
Future Generation Computer Systems 149 (2023) 317–329

j
s
A
d

y
m
z

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Vivace-Distributed: A novel congestion controlmechanism for
JointCloud environments
Jianzhi Shi a, Bo Yi a,1, Xingwei Wang a,∗, Min Huang b, Peichen Li a, Chao Zeng a, Keqin Li c,2
a College of Computer Science and Engineering, Northeastern University, Shenyang 110169, China
b College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
c Department of Computer Science, State University of New York, NY 12561, USA

a r t i c l e i n f o

Article history:
Received 6 March 2023
Received in revised form 9 June 2023
Accepted 19 July 2023
Available online 22 July 2023

Keywords:
Congestion control
JointCloud
TCP friendliness
Distributed online learning
Cloud computing
Game theory

a b s t r a c t

As the customer base of cloud computing services continues to grow, the demand for providing
cloud resources in an economic manner has become increasingly important. To incorporate multiple
clouds, JointCloud has been proposed for sharing cloud services. However, efficient communication
among clouds is essential to enable resource sharing in JointCloud, which poses a critical challenge.
The existing congestion control mechanisms for JointCloud have been founded to be inadequate in
sharing network resources effectively and fairly, resulting in performance shortcomings. The maximum
achievable transmission rate is limited to only 50% of the bandwidth, and the minimum and maximum
transmission rates for different clouds in JointCloud may have a difference of up to ten times in
magnitude.

We propose a novel distributed congestion control mechanism for the JointCloud environment,
which leverages ideas from rich literature on distributed online learning. The proposed mechanism
operates in a distributed manner, with an aggregative variable representing the network condition
integrated into each sender’s utility function. Our theoretical analyses establish that the proposed
mechanism achieves a unique Nash equilibrium, enabling fair resource allocation among all senders.
Furthermore, our simulation evaluations demonstrate that the proposed mechanism outperforms
the existing congestion control mechanism in JointCloud environment by achieving a 20% higher
throughput in the presence of at least 1% random loss, a 50% higher throughput for short TCP flows,
and a throughput ratio of 1 when sharing bandwidth with conventional mechanisms, which indicates
a perfect TCP friendliness towards other mechanisms. In summary, our proposed congestion control
mechanism is the first to work in a distributed manner, which improves the efficiency and fairness of
the congestion control mechanism. The proposed mechanism has the potential to significantly enhance
the performance of communication among clouds, making a noteworthy contribution to cloud resource
sharing.

© 2023 Published by Elsevier B.V.
1. Introduction

With economic globalization, more and more companies have
oined the international trade of commodities and services, re-
ulting in greater interdependence of the world economies [1].
cloud computing service allows any terminal to access for the
uration it requires, which makes it possible for the vast and

∗ Corresponding author.
E-mail addresses: 2210722@mail.neu.edu.cn (J. Shi),

ibobooscar@gmail.com (B. Yi), wangxw@mail.neu.edu.cn (X. Wang),
huang@mail.neu.edu.cn (M. Huang), lpc978677763@gmail.com (P. Li),
chneu@gmail.com (C. Zeng), lik@newpaltz.edu (K. Li).
1 Member, IEEE.
2 Fellow, IEEE.
ttps://doi.org/10.1016/j.future.2023.07.023
167-739X/© 2023 Published by Elsevier B.V.
distributed computing resources available on the network with-
out worrying about the particular locations and internal struc-
tures of these resources. Although cloud computing services have
emerged as a solution to provide users with always-on resources,
the use of cloud computing services presents several challenges.
One significant challenge is that, in many cases, many companies
require bursts of resources that exceed the processing ability
of a single cloud. For example, events like Taobao’s ‘‘November
11’’, Walmart’s ‘‘Black Friday’’ and many other wholesale events
require more than ten times the resources of normal days, which
puts great pressure on a single cloud. Another challenge arises
from the emerging trend towards a shared economy. The glob-
alized economy is undergoing a new evolution that advocates
cooperation among multiple potentially competing entities rather
than monopolization. As more entities participate in the global-
ized economy, it is unlikely that a single constraint can rule them

https://doi.org/10.1016/j.future.2023.07.023
https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.07.023&domain=pdf
mailto:2210722@mail.neu.edu.cn
mailto:yibobooscar@gmail.com
mailto:wangxw@mail.neu.edu.cn
mailto:mhuang@mail.neu.edu.cn
mailto:lpc978677763@gmail.com
mailto:zchneu@gmail.com
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.future.2023.07.023

J. Shi, B. Yi, X. Wang et al. Future Generation Computer Systems 149 (2023) 317–329

a
T
s

c
d
c
C
d
o
a
C
i
t
E
a
m
q

d
a
n
a
a
r
a
d
r
c
c
r
o
b
f
e
t

t
b
s
c
t
w
p
e
d
v
a
t
n
t
O
c
a
i
E
i
e
c
s

ll due to issues such as data ownership and political problems.
his requires a new globalized cooperative computing model to
upport such globalized yet cooperative businesses.
Both researchers and companies are starting to take ‘‘new’’

loud services into account to address solutions such as bursts
emand of resources and constrained data processing problems
aused by political problems. In response to this trend, Joint-
loud [2], a cross-cloud collaboration architecture that integrates
ifferent clouds’ cloud services, is proposed. JointCloud draws
n the concept of air alliance, aiming to enhance cooperation
mong multiple clouds and provide cross-cloud services. Joint-
loud takes an essential step towards providing cloud service
n a cooperative manner, where all cloud providers collaborate
o provide cloud services with low cost and high availability.
ffective communication among clouds is crucial for JointCloud
rchitecture. As communication between different clouds deter-
ines the resource scheduling rate, which directly impacts the
uality of users’ experience.
The increasing diversity of cloud services and more complex

ependencies have made the traffic in JointCloud more dynamic
nd complicated, leading to greater pressure on the commu-
ication between clouds. To efficiently manage communication
mong clouds, a new congestion control mechanism that man-
ges the sending rate according to the network condition is
equired. However, existing congestion control mechanisms man-
ge network resources based on signals detected by themselves,
isregarding cooperation among independent clouds, which often
esults in unfair resource allocation. In conventional congestion
ontrol mechanisms, packet loss and round-trip time (RTT) are
onsidered decision signals. The entire decision-making process
elies on these measurements and the pre-defined rule based
n human understanding of the network. The conventional rule-
ased mechanisms are more susceptible to many unpredictable
actors [3], resulting in poor performance, which brings down the
fficiency in the use of JointCloud computing services, thereby,
he serviceability of JointCloud.

Although the congestion control mechanism has been ex-
ensively studied for the last decades, no feasible solution has
een proposed to handle congestion cooperatively based on other
ender’s action and care about its actions impact on the network
ondition. In other words, no feasible solution has been proposed
o handle congestion cooperatively. However, in fields such as
arehouse location problems, transportation systems, and signal
rocessing, many researches tend to handle congestion in a coop-
rative manner. An agent’s local decision rest not only on its own
ecision variable but also on some weighted average decision
ariables of others [4]. For example, in target surrounding, an
gent’s decision relies on the positions of other agents in addition
o its own position. Motivated by these facts, We propose a
ew congestion control mechanism for the JointCloud architec-
ure that manages network resources in a cooperative manner.
ur proposed mechanism leverages ideas from distributed online
onvex optimization [5]. An aggregative variable building upon
ll senders’ performance metrics is involved in each local util-
ty function. To ensure data privacy, JointCloud Collaboration
nvironment (JCCE) computes the aggregative variable, which
s unknown to any individual cloud. Our proposed mechanism
nables JointCloud to handle congestion cooperatively, which
an significantly improve the serviceability of the system. In
ummary, our contributions are as follows,

• We propose a congestion control mechanism for the Joint-
Cloud environment based on distributed online convex op-
timization, which enables cooperative avoidance or relief
of congestion. Our proposed mechanism adopts a utility-
based architecture where the throughput over a short time
318
is computed by receivers and sent to JCCE for computing
the aggregative variable, which is then involved in each
sender’s utility function. The aggregative variable represents
the aggregated information of all decision variables. The
utility is then translated into sending rate, in this manner,
the proposed mechanism handles congestion cooperatively.

• We formulate sharing of network resources in JointCloud as
a socially concave game and theoretically prove that there
is always a unique Nash equilibrium for a proper choice of
the utility function. We believe that Nash equilibrium is a
suitable approach for allocating network resources because
it ensures that each cloud maximizes its own utility while
taking into account the actions of other clouds. In summary,
Nash equilibrium provides a fair and effective way to allo-
cate resources. Moreover, the Nash equilibrium guarantees
the stability of the JointCloud environment and prevents
any cloud from utilizing too much network resources, which
could lead congestion and reduced performance.

• Extensive experiments with various congestion control
mechanisms demonstrate that Vivace-Distributed outper-
forms existing congestion control mechanisms in terms
of throughput and stability. Specially, Vivace-Distributed
achieves 20% higher throughput when there is a random
loss compared with the best existing congestion control
mechanisms, while also a better stability. In the simulated
JointCloud environment, Vivace-Distributed achieves a 50%
higher throughput for short flows and a 40% faster conver-
gence speed than conventional congestion control mecha-
nisms. Additionally, Vivace-Distributed achieves a through-
put ratio of 1 when sharing bandwidth with conventional
congestion control, which indicates perfect TCP friendliness.
The experimental results confirm the effectiveness of our
proposed congestion control mechanism.

