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Thermal Modeling and Thermal-Aware Energy
Saving Methods for Cloud Data Centers: A Review
Jianpeng Lin , Weiwei Lin , Member, IEEE, Huikang Huang , Wenjun Lin , and Keqin Li , Fellow, IEEE

Abstract—Constructing energy-efficient cloud data centers
(CDCs) is an essential path for the further expansion of cloud com-
puting. As one of the core subsystems of a data center, the cooling
system provides a reliable thermal environment for the safe opera-
tion of IT equipment while posing a huge energy consumption and
carbon emission problem. Thus, it is evident that optimizing energy
management of cooling systems with considerable energy-saving
potential will be essential to realize the green and low-carbon devel-
opment of CDCs. Therefore, to track the research progress of data
center thermal management technologies, this review focuses on
two research efforts: thermal modeling and thermal-aware energy
saving methods. First, various thermal modeling approaches are
reviewed for air-cooled and liquid-cooled data centers. Secondly, a
comprehensive review of existing advanced thermal management
approaches is conducted from three perspectives: thermal-aware
IT load scheduling, cooling system control optimization, and joint
optimization of the IT and cooling systems. Finally, we put forward
some open issues and future research directions for thermal man-
agement that have not been completely solved. This review aims to
provide reasonable suggestions to enhance cooling energy efficiency
and further promote the transformation of CDCs to lower energy
consumption and sustainable direction.

Index Terms—Cloud data center, thermal modeling, thermal
management, energy saving, air cooling, liquid cooling.

1 INTRODUCTION

C LOUD data centers provide computing, storage, and net-
work resource services for information systems in various

industries. They have become one of the powerful engines
driving the advancement of the world’s digital economy. Simul-
taneously, the explosive growth of CDCs (including hyper-scale,
regional large-scale, and edge data centers) not only poses a
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Fig. 1. Data center energy breakdown [4].

tremendous challenge to the global energy supply but also leads
to severe environmental problems [1]. As reported by Science
in 2020 [2], the power consumption of CDCs worldwide was
about 205 terawatts in 2018, accounting for 1% of global power
generation, and will keep growing steadily in the future years.
Therefore, promoting the decarbonization of green data centers
is significant for achieving the goals of Carbon Peak and Carbon
Neutrality.

CDCs are energy-intensive infrastructures, primarily consist-
ing of IT, cooling, power supply, and lighting systems, whose
energy breakdown is shown in Fig. 1. The IT system provides
on-demand, subscription-based cloud hosting services to end
users via the network. The physical carrier of the IT system
is the numerous computing and communication servers in the
rack room, which account for over 50% of the energy con-
sumption [3]. Beyond that, the cooling system, which maintains
the temperature and humidity of the rack room, is the second
major energy consumer of the CDC, accounting for about 37%
or more [4]. The efficiency and energy consumption of the
cooling system not only affects the reliability and computing
performance of IT facilities but is also a critical factor in de-
termining the power usage effectiveness (PUE) of the CDC.
Therefore, to achieve green sustainability at the data center level,
some effective measures must be taken to optimize the cooling
system’s energy efficiency.

In recent years, the industry’s focus on advanced energy-
saving technologies has gradually expanded from IT to cooling
systems. Various optimization techniques for cooling architec-
ture, equipment, and controls have been adopted to promote the
energy efficiency of cooling systems [5]. Following extensive
research, existing trends focus on the technical areas of us-
ing natural cooling sources, employing high-efficiency cooling
equipment, optimizing airflow organization, improving temper-
ature set-points, fine-grained cooling control, and optimizing
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TABLE I
COMPARISON WITH RELATED REVIEWS

cooling parameters. As we observed, an essential prerequisite
for achieving efficient thermal management is quickly and ac-
curately evaluating the thermal distribution in a data center.
However, the complex equipment layout and airflow pattern in
the server room pose a great challenge for developing thermal
models for data centers [6]. With the advancement of modeling
theory and IoT technology, thermal modeling approaches have
gradually evolved from traditional computational fluid dynamics
(CFD) simulation modeling and simplified physical models to
gray-box thermal modeling approaches incorporating thermody-
namics and data-driven [7]. These emerging thermal modeling
approaches have effectively reduced modeling overhead and
improved model generalization.

Meanwhile, the proposal of various novel thermal models
has significantly contributed to the update and application of
thermal-aware energy-saving methods. For these widely adopted
energy-saving technologies and methods, this work focuses on
the following three categories [8], (1) Thermal-aware IT load
scheduling. This method utilizes the spatio-temporal charac-
teristics of workloads for flexible scheduling and migration,
thereby balancing the thermal distribution of the computer room
and avoiding thermal risks [9]. (2) Cooling system control
optimization. This method first adopts sensors or thermal models
to evaluate the dynamic thermal variation of IT equipment,
following which the cooling parameters are operated in real-time
to match the supply and demand of cooling capacity [10]. (3)
Joint optimization of IT and cooling systems [11]. This approach
uses the thermal environment as a link connecting IT and cooling
systems and then adopts intelligent algorithms to optimize global
energy efficiency. In general, these modeling and energy-saving
methods mentioned perform well in different application scenar-
ios, while some limitations need further optimization. Therefore,
it is essential to conduct a comprehensive survey and summary
of existing thermal modeling and energy-saving techniques for
CDCs, and to point out the key remaining scientific issues and
practical solutions.

To our best knowledge, some existing reviews [1], [4], [7],
[12], [13], [14] have surveyed research advances in data center
thermal modeling and energy conservation methods. However,
as theories and technologies continue to innovate, various novel
cooling techniques and solutions are proposed and applied to
data centers. Therefore, a new comprehensive review and eval-
uation of the work related to thermal management need to be
presented. Furthermore, we compared the focus of this work
with related reviews in Table I. Most related reviews focus on
the overview of various energy-saving methods and techniques,
while few discuss thermal modeling approaches, especially
emerging liquid cooling systems. Generally, this review covers
existing energy-saving methods and supplements the thermal
modeling methods for air-cooled and liquid-cooled systems.

The three significant contributions are highlighted as follows.
(1) The various thermal modeling approaches for data centers
are updated and reorganized, with exceptional tracking of liquid-
cooled systems. (2) Our work systematically tracks and inves-
tigates existing thermal-aware energy-saving techniques into
three aspects: thermal-aware IT load scheduling, cooling system
control optimization, and joint optimization of IT and cooling
systems. (3) Based on the observation of research advances,
some open issues and corresponding solutions for data center
thermal management are pointed out. In conclusion, this work
guides researchers or data center managers in selecting thermal
models and management techniques.

This review collected papers from several authoritative elec-
tronic libraries (IEEE Xplore,1 ScienceDirect,2 SpringerLink,3

ACM Digital Library,4 and arXiv).5 A multi-keyword combina-
tion search was used to search related papers. The search terms
include data center, thermal management, cooling technology,

1.[Online]. Available: https://ieeexplore.ieee.org/Xplore/home.jsp
2.[Online]. Available: http://www.sciencedirect.com
3.[Online]. Available: http://link.springer.com
4.[Online]. Available: http://dl.acm.org
5.[Online]. Available: https://arxiv.org
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Fig. 2. Organization of the review.

energy saving, energy efficiency, green, thermal modeling, and
liquid cooling. Besides, to cover the research progress in thermal
modeling and energy-saving technologies for CDCs, we not
only focus on the latest published work but also track some
long-standing and seminal work. A total of 132 relevant papers
were collected in this work, including 107 journal papers and 25
conference papers.

The organization of this review is shown in Fig. 2. Section II
introduces the thermal management framework for CDCs. Sec-
tion III surveys and categorizes the existing thermal model-
ing approaches, following the characteristics of air-cooled and
liquid-cooled systems. Section IV provides a comprehensive
analysis and taxonomy of existing energy-saving methods from
three perspectives: thermal-aware IT load scheduling, cooling
system control optimization, and joint optimization of IT and
cooling systems. In Section V, some existing open issues and
directions for further research are pointed out. Finally, the work
is concluded in Section VI.

II DATA CENTER THERMAL MANAGEMENT

A. Thermal Management Framework

The thermal management framework [7] is shown in Fig. 3,
and its key components include an IT room, cooling system,
IoT-based data platform, thermal model, and cloud manager.
The IoT-based data platform links numerous distributed sensors,
which are mainly responsible for monitoring the operational
status information of IT and cooling equipment in real-time.
Subsequently, the pre-processed sensor data is fed into the
thermal model to predict the thermal profile of the IT room in the
current operating state. Finally, the cloud manager formulates IT
load management policies and cooling system control parame-
ters based on the thermal profile and constraints to ensure that
all IT equipment operates in its acceptable thermal environment.
Additionally, the energy consumption models of IT and cooling
equipment need to be considered when energy optimization is
considered.

Thermal management removes the heat released by the op-
erating IT device into the atmospheric environment [8]. More
specifically, for room-level thermal management, the cooling
control knob is regulated according to the ambient temperature

Fig. 3. Thermal management framework.

