
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 24, NO. 4, APRIL 2025 3149

Reputation-Based Model Aggregation and Resource
Optimization in Wireless Federated

Learning Systems
Jie Feng , Member, IEEE, Yanyan Liao, Graduate Student Member, IEEE, Lei Liu , Member, IEEE,

Qingqi Pei , Senior Member, IEEE, Ning Zhang , Senior Member, IEEE, and Keqin Li , Fellow, IEEE

Abstract— Federated learning (FL) has received widespread
attention from academia and industry because it overcomes tra-
ditional security limitations associated with model training data.
However, the FL process is vulnerable to manipulation by locally
malicious users, who can alter their local data, thus impacting
the accuracy of the model’s training outcomes. Meanwhile,
optimizing delay in FL needs to take individual client fairness into
consideration. In this paper, we present a reputation-based model
aggregation and resource optimization framework to enhance
the efficiency and reliability of training in wireless FL systems.
Particularly, we investigate a total delay minimization problem
while ensuring fairness among clients, which jointly optimizes
client scheduling, transmit rate, bandwidth proportion, and CPU
frequency. Considering the non-convexity and high complexity of
the objective function, we decoupled the optimal variables and
designed an efficient algorithm. By doing this, the client schedul-
ing policy is obtained by deep reinforcement learning. Then, the
transmit rate allocation and bandwidth proportion are derived
through the Lagrangian dual method. Finally, we attain the
CPU frequency allocation via the adaptive harmony algorithm.
Simulation results reveal that our algorithm can establish delay
fairness among clients and balance convergence performance and
delay.

Index Terms— Federated learning, reputation, fairness, deep
reinforcement learning, client scheduling, resource allocation.
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I. INTRODUCTION

FEDERATED learning (FL) is a novel distributed machine
learning that allows multiple participants to train

machine-learning models locally. FL has garnered consider-
able attention from academia and industry in recent years due
to its ability to prevent the leakage of user privacy data by
keeping the original data decentralized and not uploaded to
cloud servers [1], [2]. However, while FL offers substantial
benefits, it also faces significant challenges. Firstly, mali-
cious participants can manipulate data or models to skew FL
outcomes, compromising the system’s credibility and accu-
racy [3]. Secondly, FL grapples with resource imbalances and
inefficiencies [4]. Moreover, client device channel conditions
and computational resource variations can lead to straggler
issues during synchronized model updates [5].

To solve the aforementioned challenges, extensive research
has focused on strategies for malicious aggregation and
resource optimization. Efforts to combat malicious attacks in
FL have explored various approaches, such as filtering [6],
[7], pruning [8], [9], and aggregation [10], [11], [12]. Among
these, Richards et al. [13] highlighted that minimum aggre-
gation is the most effective method for resisting distributed
backdoor attacks compared to filtering and pruning. However,
it’s crucial to acknowledge that while these methods enhance
the system’s resilience to attacks, they do not eliminate the
threat entirely. Moreover, another series of studies has con-
centrated on defending against attacks from the perspective
of client reliability, prioritizing the selection of clients based
on their reliability. In [14], a strategy network based on
encoder-decoder architecture was designed, which can auto-
matically make decisions based on the data quality learned
from the client. In [15], The authors introduced a reputation
model utilizing the beta distribution function to assess the
credibility of local data, serving as the exclusive criterion
for client selection. However, these methods inherently favor
clients with higher reliability scores, aiming to enhance net-
work performance while potentially neglecting the principle
of fairness among participants.

Therefore, the authors [16] proposed clustering clients
into several groups based on their physical performance and
selecting only the same type of clients for training in each
round to reduce waiting time. In [17], the authors proposed a
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more comprehensive clustering method, combining it with a
reinforcement learning-based resource allocation algorithm to
balance training and communication time, thereby accelerating
the FL process. The authors [18] presented an energy-efficient
adaptive FL framework at the network edge, which jointly
optimized the radio and computation resources to achieve the
trade-off between the energy, delay, and performance of FL.
Considering the joint optimization of client scheduling and
resource allocation, the authors [19] formulated a min-max
optimization problem to ensure fairness for FL in vehicular
edge computing. However, the works mentioned above did not
consider the impact of malicious users on FL. Furthermore,
current defense mechanisms against malicious attacks do not
adapt well to FL environments affected by stragglers with
limited resources.

Driven by the identified challenges, our research delves
into a reputation-based scheduling framework coupled with
resource allocation within wireless FL systems. We specifi-
cally address an optimization challenge aimed at minimizing
FL training delays. This involves a holistic approach to
optimize client scheduling, client CPU frequency, bandwidth
allocation, and transmit rates, all while upholding principles
of user fairness and model integrity. The primary contributions
of this paper can be outlined as follows:

• We propose an optimization framework of
reputation-based model aggregation for wireless FL
systems, thereby achieving an integrated optimization
of both communication and computational resources.
In this framework, the reputation model is introduced to
evaluate clients’ quality.

• Under the premise of ensuring that the client model is
trustworthy, we introduce a min-max optimization frame-
work designed to ensure equitable treatment and fairness
for all participating clients. The proposed optimiza-
tion problem is a mixed-integer nonlinear programming
(MINLP) problem, which is difficult to solve directly.

• To address the optimization problem, we strategically
decompose the overarching problem into three manage-
able sub-problems, for which we propose innovative,
efficient algorithmic solutions. By this, we develop a deep
reinforcement learning algorithm for client scheduling
and an iterative algorithm for radio resource alloca-
tion, including transmit rate and bandwidth. In addition,
we exploit an adaptive harmony search algorithm for CPU
frequency allocation.

• The simulation results exhibit the performance of FL
under the different datasets. Meanwhile, our proposed
algorithms not only excel in reducing delays but also
adeptly balance convergence efficiency with time delay,
showcasing their effectiveness across various datasets.