The rest of the paper is organized as follows. Section 2 pro-
vides a brief review of the related works. In Section 3, we give an
overview of the proposed mechanism. Sections 4 and 5 present
the utility function design and the aggregative variable respec-
tively. In Section 6, we introduce how to convert utility values
to sending rates. The simulations and performance evaluations
are presented in Section 7. Finally, Section 8 concludes the paper,
highlighting the contributions of our work and discussing future
work.

2. Related work

2.1. Concept and architecture of JointCloud

JointCloud is a new type of cloud computing model based on
the collaboration between service entities and deep integration of
cloud service from multiple cloud. Serverless computing [6] are
utilized to support collaboration between disparate clouds. Users
or other clouds remotely invoke the different cloud resources
and service capacities [7]. In this manner, the cloud can provide
cloud services cooperatively, and developers are able to use cloud
services without noticing which cloud provides the service.

JointCloud aims to build a cloud ecosystem; in this ecosys-
tem, clouds provide cloud services independently while provid-
ing resources cooperatively when there is a burst of demand
for resources. In order to support the collaboration between
clouds, several mechanisms are proposed. The JointCloud ar-
chitecture [2], shown in Fig. 1, provides a working process for
JointCloud. JointCloud architecture has two essential parts: the
JointCloud Collaboration Environment (JCCE) and the Peer Col-
laboration Mechanism (PCM). JCCE includes several BlockChain-
based services [8–11] designed for transaction-related issues,

J. Shi, B. Yi, X. Wang et al. Future Generation Computer Systems 149 (2023) 317–329

c
o
i
w
t

c
t
t
s
o
f
t
r

2
c

a
p
w
t
n
a
c
F
c
p
c
a
s
t
s

i
l
n
g

Fig. 1. JointCloud Architecture.

loud cooperation [12], and evaluation of cloud services. Based
n JCCE, as long as PCM is implemented between clouds. A PCM
ncludes all protocols during cloud collaboration. Thus, if a cloud
ould like to join the JointCloud, it should implement the PCM
o join the ecosystem.

For example, when a cloud tries to find the lowest-priced
loud resources in the JointCloud environment. Fig. 1 illustrates
he process of renting cloud resources, 1. Clouds C1 to C3 transfer
heir price and types of resources at present to JCCE; 2. Cloud A
ends a request for renting cloud resources and checks the price
n JCCE; 3. Cloud A deploys the task to cloud C1; 4. Due to price
luctuations, cloud A sends a request to cloud C1 to transfer the
ask to cloud C3; 5. C1 delivers the task to C3; 6. Cloud A sends a
equest to C3 to start the task.

.2. Communication among clouds and development of congestion
ontrol

For the communication between clouds, tunneling techniques
re adapted by some hybrid solutions (like [13,14]) to connect the
rivate cloud to the public cloud. For QoS, the current carrier net-
ork reverses most of the existing bandwidth to handle bursts of
raffic [15]. For the inter-datacenter network, the current carrier
etwork always measures the inter-datacenter link at the edge,
nd network-involved tasks are always scheduled carefully ac-
ording to the network condition to utilize the bandwidth better.
or other methods, Yuan et al. [16] proposes a delay-tolerant data
ongestion control mechanism for cloud system. COSCO2 [17]
redicts the upcoming workload and reduces extravagant power
onsumption at cloud data centers. However, if different clouds
re willing to use these solutions, they need to implement the
ame management software, which limits the deployment of
hese methods in a large scale. Thus, more clouds still utilize the
tandard TCP protocol suite for communication currently.
The performance of the TCP protocol depends heavily on the

nteractions between the underlying network and the transport
ayer. Congestion Control, as a critical mechanism, limits the
umber of packets injected into the network. A practical con-

estion control mechanism should achieve numerous goals [18].

319
Firstly, a congestion control mechanism should be able to effi-
ciently manage network resources to prevent congestion collapse,
which is the main reason for the existence of CC. Secondly, a good
CC mechanism should ensure high bandwidth utilization and a
fair share of available network resources among all competing
flows sharing the same bottleneck. Thirdly, a CC mechanism
should guarantee quick convergence to a stable point.

Conventional rule-based congestion control mechanisms
(e.g., [19–23]) often fail to converge to a stale point. These mech-
anisms use some signals to detect congestion and then adjust
the CWND or sending rate according to some pre-defined rules.
For example, Cubic, Reno and New Reno are loss-based mech-
anisms that detect congestion through packet loss and adjust
the CWND using additive increase multiplicative decrease (AIMD)
algorithm. BBR estimates RTT and bandwidth, aiming for a CWND
equal to the bandwidth-delay product. However, these mecha-
nisms may fail to adapt to different networks and result in poor
performance. Recently proposed CC mechanisms (e.g., [24–28]),
including Remy [24], PCC [25], PCC-Vivace [26] and Learning-
TCP [27] apply Machine Learning (ML) techniques to congestion
control. Learning-TCP utilize learning automata to improve the
performance of TCP over ad hoc wireless networks. Remy replaces
the human designer with a map between RTT and sending rates,
which is trained offline. However, The need for offline training
makes it unable to adapt to changing network conditions [29].
In order to solve the problem existing in Remy, PCC utilizes
online learning. A PCC sender sends at a certain rate and observes
performance metrics; sending rate is then adjusted in a direction
empirically associated with higher throughput. However, PCC
still has not exploited the full potential of online learning. Thus,
PCC-Vivace applies ideas from the gradient-descent algorithm
to congestion control. Although online learning can respond to
changing network conditions quickly, the performance of the
agent may be unstable as their greedy exploration may get stuck
at a local optimum in some cases [30]. It should also be noted
that online learning usually has a long convergence time [31],
which fails to satisfy the need for short flows. By considering
the architecture of JointCloud, we propose a congestion control
mechanism that works in a distributed manner, achieves higher
throughput and stability, and meets the demand for a cooperative
congestion control mechanism.

3. Overview of Vivace-Distributed

In this section, we will present the overall design of Vivace-
Distributed and explain why Nash Equilibrium is a suitable
approach for sharing network resources. As shown in Fig. 2,
Vivace-Distributed consists of four modules, a sending module,
a monitoring module, a utility module, and a rate control mod-
ule. The sending module is deployed on the Control Panel of
the PCM and is responsible for handling the details of com-
munication between clouds by controlling the cloud’s sending
rates. The remaining three modules are deployed on Information
Panel; which facilitates communication among different panels in
PCM and communicate with JCCE. During data transmission, the
monitoring module collects packet-level events and aggregative
variables from JCCE; The utility module then summarizes these
metrics in the form of a numeric utility value, which is associated
with the corresponding sending rate in the rate control module.
Based on the relationships between different sending rates and
their corresponding utility values, the rate control module adjusts
sending rates towards the direction that maximizes utility. To
test different sending rates, Vivace-Distributed divides time into
successive time periods called Monitor Intervals (MIs), which are
typically one or two RTTs in length.

As shown in Fig. 2., rate control module is activated when a
sender starts sending data. The sender sends data at an initial

J. Shi, B. Yi, X. Wang et al. Future Generation Computer Systems 149 (2023) 317–329

r
b
t
i
i
g
t
m
u
s
s
t

a
o
o
i
m

D
s
w
p
t
i
e
t
i
e
c
g
s
i
i

s
i
e
u
r
w
b
o
f
t
o
b
w
E
E
w
M
d
w
f
i

w
d
o
a
m
S
t
c
p
W
t

d
l
f
t
u

w
t
t
s
p
t

T

c
C

ate, and as packets are received by the receiver, SACK is sent
ack to the sender. The monitoring module utilizes the timestamp
o compute RTT, loss rate and other performance metrics in this
nterval. Simultaneously, the receiver computes the throughput
n this interval and sends it to JCCE. JCCE computes the ag-
regative variable from the performance metrics of receivers,
he aggregative variable is then sent to each sender. After the
onitoring module has received all the performance metrics, the
tility module computes the utility value in this interval, and
ends it to the rate control module for deciding the next interval’s
ending rates. Each sending module adjusts the sending rate in
he direction that maximize its own utility value.

We adopt the utility-based approach attributed to its high
vailability. The utility module allows for utility functions based
n different performance metrics, which can be determined based
n the requirements of different cloud services. The flexibility
n selecting performance metrics ensures high availability with
inimal overhead.
To share network resources in a cooperative manner, Vivace-

istributed introduces aggregative variable [5]. We formulate
haring of network resources among clouds as a social game, in
hich all clouds try to maximize their own utility values. The
roposed algorithm utilizes global online optimization to reach
he Nash Equilibrium of the social game, where local information
s exchanged among clouds. However, it is important to note that
ach individual cloud can only access partial information about
he global problem, which may be private to the cloud. Therefore,
t is important to choose a mechanism that supports global coop-
ration while guaranteeing data privacy. Thus, we choose JCCE to
ompute the aggregative variable since it is designed to support
lobal cooperation, while guaranteeing data privacy. The clouds
end their own decision variables to JCCE, the aggregative variable
s then computed by the JCCE and sent back to each cloud which
s later involved in each local utility value.