Fig. 4. Evolution of cooling methods.

of the computing node. The ambient temperature usually refers
to the inlet temperature of the server or rack. According to the
ASHRAE standard [15], to ensure the reliability of the internal
electronics, the maximum inlet temperature of the computing
node must be below the red line temperature (typically 32
°C), expressed as TInlet ≤ Tredline. Once the inlet temperature
exceeds the red line temperature, the probability of thermal
risk increases significantly, which will likely shorten the IT
equipment’s lifetime and degrade service performance. Besides,
OS-level thermal management is more concerned with the tem-
perature of the internal components (especially the chips). Since
the chip is the primary source of heat generation inside the host,
most existing work roughly equates the chip temperature to the
host temperature. In summary, data center thermal modeling
aims to evaluate computing nodes’ inlet and outlet temperatures
and the internal chip temperatures.

B. Evolution of Cooling Methods

As shown in Fig. 4, as the data center’s power density con-
tinues to rise, the cooling method is constantly evolving and
updating. Most traditional CDCs use raised floors to deliver
pressurized cold air to IT rooms. The computer room air condi-
tioner (CRAC) outputs cold air passes through perforated tiles
into the cold aisle. The cold air is absorbed by the front of
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Fig. 5. Air-cooled system architecture.

the rack, taking heat away from the server components and
exiting through the back of the rack. Subsequently, hot air is
absorbed by the CRAC unit and exhausted to the outside [16].
The hot/cold aisle configuration has the advantage of reduced
fan speed and hot/cold air mixing. But in fact, this cooling layout
still has the possibility of hot and cold air mixing, which tends
to form thermal recirculation and low cooling energy efficiency.
Therefore, the physical method of cold and hot aisle containment
can be adopted to minimize this undesirable thermal mixing and
cold air bypass [17].

Furthermore, cold air is prone to loss and leakage during
transmission. The longer the cooling supply distance, the more
the loss. Therefore, the rack/inter-row cooling configuration [18]
is widely adopted to shorten the supply cooling distance. Com-
pared to traditional no-airflow containment room-level cooling,
its cooling path is shorter and more dedicated. Furthermore,
this cooling approach with higher airflow predictability enables
higher power density by leveraging the rated cooling capacity
of the CRAH.

With the rapid increase in racks and power density in CDCs,
traditional forced convection air-cooled systems have proven
insufficient to meet computer room high-density cooling re-
quirements [19]. The innovation of liquid cooling technology
has brought more options for thermal management in CDCs. The
current liquid cooling solutions most widely accepted by CDCs
are cold plate liquid cooling, immersion liquid cooling, and
spray liquid cooling [8]. Cold plate liquid cooling uses water or
water-based fluids to cool high heat density components, while
built-in fans for secondary cooling cool the remaining devices.
Immersion liquid cooling is a cooling technology that directly
immerses the heat-generating device entirely in the dielectric
coolant and performs heat exchange through direct contact.
Spray liquid cooling drips coolant onto the heat-dissipating
components of the server by spraying them to remove heat. More
details are described in Section III.B.

Compared with air cooling, liquid cooling can bring several
benefits to CDC owners [5]. (1) Liquid cooling systems provide
precise heat dissipation for devices with high heat generation
density, reducing air conditioning and fan energy consump-
tion, and can optimize PUE to 1.1 or less. (2) Liquid cooling
technology helps to increase the number of servers deployed in
limited space and significantly improves the computing power
of DCs. (3) Liquid-cooled servers can ignore environmental
influences such as altitude and geography. (4) Liquid has high
heat transfer efficiency, more conducive to waste heat recovery.
Nevertheless, rapidly promoting data centers to embrace liquid

cooling technology will still face many obstacles, such as sce-
nario limitations, equipment supplier support, and deployment
costs.

In a nutshell, with the innovation of cooling and IoT technolo-
gies, the cooling management of DCs has evolved from coarse-
grained centralized to fine-grained distributed. The emergence
of novel cooling methods, such as liquid and free cooling, has
significantly reduced the PUE and promoted sustainable CDC
construction.

III THERMAL MODELING METHODS

The heat generated by IT devices directly determines the
cooling load. Conversely, variations in the cooling operating
parameters affect IT energy consumption. The energy consump-
tion of the two is coupled with each other due to the thermal
environment. More specifically, most of the energy consumed by
IT equipment is emitted in the form of heat, which consequently
causes changes in the ambient temperature, expressed as,

ΔT =
ΔQ

cm
, (1)

where ΔT is the temperature variation value and c, m are the
component’s specific heat capacity and mass, respectively. The
temperature variation of the whole IT room over a period of time
depends on the total heat generated by the equipment and the
heat exhausted by the cooling system, which is expressed as,

ΔT room =
Hroom −Qroom

MroomCp
=

ΔIroom
MroomCp

, (2)

where Mroom and Cp denote the data center’s total internal mass
and specific heat capacity, respectively; Hroom denotes the heat
generated by the entire data center. Qroom indicates the heat
removed by the cooling system. In fact, thermal management
of CDCs relies on rapid and accurate evaluation of temperature
profiles. Reliable and precise thermal models allow managers
to identify and predict potential or impending thermal risks and
make timely cooling regulation actions. However, due to the in-
fluence of building layout, thermal heterogeneity of equipment,
fluid patterns, etc., the temperature and airflow distribution in the
server room are non-equilibrium and dynamic. Therefore, the
thermal modeling of CDCs needs to consider complex thermo-
dynamic laws and mathematical expressions, which is a severe
challenge. In this section, existing thermal modeling methods are
classified and discussed in air-cooled and liquid-cooled systems.

A. Thermal Modeling of Air-Cooled System

Traditional DCs typically employ chilled water systems and
raised floors for cooling, as shown in Fig. 5 below. The critical
cooling devices of the air-cooled system are the built-in fans of
the server, the CRACs inside the server room, and the chilled
water system. Each server is usually equipped with multiple
fans to maintain the temperature of electronic components. The
CRAC and chilled water system are more concerned with the
thermal profile of the entire server room, adjusting the supply
temperature and air speed to ensure a temperature and humidity
environment for the safe operation of IT equipment.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 21,2024 at 23:54:20 UTC from IEEE Xplore.  Restrictions apply. 



LIN et al.: THERMAL MODELING AND THERMAL-AWARE ENERGY SAVING METHODS FOR CLOUD DATA CENTERS: A REVIEW 575

Fig. 6. Flow chart of thermal modeling.

The temperature distribution of the rack room has dynamic
characteristics such as non-linearity, strong coupling, time vari-
ation, and time delay. What is more, for different application
scenarios, the objectives of the thermal model concern differ
[20]. Specifically, IT scheduling scenarios usually focus on the
chip or host temperature. Cooling control scenarios pay more
attention to the temperature profile of the racks and rooms.
According to ASHRAE [15], the server inlet temperature is
often adopted as a measure of the thermal environment of the
rack room. The server inlet temperature is determined by a
combination of CRAC supply temperature, wind speed, and
power distribution of the cabinet. After extensive research, the
target objects of most existing thermal modeling efforts are
CPU temperature and server entrance temperature. The related
modeling approaches are broadly divided into three categories,
white box-model, black-box model, and gray-box model. The
corresponding modeling principles and flow are shown in Fig. 6.

White-box models, which are based on physical laws (laws
of thermodynamics, three conservation laws, etc.), establish
mathematical expressions of the target object. The premise of
establishing this model is to understand the described object’s
operation clearly. Moreover, the factors that affect objects’
input-output relationship also need a scientific basis. In short,
this modeling method gives a clear physical explanation of the
thermal variation, but the model is solved with high order and
complexity.

Black-box models are also called data-driven models [6]. It
adopts an appropriate machine learning (ML) model to fit the
input-output non-linear mapping relationship without pursuing
the intrinsic mechanism too much. The modeling approach can
better balance complexity, precision, and computational cost.
The black box model has a simple structure, low order, and low
modeling overhead, but the performance depends on the quality
and quantity of the training data.

Gray-box models incorporate physical laws with data-driven
methods to explore approximate model parameter values [21].
Hence, gray-box models are more prevalent than data-driven
models and have higher accuracy predictions than white-box
models. The specific steps for modeling the gray-box model
are as follows. (1) collect training data by CFD simulation and
IoT-based data platform; (2) construct data-driven models to
predict key variables; (3) put predicted key variables into the
simplified model to solve the temperature distribution.

1) White-box Models: A. Node-level thermal modeling

Fig. 7. Thermal recirculation model.

In 2006, Tang et al. [22] introduced an abstract thermal
recirculation model for an air-cooled CDC, which considered
the thermal disturbance influences between the computing nodes
in the rack room (Fig. 7).