The subsequent sections of this article are structured as
follows. Section II presents the construction of an optimization
problem designed to simultaneously enhance client schedul-
ing and resource allocation. Section III breaks down the
main objective function into three sub-problems, with each
sub-problem’s solution being addressed in turn. Simulation
outcomes are demonstrated in Section IV, illustrating the

effectiveness of our proposed schemes. Section V provides
a summary of the main findings and contributions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Federated Learning

We consider a FL framework under wireless networks
consisting of a server and K clients. We define the client
set, represented K = {1, 2, . . . ,K}. The clients train models
using their local dataset, denoted by Dk = {ekj , ykj}, where
ekj and ykj indicates the feature and label of sample j,
respectively. Assume that the FL training process contains T
epochs, and the global model is updated once in each epoch.
In epoch τ , the loss function of client k can be expressed as
Fk(W τ ) = 1

Dk

∑Dk

j=1 fk(W τ , ekj , ykj), where Dk is the size
of the set Dk, W τ is the global model and fk(W τ , ekj , ykj)
is the loss of a single sample. Then, the global loss function
in epoch τ is defined by

F (W τ ) =
K∑

k=1

Dk

D
Fk(W τ ), (1)

where D means the total sample size.
In FL, finding the global optimal solution W ∗ =

arg minF (W τ ) is its ultimate goal [20]. The τ -th epoch
of FL is composed of three processes. Firstly, the server
selects a subset of N clients from K for training to reduce
the communication cost [21]. We define a binary variable
xk(τ) ∈ {0, 1}, where xk(τ) = 1 represents that client k
participates in the training in epoch τ and xk(τ) = 0 indicating
non-participation. Then, we assume that the number of local
training rounds for the selected client is set to I [20]. At the
i-th round of local training, the model update process of client
k in epoch τ is given by:

wτ
k,i+1 = wτ

k,i − κ▽Fk(wτ
k,i), (2)

where κ is the local learning rate, wτ
k,i is the local

model of client k in epoch t, and Fk(wτ
k,i) =

1
Dk

∑Dk

j=1 f(wτ
k,i, ekj , ykj) is the loss function of the local

model on the dataset Dk. After the I round of training,
the model transmitted by the client k in epoch τ to the
global server is wτ

k,I . In the aggregation process, most of
the work follows FedAvg’s method. The FedAvg algorithm
weights all training models from the perspective of data size
(W τ =

∑K
k=1 xk(τ)Dk

D wτ
k,I ), which cannot effectively reflect

the actual utility of the client model on the global model.
Research has shown that as data heterogeneity increases, the
global model aggregated by the FedAvg algorithm deviates
significantly from the local model, resulting in a significant
decrease in accuracy. Therefore, it is crucial to restore the
actual training value of each client.

We comprehensively evaluate data volume and accuracy to
demonstrate the contributions of local client models to the
global model. As specified in [22], in epoch τ , we normalize
the training accuracy to measure the amount of information
on the client k from the accuracy perspective, which is given
by

ink(τ) = −log2(
acck(τ)∑K

k=1 xk(τ)acck(τ)
), (3)
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Algorithm 1 Federated Learning
Input: Set the iteration round T , client sets K, the local

learning rate κ, the weight factor (Ψ1,Ψ2), and the global
model parameters W τ .

Output: W T , F (W T )
1: for τ = 1, . . . , T do
2: The server chooses a subset based on the client schedul-

ing policy.
3: for client k in the subset do
4: Client k downloads the global model W τ .
5: Initialize wτ

k,0 = W τ .
6: for i = 0, 1, . . . , I − 1 do
7: wτ

k,i+1 = wτ
k,i − κ▽Fk(wτ

k,i)
8: end for
9: Transfers the local model wτ

k,I to the
server for global aggregation. W τ =∑K

k=1 ak(τ)weightk(τ)wτ
k,I .

10: end for
11: end for

where acck(τ) denote the train accuracy of the client k in
epoch τ . Generally, under the same global initial model, the
lower the training accuracy, the more complex information
the client contains. Therefore, we used a minus sign before
the formula.

Then, we propose an aggregation weight that combines
data size and accuracy, which can meet the contribution
requirements. Algorithm 1 shows the FL process in detail.

weightk(τ) =
Ψ1Dk∑K

k=1 xk(τ)Dk

+
Ψ2ink(τ)∑K

k=1 xk(τ)ink(τ)
, (4)

where Ψ1 and Ψ2 are positive weighting factors.

B. Client Reputation Model

There are many participants in the FL system, which is
likely to include one or more malicious clients. Malicious
clients can upload incorrect local model parameters, with
the potential risk of revealing information from other hon-
est users. This can compromise the system’s availability,
confidentiality, and integrity, causing severe deviations from
the local model. Common poisoning attacks attack training
models by contaminating data, such as adding incorrect labels
or biased data (label flipping attacks). Because the client’s
local data and training process are not visible to the server,
verifying the reliability of updates uploaded by specific clients
is difficult. To tackle this problem, we use a subjective logical
model to evaluate the quality of each client, which helps the
server detect malicious clients and select clients with high
reputations.

1) Subjective Logical Model: The subjective logical frame-
work is represented by a tuple {bk, zk, uk}, where bk, zk, uk

indicates trust, distrust and uncertainty of client k [23], which

are given by 
bk =

posk

posk + negk + 1
zk =

negk

posk + negk + 1
yk =

1
posk + negk + 1

(5)

where we assume that the server and client k have successfully
communicated posk + negk times. posk and negk represent
the positive and negative behavior of client k, respectively.
Then, the reputation of client k can be given by

REk(τ) = bk +
yk

2
=

posk + 1
2

posk + negk + 1
. (6)

2) Reputation’s Update: Once the client uploads the local
update successfully, the server assesses the updated local
model using the test set, denoted by Dtest = {xtest, ytest}.
We characterize the client’s effectiveness ρk(τ) by using the
gap between the loss of the previous round of aggregation
model on the test set F test(W τ−1, xtest, ytest) and the loss
of the local model on the test set F test(wτ

k,I , x
test, ytest).