Nash Equilibrium is a concept in game theory that describes a
tate in which each player makes a decision based on their own
nterests, taking into account the decisions of other players. Nash
quilibrium is suitable to network resources sharing, because
nder the Nash equilibrium, each sender’s strategy is the best
esponse to the strategies chosen by the other senders. In other
ords, this means that no sender can improve their utility value
y unilaterally changing their strategy, given the strategies of the
ther players. Nash Equilibrium is a suitable for sharing resources
or two main reasons. Firstly, the mechanism works coopera-
ively, with the aggregative variable representing the decisions
f other players, which is consistent with the scenario described
y the Nash Equilibrium. This ensures that the allocation of net-
ork resources can always achieve a stable point. Secondly, Nash
quilibrium provides a fair and efficient way to allocate resources.
ach cloud can make decisions based on its own utility function,
hich can be determined by its specific needs and constraints.
oreover, the unique Nash equilibrium prevents any cloud from
eviating from the equilibrium strategy to gain an advantage,
hich could lead to congestion and reduce performance. There-

ore, using Nash Equilibrium to model network resources sharing
s a good approach that ensures fairness, efficiency and stability.

Under the architecture described above, two problems arise,
hich are discussed in the following sections. Firstly, we need to
esign a new utility function with an aggregative variable. For
ur new utility function, we employ a game-theoretic analysis
nd show that a unique Nash Equilibrium always exists, which
eets the requirements for a fair share of network resources.
econdly, we need to choose an appropriate variable to represent
he global state of the network. We choose the average of all
louds’ throughput as the aggregative variable reflects the overall
erformance of the network while also be simple to compute.
e also evaluate the performance of the aggregative variable

heoretically.
320
Fig. 2. Architecture of Vivace-Distributed.

4. Utility design of Vivace-Distributed

In this section, we will introduce the utility function utilized
by Vivace-Distributed. We first introduce the key metrics em-
ployed by the utility function, then analyze the existence of the
Nash Equilibrium and the stability of the utility function upon
convergence.

4.1. Utility framework of Vivace-Distributed

Vivace-Distributed divides time into successive Monitor Inter-
vals (MIs). Clouds use the utility function in Eq. (1) to convert the
performance metrics collected at the MI into a numerical utility
value,

u
(
xi, Tavg ,

d(RTTi)
dT

, Li

)
=xti + dTavg − bxi

d(RTTi)
dT

− cxi × Li
(1)

In the utility function, t, d, b, c are constants, xi represents the
sending rate of cloud i, Tavg is the average throughput of all clouds
in this MI, and Li is loss rate observed in this MI. The term
(RTTi)/dT represents the ‘‘RTT gradient’’ which indicates how
atency changes. Average throughput is integrated into the utility
unction as a new reward since the utility function is too sensitive
o latency and packet loss. We intend to add a new reward to the
tility function to reduce the impact of the RTT gradient.
To model the competition among clouds, we consider a net-

ork with a set of N of n clouds. Let X = (x1,, xn) denote
he vector that describes all clouds’ sending rates, C represents
he capacity of the bottleneck link, and S represents the total
ending rate of all the senders (S =

∑
i∈N xi). To simplify the

roof, we assume that the packet size is 1. Therefore, the average
hroughput can be defined by,

avg =

{
S/n,

∑
i∈N xi < C

C, otherwise
(2)

Assuming the tail drop queue, the bottleneck queue size
hanges at a rate of S − C , since the queue drains at a rate of
, the term d(RTTi)/dT can be defined by,

d(RTTi)
=

∑
j∈Nxj (3)
dT C

J. Shi, B. Yi, X. Wang et al. Future Generation Computer Systems 149 (2023) 317–329

L

4

D
p

c
c
m
s
e

D
t
o

a
t
p
g

T
a
i
c

p
p
a
b
f
r
f

The packet loss can be described as follows,

i =

{(
1 −

C∑
i∈N xi

)
,

∑
i xi > C

0, otherwise
(4)

Hence, the utility function can be described as follows,

u =

{
xti + d S

n − bxi
∑

j∈Nxj−C
C ,

∑
i xi < C

xti + dC − bxi
∑

j∈Nxj−C
C − cxi

(
1 −

C
S

)
, otherwise

(5)

.2. Nash equilibrium

efinition 1. A socially concave game is defined by the following
roperties of the player’s utility function:

1. Each player’s utility is convex in the player’s strategy.
2. The sum of the utilities of all players is concave in the

strategies of all players.
3. The utility of each player is convex in the strategies of the

other players.

A strictly socially concave game [32] is a subclass of socially
oncave games in which the utility function satisfies at least one
ondition of a socially concave game in a strict manner, which
eans that either strict convexity or strict concavity is satisfied. A
trictly socially concave game admits a unique Nash equilibrium,
nsuring that the game converges to a stable point.

efinition 2. A no-regret algorithm is an algorithm that guaran-
ees an average payoff that is at least the payoff induced by the
ptimal action in hindsight.

Zinkevich [33] proved that a gradient descent algorithm with
bounded derivative defined on a convex utility function satisfies
he no-regret property. The no-regret property has essential im-
lications for the design of algorithms, as it provides a theoretical
uarantee of convergence to the Nash Equilibrium.

heorem 1. When there are n Vivace-Distributed senders sharing
bottleneck link in the network if each sender’s utility function

s defined as Eq. (1), all senders’ sending rates converge to the
onfiguration (x∗

1, x
∗

2,, x
∗
n) which satisfies x∗

1 = x∗

2 = · · · .x∗
n.

The utility function is composed of performance metrics and
arameters. As for the choice of performance metrics, while other
erformance metrics can be utilized to the utility function as long
s they are relevant to the property being evaluated. However, we
elieve that RTT-gradient, loss rate and throughput are suitable
or congestion control, as these metrics provide an intuitive rep-
esentation of the network condition. As for the choice of values
or parameters, d, b, c and t in the utility function have crucial
implications for the existence of the Nash Equilibrium when
multiple senders compete. In summary, the properties stated in
Theorem 1 are based solely on the properties of the player’s
utility function, only the choice of utility functions is determined
exogenously. Although other utility functions can also be utilized,
we believe that the proposed utility function is appropriate for
the JointCloud environment.

Proof. A Strictly socially concave game admits a unique Nash
Equilibrium. Moreover, Even-Dar et al. [34] proved that any no-
regret [35] algorithm in a socially concave game will converge
to the Nash equilibrium of the game. Therefore, it is essential to
demonstrate that the three properties outlined in the theorem are

satisfied.

321
1. The first property that the utility function of each player is
convex in the player’s own strategy can be proved by taking
the second derivative of the utility function. The second
derivative of the utility function is,

d2u(xi)
d2(xi)

= t(t − 1)xt−2
i − 2

b
C

− cC
2S(S − xi)

S4
(6)

It is obvious that When 0 < t < 1, the utility function
is convex in its strategy. Therefore, the constraint on t is
0 < t < 1.

2. The sum of all utility functions is strictly concave in X =

(x1, x2,, xn). The sum of the utility function is,

U(X) =

∑
i

u(xi) =

∑
i

(xti + dTavg − cxi(1 −
C
S
)

− bxi

∑
j∈N xj − C

C
)

=

∑
i

xti + dnS − cS
(
S − C
C

)
− bS

(
1 −

C
S

) (7)

Since S is a linear function of X , we only need to prove that
U(X) is concave in S. The second derivative of U(X) is,

d2U(X)
dS2

=
d2
∑

i x
t
i

dS2
−

2(b + c)
C

(8)

Based on the proof of the first property, we know that
0 < t < 1. In this instance, xti is a concave function. Thus,
we can conclude that d2

∑
i x

t
i /dS

2 < 0. The second term
−2(b + c)/C is a negative constant. Therefore, the utility
function is strictly concave in X = (x1,xn).

3. In other senders’ strategies, the utility function is convex.
Let x−i denotes x−i = (x1,xi−1, xi+1,, xn), and ri
represents ri =

∑
j̸=i xj. Since ri is a linear variation of

x−i, thus, the utility function only needs to be convex in
ri. To simplify the subsequent proof, we rewrite the utility
function as follows,

u(xi, ri) = xti + d
C
n

− bxi
xi + r − C

C
− cxi

(
1 −

C
xi + ri

)
(9)

We take the second derivative,

d2u(xi, ri)
dr2i

= cxi
C
S3

(10)

Since cxiC/S3 > 0, it is obvious that property 3 is held in a
strict manner.

Therefore, our proposed utility function satisfies the condi-
tions of a strictly social concave game, resulting in a unique Nash
Equilibrium. This ensures that the mechanism is effective and
efficient when multiple sender competing for network resources.

4.3. Stability upon convergence

Ideally, during convergence, the latency should not exceed the
base RTT when the buffer is empty. Theorem 2 demonstrates how
Vivace-Distributed provides a sufficient condition for avoiding
latency inflation at convergence. This condition ensures that the
congestion control mechanism achieves a low latency, leading to
a high performance.