In this thermal model, the node inlet temperature is jointly
determined by the air conditioning supply temperature Tsup, the
node power distribution P and the thermal cross-interference
relationship between the nodes. Therefore, the node inlet tem-
perature Tin can be mathematically expressed as,

Tin = Tsup +DP, (3)

where the thermal cross-interference matrix D can be specifi-
cally expressed as,

D =

∣∣∣∣∣∣
d11 d12 d31
d21 d22 dij
d31 dij dnn

∣∣∣∣∣∣ , (4)

where dij denotes the degree of thermal disturbance to the inlet
temperature of the Nodei from Nodej. The matrix D records the
thermodynamic characteristics of the machine room, which can
be solved by measuring the airflow parameters and the power
distribution of the nodes at different locations. Nevertheless,
the thermal model lacks consideration of time, predicting the
temperature distribution in a steady state. Moreover, the method
assumes that the cold air can completely and timely remove
all the heat generated by the nodes, while the heat transfer
coefficient will limit it. Subsequently, to address the above
limitations of the thermal recirculation model, Zhou et al. [23],
[24] derived a simplified dynamic model from the basic mass
and energy balance principles to describe the complex mass
and energy flows within an air-cooled data center. The model
determines the effect of CRAC operating states (including sup-
ply air temperature, SAT, and variable frequency drive, VFD)
and recirculating hot air on the node inlet temperature, giving a
discretized quantitative representation of the inlet temperature
of node i as follows.{

Ti(t+ 1)i = Ti (t) + Fi + Ci

Fi =
∑Ncrac

j=1 gi,j [Tsup,j (t)− Ti (t)]× V FDj (t)
, (5)

where Ti(k+1) and Ti(k) are the inlet temperatures at time t+1
and t, respectively. Fi represents the weightedness of all CRAC
operating parameters on temperature. Ci denotes the effect of
thermal recirculation on temperature. Besides, gi,j quantifies the
joint effect of the VFD and SAT of the j-th CRAC unit on Nodei.
Notably, considering the node temperature correlation in space
and time, the work [9] designed a spatio-temporal thermal model
to characterize the thermal behavior within a data center, which
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Fig. 8. RC model.

combines the RC model and the thermal recirculation model. To
be specific, a thermal distribution matrix is used to establish
the spatially correlated behavior of the inlet temperatures of
each node. In addition, the RC model is adopted to describe the
evolution of the temperature of each computing node in time.
Thus, the transient temperature of node Nodei at time t is denoted
as,

Ti (t) = (1− f)

(
Pi (t)R+ Tsup +

m∑
k=1

di,kPk (t)

)

+ fTi (t− 1) . (6)

For simplicity, define f = e−
Δt
RC and assume Δt = 1. P,

R, C denote the power consumption, thermal resistance and
specific heat capacity of the server, respectively. After a long
enough time, the node temperature will eventually converge to
the steady-state temperature, which can be expressed as,

TSS
i = Pi (t)R+ Tsup +

m∑
k=1

di,kPk (t) . (7)

Therefore, (6) can also be expressed as,

Ti (t) = (1− f)TSS
i + fTi (t− 1) . (8)

B. Chip-level thermal modeling
Considering the obvious duality between the heat transfer

of semiconductor chips and the thermal phenomenon of RC
circuits, thermal RC circuits are often adopted to model the
temperature profile of the chip [25]. As shown in Fig. 8, the chip
thermal model based on the lumped RC model can be expressed
as,

T = PR+ Tamb −RC
dT

dt
, (9)

where T (unit °C) represents chip temperature, Tamb (unit°C)
represents the ambient temperature (generally refers to the server
inlet temperature). P (unit W), R (unit°C/W), and C (unit J/°C)
denote the power, thermal resistance, and specific heat capacity
of the chip, respectively. Assuming that the power P is fixed in
the time period [0, t]. According to Kirchhoff’s law and Ohm’s
law, the temperature of the chip at time t can be derived as,

Tcpu = PR+ Tamb + (Tinitial − PR− Tamb)× e−
t

RC ,
(10)

where Tinitial is the initial temperature of the chip. Eq. (10)
indicates that Tcpu = Tinitial when time t tends to 0, while as
time t keeps increasing, Tcpu = PR+Tamb, the chip temperature
eventually converges to a specific value, called steady-state
temperature. Based on this thermal model, work [26] constructed

a transient RC thermal model that considers the effects of
convection resistance and fan speed on the thermal behavior
of the chip, denoted as,

Tcpu (t+Δt) = T∞
cpu (t+Δt) + (Tcpu (t)

− T∞
cpu (t+Δt)

)
e−

Δt
R(t+Δt)C , (11)

T∞
cpu (t) = Pcpu (t)R (t) + Tamb (t) , (12)

R (t) = Rcond +Rconv (t) , (13)

Rconv (t) =
1

knV (t)n
, (14)

V (t) = 3

√
kpPfan (t), (15)

whereΔt is a time step andT∞
cpu(t) denotes the steady-state tem-

perature. Besides, R, Rcond, and Rconv denote thermal resistance,
conductive resistance, and convective resistance, respectively.
The relationship between Rconv, airflow volume V(t), and fan
power Pfan is shown in (14)–(15). Model parameters n, kn, kp can
be determined by experiments. Similarly, work [27] designed a
novel physics-based CPU thermal model that more explicitly
characterizes the effect of the number and speed of fans on CPU
temperature variation. The steady-state temperature of the CPU
is expressed as,

Tcpu = Q

(
C1

(nf · FS)nR
+ C2

)
+ Tamb, (16)

where Tamb indicates the ambient temperature. Q indicates the
heat released by the CPU. Besides, n and FS denote the number
of fans and speed, respectively. For simplicity, all fans are
assumed to have the same speed, and R represents the holistic
thermal resistance. Moreover, when the time granularity of CPU
power variation is smaller than the thermal time constant, a
transient-state thermal model needs to be considered to predict
the CPU temperature. Here, assuming that the prediction time
interval Δt is 1 second, then (16) can be extended as,

C3
dTcpu

dt
=

C4

R
(Tamb − Tcpu) +Q, (17)

ΔTcpu (k + 1) =

(
1− ΔtC4

C3R

)
ΔTcpu (k)− Δt

C1
Q, (18)

R =
C1

(nf · FS)nR
+ C2, (19)

where C1
dTcpu

dt denotes the CPU temperature variation rate,
C2

R (Tamb − Tcpu) denotes the heat transfer rate. The model
parameters C1, C2, C3, C4 need to be obtained by experimental
measurements.

2) Black-box Models: A. Node-level thermal modeling
Ghosh et al. [28] adopted a mathematical approach, proper

orthogonal decomposition (POD), to evaluate the temperature
distribution in IT rooms. This approach enables capturing the
time-series characteristics of node thermal loads from multi-
dimensional sensor data to evaluate the temperature profile
quickly, but the extrapolation prediction is poor. Note that ar-
tificial neural network (ANN), with their powerful nonlinear
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fitting capability, is also gradually and widely adopted for the
thermal modeling of data centers [29], [30], [31]. Song et al.
[29] collected server inlet temperature and perforated tile flow
data from a CFD simulation model to train an ANN-based
thermal model. Furthermore, this thermal model was taken to
guide a multi-objective genetic algorithm to explore the cooling
management strategy of the data center. In work [30], the thermal
distribution evaluated by the ANN-based thermal model remains
within an acceptable prediction error compared to that obtained
by CFD simulation. Distinct from the above CFD simulation-
based work, Lloyd et al. [31] collected sensor data from 52
public clouds to serve as a dataset. Besides, this work adopted a
clustering technique to group objects with similar temperature
and physical characteristics, which were subsequently stored
in a knowledge base. The ANN-based thermal model trained
from this knowledge base can be generalized for deployment to
various data centers for temperature prediction. In addition, the
work [32] developed and compared various ML-based thermal
models, including ANN, Gaussian process regression (GPR)
models, and linear regression (LR) models. Subsequently, the
authors applied the proposed thermal model to a multi-node
thermal-aware task scheduling scenario, saving the overall en-
ergy consumption by 17% while maintaining performance.

To compare the robustness of multiple data-driven thermal
models subjected to external or internal parameter perturbation,
the work [6] constructed multiple application scenarios to test
four models (ANN, SVR, GPR, and POD). Besides, the work
[20] focuses more on workload distribution, model hyperparam-
eters, and server location on thermal models. Our previous work
[33] comprehensively compared the performance of the six most
popular thermal models (SVR, GPR, XGBoost, LightGBM,
ANN, LSTM) in CFD models under steady-state and cooling
failure scenarios. A surprising conclusion of our work is that the
boosting models XGBoost, and LightGBM outperform previous
thermal models in various engineering metrics and have good
prospects for industrial applications.

B. Chip-level thermal modeling
To overcome the limitations of physical modeling methods,

collecting server built-in sensor data and operating system
state to construct CPU thermal models is also gradually being
adopted. For example, the work [34] first proposed a meta-
heuristic thermal modeling approach based on Grammatical
Evolution, which considers the time dependence to evaluate the
CPU and ambient temperature of a server. The work shows that
the dominant factors determining CPU temperature are power,
fan speed, and server inlet temperature. Most uniquely, this
thermal model generated using an unsupervised approach is
more suitable for optimizing the prediction model at runtime.
Moreover, the work [35] chose a nonlinear auto-regressive net-
work with exogenous input to capture the features of multivariate
time-series data to predict CPU temperature. The specific model
is represented as,

ŷ (t+ 1) = f (y (t) , . . . , y (t− ny) , u (t) , . . . , u (t− nu)) ,
(20)

where y(t) and u(t) denote the CPU temperature and utilization
at time t, and ŷ(t+1) is the predicted temperature at time t+1.

Fig. 9. Room-level gray-box thermal model.