ρk(τ) = F test(W τ−1)− F test(wτ
k,I). (7)

If ρk(τ) ⩽ 0, the client’s training in epoch τ is a positive
behavior; otherwise, it is considered a negative behavior. The
ρk(τ) of malicious clients is usually tiny and differs signif-
icantly from that of honest clients. Based on the evaluated
update validity, the server can determine the reputation of
local data. We combine the aging weight proposed by [24]
to eliminate accidental factors to update posk and negk as
follows:

posnew
k =

(
we posk + p1 U(ρτ

k)
)
xk(τ)

+posk

(
1− xk(τ)

)
, if ρk(τ) ⩾ 0,

negnew
k =

(
we negk − p2 U(ρτ

k)
)
xk(τ)

+negk

(
1− ak(τ)

)
, else,

(8)

where we is the aging weight, ranging from [0,1]. p1 and
p2 are positive and negative weight factors, respectively, where
meet p1 + p2 = 1. U(·) is defined as a contribution utility
function, then U(ρτ

k) = tanh(ζρτ
k), where ζ is a positive

factor. Substituting the updated posnew
k and negnew

k into (6)
yields the new reputation of the client, which is used to guide
the client’s scheduling for the next epoch.

C. Delay Model

After I round of training locally, the training delay of client
k in epoch τ is defined as

ttrain
k (τ) =

IdkCk

fk(τ)
xk(τ), (9)

where Ck is the number of CPU cycles needed to calculate
one sample data of client k, dk is the mini-batch size, and
fk(τ) is the CPU frequency of client k in epoch τ .

We assume there is no interference in the interaction
between the clients and the server, such as OFDMA commu-
nication. In the system, all clients share the total bandwidth B.
Let hk(τ) and Pk(τ) denote the channel gain and the transmit
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power between client k and the server in epoch τ . Then, the
reachable transmit rate of client k in epoch τ can be given by

ok(τ) = αk(τ)B log2 (1 +
hk(τ)Pk(τ)
αk(τ)BN0

), (10)

where N0 is the Gaussian noise power and αk(τ) indicate
the proportion of bandwidth allocated to client k in epoch τ .
Accordingly, the transmit delay of the client k in epoch τ is
denoted as

tup
k (τ) =

Ak

ok(τ)
xk(τ), (11)

where Ak is the model data size transferred by client k.
In epoch τ , the total delay in updating a global model can

be expressed as

ttotal(τ) = max
k∈K

tk = max
k∈K

{(ttrain
k (τ) + tup

k (τ))}. (12)

D. Energy Model

By flexibly adjusting processor Frequency, client devices
can reduce energy consumption and shorten computation
time by leveraging Dynamic Voltage and Frequency Scaling
(DVFS) technology. The computing energy consumption of
client k completing I rounds of training locally is denoted as

Etrain
k (τ) = uIdkCkfk(τ)2xk(τ), (13)

where u is the power coefficient, depending on the chip
architecture. According to (10), the transmit power of client k
can be derived as

Pk(τ) =
αk(τ)BN0

hk(τ)
(2

ok(τ)
αk(τ)B − 1). (14)

Consequently, the transmit energy consumption of client k
in τ epoch can be defined by

Eup
k (τ) =

αk(τ)BN0Ak

hk(τ)ok(τ)
(2

ok(τ)
αk(τ)B − 1)xk(τ). (15)

E. Problem Formulation

In this paper, we investigate the total delay minimization
problem of the worst-outcome client during the entire FL
training process. Such delays predominantly arise from slow
network speeds or suboptimal device performance, extending
the time required for these clients to update parameters and
complete their model training. In that case, we propose a
joint optimization of the client scheduling x(τ ) = (xk(τ)),
transmit rate o(τ ) = (ok(τ)), bandwidth proportion α(τ ) =
(αk(τ)), and CPU frequency f(τ ) = (fk(τ)). The formulated
problem is as follows:

P1 : min
x(τ),f(τ),o(τ),α(τ)

T∑
τ=1

max
k∈K

{
Ak

ok(τ)
xk(τ)

+
IdkCk

fk(τ)
xk(τ)

}
s.t. (C1) : xk(τ) ∈ {0, 1}, ∀k, τ,

(C2) :
K∑

k=1

xk(τ) ⩽ N, ∀k, τ, (16)

(C3) : REk(τ) ⩾ RErequire
k , ∀k, τ,

(C4) : fmin
k ⩽ fk(τ) ⩽ fmax

k , ∀k, τ,
(C5) : ok(τ) ⩾ 0, 0 ⩽ αk(τ) ⩽ 1,

∀k, τ,

(C6) :
K∑

k=1

αk(τ) ⩽ 1, ∀τ,

(C7) : Etrain
k (τ) + Eup

k (τ) ⩽ Emax,

∀k, τ.

In problem (P1), RErequire
k is the reputation necessary of

client k. fmin
k and fmax

k are the minimum and maximum
CPU frequency needed for the client k. Emax is the maximum
energy consumption. (C1) and (C2) denote the client schedul-
ing constraints. (C3) indicate that the reputation of client k
must greater than RErequire

k . (C4) is the constraint of client
k CPU frequency. (C5) and (C6) guarantees the transmit rate
requirements of client k and bandwidth allocation constraints.
(C7) is the peak energy consumption constraint.

III. CLIENT SCHEDULING AND RESOURCE
ALLOCATION ALGORITHM

Problem (P1) is a typical mixed integer nonlinear program-
ming problem (MINLP) because it has binary and continuous
variables. It is difficult and complex for traditional optimiza-
tion algorithms to deal with this problem. In this paper,
we decompose the original problem into three sub-problems.
We first use deep reinforcement learning (DRL) to tackle the
client scheduling problem. It is well known that reinforcement
learning is a promising method for solving combinatorial
optimization problems [25]. Then, we exploit an algorithm to
obtain the optimal solution for transmit rate, bandwidth ratio,
and CPU frequency.