Theorem 2. The latency measured at the stable point is the base RTT
of the link if the term b and d satisfies (b − d) ≥ tn2−tC t−1

Proof. First, it is evident that if b is a large constant, the latency
would be a large penalty in the utility function, and any increase

J. Shi, B. Yi, X. Wang et al. Future Generation Computer Systems 149 (2023) 317–329

i
p
r
o
u
i
c
t

T

t

s

t

D
f
c

t
R
w
i
t
s
q
w
c
s
t
s
f
i

c
r
r
t
p
u
i
c
r
i
p
w
i
b
a
T
t
d
p
u
t
w
i
a
s

5

w
g
e
t
e
r
c
t
d
W
l
h

u
t
f

n latency would lead to a large decrease in the utility value. In
articular, an ideal coefficient b can make the sum of all clouds’
ate will always decrease. As the change in the sending rates
f a cloud is proportional to the change in the gradient of its
tility function, the sum of all clouds’ sending rates changes is
n proportion to the sum of all the gradients of the utility of all
louds. Hence, we use xSi to represent cloud i’s sending rate at
he beginning of MI, and xEi denotes the sending rate of cloud
i at the end of the MI. We aim to find a value of b such that∑

i(x
E
i − xSi) < 0. We make the assumption that the buffer is

not empty upon convergence since when the buffer is empty,
there is obviously no latency inflation (there is even no latency).
Therefore, we take the sum of all utility gradients, and set it to be
less than zero to ensure a reduction in the sum of sending rates.∑

i

(xEi − xSi) ∝

∑
i

dui

dx

=

∑
i

(
txti − i +

d
n

−
d
dxi

(
bxi(xi + ri − C)

C

))
=

∑
i

(
txt−i

i +
d
n

− b
(xi + ri − C)

C
− b

xi
C

)

≤

∑
i

(
t
(
S
n

)t−1

+
d
n

− b
S
C

+ b − b
xi
C

)

= tn2−tSt−1
− b

(n + 1)S
C

+ nb + d

(11)

herefore,

n2−tSt−1
− b

(n + 1)S
C

+ nb + d < 0 (12)

And then,

tn2−tSt−1
+ d

S(n+1)
C − n

< b (13)

In order to find the lower bound of parameter b, we set S = C
ince the queue is always not empty, so S > c.

tn2−tC t−1
+ d ≤ b (14)

n2−tC t−1
≤ (b − d) (15)

5. Analyses of the aggregative variable

5.1. The selection of aggregative variable

As discussed in Section 1, an ideal performance metric for
the aggregative variable should not only be an indication of
a single cloud’s congestion for the time being, but also con-
sider competition among clouds. The implication is twofold. First,
when a TCP connection between clouds is freed, the aggrega-
tive variable should encourage existing connections to take over
under-utilized capacity. Second, when a new TCP connection is
established, the bottleneck buffer is already full; and the selected
aggregative variable should identify and react to the newly estab-
lished TCP connection, freeing up capacity taken by the existing
connection. Finally, the aggregative variable should ensure quick
convergence to the stable sending rate. Based on that intuition,
we have chosen average throughput as the aggregative variable.
Average throughput is calculated as the average of all clouds’
throughput within an MI, and it works as an intuitive indicator for
flow competition. As if one flow experiences unfairness or high
packet loss, the average throughput decreases sharply.

˜Throughput =

∑
(Deliveredi)/n (16)
i

322
n represents the number of clouds sharing the capacity, and
eliveredi represents the amount of data transmitted success-
ully (i.e., data that has been acknowledged by the receiver) by
loud i.
Achieving maximum bandwidth in the shortest possible round

rip time is crucial due to the availability of gigabit bandwidth.
ecent research [36] has revealed that most short flows, such as
eb search, fail to reach their highest sending rates, resulting

n under-utilization of available bandwidth. We have observed
hat the utility-based architecture slows down the convergence
peed. Assuming a cloud attempts to send data at a rate that the
ueue is built, but far from full, then there exists a queuing delay;
hich will be penalized due to the increase RTT. As a result, the
loud slows down the rate’s increasing speed and results in a
low convergence. Thus, we aim to find the aggregative variable
hat acts as a reward in the utility function during the initial
tage of a TCP connection, while simultaneously preventing a
low from taking too much capacity when new TCP connection
s established.

Average throughput is a suitable performance metric as it
aptures good throughput and reflects the usage of network
esources. As long as the flows actively increase the sending
ates instead of blindly speeding up the transmission, the average
hroughput increases leading to a higher utility value. For exam-
le, when competing flows stop transmitting, bandwidth is freed
p, resulting in a decrease in the RTT gradient and an increase
n utility value, which drives the flows to take under-utilized
apacity. As a result, the average throughput increases as network
esources allocated to a flow increases. This leads to a faster
ncrease in utility value, resulting in a faster convergence to stable
oint. In addition, average throughput is also suitable in scenarios
here a new TCP connection is established between clouds. For

nstance, when several flows already reached a stable point, the
uffer is already full, and most network resources are already
llocated to existing flows, a new TCP connection is established.
he newly established TCP connection will induce an increase in
he number of existing TCP connections, resulting in a significant
ecrease in average throughput. In such cases, a sufficiently large
enalty will lead the clouds to reduce their sending rates and free
p capacity for the newly established connection. Overall, average
hroughput serves as a reliable indicator for network resources,
hile, it is important to note that average throughput may not be

deal for all requirements of an application. But we believe that
verage throughput is a suitable aggregative variable for most
cenarios.

.2. Performance analysis of the aggregative variable

Vivace-Distributed’ rate control begins with a startup phase in
hich the sender doubles its sending rates. When the utility value
radient becomes negative for the first time, Vivace-Distributed
xists slow start phase enters the online learning phase. Once
he slow start phase completes, Vivace-Distributed will never
nter the slow start again. Comparing the two phases, sending
ates increase much faster in the slow start phase. Thus, we
an conclude that a longer slow start phase results in a shorter
ime to reach the stable point. Therefore, we try to extend the
uration of the slow start phase through the aggregative variable.
e theoretically prove that, compared with the previous online-

earning based congestion control mechanism, Vivace-Distributed
as a longer slow start phase.
According to convex optimization theory, the first time the

tility function decreases, the first derivative of the utility func-
ion is equal to 0. We take take the first derivative of the utility
unction,
du(xi)

= txi − b
d(RTTi)

− cLi (17)

dxi dT

J. Shi, B. Yi, X. Wang et al. Future Generation Computer Systems 149 (2023) 317–329

O

V

t

Algorithm 1 Vivace-Distributed.

Input: sending rate of sender i in interval M: xMi
utput: sending rate of sender i in interval M + 2: xM+2

i
1: Randomly initialized
2: start sending packets
3: update RTTM

i ,RTT_gradientMi LMi , ThroughputMi
4: if Sending rate decrease throughput increase then
5: Try the same sending rate again
6: end if
7: send ThroughputMi to the JCCE
8: if aggregative_variable == 0 then
9: Keep waiting aggregative variable sent from the JCCE

10: end if
11: if RTT_gradientMi < fltlatency then
12: RTT_gradientMi = 0
13: end if
14: calculate the utility value uM

i
15: set sending rate in the next interval M + 1: xM+1

i (1 + ϵ)
16: calculate utility value uM+1

i
17: set sending rate in the next interval M + 2: xM+2

i (1 − ϵ)
18: calculate utility value uM+2

i
19: update the utility gradient: γM

i = (uM+2
i − uM+1

i /2ϵxMi)
20: if (γM−1

i > 0 ∧ γM
i > 0) then

21: τ = τ + 1
22: ∆r = (k ∗ τ + b) ∗ γM

i
23: Threshold = (ω0 + k ∗ δ) ∗ r
24: if ∆r > Threshold then
25: δ = δ + 1
26: xM+3

i = xi + Threshold
27: else
28: xM+3

i = xi + ∆r
29: end if
30: else if γM

i ∗ γM−1
i < 0 then

31: τ = 0
32: ∆r = (k ∗ τ + b) ∗ γM

i
33: Threshold = (ω0 + k ∗ δ) ∗ r
34: if ∆r > Threshold then
35: xMi + 2 = xi + Threshold
36: else
37: xMi + 2 = xi + δ ∗ r
38: end if
39: δ = 0
40: else if γM

i < 0 ∧ γM
i − 1 < 0 then

41: τ = τ + 1
42: ∆r = (k ∗ τ + b) ∗ γM

i
43: Threshold = (ω0 + k ∗ δ) ∗ r
44: if δr > Threshold then
45: δ = δ + 1
46: xMi + 2 = xi + Threshold
47: else
48: xMi + 2 = xi + δ ∗ r
49: end if
50: end if

Then, in theory we can determine the sending rates when

ivace-Distributed exists slow start phase.

xt−1
i +

d
n

− b
d(RTTi)
dT

− cLi = 0

xi =
t−1

√
b d(RTTi)

dT + cLi − d/n
(18)
t
323
Fig. 3. Function Image of Eq. (19) (t = 0.9).

The term d/n is determined by parameter d and the number
of flows.

Theorem 3. The duration of the slow start phase is determined by
the parameter d, where a larger value of d results in a longer slow
start phase.

Proof. To simplify the analysis, we rewrite Eq. (18). as follows,

xi =
t−1

√
Y
t

(19)

In this case, Y is regarded as the independent variable of the
function, and according to Theorem 1., the value of t lies between
0 and 1. The image of the new function is depicted in Fig. 3
(t = 0.9, which is used for our simulation experiments).

As depicted in Fig. 3, the function value experiences a rapid
decline within the range of 0–1, and becomes negative when
Y > 1. Therefore, it is apparent that,

0 < b
d(RTTi)
dT

+ cLi −
d
n

< 1 (20)

Therefore, the parameter d/n meets the following condition,

0 <
d
n

< 1 (21)

It can be observed from Fig. 3. that a smaller value of b ∗

d(RTTi)/dT + cLi −d/n corresponds to a higher threshold. A larger
value of d results in a smaller value of −d/n, which in turn
leads to a higher threshold. This implies that the user will exist
the slow start phase with a higher sending rate, resulting in a
shorter time required to reach the saturate bandwidth, leading
to high utilization. Therefore, the parameter d plays a crucial
role in determining the duration of the slow start phase. When
the number of senders n is small, the impact of d is significant.
However, as n → ∞, d/n approaches 0, which reduces the impact
of d and prevents the sender from naively increasing sending
rates.