Besides, the delay order ny, nu ≥ 1. Moreover, Ilager et al.
[36] collected sensor data from a private cloud to construct
an XGBoost-based CPU temperature prediction model. Subse-
quently, the authors used the feature importance analysis method
of the XGBoost model to filter out the three most important
features: host power, fan speed, and the number of running VMs.
Notably, the proposed method is generic and can be applied to
chip-level temperature evaluation for different physical environ-
ments and parameters.

3) Gray-Box Models: This Section describes the principles
and characteristics of the gray box thermal model with three
different cooling methods and layouts (Room, Row and Rack-
level).

A. Room-level thermal modeling
Each rack and CRAC in the IT room can be considered a

node on the thermal network. These thermal nodes not only
exchange heat with each other but also receive thermal interfer-
ence from other nodes [37]. Given N rack nodes, the outlet and
inlet temperatures are denoted as Tro,i and Tri,i, respectively.
In addition, there are M CRAC nodes with inlet and outlet
temperatures and reference temperatures represented as Tci,j,
Tco,j, and Tref,j, respectively, so that the mathematical form of
the thermal recirculation model is formulated as,⎧⎨

⎩
Tro,i = Tri,i +

Pr,i

βfiCp
, i = 1, . . . , N

Tco,j = Tref,j , j = N + 1, . . . , N +M
Tin = ΦTout.

, (21)

where Pr, i, ρ, fi and Cp represent the power, air density, airflow
rate, and specific heat capacity of the nodes, respectively. Note
that the thermal cross interference matrixΦ is assumed to change
with the airflow rate and supply temperature of the CRAC.
Therefore, the work [21] constructs a gray-box thermal model
that combines a neural network and a thermal recirculation
model to replace the time-consuming CFD simulation. The
specific modeling process is shown in Fig. 9. First, the model
feeds the airflow rate distribution F = [f1, f2, …, fN]T of the
rack to the neural network and outputs the cross-interference
matrix Φ. Subsequently, the updated matrix Φ is substituted into
the thermal recirculation model to evaluate the inlet and outlet
temperatures, Tin, Tout of each node.

B. Row-level thermal modeling
Unlike room-level cooling, row-level cooling deploys CRAH

units embedded between racks and encloses the hot and cold
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Fig. 10. Row-level cooling layout.

Fig. 11. Modeling flow chart.

Fig. 12. Rack-level cooling layout.

aisles (Fig. 10). The Zonal model [38] is often employed to
divide the thermal environment into a series of coarse grids
for this enclosed cooling layout. Each grid is assumed to be
homogeneous in physical properties and can be characterized
by a nonlinear coupling equation comprising mass, momentum,
and energy conservation laws. Compared to CFD simulations,
the Zonal model significantly reduces the solution overhead
while maintaining performance. Inspired by this model, the work
[18] developed a gray box thermal model for row-level cooling
layouts to evaluate the CPU and inlet temperatures of the server.
The modeling process is shown in Fig. 11. This gray box model
takes the grid pressure distribution as the predicted key variable,
determined by the cooling unit’s airflow rate, supply temper-
ature, and server workload. Similarly, work [39] constructs a
similar gray-box thermal model to guide fault detection and
diagnosis in data centers. However, the authors also consider
chilled water temperature’s effect on the thermal profile.

C. Rack-level thermal modeling
Fig. 12 shows a typical rack-level cooling layout with N

servers and a rack-mountable cooling unit (RMCU). The bottom
RMCU outputs cool air into the cold aisle, which is drawn in

Fig. 13. Cold plate liquid cooling system.

by the servers. Hot air leaves the server into the hot aisle and
returns to the RMCU. Moreover, due to the gap between devices,
there is leakage airflow from the hot aisle to the cold aisle. The
cooling layout with RMCU embedded in the rack has several
advantages, as follows, (1) Significantly shorten the cold air
transfer path and effectively reduce the energy consumption of
fans [40]. (2) Enclosed hot and cold aisles significantly avoid hot
air recirculation and cold air bypass. (3) Faster cooling regulation
response, suitable for real-time control.

For this rack-level cooling layout, the work [41] designed a
novel thermal model, ThermoCast. This model models the server
inlet temperature by collecting workload and airflow sensor
measurement information in real-time. To be specific, Thermo-
Cast is based on Zonal models to construct thermal networks
between adjacent nodes and takes a data-driven approach to
explore the fitted values of crucial network parameters. Besides,
this federated modeling framework, which constructs a corre-
sponding prediction model for each server, is computationally
and physically scalable. The latest work [42] proposed a novel
state-space gray box model to evaluate the thermal profile of a
rack. The model uses a zonal modeling approach to model the
rack thermal environment as a state-space structure. Specifically,
mass, energy, and momentum conservation laws are adopted to
simplify the characterization of the physical properties of each
grid. Then, the prediction-error method is used to estimate the
free estimable parameters in the state-space model. Compared
with the data-driven model, the proposed gray-box model has
good extrapolation prediction capability and fast response time.

B. Thermal Modeling of Liquid-Cooled System

The liquid cooling system’s coolant with a high heat storage
capacity is used to remove heat by direct or indirect contact with
the server components. As a result, liquid cooling can achieve
higher heat transfer rates than air cooling. The liquid-cooled
approach is the most promising technology to solve the various
problems cooling systems face in high-performance comput-
ing. This section describes the thermal modeling approach for
cold plate and immersion liquid cooling systems commonly
employed in the industry.

1) Cold Plate Liquid Cooling System: A typical cold plate
liquid cooling system is shown in Fig. 13. The coolant does
not directly touch the electronics but flows through coolant
channels inside the cold plate (a metal plate with high thermal
conductivity) on top of the electronics and absorbs heat through
the metal tube walls. The coolant is usually delivered to the
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Fig. 14. Thermal network model of a single CPU liquid-cooled unit.

processor that generates the most heat, while the remaining
components (Memory, RAID) are cooled with the aid of fans.

Recent work [43] modeled a cold-plate liquid-cooled server
as a component network with aggregated thermal properties
and local temperature dynamics interactions. As an example,
a thermal network model of a single CPU liquid-cooled unit
is shown in Fig. 14. Specifically, coolant enters the manifold
microchannel (MMC) from the inlet and is directed through the
jet plane into the MMC. Then, the heated coolant recirculates
within the MMC, exchanging heat with the shell of the exchanger
until it reaches the outlet. The thermal network uses two series-
connected heat exchanger nodes HX1a, HX1b to describe the
temperature dynamics of a single MMC device.

As a supplementary note, reusable nodes in thermal networks
can be divided into two categories, hot nodes and transport
nodes. Hot nodes (e.g., storage heater, CPU, etc.) participate
in thermodynamics by acting as local heat sources. In contrast,
transport nodes have an infrastructure characteristic used only to
describe the cooling loop topology and are not directly involved
in thermodynamics. Each type of node is dedicated to specific
modeling demands when capturing the temperature dynamics of
a liquid-cooled server. Moreover, the work [44] used numerical
statistical analysis to explore the relationship between the core
temperature Tcore and three dynamic parameters of the liquid
cooling system (flow rate F, inlet temperature Tinlet and IT load
LIT), which can be expressed as,

Tcore = f (F, Tinlet, LIT ) , (22)

Then, a regression model was used to fit the input-output
relationship. Finally, it was concluded that the chip temperature
is proportional to the inlet coolant temperature and IT load.
Conversely, it is inversely proportional to the flow rate.

2) Immersion Liquid Cooling System: Immersion liquid
cooling (ILC) systems rely on direct contact between the coolant
and the components to remove heat. The coolant is mostly
a non-corrosive, insulating fluorocarbon. ILC can be broadly
divided into single-phase immersion (Fig. 15, left), two-phase
immersion liquid cooling (Fig. 15, right), and spray liquid
cooling (Fig. 16). The essential difference between single-phase
and two-phase immersion liquid cooling is whether the coolant
undergoes a phase change during the heat exchange cycle.
Besides, spray liquid cooling involves atomizing the coolant
into tiny droplets through a spray nozzle and then directly onto
the components or indirectly onto the cold plate to cool the
electronic components. Generally, this cooling method has a
high convective heat transfer coefficient and is suitable for high

Fig. 15. Single-phase/ two-phase immersion liquid cooling system.

Fig. 16. Spray liquid cooling system.

heat-generating components. However, complex maintenance
and high cost also limit its large-scale application.

Existing modeling approaches on ILC systems have CFD-
based modeling methods. For example, the work [45] con-
structed a CFD model of a natural convection immersion cool-
ing system to evaluate the cooling performance of high-power
servers. Moreover, the work [46] used the simulation tool to
construct a two-phase immersion cooling simulation model to
perform a 3D numerical analysis of various heat source deploy-
ment structures. Similarly, the work [47] was based on CFD
models to verify the effect of different coolant flow rates and
heat sink materials on the overall cooling effect. It was concluded
that the coolant flow rate significantly affects the cooling effect,
while the heat sink material does not. Nevertheless, these CFD
simulation-based works focus more on the physical modeling
and property analysis of the ILC system and do not apply to
real-time cooling control.

