the acceptable scheduling time of realistic production environments.

6.3.3. Convergence of the algorithm
To compare the convergence ability of DE, ERPSO, and DE-ERPSO

algorithms, we collected the fitness values for the first scheduling of
the three algorithms in the Azure dataset at the scale of VMs 800,
1200, and 1600, respectively. As shown in Fig. 14, DE-ERPSO always
finds the scheduling solution with the minimum fitness value after
many iterations. This suggests that DE-ERPSO can find a more efficient
VM placement scheme in large-scale clusters than DE and ERPSO.
The reason is that DE-ERPSO not only has the superiority of fast
convergence of PSO algorithm but also adopts the population diversity
of DE to avoid PSO precocity and falling into local optimum dilemma.
Meanwhile, the elite re-selection mechanism somewhat enhances the
algorithm’s optimal solution-searching ability.

6.3.4. Time complexity analysis
The time overhead of the proposed TEVP originates from the VM

placement algorithm, which consists of three parts. (1) The overhead
of overloaded host detection and migrated VM selection originates
from the MVR-based sorting operation for 𝑋 VMs on each server.
Therefore, the worst-case sorting time complexity is 𝑂(𝑋2). (2) DE-
ERPSO occupies the primary time overhead of the VM relocation phase.
Assume that the maximum iteration of DE-ERPSO is 𝐺, the number of
migrated VMs and target servers are 𝑁 and 𝑀 , respectively, and the
number of population particles is 𝑆. Therefore, the time complexity is
𝑂(𝐺⋅𝑆 ⋅𝑁 ⋅𝑀). (3) The low-loaded server processing overhead is derived
from calculating and ranking the CPU utilization averages over 𝑙 time
steps for 𝑀 servers, so the worst-case time complexity is 𝑂(𝑙 ⋅ 𝑀2).
Overall, the time complexity of the proposed DE-ERPSO algorithm is
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close to PSO and DE algorithms. Additionally, the time complexity of
the two sorting operations (1 and 3) is much less than 𝑂(𝐺 ⋅𝑆 ⋅𝑁 ⋅𝑀)
is negligible. Meanwhile, Fig. 13 shows that the computation overhead
of DE-ERPSO and other swarm intelligence algorithms is close to 10s,
which satisfies the practical cloud scenario with a 5-minute scheduling
interval.

7. Conclusion

This work proposes a thermal and energy-aware VM placement
method to minimize the holistic energy consumption of DCs while
guaranteeing SLA and thermal constraints. Firstly, we construct a data-
driven-based server inlet thermal model and an RC-based CPU thermal
model to represent the dynamic, non-uniform thermodynamic envi-
ronment for guiding the active thermal management of DCs. Second,
this work designs a VM placement method, including a utilization-
temperature-based overload detection strategy, an MVR-based migrated
VM selection strategy, a DE-ERPSO-based VM placement algorithm, and
a low-loaded server processing strategy, to achieve energy-efficient VM
migration and placement. Extensive results show that the proposed
TEVP effectively saves over 5.6% of total energy consumption while
maintaining acceptable SLAV and TCV.

However, the DE-ERPSO-based VM placement algorithm can ex-
plore a better VM placement scheme, but the computational overhead
is high. Therefore, further simplifying the hybrid algorithm operation
and adopting multi-threading techniques is necessary to reduce the
computational overhead. Additionally, considering that load volatility
and cooling time delay can lead to cluster overloading and thermal
risk problems, future research will construct load prediction models to
guide VM placement and active cooling control.
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Appendix

Abbreviation Full name
DCs Data centers
VM Virtual machine
IT Information technology
CRAC Computer room air conditioner
ML Machine learning
ANN Artificial neural network
LSTM Long short-term memory
CFD Computational fluid dynamics
DVFS Dynamic voltage frequency scaling
DRL Deep reinforcement learning
RL Reinforcement learning
DQN Deep Q network
LHS Latin hypercube sampling
SLA Service level agreement
QoS Quality of service
SLAV Service level agreement violation
TCV Thermal critical violation
MAPE Mean absolute percentage error
RMSE Root mean square error
RC Resistor-Capacitance
DTM Dynamic thermal management
XGBoost eXtreme gradient boosting
DE Differential evolution
PSO Particle swarm optimization
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