6. Transition from utility values to sending rates

To convert the utility value into the sending rate, Vivace-
Distributed first computes the gradient of the utility function.
Assuming Vivace-Distributed’s sending rate in the interval is r ,
then Vivace-Distributed will adjust the rate of the following two

J. Shi, B. Yi, X. Wang et al. Future Generation Computer Systems 149 (2023) 317–329

i

t

γ

a
V
i

s
f

r
∆

θ

m

f
t
w
r

t
r
l
c
g

w
c

T
ω

δ
ω
t
r
r
e

a
t
i

i
V
l
f
w
i

e
c
r
l
T
r
c
m
a
d
p
a

ntervals to r(1 ± ϵ) where ϵ is the step size which is always a
conservatively small number. In the subsequent two MIs, Vivace-
Distributed computes the corresponding utility value u1 and u2,
hen the utility gradient is then calculated as,

=
u1 − u2

2ϵr
(22)

Vivace-Distributed then employs γ to determine the direction
nd magnitude of the rate change. To handle measurement noise,
ivace-Distributed employs a ‘‘confidence amplifier’’ to convert γ
nto rate changes.

The confidence amplifier starts with a relatively low ‘‘conver-
ation factor’’, which increases as the amplifier gains ‘‘confidence’’
rom its decision. The confidence amplifier works as follows,

new = r + θγ

r = θγ

= m(τ)θ0
(τ) = kτ + b

(23)

Specifically, θ0 is a conservatively small value, m(τ) is a linear
unction of τ with constants k and b. If a sender’s rate changes in
he same direction for τ consecutive MIs, θ is updated to m(τ)θ ;
hen the direction of the sending rate change has changed, τ is
eset to 0.

Additionally, the initial step size of sending rate may be po-
entially large, which may lead to an explosive growth in sending
ate(i.e., from 1 Mbps to 80 Mbps), causing long latency and high
oss rates. To prevent such overshooting of the bottleneck link’s
apacity, A dynamic change boundary is introduced to limit the
rowth in sending rate.
The change of sending rates is bounded by a threshold ωr;

hen rate change exceeds ωr , the upper limit of the actual rate
hange is ωr . The threshold is computed as follows,

hreshold = ωr
= ω0 + k ∗ δ

(24)

The parameter ω is initialized to ω0. After the threshold makes
consecutive changes in the same direction, the ω is updated to
= ω0+k∗δ, where k is a constant. The threshold increases when

he rate change exceeds the threshold and decreases when the
ate change is smaller than the threshold. When the direction of
ate adjustment changes, the k is reset to 0. Above all, the specific
xecution process of Vivace-Distributed is shown in Algorithm 1.
Accurate RTT and loss rate measurements typically require
long observation time; however, this will slow the reaction

o the changing environments. To address challenge, We have
mplemented a few mechanisms.

First, we set a threshold for RTT_gradient, as non-congestion-
nduced latency jitters always occur. The utility function used in
ivace-Distributed is sensitive to latency, and latency jitters may
ead to a misinformed decision. Therefore, we have set a threshold
or latency, where RTT gradient smaller than the threshold fltlatency
ill be treated as 0. This loss-pass filtering mechanism helps to

gnore small latency jitters caused by noise.
Second, we design a double-checking mechanism to address

xceptional cases. In General, we avoid predicting network
hanges, but even under a dynamic network, a higher sending
ate is unlikely to be the reason for a lower packet loss; more
ikely, such an observation is caused by measurement noise.
o address these exceptional cases, Vivace-Distributed will re-
un the same sending rate in the next interval; if the same
ondition occurs again, Vivace-Distributed will utilize the abnor-
al measurement; otherwise, it will abandon the measurement
nd utilize the measurement from the previous interval. This
ouble-checking mechanism helps to ensure that the observed
erformance metrics are not due to measurement noise and the
djustment are accurate.
324
Table 1
Vivace’s rate control default parameters.
Parameter Value

MI duration 1 RTT
sampling step ϵ 0.05
initial conversion factor θ0 1
initial dynamic boundary ω0 0.05
dynamic boundary increment δ 0.1
confidence amplifier m(τ) τ (τ ≤ 3),

2τ − 3(τ > 3)

7. Evaluation

We implement the design of the previous sections and set the
parameter t, d, b, c based on theoretical analysis. We set t = 0.9
to ensure that t < 1. We set b=1900 to achieve no inflation
latency when a thousand senders share a bottleneck. We set c =

11.35 to avoid the impact of up to 5% random loss, as proposed in
PCC-Vivace. We set d = 1000 to achieve the theoretically fastest
convergence speed when there are 1000 senders. We believe that
these parameter values are common set in real-world internet
scenarios, and note that the parameters can be adjusted to meet
the requirements of other networks. Unless stated otherwise, our
other parameters use the values in Table 1.
Setup. We conduct experiments in emulated JointCloud envi-
ronments, where one machine acts as JCCE, and other machines
act as clouds. We use different flows to emulate different ser-
vices, i.e., short flows are used for web searches, and long flows
are used for the live migration of virtual machines. We im-
plement CUBIC, BBR, and Reno in Linux kernel v4.10 [37]. We
then evaluate the performance of these algorithms in terms of
throughput, convergence time and other metrics under various
network conditions.

7.1. Utility function

We set up a bottleneck link with 100 Mbps bandwidth, 30 ms
RTT, 75 KB buffer, and varying random loss rates using Emu-
lab [38]. The utility value of Vivace-Distributed under different
random loss rates is shown in Fig. 4. As described above, during
the slow start phase, Vivace-Distributed doubles the sending
rate every MI, resulting in a rapid increase in the utility value.
However, the utility value under a higher loss rate is smaller than
that of a lower loss rate due to non-congestion loss. The random
loss is a penalty to the utility value and reduces the increasing
speed; however, the buffer is far from full, and the utility value
keeps increasing, leading to increasing sending rates. However, at
around the 27th interval, the buffer becomes full, and nearly all
packets are dropped in this interval resulting in a negative utility
value. As a result, the utility value decreases for the first time,
and Vivace-Distributed exists the slow start phase and enters the
online learning phase. As shown in Fig. 4, Vivace takes around
42 intervals to reach the stable point under 3% loss and around
66 intervals under 5% loss. At around 3 s, Vivace-Distributed
converges to the stable point, and the utility value under 5% loss
is smaller than that of the lower loss due to the higher non-
congestion loss. As expected, the RTT gradient approaches 0 at the
stable point; Vivace-Distributed tries to reduce its rates to reduce
loss and thus achieves a lower sending rate and, as a result, a
lower utility value.

Occasionally, measurement noise can cause abnormal
increases in utility value; as illustrated above, the confident am-
plifier prevents Vivace-Distributed from varying a lot in sending
rates (e.g., from 70 Mbps to 150 Mbps). The confident amplifier
helps to stabilize the utility value by reducing the impact of
measurement noise.

J. Shi, B. Yi, X. Wang et al. Future Generation Computer Systems 149 (2023) 317–329

7

b
r
r

Fig. 4. Value of utility function.

Fig. 5. Sending rate.

Fig. 6. Random loss resilience.

.2. Sending rates

We use Emulab to set up an emulated link with 100 Mbps
andwidth, 30 ms RTT, 75 KB buffer, and varying random loss
ates. Fig. 5 shows the sending rates achieved under different
andom loss rates. As shown in Fig. 5, Vivace-Distributed doubles
325
its sending rates in the slow start phase. Corresponding to the
utility value of Vivace-Distributed shown in Fig. 4., at about 0.9 s,
Vivace-Distributed exists slow stars, and the sending rates drop to
130 Mbps, which also exceeds the bottleneck link’s capacity. After
that point, the buffer is full, and packet loss occurs, resulting in a
sharp decrease in sending rates to drain the queue. Then Vivace-
Distributed enters the online learning phase; during which it
takes about 27 intervals to reach the stable point under 3% loss.
At the stable point, Vivace-Distributed sends at around 110 Mbps,
which is able to utilize all the bandwidth and the buffer. Under 5%
loss, Vivace-Distributed takes about 40 intervals to reach the sta-
ble sending rate. Due to non-congestion loss, Vivace-Distributed’s
sending rates jitters, resulting in a long time to the stable point.

As we analyzed in Section 5, the aggregative variable extends
the duration of the slow phase; Vivace-Distributed exists the
slow start phase in a sending rate that exceeds the capacity of
bandwidth and utilizes all network resources. Although Vivace-
Distributed works aggressively, the aggregative variable acts as a
significant penalty when there are other flows in the network;
Vivace-Distributed can also achieve perfect TCP friendliness.

Our experimental results demonstrates that Vivace-Distributed
is a highly effective congestion control mechanism. Specifically,
our experiments show that Vivace-Distributed always enters on-
line learning phase in a sending rate that exceed the capacity of
link. This means that Vivace-Distributed’s online-learning phase
only needs to adjust its sending rates to a stable point that utilizes
all network resources, rather than probing for more bandwidth.
This results in high utilization. The performance of sending rates
demonstrates that Vivace-Distributed satisfies the criteria for a
congestion control mechanism that is both highly efficient and
stable.