Therefore, to construct a control-oriented thermal model of
the ILC system, the work [48] used a graph-based modeling
approach to model the single-phase immersion liquid cooling
system as a directed graph to describe the coolant and heat source
states. The ILC system is modeled as a heat transfer graph G =
(V, E), where the vertices V = {vi: i�{1, 2, …, Nv}} represent
the capacitive elements of the system that can store energy and
the edges E = {ei: i�{1, 2, …, Ne}} represent the direction of
heat transfer between two adjacent vertices. The graph model
allows taking an energy conservation equation to derive the
states of each key component and employing experimental data
to evaluate the model parameters.
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IV THERMAL-AWARE ENERGY SAVING METHODS

As mentioned above, thermal modeling is one of the critical
keystones to achieving efficient thermal management in data
centers. After an extensive survey, existing energy-saving tech-
nologies and methods based on thermal models focus on three
significant aspects, thermal-aware IT load scheduling optimiza-
tion, cooling system control optimization, and joint optimization
of IT and cooling systems.

A. Thermal-aware IT Load Scheduling

Thermal-aware scheduling technology is a promising method
to boost cooling energy efficiency in CDCs while meeting ther-
mal constraints. The approach reduces CPU and server tempera-
ture profile gradients by scheduling and migrating workloads to
avoid thermal risks and additional cooling overhead. This section
will investigate three aspects of VM consolidation, workload
allocation, and DVFS.

1) VM Consolidation: Thermal-aware VM consolidation is
an energy efficiency approach that has been widely proven
by a wide range of cases. Assume that the power column
vector of N computing nodes in the server room is �Pcomp =
[P 1

comp, . . . , P
N
comp], and the total computational power con-

sumption is Ecomp; the cooling energy consumption is ECRAC,
and the performance coefficient of CRAC is CoP; the thermal
distribution matrix between the nodes is D. The objective is to
find a supply temperature Tsup and a power consumption vector
�Pcomp to minimize the total energy consumption, defined as
follows.

Min Etotal = Ecomp + ECRAC

=

(
1 +

1

CoP (Tsup)

)
·

N∑
i = 1

P i
comp, (23)

st. Tsup ≤ Tred −max1≤i<N

{
D�P

}
, (23.1)

where the node power is related to the on/off state, CPU utiliza-
tion, and frequency, etc.; the other constraint (23.1) indicates that
the inlet temperature is guaranteed to be below the red line tem-
perature Tred. The approach considers the thermal consequences
of VM placement and migration between servers, reducing
essential cooling while keeping hosts below a safe temperature
threshold [49]. Meanwhile, VM consolidation also inevitably
brings adverse effects such as service performance degradation
and local hotspots. For these issues, many works have developed
various solutions to cope with them. For example, the work [50]
proposed an active thermal-aware VM consolidation scheme to
address the imbalance of thermal distribution in the server room.
The scheme is based on predicting temperature profiles and ac-
tive VM consolidation to optimize overall energy consumption,
migration latency, and network overhead but ignores thermal
airflow recirculation. Besides, Li et al. [51] used a thermal model
to guide the scheduling of VMs and the setting of CRAC capacity
to improve cooling efficiency while satisfying SLA and thermal
constraints.

Considering that thermal gradients exacerbate the thermal
recirculation effect in the server room, the work [52] uses
dynamic VM migration of overloaded hosts and shutdown of
underloaded hosts to maintain thermal balance. This solution
reduced considerable total energy consumption while increas-
ing the number of acceptable hotspots. Nevertheless, the work
assumes that the flow field is stable and ignores the effect of
the cooling system on the thermal field. Apart from this, to
minimize the peak temperature of host nodes, Ilager et al. [36]
take CPU utilization and temperature to identify overloaded
and overheated hosts and assign VMs to the “coolest” active
hosts. Moreover, Xiao et al. [53] designed a VM management
framework with two layers of control logic. The first layer is
the host control layer, which uses a Q-learning algorithm to find
the optimal host configuration considering the host load and the
thermal state. The second layer is the VM control layer, which
performs a load-balancing policy for VM consolidation and
migration based on the optimal host configuration. This control
decoupling design enables effective resource management, but
its host configuration model considers only three power states,
which is insufficient for fine-grained thermal management.
Similarly, work [54] constructed a lightweight thermal-aware
resource management framework, ThermoSim. The framework
integrates a recurrent neural network based thermal model to
guide energy and thermal-aware VM scheduling. Furthermore,
the work [55] further considers the impact of heat transfer from
neighboring servers on each other’s performance. Therefore,
the relative locations of physical machines are considered when
assigning VMs to avoid local hotspots.

Furthermore, meta-heuristic algorithms are effective meth-
ods for solving this optimization problem. Work [56] devel-
ops a genetic algorithm-based heuristic to solve a nonlinear
integer optimization problem considering computational and
cooling energy consumption. Similarly, Feng et al. [57] proposed
a two-step algorithm to reduce the data center overhead in
three aspects: cooling system, computing system, and network.
Specifically, a simulated annealing algorithm is first employed
to minimize the computational and cooling overheads. Then,
virtual machines with high traffic costs are placed on servers
close to that location to reduce the network overhead. How-
ever, the algorithm does not sufficiently consider how to define
a threshold for server utilization and a VM selection policy.
Then, work [58] fills this gap by designing a novel VMP pol-
icy based on a simulated annealing algorithm that considers
thermal recirculation and multiple physical resource allocation
to reduce the cooling cost of CRACs. The proposed strategy
significantly reduces the average temperature gradient and the
number of active hosts in the IT room. Moreover, considering
the heterogeneity of VM demand resources, Aghasi A et al.
[59] proposed an improved gravity search algorithm to solve
the optimal VM consolidation scheme. An adaptive mechanism
based on fuzzy logic is used to enhance the exploitation and
exploration performance of the control algorithm. In general,
existing thermal-aware IT load scheduling methods rely on a
fixed flow field. They rarely consider that the thermal flow field
varies with the node power distribution and cooling parameters.
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2) Workload Allocation: Thermal-aware workload alloca-
tion can be expressed as the rational allocation of workloads
to minimize cooling overhead based on IT equipment power
consumption and thermal behavior [60]. Two uncertainties in
workload allocation: workload requests and thermal environ-
ment, intertwine and complicate the IT scheduling and cooling
control. In the work [37], the cooling energy minimization
problem is transformed into the problem of minimizing peak
inlet temperature by task assignment (MPIT-TA). To be specific,
given a data center with n racks, each deploying m servers
containing two classes of power attributes a, b respectively. A
total of q tasks, each task k requiring c(k) servers. The thermal
distribution matrix between nodes is D. The objective is to solve
a task allocation table C to minimize the peak inlet temperature,
which can be defined formally as,

Minimize maxi

{
T i
in

}
, (24)

st. c (k)−
n∑

j = 1

cjk = 0, k = 1, . . . , q, (24.1)

tin = tsup +Db+D � Ca (24.2)

q∑
i=1

c′ij = c (j) , j = 1 . . . n (24.3)

m ≥
q∑

j=1

c′ij ≥ 0, i = 1 . . . n (24.4)

where � is the row wise dot product of two matrices, yielding
a vector. Subsequently, the authors designed a meta-heuristic
algorithm and a nonlinear programming algorithm to solve this
optimization problem. The proposed methods significantly re-
duce the cooling cost by 30%. Subsequently, work [60] extended
this approach to batch workload distribution in geo-distributed
DCs to optimize energy cost and fairness. Furthermore, some
works [61], [62] design heuristic and model predictive control
(MPC) algorithms to solve IT and cooling system management
problems. The work [61] focused on allocating workloads with
dependencies of subtasks to achieve energy-thermal efficiency
trade-offs. In addition, to cope with sudden thermal anomalous
behaviors of compute nodes (fan failure or excessive load), the
work [63] designs an online scheduler called ThermoRing. This
scheduler adjusts the task admittance of the nodes based on
the real-time temperature to resist thermal anomalies. The work
[64] noted that relying on server inlet temperatures to measure
the host thermal state may not apply to heterogeneous DCs.
The reason is that servers with different versions and hardware
specifications can have varying thermal performance at the same
ingress temperature and load level. Therefore, this work adopts
the server outlet temperature as a metric to identify hotspots.
Subsequently, a thermal-aware workload allocation and server
relocation optimization solution are proposed to minimize the
peak of the outlet temperature.

Meta-heuristic algorithms are also often adopted to solve the
optimal workload allocation strategy with thermal constraints.
The work [65] combines a reduced-order thermal model and
a particle swarm algorithm to explore the optimal workload

distribution for a given load. Moreover, the work [66] used
chip temperature rather than inlet temperature to characterize
the host thermal state and adopted a genetic algorithm (GA)
to solve the optimization problem with constraints. The work
[67] established a holistic power consumption model linking
the cooling system to the IT system of the DC. A novel genetic
simulated annealing algorithm (GSA) is designed to allocate the
workload to reduce the node inlet peak temperature as much as
possible. Also, works [68] design a multi-objective optimization
framework combining a thermal model and genetic algorithm
to trade off PUE and exergy efficiency. Besides, work [69]
developed a thermal-aware task scheduling method for edge
cloud scenarios to trade off the host thermal profile with the
energy efficiency of IoT-based applications. The method predicts
the host temperature based on task requests and host resource
parameters to establish the optimal task-to-host mapping. For
node failures that may occur during multi-node workload allo-
cation, work [70] designed a hybrid algorithm to reallocate the
workload of the failed node to other suitable nodes for operation.