A. Reinforcement Learning for Client Scheduling

For given o(τ ), α(τ ), and f(τ ), the client scheduling
problem from (P1) can be recast as

SUB1 : min
x(τ)

T∑
τ=1

ttotal(τ)

s.t. (C1) : xk(τ) ∈ {0, 1},

(C2) :
K∑

k=1

xk(τ) ⩽ N, (17)

(C3) : REk(τ) ⩾ RErequire
k ,∀k,

(C7) : Etrain
k (τ) + Eup

k (τ) ⩽ Emax, ∀k, τ.

In this paper, we resort to the DRL algorithm to solve SUB1.
The DRL algorithm can guide the agent to take better actions
by perceiving the state of the environment, thereby achieving
more excellent benefits. To implement the algorithm, we act
the server as the agent and model the client scheduling as a
Markov decision process (MDP). The main elements of MDP
can be designed as follows:
• State: state provides feedback to the agent and produces

different state transitions based on the agent’s decisions.
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Considering the time delay is closely related to the current
channel state, the client’s reputation greatly influences
the scheduling decision. So, we define environment state
in epoch τ as s(τ ) = [s1(τ ), . . . , sk(τ ), . . . , sK(τ )],
where sk(τ ) = [hk(τ), REk(τ), fava

k (τ)] represents the
state information of the client k in epoch τ , where
fava

k (τ) is the CPU resources available to the client k.
• Action: let N (τ) be the set of schedulable clients.

We need to select N clients from K clients to participate
in each epoch. This operation will result in a huge
action space

(
K
N

)
and seriously increase the algorithm’s

complexity. Therefore, we propose to represent the action
space as K continuous probability variable, denoted by
a(τ ) = (ak(τ)), where ak(τ) indicates the probability
of client k being selected. Combined with reputation
constraints, we derive a new probability vector υk(τ) for
the client k.

υk(τ) =


0, if k /∈ A(τ),

ak(τ)REk(τ)∑
k∈A(τ) ak(τ)REk(τ)

, else, (18)

where A(τ) = {k|REk(τ) > RErequire
k } represents the

available clients set.
• Reward: reward is feedback signals received by agents

when executing actions in the environment, which are
used to evaluate the decision quality of intelligent agents.
We aim to select clients with less time delay for FL. Thus,
the reward function is

r(τ) = −ttotal(τ). (19)

At each epoch τ , the agent will get a state signal s(τ ) from
the environment. Then, the agent conducts an optimal action
a(τ ) in accord with the policy π. Next, The environment
will provide immediate feedback r(τ) to the agent and enter
the next moment. In the end, MDP consists of the sequence
{s(1),a(1), r(1)), s(2), . . . , s(τ ),a(τ ), r(τ))}. The goal
of DRL is to obtain the optimal policy π, which maximize
the discounted cumulative reward Oτ =

∑T
l=0 γ

lr(τ + l),
where γ is the discount factor. To obtain unbiased rewards
for epoch τ , we set the discount factor to 1. We apply the
Proximal Policy Optimization (PPO) algorithm to achieve this
goal. PPO is a viral DRL algorithm based on actor-critic (AC)
architecture [26]. By restricting the size of policy updates by
adjusting the target function, PPO ensures that the new policy
does not deviate too much from the old one. This bounded
strategy update helps to keep the training process stable.

Fig. 1 shows our AC architecture, including an Actor
network and a Critic network. The Critic network evaluates the
performance of the current state and outputs a state value to
guide the Actor network. The input to the Actor network is the
current state at the moment, and the output is the action value.
After the action is executed, the environment will provide
feedback on reward information and the information from the
next moment. Status, action, and reward information will be
saved in a replay buffer. Until the size of the replay buffer
reaches ψ, two networks will update their network parameter
based on the replay buffer data. In the initialization phase, the

Fig. 1. DRL framework.

network randomly outputs the actions and values. However,
with the network update, the Critic network’s state value is
more accurate, and the output action of the Actor network is
more optimal.

The Critic network learns a state value estimation function
based on the data collected from the interaction between the
actor and the environment. The state value estimation function
provides an estimate for each state, indicating how much
return is expected from the current strategy. It evaluates the
effectiveness of actions in the current state, thereby assisting
the actor in updating strategies. The state value function at
state sτ is defined as follows:

Vπ(s(τ ); Ω) = Eπ[r(τ) + γVπ(s(τ + 1); Ω)], (20)

where Ω is the critic network parameter. Vπ(s(τ + 1)) can
determine the current state value and guide the actor to update
through temporal differential error.

The Actor network learns an approximate strategy that
maximizes the long-term cumulative reward for the selected
action under the current strategy. It receives the current state as
input, outputs the probability distribution of the agent choosing
different actions in each state, and controls the magnitude of
policy updates by comparing the similarity between old and
new policies. Define Γclip(θ) as the loss function of the Actor
network:

Γclip(θ) = E[min(Πτ (θ)ÂGAE(γ,λ)
τ , clip(Πτ (θ), 1− ι, 1 + ι)

· ÂGAE(γ,λ)
τ )], (21)

where Πτ (θ) = πθ(a(τ)|s(τ))
πθold

(a(τ)|s(τ)) represents the ratio of the
probability of executing a(τ ) under the new strategy θ and
the old strategy θold, clip(Πτ (θ), 1−ι, 1+ι) means that Πτ (θ)
has a lower bound 1−ι and a higher bound 1+ι. If the ratio is
closer to 1, the difference between the new and old strategies is
smaller. And ÂGAE(γ,λ)

τ represents the advantage value of an
action relative to the average expected value [27], which can
help the agent decide which action is a better choice, denoted
by:

ÂGAE(γ,λ)
τ =

∞∑
l=0

(γλ)lδ(τ + 1), (22)
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Algorithm 2 Client Scheduling Solution Based on DRL
Input: T , K, N , B, N0, h(τ ), f(τ )
Output: Ω, θ

1: Training:
2: for iter = 1, 2, 3 . . . do
3: for τ = 1, 2, 3 . . . , T do
4: Perceive the state of the environment s(τ ).
5: Obtain a(τ ) based on actor network. And sample

randomly N clients based on v(τ ).
6: Call Algorithm 3 and Algorithm 4 to obtain the allo-

cation of transmit rate o(τ ), bandwidth proportion
α(τ ), and CPU frequency f(τ ).