7.3. Resilience to random loss

Using Emulab, we evaluate the throughput of different con-
gestion control mechanisms with a single flow on the link with
100 Mbps bandwidth, 30 ms RTT, and varying random loss rates.
We run a flow for 30 s (much longer than needed for conver-
gence) ten times and take the average of ten runs as the through-
put of each mechanism. We also evaluate the standard deviation
of ten times simulations to access the stability of each mecha-
nism. As depicted in Fig. 6, both Vivace and Vivace-Distributed
utilize over 90% of the available bandwidth when the random
loss rate is less than 3%; Vivace’s average throughput remains
nearly 60 Mbps when the random loss rate is 4%. However, as
shown in Fig. 7, Vivace suffers from burst losses, which caused
the average throughput to sometimes drop to as low as 1/10 of
the link capacity. The utility function may sometimes be trapped
at a local optimum due to random losses, resulting in low net-
work bandwidth utilization. After that point, corresponding to
the proof proposed in PCC-Vivace, when the random loss rate is
6%, the average throughput of Vivace can range from 6 Mbps to
63 Mbps, with most time utilizing only 1/10 of the bandwidth.
In contrast, Vivace-Distributed’s average throughput in the 30 s
also decreases as the random loss rate increases. When the ran-
dom loss rate is 4%, Vivace-Distributed ’s average throughput
drops to 88 Mbps. However, Vivace-Distributed’s stability is much
better, with a smaller standard deviation than that of Vivace.
Conventional congestion control mechanisms have a small stan-
dard deviation, but their throughput is always less than 1 Mbps,
which we think is the reason why their standard deviation is
small. Compared with previous online-learning based mechanism
Vivace, the newly introduced aggregative variable results in a
larger utility gradient, which reduces the probability of being
trapped in the local optimum. This improves the stability of the
mechanism.

J. Shi, B. Yi, X. Wang et al. Future Generation Computer Systems 149 (2023) 317–329

b

c
R
t
t
e
t
o
b
t
s
C
e
f
5
V
8
w
D
q
a
D
a

Fig. 7. Stability of throughput.

BBR’s average throughput remains 90 Mbps until a 15% ran-
dom loss; Vivace-Distributed can achieve the same random loss
resilience by adjusting the parameter c . However, our experi-
ments show that BBR’s higher loss resilience induces comparable
congestion loss with multiple competing flows, which we think
is not reasonable for the network.

7.4. Convergence properties

In this part, we demonstrate that Vivace-Distributed improves
the convergence speed by extending the duration of the slow
start phase compared to existing mechanisms. We evaluate the
convergence time and duration of the slow start for different
mechanisms on a link with 100 Mbps bottleneck bandwidth,
30 ms RTT, and varying random loss rates.

7.4.1. Convergence speed
To evaluate the convergence time, we let a flow runs for

10 s, which is significantly longer than needed for convergence.
The convergence time is defined as the time it takes from the
flow’s entry to the earliest time, after which the difference in
throughput of two MIs is within ±25% of its ideal share of
andwidth.
Fig. 10 illustrates the convergence time of different congestion

ontrol mechanisms; when there is no random loss, Cubic and
eno take only about 1.5 s to reach the stable point. However, due
o the ‘‘RTT Derivation’’ in the utility function, PCC-Vivace finds
hat it can reduce RTT by reducing its rate, causing it to back off
ven when there is no competition and taking nearly 4 s to reach
he stable point. As shown in Fig. 5., Vivace-Distributed enters
nline learning phase with a sending rate much higher than the
andwidth, resulting in a higher convergence speed. This is due
o the newly integrated variable, which delays the exit from the
low start phase. When there are random losses in the network,
UBIC and Reno remain taking about 3 s to the stable point. How-
ver, experiments show that their high convergence speed results
rom low bandwidth utilization. When there is random loss, only
% bandwidth is utilized by Reno and CUBIC. In comparison,
ivace-Distributed takes about 4 s to the stable point but utilizes
5% of the network bandwidth. At the same time, compared
ith previous online-learning based mechanism Vivace, Vivace-
istributed achieve the same bandwidth utilization with a much
uicker convergence time. Due to the aggregative variable acting
s a reward in the utility function upon convergence, Vivace-
istributed has a longer slow start phase compared with Vivace
nd other mechanisms, which is shown in the following section.
326
7.4.2. Duration of slow start phase
Comparing the slow start phase with other phases, we ob-

served that a sender takes network bandwidth more aggressively
during slow start; Thus, our design mimics the way traditional
congestion control behaves at the start stage, but instead of
implementing a more aggressive slow-start algorithm, we aim to
extend the duration of the slow start phase.

In CUBIC and Reno’s slow start phase, the source sends twice
of last time’s sending packets every time an ACK is received.
The slow start phase ends when the window reaches a certain
level called the slow start threshold. When there is a loss, the
slow start threshold is halved. However, due to non-congestion
loss, the threshold is also halved even when there is no con-
gestion loss. As a result, senders exist slow start phase with a
low sending rate. As shown in Fig. 9(a), Fig. 9(b), and Fig. 9(c),
when there is non-congestion loss, CUBIC and Reno’s slow start
phase lasts for 0.3 s, as the loss rate increases, it decreases
to 0.2 s. In comparison, the utility-based mechanisms have a
much longer slow start phase. Vivace’s slow start lasts for 0.8 s
when there is a 1% loss and 0.6 s when there is a 5% loss.
Compared with Vivace, Vivace-Distributed’s slow start lasts for
nearly 0.9 s, and is not affected by random packet loss. Due
to the aggregative variable, Vivace-Distributed is more certain
whether the loss is loss-induced congestion or not; the utility
value remains increasing for a longer time, resulting in a longer
slow start phase.

We do not evaluate BBR because BBR uses startup instead of
the slow start, in which sending rates increase much faster than
in slow start. This may result in a much lower TCP friendliness
which we think is unsuitable for the real-world Internet.

As analyzed above, Vivace already has twice the duration of
CUBIC and Reno’s slow start phase to 0.6 s due to its utility-based
architecture. Compared with Vivace, Vivace-Distributed further
extends the duration of the slow start phase to 0.9 s. Although
only 0.3 s is extended, the sending rate may be much higher, since
the sending rate is double every time. We believe that extend-
ing the duration of slow start phase is more suitable as when
more flows are competing for network resources, the duration
of slow start can also be determined by the competition among
flows. Thus, we believe Vivace-Distributed is a suitable solution
to JointCloud environment.

7.5. Throughput of different flows

To evaluate the performance in JointCloud environment, we
use Emulab to set up an emulated link with 100 Mbps bandwidth,
30 ms RTT, 75 KB buffer, and 1%, 3%, 5% random loss rate. To
emulate different JointCloud services (i.e., data transmission, web
search), we set up different TCP connections lasting for 0.5, 1 s,
2 s, 5 s, 10 s, and 20 s. As shown in Fig. 8(a), Fig. 8(b), and Fig. 8(c),
when there is random loss in the network, CUBIC and Reno suffer
from random loss. Conventional rule-based congestion control
mechanisms suffer from notoriously bad performance due to
non-congestion packet loss. The throughput of the conventional
rule-based mechanism remains less than 2 Mbps, and only 1/50
of the bandwidth is utilized. The utility-based architecture shows
the advantage of enduring random packet loss, which gains a
20–50× throughput over traditional rule-based CC mechanisms.

Compared with PCC-Vivace, the proposed Vivace-Distributed
achieves a higher utilization of network resources, especially
for short flows. Results from Fig. 8(a), Fig. 8(b), and Fig. 8(c),
show that when a short flow lasts for 1-10 s, Vivace-Distributed
achieves a 30% higher throughput compared to Vivace. This is
mainly due to Vivace-Distributed existing the slow start phase
with a higher sending rate. Furthermore, in the online-learning
phase, aggregative variable acts as a newly integrated reward,

J. Shi, B. Yi, X. Wang et al. Future Generation Computer Systems 149 (2023) 317–329

w
W
a
p
t
m
l
l
u
f

7

u

Fig. 8. Throughput of different flows.
Fig. 9. Duration of slow start.
7
V
i
f
t
t
s
i
a
a
n
u
n
o

Fig. 10. Temporal behavior of convergence.

hich leads to a quicker convergence to the Nash Equilibrium.
hen a flow lasts for more than 10 s, Vivace-Distributed achieves
12% higher throughput at 1% random loss rate and 2× higher
erformance at 5% random loss rate. When a flow lasts for more
han 10 s, 10 s is apparently longer than converge time, which
eans that both Vivace and Vivace have achieved the Nash Equi-

ibrium and the throughout is mainly affected by non-congestion
oss. However, due to the new reward in Vivace-Distributed’s
tility function, Vivace-Distributed has a higher recovery speed
rom non-congestion loss and achieves a better performance.

.6. TCP friendliness

To evaluate the TCP friendliness of different mechanisms, we
se a bottleneck link with 30 ms RTT, 100 Mbps bandwidth, and
 s

327
Fig. 11. TCP Friendliness.

5 KB buffer. One flow utilizing a new mechanism (PCC-Vivace,
ivace-Distributed, or BBR) shares bandwidth with an increas-
ng number of CUBIC flows. We choose CUBIC as the primary
low since it is the default congestion control mechanism for
he Linux kernel, which we believe is the most widely used in
oday’s network. Under this circumstance, all competing flows
hare a bandwidth of 100 Mbps, and as the number of flows
ncreases, total bandwidth and buffer size are not increased. We
im to test whether different mechanisms are able to back off
nd release their network resources for newly established con-
ections. In real-world Internet scenarios, the bandwidth remains
nchanged for a long time. Thus, if a flow utilizes too many
etwork resources for a long time, congestion-induced loss will
ccur, leading to a bad performance for competing flows. Fig. 11
hows the ratio between the throughput of the flow utilizing the

J. Shi, B. Yi, X. Wang et al. Future Generation Computer Systems 149 (2023) 317–329

n
A
r
i

V
V
e
p
o
c
m
D
u
a
n
i
r
f
i

d
s
D
a
r
t
l
D
w
u
I
c

8

m
D
t
i
V
t
a
D
t
d
v
t
p
t

C

t
–
s

v
r

D

D

A

s
a
9

R

ew mechanism, and the average throughput of the CUBIC flows.
ratio of 1 indicates perfect friendliness, indicating that network

esources are shared fairly among different flows. A large ratio
ndicates aggressiveness towards CUBIC.