However, due to the heterogeneity of IT devices and the com-
plexity of thermal distribution, multidimensional constraints
tend to increase the solution complexity of algorithms, making
it difficult to scale to online large-scale application scenarios.
To address the performance degradation of existing heuristic
algorithms in the face of large-scale search and optimization,
DRL was adopted to cope with such online optimization prob-
lems with large-scale solution spaces [71], [72], [73], [74]. The
work [74] constructed an LSTM-based computational model to
evaluate the system state (including the chip temperature and
the server power). Subsequently, this computational model is
adopted as a simulation environment for a DRL agent to explore
scheduling strategies. Finally, this trained scheduling model is
used to assign computationally intensive jobs online, signifi-
cantly reducing the processor temperature while guaranteeing
system throughput. Moreover, to reduce the training duration
of the DRL scheduler, the work [75] uses an expert policy to
provide scheduling experience to the agent. This method can
limit its exploration space, thus helping the agent to learn the
excellent scheduling policy quickly. Compared to heuristic and
DRL scheduling algorithms, the proposed generative adversarial
RL scheduling algorithm has better scheduling performance and
stability for distributed High-Performance Computing (HPC)
systems.

3) Dynamic Voltage and Frequency Scaling (DVFS): DVFS
is also a widely recognized technique for server power saving,
which dynamically regulates the frequency or power state of
the CPU according to the system load [3], [76]. Most enterprise
servers use performance state (P-state) to represent the ratio
of power consumption to performance. The lower the P-state,
the higher the power consumption, but for most servers, the
lowest P-state (P0) is not the most energy-efficient state [77].
Therefore, finding the optimal server P-state set point is the key
to enhancing server energy efficiency. The work [78] proposed
a thermal-aware multi-step, scalable resource allocation method
that considers the relationship between server P-state set-points
and the power consumption of CRACs. The decision targets of
this method are the P-states of multiple cores, the number of
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tasks assigned to the cores, and the CRACs outlet temperature.
Nevertheless, the P-state of this method has only two optional
states: the highest performance state (P0) or off, and thus is not
applicable to fine-grained thermal-aware optimization. More-
over, Zhao et al. [79] proposed an energy-efficient scheduling
method based on model predictive control (MPC). This method
suppresses internal thermal perturbations due to load variations
by dynamically adjusting the CPU frequencies of computing
nodes, thus reducing thermal cycling among nodes. Similarly,
the work [80] proposed a spatio-temporal thermal model to
characterize the thermal behavior of data centers. Subsequently,
DVFS is adopted to dynamically balance the load of each
computing node and improve makespan.

B. Cooling System Control Optimization

1) Air Cooling System: The chilled water system and server
fans are the primary energy consumers of air-cooled systems.
Therefore, optimizing the energy management of chilled water
systems and fans is a highly profitable research area and has
attracted extensive attention.

A. Server fans
The fan is the most direct cooling device for the server, and

its role is to speed up the airflow to improve convective heat
transfer. The performance of the fan plays a decisive role in the
cooling effect of the server. Existing fan control strategies can
be broadly summarized into the following three categories.

(1) Constant fan control strategy. This control strategy sets
a fixed fan speed based on industry experience and server
hardware configuration to guarantee that all components do not
exceed the critical thermal threshold even at the worst ambient
temperatures and highest loads. However, this control strategy
can result in over-cooling in most cases [81].

(2) Reactive fan control strategy. This control strategy mon-
itors key target values in real-time and performs real-time
speed regulation based on a preset target value-speed mapping
function. The commonly used control strategies are (a) PID
regulation, which regulates the fan speed by the gap between
the monitored value and the setpoint. (b) multi-stage regulation
strategy, which sets the corresponding speed interval according
to a specific temperature interval. (c) Real-time power control
strategy sets the fan speed according to the heat generated by
the host. Assuming the real-time power is P, and the rated power
Pmax, the fan speed percentage r is set as:

r =
P

Pmax
× 100%. (25)

(d) Minimum power control strategy [82], which seeks the
fan speed corresponding to the minimum power consumption
Ptotal. P is the total of the CPU leakage power Pleakage and fan
power Pfan of the server, which can be expressed as.

Ptotal = Pleakage + Pfan, (26)

where Pleakage is related to the CPU core temperature T, defined
as,

Pleakage = k2 ∗ ek3∗T + C. (27)

Besides, the fan power Pfan has a cubic polynomial exponen-
tial growth relationship with the fan speed x, defined as,

Pfan = k1 ∗ x3 + k2 ∗ x2 + k3 ∗ x+ C, (28)

where k and C represent a series of coefficients and constants.
While these reactive fan control strategies are simple and ef-
fective, there are obvious limitations, such as that fan speed
reacts to variations in target values (power and temperature) in
behavior that can lead to significant oscillations in fan speed.
This oscillation phenomenon can generate power spikes and
cause hardware wear. Moreover, reactive control takes action
only after the component temperature exceeds the boundary,
which can lead to impaired component performance due to
cooling hysteresis.

(3) Active fan control strategy. The active fan control strategy
regulates the fan speed in advance to a specific interval based
on the predicted target temperature. This dynamic thermal man-
agement (DTM) approach requires a predictive model of the
controlled object and advanced system regulation based on the
predicted values. The work [83] adds the prediction of future
CPU temperature to the minimum power control strategy [82] to
cover the thermal delay of the chip. More specifically, the authors
proposed a leakage-aware fan control strategy that estimates the
expected CPU temperature for a given workload and actively
sets the speed to the optimal state in advance to reduce the total
power of the fan plus leakage. Similarly, the work [81] constructs
a neural network-based CPU thermal model that considers CPU
utilization, frequency, and fan speed. Guided by this thermal
model, the proposed fan control method can eliminate fan
power oscillations and achieve thermal-aware multi-core load
balancing. Moreover, to overcome the thermal disturbance of
the server by workload fluctuations, the work [84] proposes
a decoupling control algorithm based on active disturbance
suppression. The authors reformulate the thermal disturbance
suppression problem and optimize the control parameters using
a genetic algorithm, considering both performance and energy.
Apart from this, the work [85] observed that the mechanical
vibrations generated by the fans degrade the operating perfor-
mance of SATA disks. Therefore, the authors design a convex
optimization-based active fan control strategy that takes into
account the mechanical interference of fans, system resource
utilization, and cooling requirements for efficient server thermal
management.

There is also some DTM work on joint fan and CPU oper-
ation parameters (CPU utilization, frequency, and core count)
control to minimize the holistic energy of the server. The work
[86] modeled DVFS, thread migration, and active cooling as a
performance-per-watt (PPW) optimization problem with multi-
dimensional constraints. Subsequently, PPW is shown to be a
quasi-concave (single-peaked) function of the chip and fan speed
with a unique optimal solution. The work [27] also introduces a
core capping strategy to limit CPU utilization and thus reduce
the leaked power generated by overheating CPUs. Besides, the
work [87] adopts a reinforcement learning algorithm to select
the DVFS setpoint, fan speed, and number of active cores to
control the processor temperature.
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Fig. 17. Heat transfer process.

Surprisingly, some works have adopted the novel thin-film
material, thermoelectric cooler (TEC), to handle the local hot
spots of the chip from the perspective of combining hardware
and software [88], [89]. The work [89] proposes a hierarchical
optimization framework to coordinate TEC, fan, and DVFS
to optimize the energy efficiency of servers with multi-core
processors. Extensive research shows that this collaborative
hardware and software cross-stack design approach improves
new perspectives for improving server cooling efficiency [90].

B. Chilled water system
The operation mechanism of the cooling system in the server

room is that the heat released from IT equipment is discharged to
the outdoors through the circulation of heat transfer media (air,
water, refrigerant, etc.) driven by a certain temperature differ-
ence [4]. The architecture of the chilled water air conditioning
system is shown in Fig. 17, which includes the terminal air con-
ditioner, water pump, chiller, plate heat exchanger, and cooling
tower. The entire cooling system is driven by fans and pumps,
and other equipment to carry out three thermal cycles, which are
air circulation in the server room, chilled water circulation, and
cooling water circulation.

The operating parameters of most existing cooling control
methods focus on the supply and return air temperature of
CRACs, fan speed, chilled water temperature, and flow rate. The
work [91] constructs an MPC-based facility fans control method
for modular data centers, which considers the effects of fan flow
rate, fresh air temperature, and server load on CPU temperature.
Guided by the CPU thermal model, the proposed method can find
an optimal fan speed set-point under different air temperatures
and IT loads while satisfying the thermal constraints. Yao et
al. [92] proposed a novel multi-objective optimization method
that considers the energy consumption and the rack intake
temperature of CRACs. Subsequently, the authors adopted the
non-dominated sorting genetic algorithm II (NSGA-II) to solve
for the optimal fan speed and cooling unit outlet temperature.
The proposed scheme shows significant energy savings in both
winter and summer scenarios. Moreover, the work [93] uses a
regression model to learn the fan speed control strategy for air
handling units (AHUs) from the historical operating data of the
CDC. Unlike the single-setpoint control method, this work [94]
proposed a multi-setpoint cooling control scheme, which can
regulate multiple fan speeds according to the cooling demand of
each zone in the server room. While this scheme performs well
in modular DCs, it may not be applicable to open-cooling DCs
with complex airflow patterns.