7: Conduct FL training process and update RE(τ).
8: Calculate r(τ) based on (19).
9: Put (s(τ ),a(τ ), r(τ), V (s(τ ); Ω), s(τ + 1)) into

the replay buffer.
10: if the number of the replay buffer reaches ψ then
11: for Υ = 1, ..,Λ do
12: Take the derivative of (21) and (23) to update θ

and Ω.
13: end for
14: end if
15: end for
16: end for

where λ is the bias-variance trade-off factor. And δ(τ)
represents temporal differential error, denoted by δ(τ) =
r(τ) + γVπθ

(s(τ ); Ωold) − Vπθ
(s(τ ); Ωold), where Ωold is

the parameter before the update. The main target of the
Critic network is to predict the expected reward value under
a given state. The loss function of the Critic network is
composed of the gap between the predicted value func-
tion and the actual return, which can be expressed as the
Mean Squared Error (MSE) based on the state value func-
tion. The loss function of the critic network is defined as
follows:

Γ(Ω) = E[(V target
τ − V (s(τ ); Ω))2], (23)

where V target
τ = Â

GAE(γ,λ)
τ + V (s(τ ); Ωold). By adding the

advantage function to the estimated value of the state value
function, we can get V target

τ closer to the actual value, which
helps the Critic network to better estimate the state value
function.

The particular algorithm is presented in Algorithm 2.
In Lines 4-5, the actor network outputs a(τ) based on s(τ) and
the server executes x(τ) based on a(τ). In Line 6, call algo-
rithms to obtain the optimal o(τ ),α(τ ) and f(τ ). In Line 7,
the selected clients train locally and transmit the updated
model to the server. Then, the server updates the reputation
of the clients. In Lines 8-9, the agent obtains reward r(τ) and
puts the tuple (s(τ ),a(τ ), r(τ), V (s(τ ); Ω), s(τ + 1)) into
the replay buffer. In Lines 10-14, the AC network updates θ
and Ω based on the data in the replay buffer when the size
reaches ψ.

B. Radio Resources Allocation

Once the client scheduling x(τ ) is obtained, the set of
schedulable clients is denoted by

N (τ) = {n|xn(τ) = 1, n ∈ K}. (24)

For given x(τ ) and f(τ ), the proposed algorithm aims to
minimize the total delay of the worst-outcome client for one
epoch. Then, the optimization problem of bandwidth propor-
tional division and transmit rate allocation can be written as

SUB2 : min
o(τ),α(τ)

max
n∈N (τ)

{
An

on(τ)
+
IdnCn

fn(τ)

}
s.t. (C5) : on(τ)⩾0, 0 ⩽ αn(τ)⩽1,

∀n∈N (τ), τ,

(C6) :
N∑

n=1

αn(τ) ⩽ 1, ∀τ, (25)

(C7) : uIdnCnfn(τ)2

αn(τ)BN0An

hn(τ)on(τ)
(2

on(τ)
αn(τ)B − 1)

⩽ Emax, ∀n ∈ N (τ), τ.

By introducing a new variable G, we convert the primordial
problem (26) into a smooth optimization problem. Specifically,
the min-max problem can be recast as

min
o(τ),α(τ)

G

s.t. (C5), (C6), (C7),

(C8) :
An

on(τ)
+
IdnCn

fn(τ)
⩽ G, ∀n ∈ N (τ), τ.

(26)

Due to the nonconvexity of (26), it is difficult to solve the
optimal value through traditional methods. Thus, we introduce
a new variables ϑn(τ) = on(τ)

αn(τ) , which is represented as
ϑ(τ ) = (ϑn(τ)). When αn(τ) = 0, we let client n not
participate in the training and have ϑn(τ) = 0. So, (26) can
be rewritten as follows:

min
ϑ(τ),α(τ)

G

s.t. (C5′) : ϑn(τ) ⩾ 0, 0 ⩽ αk(τ) ⩽ 1,
∀n ∈ N (τ), τ,

(C6) :
N∑

n=1

αn(τ) ⩽ 1, ∀τ,

(C7) : uIdnCnfn(τ)2+
BN0An

hn(τ)ϑn(τ)
(2

ϑn(τ)
B − 1)

⩽ Emax, ∀n ∈ N (τ), τ,

(C8) :
An

αn(τ)ϑn(τ)
+
IdnCn

fn(τ)
⩽ G,

∀n ∈ N (τ), τ.
(27)

Theorem 1: Optimization problem (27) is jointly convex
about variables α(τ ) and ϑ(τ ).

Proof: See Appendix I.
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Note that we can solve (27) in a convex optimization
manner based on Theorem 1. In addition, (27) satisfies Slater’s
condition with zero dual gaps. Thus, we can obtain the
optimal solution through Lagrangian dual decomposition. The
Lagrangian form of problem (27) can be given by (28),
shown at the bottom of the page, where ξ ⩾ 0,ν =
{ν1, ν2, . . . , νN} ⪰ 0,φ = {φ1, φ2, . . . , φN} ⪰ 0 are dual
variables, corresponding to constraints (C6), (C7), and (C8),
respectively.