As shown in Fig. 11, when there are only a few CUBIC flows,
ivace backs off, even though the queue is not always full, as
ivace finds that it can reduce the RTT by reducing its rate. How-
ver, as more TCP connections are established, Vivace achieves
erfect friendliness. Vivace is too conservative when the number
f competing flows is small, which is inappropriate for many
loud services. Compared to Vivace, Vivace-Distributed works
ore aggressively when there is no competition in JointCloud.
ue to the aggregative variable, Vivace-Distributed takes under-
tilized bandwidth actively. As more and more competing flows
re established, Vivace-Distributed also achieves perfect friendli-
ess. As the number of flows increases, the aggregative variable
n Vivace-Distributed prevents it from taking too many network
esources. As a result, Vivace-Distributed also achieves perfect
riendliness. The ratio is slightly less than 1 since non-congestion-
nduced latency jitters often occur.

The throughput tests on different emulated cloud services in-
icate that Vivace-Distributed outperforms Vivace, especially on
hort flows. The throughput ratio also demonstrates that Vivace-
istributed not only takes over under-utilized bandwidth but
lso frees up capacity for newly established connections. The
esults show that Vivace-Distributed is more aggressive when
here are no competing flows, but it also achieves perfect friend-
iness as the number of flows increases. In summary, Vivace-
istributed is able to balance its aggressiveness with fairness,
hich is crucial for cloud services that require efficient resource
tilization while maintaining fairness among competing flows.
t meets JointCloud’s requirements for a high efficient and fair
ongestion control mechanism.

. Conclusion

We proposed Vivace-Distributed, a novel congestion control
echanism designed for JointCloud environments. Vivace-
istributed leverages distributed online learning with an aggrega-
ive variable that represents the decisions of all senders, working
n a distributed manner. Our theoretical analysis establishes that
ivace-Distributed can always achieve a Nash Equilibrium. Ex-
ensive experiments further demonstrate that Vivace-Distributed
chieves a stable point. Due to the aggregative variable, Vivace-
istributed has a higher convergence speed and achieves a higher
hroughput especially for short flows through extending the
uration of slow start phase. Overall, Vivace-Distributed pro-
ides valuable insights into the development of congestion con-
rol mechanisms for JointCloud environments. In the future, We
lan to integrate Vivace-Distributed into emulators such as Pan-
heon [39] and production systems such as QUIC [40].

RediT authorship contribution statement

Jianzhi Shi: Conceptualization, Methodology, Software, Writ-
ing – original draft. Bo Yi: Writing – review & editing, Visualiza-
ion, Supervision, Funding acquisition. Xingwei Wang: Writing
review & editing, Visualization, Supervision, Funding acqui-

ition. Min Huang: Writing – review & editing, Visualization,
Supervision, Funding acquisition. Peichen Li: Data curation, In-
estigation. Chao Zeng: Validation, Resources. Keqin Li:Writing –
eview & editing, Visualization, Supervision, Funding acquisition.

eclaration of competing interest

No potential conflict of interest was reported by the authors.
328
ata availability

Data will be made available on request.

cknowledgments

This work was supported in part by the National Key Re-
earch and Development Program of China (2022YFB4500800),
nd the National Natural Science Foundation of China (62032013,
2267206).

eferences

[1] Shangquan Gao, Economic globalization: trends, risks and risk prevention,
in: Economic & Social Affairs, CDP Backround Paper, Vol. 1, 2000.

[2] H. Wang, P. Shi, Y. Zhang, Jointcloud: A cross-cloud cooperation archi-
tecture for integrated internet service customization, in: 2017 IEEE 37th
International Conference on Distributed Computing Systems, ICDCS, IEEE,
2017, pp. 1846–1855.

[3] T. Zhang, S. Mao, Machine learning for end-to-end congestion control, IEEE
Commun. Mag. 58 (6) (2020) 52–57.

[4] M. Akbari, B. Gharesifard, T. Linder, Distributed online convex optimization
on time-varying directed graphs, IEEE Trans. Control Netw. Syst. 4 (3)
(2015) 417–428.

[5] X. Li, X. Yi, L. Xie, Distributed online convex optimization with an
aggregative variable, IEEE Trans. Control Netw. Syst. 9 (1) (2021) 438–449.

[6] M. Wu, Z. Mi, Y. Xia, A survey on serverless computing and its implications
for jointcloud computing, in: 2020 IEEE International Conference on Joint
Cloud Computing, IEEE, 2020, pp. 94–101.

[7] M. Guzek, A. Gniewek, P. Bouvry, et al., Cloud brokering: Current practices
and upcoming challenges, IEEE Cloud Comput. 2 (2) (2015) 40–47.

[8] H. Yang, J. Yuan, H. Yao, et al., Blockchain-based hierarchical trust
networking for JointCloud, IEEE Internet Things J. 7 (3) (2019) 1667–1677.

[9] P.B. Velloso, D.C. Morales, T.M.T. Nguyen, et al., BASICS: A multi-blockchain
approach for securing VM migration in joint-cloud systems, in: 2023 IEEE
20th Consumer Communications & Networking Conference, CCNC, IEEE,
2023, pp. 523–528.

[10] Z. Huang, Z. Mi, Z. Hua, HCloud: A trusted JointCloud serverless platform
for IoT systems with blockchain, China Commun. 17 (9) (2020) 1–10.

[11] H. Yang, J. Yuan, H. Yao, et al., Blockchain-based hierarchical trust
networking for JointCloud, IEEE Internet Things J. 7 (3) (2019) 1667–1677.

[12] B. Yin, L. Mei, Z. Jiang, et al., Joint cloud collaboration mechanism between
vehicle clouds based on blockchain, in: 2019 IEEE International Conference
on Service-Oriented System Engineering, SOSE, IEEE, 2019, pp. 227–2275.

[13] Microsoft hybrid cloud. https://www.microsoft.com/en-us/cloud/platform/
hybrid-cloud.

[14] VMware ahybrid cloud solutions. http://www.vmware.com/content/
dam/digitalmarketing/vmware/en/pdf/brochure/vmware-hybrid-cloud-
brochure.pdf.

[15] Virtual Extensible Local Area network (VXLAN): A framework for overlay-
ing virtualized layer 2 networks over layer 3 networks, in: IETF RFC 7348,
2014, Aug.

[16] K. Yuan, F. Wang, Z. Marszalek, A delay-tolerant data congestion avoidance
algorithm for enterprise cloud system based on modular computing, Mob.
Netw. Appl. (2022) 1–11.

[17] R. Karthikeyan, V. Balamurugan, R. Cyriac, et al., COSCO2: AI-augmented
evolutionary algorithm based workload prediction framework for sustain-
able cloud data centers, Trans. Emerg. Telecommun. Technol. 34 (1) (2023)
e4652.

[18] R. Al-Saadi, G. Armitage, J. But, et al., A survey of delay-based and hybrid
TCP congestion control algorithms, IEEE Commun. Surv. Tutor. 21 (4)
(2019) 3609–3638.

[19] N. Cardwell, Y. Cheng, C.S. Gunn, et al., Bbr: Congestion-based congestion
control: Measuring bottleneck bandwidth and round-trip propagation time,
Queue 14 (5) (2016) 20–53.

[20] S. Ha, I. Rhee, L. Xu, CUBIC: a new TCP-friendly high-speed TCP variant,
ACM SIGOPS Oper. Syst. Rev. 42 (5) (2008) 64–74.

[21] B. Braden, D. Clark, J. Crowcroft, et al., RFC2309: Recommendations on
queue management and congestion avoidance in the internet, 1998.

[22] S. Floyd, T. Henderson, A. Gurtov, Rfc3782: The newreno modification to
tcp’s fast recovery algorithm, 2004.

[23] L.S. Brakmo, S.W. O’Malley, L.L. Peterson, TCP Vegas: New techniques for
congestion detection and avoidance, in: Proceedings of the Conference
on Communications Architectures, Protocols and Applications, 1994, pp.
24–35.

[24] K. Winstein, H. Balakrishnan, Tcp ex machina: Computer-generated con-
gestion control, ACM SIGCOMM Comput. Commun. Rev. 43 (4) (2013)
123–134.

http://refhub.elsevier.com/S0167-739X(23)00273-X/sb1
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb1
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb1
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb2
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb2
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb2
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb2
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb2
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb2
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb2
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb3
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb3
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb3
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb4
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb4
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb4
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb4
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb4
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb5
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb5
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb5
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb6
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb6
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb6
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb6
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb6
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb7
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb7
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb7
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb8
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb8
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb8
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb9
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb9
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb9
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb9
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb9
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb9
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb9
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb10
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb10
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb10
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb11
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb11
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb11
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb12
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb12
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb12
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb12
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb12
https://www.microsoft.com/en-us/cloud/platform/hybrid-cloud
https://www.microsoft.com/en-us/cloud/platform/hybrid-cloud
https://www.microsoft.com/en-us/cloud/platform/hybrid-cloud
http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/brochure/vmware-hybrid-cloud-brochure.pdf
http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/brochure/vmware-hybrid-cloud-brochure.pdf
http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/brochure/vmware-hybrid-cloud-brochure.pdf
http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/brochure/vmware-hybrid-cloud-brochure.pdf
http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/brochure/vmware-hybrid-cloud-brochure.pdf
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb15
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb15
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb15
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb15
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb15
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb16
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb16
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb16
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb16
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb16
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb17
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb17
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb17
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb17
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb17
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb17
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb17
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb18
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb18
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb18
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb18
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb18
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb19
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb19
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb19
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb19
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb19
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb20
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb20
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb20
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb21
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb21
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb21
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb22
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb22
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb22
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb23
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb23
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb23
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb23
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb23
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb23
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb23
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb24
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb24
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb24
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb24
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb24

J. Shi, B. Yi, X. Wang et al. Future Generation Computer Systems 149 (2023) 317–329
[25] M. Dong, Q. Li, D. Zarchy, et al., PCC: Re-architecting congestion control for
consistent high performance, in: 12th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 15, 2015, pp. 395–408.