RL and DRL models have recently been widely adopted to
manage cooling systems. Lazic et al. [95] used a model-based
RL to regulate the temperature and airflow inside the floor by
controlling the fan speed and chilled water flow rate inside
the AHUs. Considering the requirements for supply air tem-
perature and relative humidity in free-cooled CDCs, Van et al.
[96], [97] developed a DRL scheme with constraints to control
the set points of supply and exhaust fan flows in the server
room. Compared to the MPC method, the DRL-based solution
effectively reduces cooling energy consumption by 3%-7% by
regulating the amount of return air mixed with fresh cold air.
Apart from this, Li et al. [98] developed an energy-aware cooling
control algorithm (CCA) based on the Actor-Critic framework.
To be specific, CCA can regulate the supply air temperature
and cooling water temperature set points based on the cur-
rent IT load and weather information to improve the cooling
efficiency.

2) Liquid Cooling System: A. Cold-plate liquid cooling
system

As mentioned in Section II.B, liquid cooling systems with
high heat transfer efficiency have a vast potential for waste heat
recovery. Therefore, optimizing servers’ thermal management is
a promising direction while considering improving waste heat
recovery efficiency [99], [43]. The work [99] used CFD models
to simulate the coolant flow and heat transfer mechanisms of a
hybrid cooled server. The authors improve the efficiency of the
cooling and air-side thermal waste heat recovery by optimizing
the baffle geometry design and active flow control. Distinct from
CFD simulations, the work [43] constructed a network-based
thermal model to characterize the thermal behavior of an enter-
prise cold-plate liquid-cooled server. Subsequently, a receding
horizon control method is proposed to solve the coolant flow
dynamic control problem. This strategy improves the output
coolant temperature by reducing the coolant flow rate under ther-
mal constraints, which is more conducive to waste heat recovery.
Beyond that, for the problem of hot spots and large temperature
gradients due to uneven heat distribution at the chip level, work
[100] proposed a feasible cooling solution combining a dynamic
cold plate and a thermosensitive flow control device. To be
specific, the coolant would be targeted to particular modules to
substantially reduce the temperature gradient while significantly
increasing the control complexity and hardware cost. Besides,
the work [101] is concerned with the impact of the operating
conditions parameters of the rack-side and cooling source-side
fluids on the system power consumption. The authors designed
a novel method to find the optimal cooling water set-points
under various chip thermal constraints and thermal loads. Note
that the solution applies to other liquid-cooled systems and can
guide the design of water-cooled systems equipped with cooling
towers at optimal operating conditions. Still further, the work
[102] quantifies the extent to which ambient temperature affects
system power consumption and efficiency. More specifically,
a thermal management model combining a thermal model and
a power model is developed to find the relationship between
chip power consumption and cooling power consumption under
different water operating conditions and ambient temperatures.
Finally, the work gives a fitting expression to represent the
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optimal inlet temperature and flow rate for various ambient
temperatures.

Furthermore, some advanced works have started to optimize
liquid cooling systems from the perspective of cooling solutions
and hardware structure design [103], [104]. The work [103]
designed a multi-output convolutional neural network model
to select the chip’s optimal cooling solution and parameters.
Moreover, the work [104] developed a thermal model for finned
water-cooled heat sinks to explore the impacts of cooling water
outlet location, fin height, thickness, and spacing on thermal
and flow resistance performance. Then, a theoretical optimiza-
tion method for radiator structures is proposed to guide other
emerging cooling system designs.

B. Immersion liquid cooling system
For the cooling efficiency of single-phase immersion liquid

cooling systems, related work focuses on controlling coolant
flow and temperature [19], [105], server placement optimization
[106], and dielectric fluid selection [107], [108]. The work [105]
constructs a simplified model to characterize the relationship
between pressure, flow, and temperature of the processor liquid
cooling system. Subsequently, a deep neural network-based
explicit MPC control method (Deep Explicit MPC, DEMPC)
is proposed to control the coolant temperature and flow rate,
which effectively reduces the overheating time of the processor
and pumping power. Except for controlling the cooling param-
eters, the employed dielectric fluid’s thermal properties also
significantly impact the system’s cooling performance [107].
Furthermore, work [106] investigates the effect of server place-
ment interval on the surface temperature in a two-phase liquid
cooling system. The authors adopt six representative cases to
analyze the partial power usage efficiency (pPUE) and COP
of liquid-cooled systems with different power loads. Finally,
the arrangement of the immersed servers is optimized based
on the simulation results. Considering the cooling needs of
high-power electronics in extreme environments, the work [108]
designs a prototype of a high-performance two-phase closed
passive immersion cooling system. The authors compared the
cooling performance of three dielectric fluids (ethanol, FC-72,
and R113) on the prototype system, with ethanol performing
the best. Beyond that, the work constructs a thermal resistance
network to characterize the thermal profile of the heat source,
which greatly improves the precision of the theoretical model.
In conclusion, the cooling technique can cope with high-power
devices cooling in extreme operating conditions.

Though immersion cooling technology has numerous
potential advantages, it requires large amounts of dielectric
fluid, which undoubtedly brings high costs to large-scale
deployments [109]. Sprayed liquid cooling is a strongly targeted
cooling technology that requires less dielectric coolant and
is more economical to deploy than immersion liquid cooling.
Some related works have investigated various operational
parameters of drench-jet systems to optimize cooling energy
efficiency, such as coolant flow rate and characteristics [110],
[111], heat source surface roughness [112], and nozzle physical
structure and orientation [113, [114], [115]. Moreover, the latest
work [116] developed a spray-cooled rack system that can be
used to cool high-performance servers in tropical climates.

Fig. 18. Static joint optimization framework.

Extensive validation experiments to evaluate the extent to which
the operable parameters of the spray cooling system (nozzle
flow rate, condenser fan power, condenser flow rate, heat load,
etc.) affect the cooling efficiency. The results show that the
nozzle flow primarily influences thermal performance. Besides,
the condenser’s fan power and flow rate are the essential knobs
to regulate the pressure in the spray chamber.

C. Joint Optimization of IT and Cooling Systems

The joint optimization problem is a multi-objective optimiza-
tion problem with multi-constraints. The key to solving this
problem is to develop a predictive model of the controlled object
and to manage the system in advance. After extensive research,
the existing joint optimization methods can be roughly divided
into static joint optimization (SJO) and dynamic joint optimiza-
tion (DJO). To be specific, SJO refers to finding the optimal
combination of parameters to satisfy the global optimization
objective based on a theoretical model and multidimensional
constraints under a specific steady state. DJO emphasizes explor-
ing optimal dynamic scheduling and control strategies to achieve
global objective optimization under time-varying system states.

1) Static Joint Optimization: Fig. 18 illustrates the SJO
framework, where the cooling and IT systems have biased
optimization objectives and methods. The SJO approach models
the joint optimization problem as a multi-objective optimization
problem with multiple constraints. Subsequently, heuristic algo-
rithms or solvers are used to explore globally optimal parameter
combinations for workload scheduling and cooling operations
[92].

Considering the control mismatch problem caused by the
difference in control time constants of IT scheduling and cool-
ing control, work [117] used a two-timescale control method
to coordinate DVFS, server resource allocation, and cooling
management in an HPC data center. The approach adopted a
steady-state thermal model to guide CPU frequency regulation
and task allocation and a transient thermal model to dynamically
adjust the cooling supply. Similarly, Wan et al. [118] modeled the
minimizing holistic energy problem as a mixed integer nonlinear
programming problem and developed an efficient joint algorithm
to address it. The method collaborates system components from
different control layers to minimize overall energy consump-
tion. Specifically, the technique applies DVFS at the chip level,
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workload scheduling, and dynamic server shutdown at the server
level, and fan control at the room level.

Heuristic algorithms are also frequently designed to tackle
this joint optimization problem. For example, Arroba et al. [119]
proposed an optimization strategy that depends on a simulated
annealing algorithm to achieve joint optimization of computa-
tional and cooling energy consumption. This strategy aims to
explore the maximum cooling setpoint of CRACs to ensure that
the inlet temperature of nodes is below the red-line temperature.
Moreover, Zhou et al. [120] used a ML approach to model the
cabinet temperature and cooling power for a given server power
distribution and supply air temperature settings. Subsequently, a
simple and effective heuristic algorithm is proposed to regulate
the task distribution, server state, and air supply temperature
settings. Fang et al. [121] designed a thermodynamic model to
guide the establishment of the optimal control problem with
constraints. Then, a two-step heuristic was adopted to solve the
problem in the following steps. First, a thermal-aware resource
allocation optimizer was designed to determine which resources
to increase or decrease. Then, an economic model predictive
controller was proposed to regulate the cooling setpoint with
power variations.