In order to solve the optimal solution of ϑ(τ ),α(τ ) and G,
firstly we need to minimize L(G,ϑ(τ ),α(τ ), ξ,ν,φ) with
fixed ξ,ν,φ:

min
ϑ(τ),α(τ),G

G+ ξ
N∑

n=1

αn(τ) +
N∑

n=1

φn(
An

ϑn(τ)αn(τ)
−G)

+
N∑

n=1

νn

( BN0An

hn(τ)ϑn(τ)
(2

ϑn(τ)
B − 1)

)
s.t. (C5′) : ϑn(τ) ⩾ 0, 0 ⩽ αn(τ) ⩽ 1,

∀n ∈ N (τ), τ. (29)

By applying the Karush-Kuhn-Tucker (KKT) condi-
tion [28], the optimal solution for the transmit rate and the
bandwidth proportion can be obtained. The formula for taking
the derivative of αn(τ) and ϑn(τ) are as follows:

∂L(G,ϑ(τ ),α(τ ), ξ,ν,φ)
∂αn(τ)

= ξ −
φn

An

ϑn(τ)

αn(τ)2
= 0. (30)

∂L(G,ϑ(τ ),α(τ ), ξ,ν,φ)
∂ϑn(τ)

= −
φn

An

αn(τ)

(ϑn(τ))2

+
BνnN0An

hn(τ) (ϑn(τ)
B 2

ϑn(τ)
B ln 2− 2

ϑn(τ)
B + 1)

(ϑn(τ))2
= 0. (31)

1) The Optimal Solution Structure of αn(τ ): By dealing the
equation (30), we can obtain the optimal solution of αn(τ) as
follows:

α∗n(τ) = clip(

√
φkAnxn(τ)
ϑn(τ)ξ

, 0, 1). (32)

2) The Optimal Solution Structure of on(τ ): We let c5 =
BνnN0An

hn(τ) , c6 = φn
An

αn(τ) . Solving the equation (31), we can
get the optimal solution of on(τ).

o∗n(τ) = ϑ∗n(τ)α∗n(τ) = max

{
α∗n(τ)B log2

β

W (β
e )
, 0

}
,

(33)

where β = c6
c5
−1 and W (·) is Lambert function. The specific

process of solving the optimal solution of on(τ) is shown in
Appendix II.

3) The Optimal Solution Structure of G: For (26), We can
only obtain the solution for o(τ ) and α(τ ) when G is given.
So, we need to discuss the solution of G further.

min
G

(1−
N∑

n=1

φn)G

s.t. (C8). (34)

Then, the optimal solution of G can be designed by

G∗ =

{
maxn

{
An

o∗n(τ) + IdnCn

fn(τ)

}
, if

∑N
n=1 φn ⩽ 1,

+∞, else.
(35)

4) Lagrange Multipliers Update: From (32) and (33),
we can obtain the optimal bandwidth proportion and transmit
rate with fixed ξ,ν, and φ only. Thus, we need to get the
value of dual variables next. According to Lagrangian duality
theory, we can obtain the value of ξ,ν, and φ by solving the
dual problem of the problem (27), which is represented by

max
ξ,ν,φ

𭟋(ξ,ν,φ)

s.t. ξ ⩾ 0,ν ⪰ 0,φ ⪰ 0, (36)

where 𭟋(ξ,ν,φ)=minG,ϑ(t),α(t) L(G,ϑ(t),α(t), ξ,ν,φ).
From (28), Since 𭟋(ξ,ν,φ) are linear function relative to ξ,ν,
and φ, it can be proven that (36) is constant convex. So, (36)
can be solved using the subgradient projection theory. Then,
we can obtain the updates of the dual variables as follows:

ξ(ϖ + 1) = [ξ(ϖ) + z1(ϖ)▽ξ(ϖ)],

+ νn(ϖ + 1) = [νn(ϖ) + z2(ϖ)▽νn(ϖ)],

+ φn(ϖ + 1) = [φn(ϖ) + z3(ϖ)▽φn(ϖ)]+,
(37)

where [num] ≜ max{0, num}, ϖ is the subscript of the round
of iterations, z1(ϖ), z2(ϖ) and z3(ϖ) are very small positive
step size. We set z1(ϖ) = z2(ϖ) = z3(ϖ) = 0.1

ϖ [29]. And
▽ξ(ϖ),▽νn(ϖ),▽φn(ϖ) are represented by

▽ξ(ϖ) =
N∑

n=1

α∗n(τ)− 1.

▽νk(ϖ)=uIdnCnfn(τ)2+
BN0An

hn(τ)ϑ∗n(τ)
(2

ϑ∗n(τ)
B −1)−Emax.

▽φn(ϖ) =
IdnCn

fn(τ)
+

An

ϑ∗n(τ)α∗n(τ)
−G∗. (38)

The detailed algorithm to get the optimal solution of trans-
mit rate is shown in Algorithm 3. In Lines 2-11, the algorithm
iterates ϖmax round at most. At each iteration, the algorithm
first obtains o∗n(τ), α∗n(τ) and G∗ based on the fixed dual
variable ξ(ϖ),ν(ϖ),φ(ϖ), and then obtains new ξ(ϖ +
1),ν(ϖ + 1),φ(ϖ + 1) based on ϑ∗n(τ), α∗n(τ) and G∗.