[26] M. Dong, T. Meng, D. Zarchy, et al., PCC vivace: Online-learning congestion
control, in: 15th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 18, 2018, pp. 343–356.

[27] V. Badarla, C.S.R. Murthy, Learning-tcp: A stochastic approach for efficient
update in tcp congestion window in ad hoc wireless networks, J. Parallel
Distrib. Comput. 71 (6) (2011) 863–878.

[28] Q. He, Y. Wang, X. Wang, et al., Routing optimization with deep reinforce-
ment learning in knowledge defined networking, IEEE Trans. Mob. Comput.
(2023).

[29] A. Sivaraman, K. Winstein, P. Thaker, et al., An experimental study of the
learnability of congestion control, ACM SIGCOMM Comput. Commun. Rev.
44 (4) (2014) 479–490.

[30] M. Schapira, K. Winstein, Congestion-control throwdown, in: Proceedings
of the 16th ACM Workshop on Hot Topics in Networks, 2017, pp. 122–128.

[31] R. Boutaba, M.A. Salahuddin, N. Limam, et al., A comprehensive survey
on machine learning for networking: evolution, applications and research
opportunities, J. Internet Serv. Appl. 9 (1) (2018) 1–99.

[32] E. Even-Dar, Y. Mansour, U. Nadav, On the convergence of regret mini-
mization dynamics in concave games, in: Proceedings of the Forty-First
Annual ACM Symposium on Theory of Computing, 2009, pp. 523–532.

[33] M. Zinkevich, Online convex programming and generalized infinitesimal
gradient ascent, in: Proceedings of the 20th International Conference on
Machine Learning, icml-03, 2003, pp. 928–936.

[34] F. Dobrian, V. Sekar, A. Awan, et al., Understanding the impact of video
quality on user engagement, ACM SIGCOMM Comput. Commun. Rev. 41
(4) (2011) 362–373.

[35] A. Jafari, A. Greenwald, D. Gondek, et al., On no-regret learning, fictitious
play, and nash equilibrium, in: ICML, Vol. 1, 2001, pp. 226–233.

[36] R. Xie, X. Jia, K. Wu, Adaptive online decision method for initial congestion
window in 5G mobile edge computing using deep reinforcement learning,
IEEE J. Sel. Areas Commun. 38 (2) (2019) 389–403.

[37] Linux net-next. https://kernel.googlesource.com/pub/scm/linux/kernel/git/
dave/net-next.git/+/v4.10.

[38] B. White, J. Lepreau, L. Stoller, et al., An integrated experimental environ-
ment for distributed systems and networks, Oper. Syst. Rev. 36 (SI) (2002)
255–270.

[39] F.Y. Yan, J. Ma, G.D. Hill, et al., Pantheon: the training ground for internet
congestion-control research, in: 2018 USENIX Annual Technical Conference,
USENIXATC 18, 2018, pp. 731–743.

[40] A. Langley, A. Riddoch, A. Wilk, et al., The quic transport protocol: Design
and internet-scale deployment, in: Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, 2017, pp. 183–196.

Jianzhi Shi received the BS degree in computer science
and engineering from Northeastern University of China
in 2022. He is currently working towards Ph.D. degree
in computer science and engineering, Northeastern
University of China. His current research interests in-
clude cloud computing, service computing, JointCloud,
etc.

Bo Yi (Member,IEEE) is currently a lecturer of computer
science and engineering with the Northeastern Univer-
sity of China. He has authored and co-authored more
than 20 journal and conference articles on IEEE Trans-
actions on Cloud Computing, IEEE Communications
Letter, IEEE Access, Computer Networks, etc. He is cur-
rently the reviewer of IEEE Communications Survey &
Tutorial, Communications Letter, Computer Networks,
Journal of Network and Computer Applications, etc. His
research interests include service computing, routing,
virtualization, cloud computing in SDN, NFV, DetNet,

etc.
329
Xingwei Wang received the BS, MS, and Ph.D. degrees
in computer science from the Northeastern University,
Shenyang, China, in 1989, 1992, and 1998, respectively.
He is currently a professor with the College of Com-
puter Science and Engineering, Northeastern University,
Shenyang, China. His research interests include cloud
computing and future Internet, etc. He has published
more than 100 journal articles, books and book chap-
ters, and refereed conference papers. He has received
several best paper awards.

Min Huang received the BS degree in automatic in-
strument, the MS degree in systems engineering, and
the Ph.D. degree in control theory from the Northeast-
ern University, Shenyang, China, in 1990, 1993, and
1999, respectively.She is currently a professor with
the College of Information Science and Engineering,
Northeastern University, Shenyang, China.Her research
interests include modeling and optimization for logis-
tics and supply chain system, etc. She has published
more than 100 journal articles, books, and refereed
conference papers.

Peichen Li received a B.S. degree in Software College,
Northeastern University, Shenyang, 2019. Currently, he
is pursuing a Ph.D. in the Department of Computer
Science and Engineering, Northeastern University. His
research interests include intelligent routing and deep
learning.

Chao Zeng received the MS degree in Software College,
Northeastern University, Shenyang, 2022. Currently, he
is pursuing a Ph.D. in the Department of Computer
Science and Engineering, Northeastern University. His
research interests include JointCloud computing and
federated learning.

Keqin Li (Fellow,IEEE) is a SUNY Distinguished Pro-
fessor of Computer Science with the State University
of New York. He is also a National Distinguished
Professor with Hunan University, China. His current
research interests include cloud computing, fog com-
puting and mobile edge computing, energy-efficient
computing and communication, embedded systems
and cyber–physical systems, heterogeneous computing
systems, big data computing, high-performance com-
puting, CPU–GPU hybrid and cooperative computing,
computer architectures and systems, computer net-

working, machine learning, intelligent and soft computing. He has authored or
coauthored over 890 journal articles, book chapters, and refereed conference
papers, and has received several best paper awards. He holds nearly 70 patents
announced or authorized by the Chinese National Intellectual Property Admin-
istration. He is among the world’s top 5 most influential scientists in parallel
and distributed computing in terms of both single-year impact and career-long
impact based on a composite indicator of Scopus citation database. He has
chaired many international conferences. He is currently an associate editor of
the ACM Computing Surveys and the CCF Transactions on High Performance
Computing. He has served on the editorial boards of the IEEE Transactions on
Parallel and Distributed Systems, the IEEE Transactions on Computers, the IEEE
Transactions on Cloud Computing, the IEEE Transactions on Services Computing,
and the IEEE Transactions on Sustainable Computing. He is an AAAS Fellow, an
IEEE Fellow, and an AAIA Fellow. He is also a Member of Academia Europaea
(Academician of the Academy of Europe).

http://refhub.elsevier.com/S0167-739X(23)00273-X/sb25
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb25
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb25
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb25
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb25
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb26
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb26
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb26
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb26
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb26
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb27
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb27
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb27
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb27
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb27
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb28
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb28
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb28
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb28
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb28
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb29
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb29
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb29
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb29
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb29
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb30
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb30
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb30
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb31
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb31
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb31
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb31
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb31
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb32
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb32
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb32
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb32
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb32
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb33
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb33
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb33
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb33
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb33
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb34
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb34
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb34
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb34
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb34
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb35
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb35
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb35
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb36
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb36
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb36
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb36
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb36
https://kernel.googlesource.com/pub/scm/linux/kernel/git/dave/net-next.git/+/v4.10
https://kernel.googlesource.com/pub/scm/linux/kernel/git/dave/net-next.git/+/v4.10
https://kernel.googlesource.com/pub/scm/linux/kernel/git/dave/net-next.git/+/v4.10
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb38
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb38
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb38
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb38
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb38
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb39
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb39
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb39
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb39
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb39
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb40
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb40
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb40
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb40
http://refhub.elsevier.com/S0167-739X(23)00273-X/sb40

	Vivace-Distributed: A novel congestion control mechanism for JointCloud environments
	Introduction
	Related Work
	Concept and Architecture of JointCloud
	Communication Among Clouds and Development of Congestion Control

	Overview of Vivace-Distributed
	Utility Design of Vivace-Distributed
	Utility Framework of Vivace-Distributed
	Nash Equilibrium
	Stability Upon Convergence

	Analyses of The Aggregative Variable
	The Selection of Aggregative Variable
	Performance Analysis of the Aggregative Variable

	Transition from Utility Values to Sending Rates
	Evaluation
	Utility Function
	Sending Rates
	Resilience to Random loss
	Convergence Properties
	Convergence Speed
	Duration of Slow Start Phase

	Throughput of Different Flows
	TCP Friendliness

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