To simplify the joint optimization problem modeling, the
work [122] assumes that the servers are homogeneous. The com-
plex minimization optimization problem can be transformed into
a simple equivalence optimization problem for homogeneous
DCs. Subsequently, this work demonstrates that optimal cooling
set-points and workload distribution can be uniquely determined
to obtain the minimum total energy consumption of the DC.
Similarly, Mirhoseini et al. [123] proposed a framework for joint
cooling and workload management that considers the thermal
interrelationships between IT and cooling unit entities. This
framework jointly optimizes workload allocation and cooling
unit operating parameters guided by a thermal model to save
by 11% compared to the closest baseline. Nevertheless, the
assumption that the servers are homogeneous also limits the
practical application of the approach. Therefore, the work [35]
further considered real-world factors such as heterogeneity of
cooling units (cooling cost, cooling capacity) and heterogeneity
of servers (heat generation density and thermal power consump-
tion) to propose a holistic data center infrastructure control
framework. The framework constructed two complex thermal
models to evaluate the servers’ core and inlet temperature.
Guided by the thermal models, jobs are assigned to efficiently
cooled locations, and cooling parameters are tuned to save 16%
power consumption.

Furthermore, for the multi-objective optimization trade-off
problem, work [124] proposes a joint optimization framework
that takes into account energy, exergy and computing efficiency,
and thermal reliability constraints. The framework constructs
rack-oriented physics-based spatio-temporal thermal models
for optimizing workload distribution and cooling parameters.
Moreover, Athavale et al. [125] developed a holistic energy
efficiency optimization framework that includes an ANN-based
steady-state thermal model, a thermodynamic model to evaluate
the cooling energy, and a GA-based optimization model.
Two case studies show that GA-based cooling control strategy

Fig. 19. Dynamic joint optimization framework.

reduces cooling power consumption by 52% and 20% compared
to constant cooling setpoint and return air temperature control
strategies respectively. Generally, the SJO method always finds
the optimal parameter settings for IT and cooling systems in a
given scenario. However, the technique relies on high-fidelity
modeling and computational overhead, commonly applied to
non-real-time operational scenarios.

2) Dynamic Joint Optimization: The DJO problem is usually
modeled as a Markov decision model with continuous decisions
(Fig. 19). Subsequently, model-free RL explores IT scheduling
and cooling control strategies [95]. The RL-based agent interacts
with the environment through a series of actions to obtain the
corresponding rewards and learns global control optimization
strategies based on a trial and error mechanism [126]. With
the continuous advances in RL theory, DRL and multi-agent
DRL are also gradually adopted to solve this joint optimization
problem.

The work [95] focused on the air pressure difference between
the front and rear ends of the rack and the temperature of the
cooling aisles, which are affected by the power consumption dis-
tribution. A model-based RL algorithm is proposed to control the
fan speed and chilled water flow rate within the air handling unit
(AHU) to regulate the cooling air supply temperature and flow
rate. Moreover, Ran et al. [127] suggested a DRL-based frame-
work, DeepEE, to capture the dynamic nonlinear features of IT
scheduling and thermal processes in data centers to achieve the
co-optimization of job scheduling and cooling management. The
proposed method saves up to 10% energy compared to the work
[9] while maintaining QoS. Nevertheless, there is a sequential
order for cooling control and IT scheduling decisions in DeepEE.
This two-stage collaborative decision-making approach may be
challenging to obtain the globally optimal decision. Therefore,
to overcome this limitation, Chi et al. [128], [129] proposed a
multi-agent-based joint optimization framework, MAD3C, to
improve the synergy of the two systems. Unlike the work [127],
MAD3C employed an asynchronous control algorithm based
on a hybrid AC-DDPG architecture to enable the collaborative
decision-making of IT and cooling systems to be performed in
an asynchronous manner. Compared to DeepEE, the MAD3C
reduces overload events around 21.98% and reduces total energy
consumption by 42.82%. Beyond that, considering the actual
scenario, the parameters of the end air conditioner have certain
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constraints, such as temperature and relative humidity. Addition-
ally, considering the constraints of air conditioning parameters
in real scenarios, Van et al. [97] designed an adaptive learning
of optimal penalty weights to ensure that the DRL-agent can
converge quickly while satisfying the condition of satisfying
multiple constraints. Compared with the unconstrained DRL
method, the proposed DRL method with constraints achieves
less cooling energy consumption and fewer constraint violations.
Notably, to solve the control mismatch problem of multiple
systems, the work [130] introduced a two-time scale IT-facility
optimization method based on an improved Deep Q-Network
algorithm. The feature of this method is the control of IT and
cooling systems by generating two actions on discrete and con-
tinuous space, respectively. Compared to the baseline based on
expert domain knowledge, the trained control model saves up to
9% and 15% in cooling and IT energy in the actual CDC. Overall,
RL performs well on online continuous decision optimization
problems. Nevertheless, the trial-and-error mechanism of the
RL-agent may lead to unexpected operational risks and failures.

V. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS

The existing advanced thermal modeling and energy-saving
solutions have been summarized above. Nevertheless, there are
still many open issues in thermal management that remain to
be addressed. This section will discuss these issues and future
research directions.

A. Gray-Box-Based Thermal Models

Gray-box modeling, which combines physical laws and data-
driven, is one of the potential directions for constructing the
thermal model of the DC. The approach not only makes full use
of massive sensor data to develop approximate model param-
eters but also provides a solid theoretical basis. In particular,
there are significant differences in their physical properties and
architectures for air-liquid and liquid cooling systems, which can
increase the complexity and difficulty of modeling. Therefore, a
feasible solution is to adopt a data-driven method to characterize
the key variables that are susceptible to physical layout and
hardware properties, while the rest is based on thermodynamics
to construct simplified physical models.

B. Multi-Agent-Based Cooling Control System

A server room usually deploys N+1 cooling units to en-
sure a 24x7 cooling supply. The impact of the cooling units
on the cabinets depends on the relative position, blast speed,
and floor ventilation rate. Besides, the heat power of cabinets
is unpredictable and fluctuating, which can easily break the
balance of local cooling supply and demand, and then lead
to local temperature over-cooling or overheating phenomenon.
Therefore, to reduce the thermal profile gradient, it is necessary
to adjust the cooling capacity of nearby cooling units in real-time
according to the cooling demand of different regions. To solve
this problem, a multi-agent cooperative control framework [131]
can be used to realize the joint control of multiple cooling units,

which can maintain the global cooling supply-demand balance
while considering the local thermal fluctuations.

C. AL/ML-Based Joint Optimization of IT and Cooling
Systems

Constructing a green CDC is a comprehensive system project
requiring managing multiple subsystems collaboratively. Cur-
rent IT and cooling systems show coupling and interdependence
but lack linkage, prone to a mismatch of supply and demand,
and low cooling energy efficiency. Therefore, it is challenging
to integrate AI and ML to realize the collaborative management
of multiple systems with different control granularity and time
scales. AI/ML technologies can be applied to explore the work-
load patterns of IT systems to guide resource optimization and
cooling control. Further, AI-based autonomic systems can be
adopted to reduce the total cost of ownership in all phases of
CDC management monitoring-analysis-planning and execution
[132].

D. Cooling Technology for High-Power IT Devices

With the rapid advances in high frequency, and integrated
circuit technology for electronic components, solving the heat
dissipation problem of high-power servers and chips is a fun-
damental challenge. A liquid cooling system is considered a
potential and feasible technology. Liquid-cooled systems can
achieve efficient thermal control by targeted cooling high-power
heat sources. Besides, liquid-cooled systems are usually semi-
and fully-enclosed structures, which are less affected by the
deployment environment and remain stable even under extreme
operating conditions. However, the large-scale implementation
of liquid-cooling technology in CDCs still needs to overcome
numerous challenges, such as the standardization of product
design, the hardware and software strength of infrastructure
manufacturers, and a well-established industrial chain.

E. Waste Heat Utilization

Capturing and reusing a considerable amount of waste heat
generated by CDCs, especially liquid cooling systems with high
waste heat quality, to produce useful energy products or services
(district heating, on-site power generation, and absorption cool-
ing) would be a potential direction for sustainable data centers.

VI. CONCLUSION

To better apply and develop effective cooling energy ef-
ficiency methods to construct sustainable CDCs, this review
investigates two critical points for efficient thermal management
in CDCs, thermal modeling and thermal-aware energy-saving
methods. To summarize, data center thermal modeling is a
complex engineering problem. No matter whether white-box,
black-box, and gray-box modeling approaches have their own
appropriate application scenarios and limitations. Especially
for liquid cooling technology, which is in a rough and fast
development period, the inconsistency of industry standards
poses a severe challenge to thermal modeling. Therefore, the
selection of modeling methods needs to take into account the
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specific application scenarios and characteristics of the objects.
Moreover, various existing advanced thermal-aware scheduling
and cooling control technologies all perform well in the thermal
management of CDCs. Nevertheless, some problems have not
been completely solved, such as the poor linkage between IT and
cooling systems and delayed control response time. Therefore,
this paper points out the challenges that data center thermal
management may face in the future and the corresponding
solutions. This review aims to help researchers in data center
thermal management better understand cutting-edge research
progress.
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