L(G,ϑ(τ ),α(τ ), ξ,ν,φ) = G+ ξ
( N∑

n=1

αn(τ)− 1
)

+
N∑

n=1

φn

( An

ϑn(τ)αn(τ)
+
IdnCn

fn(τ)
−G

)
+

N∑
n=1

νn

(
uIdnCnfn(τ)2 +

BN0An

hn(τ)ϑn(τ)
(2

ϑn(τ)
B − 1)− Emax

)
,∀n ∈ N (τ), τ. (28)
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Algorithm 3 Radio Resource Allocation Algorithm
Input: ξ(0),ν(0),φ(0),the maximum number of iterations
ϖmax, and the specified precision ϵ.
Output: o∗n(τ), α∗n(τ)

1: Initialize ϖ = 0.
2: while ϖ < ϖmax do
3: Perform bisection search algorithm between [0,1] to

obtain.
4: Substitute the dual variables ξ(ϖ),ν(ϖ),φ(ϖ)

into (32) and (33) to obtain o∗n(τ) and α∗n(τ).
5: Substitute o∗n(τ) and α∗n(τ) into (35) to obtain G∗.
6: Update new dual variables ξ(ϖ+1),ν(ϖ+1),φ(ϖ+1)

based on (37).
7: if ξ(ϖ + 1)− ξ(ϖ) < ϵ, ||ν(ϖ + 1)− ν(ϖ)|| < ϵ and

||φ(ϖ + 1)−φ(ϖ)|| < ϵ then
8: o∗n(τ) = on(τ), α∗n(τ) = αn(τ).
9: Break.

10: else
11: ϖ = ϖ + 1.
12: end if
13: end while

C. Adaptive Harmony Algorithm for CPU Frequency
Allocation

To find the optimal solution for CPU frequency, We design a
heuristic adaptive search algorithm under given client schedul-
ing x(τ ), bandwidth allocation α(τ ), and transmit rate o(τ ).
For given x(τ ), o(τ ), and α(τ ), the CPU frequency opti-
mization problem is written as

SUB3 : min
f(τ)

max
n∈N (τ)

{
An

on(τ)
+
IdnCn

fn(τ)

}
s.t. (C4) : fmin

n ⩽fn(τ)⩽fmax
n ∀n ∈ N (τ), τ,

(C7) : uIdnCnfn(τ)2 + Eup
n (τ) ⩽ Emax,

∀n ∈ N (τ), τ.
(39)

For energy constraint (C7), we transfer the problem using
a penalty factor.

SUB3 : min
f(τ)

M(f(τ ))

s.t. (C4) : fmin
n ⩽fn(τ)⩽fmax

n , ∀n ∈ N (τ), τ,
(40)

where

M(f(τ )) = max
n∈N

{
An

on(τ)
+
Idn(τ)Cn

fn(τ)

}
+ ℵ

( ∑
n∈N (τ)

max{0, uIdn(τ)Cnfn(τ)2

+ Eup
n (τ)− Emax}

)
, (41)

where ℵ → +∞. According to the theory of the exterior
penalty method, (39) and (40) have equivalent solutions. The
adaptive harmony search algorithm includes the following
parameters [30]:

• NI: it is the maximum number of iterations, indexed by l.
• HMS: it means the number of solutions vectors in har-

mony memory (HM), where harmony memory (HM) can
be expressed as a matrix.

HM =

 f1
1 (τ) · · · f1

N (τ)
...

. . .
...

fHMS
1 (τ) · · · fHMS

N (τ)

 , (42)

where f i(τ ) = [f i
1(τ), f

i
2(τ), . . . , f

i
N (τ)] represent the

i-th solution vector, that is, harmony variable.
• HMCR: it is the harmony memory considering the rate,

following the normal distribution. Generate a random
number r1 between [0,1]. When r1 is less than HMCR,
an old harmony variable is randomly selected; otherwise,
a new one is randomly generated.

• PAR: it expresses the pitch adjusting rate. Generally,
it obeys the Gaussian distribution.

• BW: it represents the distance bandwidth, which indicates
the adjustment amplitude of the new harmonic variable.
Generate a random number r3 between [0, 1]. If r3 < 0.5,
add r4∗BW to the new harmony variable. Otherwise, sub-
tract r4∗BW, where r4 is a random number distributed in
[0,1]. To enhance the adaptive efficiency of the algorithm,
we dynamically set the value of BW as in [30].

BW(l)

=

 BWmax − 2l
BWmax − BWmin

NI
, if l < NI/2,

BWmin, else.

(43)

The particulars of the CPU frequency allocation algorithm
are shown in Algorithm 4. In Line 3, generate harmony
memory considering rate and pitch adjusting rate. In Lines
4-17, generate the new solution fnew(τ ). In Lines 18-20,
move fnew(τ ) in harmony memory and remove the worst
solution vector. In Lines 21-25, regenerate the distribution of
PAR and HMCR based on historical results.

IV. NUMERICAL ANALYSIS

In this section, lots of experiments were done to verify the
efficiency of the designed algorithm.

A. Simulation Settings

We consider a FL network that clients distribute in a cell
with a radius of R = 500 m and a server located in the center.
In the simulation, we model the channel gain as hk(τ) =
hgk(τ)( d0

disk
)a, where disk is the distance between the server

and client k, gk(τ) is the small-scale path loss and d0
disk

is the
large-scale path loss. The other simulation parameters are set
as Table I.

To testify to the robustness of the proposed algorithm,
we will consider three datasets:
• MNIST: MNIST comprises 60000 training and

10000 test samples. To simulate non-iid, we divide
60000 training images into 50 shards, each containing
1200 images. We select 1-5 shards for clients.
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Algorithm 4 CPU Frequency Allocation Algorithm

Input: µPAR, σPAR, µHMCR,BWmin,BWmax, σHMCR,NI,
FLAG, f lag = 1.

Output: f∗n(τ)
1: Initialize HM, l = 0.
2: while l < NI do
3: Generate HMCR and PAR according to µHMCR,

σHMCR, µPAR and σPAR

4: for n in N (t) do
5: if r1 ⩽ HMCR then
6: fnew

n (τ) = f i
n(τ), where f i

n(τ) is selected from
HM randomly.

7: if r2 ⩽ PAR then
8: if r3 ⩽ 0.5 then
9: fnew

n (τ) = fnew
n (τ)− r4 ∗ BW(l)

10: else
11: fnew

n (τ) = fnew
n (τ) + r4 ∗ BW(l)

12: end if
13: end if
14: else
15: fnew

n (τ) = fmin
k + r4 ∗ (fmax

k − fmin
k )

16: end if
17: end for
18: if M(fnew(τ )) < M(fworst(τ )) then
19: Move in fnew(τ ) and remove fworst(τ ).
20: end if
21: if flag == FLAG then
22: Assess µPAR and µHMCR based on PAR and HMCR

and let flag = 1.
23: else
24: flag = flag + 1
25: end if
26: end while

TABLE I
SUMMARY OF THE SIMULATION PARAMETERS

• CIFAR10: There are more than ten types of CIFAR data,
including tens of thousands of training images and test

Fig. 2. Convergence of algorithm.

Fig. 3. Convergence of algorithm 3.

Fig. 4. Convergence of algorithm 4.

images in the data set. For non-IID, we divide the 50,000
training images into 50 shards, each shard containing
1,000 images. We choose 1-5 shards for our customers.

• FASHION-MNIST: FASHION-MNIST clones all exter-
nal features of MNIST. The difference is that Fashion
MNIST is no longer an abstract symbol but a more
concrete human necessity, such as Trousers and Ankle
boots. The setup for non-iid is the same as that of MNIST.

B. Convergence Performance of the Proposed Algorithm

In Fig. 2, we show the convergence of Algorithm 2.
Algorithm 2 is the main algorithm framework of this paper,
whose reward is the target value of the optimization problem.
From Fig. 2, it can be observed that the reward eventually
converges under slight jitters. Fig. 3 displays the dual variables
ν = {νk} and ξ versus iteration ϖ to show the convergence
of Algorithm 3. It can be found that the algorithm has a
rapid convergence rate. In Fig. 4, we show the convergence of
the CPU frequency allocation algorithm. We can find that the

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 16,2025 at 13:06:14 UTC from IEEE Xplore.  Restrictions apply. 



3158 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 24, NO. 4, APRIL 2025

Fig. 5. Clients’ reputation when RErequire
k = 0.5.

algorithm converges about 200 rounds, which also has a rapid
convergence rate.

C. Verify the Validity of the Reputation Model

We simulate data attack by flipping all labels of the client
to label 0 as in [35]. We conduct training on both containing
20% malicious clients and containing 40% malicious clients
and use Attack = 20 and Attack = 40 below to represent
both cases.

To simulate Attack = 20 and Attack = 40, we randomly
sample 20% clients and 40% clients as malicious clients. In the
first FL round, all clients have the same reputation value of 0.5.
After training, we can get all clients’ real reputations. Fig. 5
shows clients’ updated reputation after the first FL epoch.
From Fig. 5, it can be observed that our model has indeed
identified malicious clients (reputation less than RErequire

k ).
In the subsequent training rounds, clients with a reputation
of less than RErequire

k will forever lose the opportunity to
be scheduled. In this way, our reputation model, based on
the subjective logic model, can identify malicious clients
efficiently.

D. Performance Comparison of the Proposed Algorithm and
Other Existing Algorithms

To demonstrate the effectiveness of the client scheduling of
the proposed scheme under data attack, we set up the following
three benchmark schemes:
• RP [15]: Compared to the proposed scheme, this

approach utilizes the beta trust model to establish trust,
and the scheduling client is chosen based on this model.

• FedAvg [20]: This scheme has the same optimization
variables, except the client selection mechanism adopts
a random method.

• RR [36]: The client selection mechanism of this scheme
adopts a polling mechanism.

We set independent and identically distributed (IID) and
non-IID for these three datasets, but due to space limita-
tions, this paper only presents some of the results. Fig. 6
shows the convergence of global accuracy with the number
of global epochs. The solid curve represents the average of
10 experiments, and the shaded envelope represents the upper
and lower accuracy bounds. From Fig.6, we can see that the
convergence of FedAvg and RR is severely compromised as
the percentage of malicious attacks increases. Nevertheless,

Fig. 6. Comparisons of the test accuracy of FL among the proposed
algorithm, RP, FedAvg, and RR underAttack = 20 and Attack = 40 with
K = 10, N = 5, T = 80.

Fig. 7. Comparisons of the total time delay of T epochs among the proposed
algorithm, RP, FedAvg, and RR under different Attack withK = 10, N =5,
T = 10.

both the algorithm and RP still maintain excellent conver-
gence. The reason for this phenomenon is that FedAvg and
RR cannot identify the client that contains the malicious data
attack, resulting in the model being contaminated. Moreover,
the proposed algorithm can reach a faster convergence rate
and better convergence precision than RP under a non-iid
setting. Hence, our algorithm is more applicable and efficient
in ensuring convergence performance.

In Fig. 7, we show the comparisons of the total time delay
of T epochs among the proposed Algorithm, RP, FedAvg,
and RR. In order to observe the changes in time delay more
intuitively, we add two settings: Attack = 30 and Attack =
50. From Fig. 7, we observe that the proposed algorithm is
significantly different in Attack = 20, 30, 40, 50 scenarios
compared with other algorithms, especially in Fig. 7(b). This
phenomenon is because the proposed algorithm will prioritize
clients with low latency while ensuring quality. As malicious
clients increase, the number of available clients decreases. The

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on April 16,2025 at 13:06:14 UTC from IEEE Xplore.  Restrictions apply. 



FENG et al.: REPUTATION-BASED MODEL AGGREGATION AND RESOURCE OPTIMIZATION IN WIRELESS FL SYSTEMS 3159

Fig. 8. Comparisons of the time delay of each client among the Proposed
algorithm, ROA, RBA, and RFA under Emax = 0.35J and K = 10,
N = 10.

proposed algorithm selects clients with lower latency from the
remaining clients, and RP always favors clients with good
reputations. Therefore, our algorithm is very efficient and
balances convergence performance and latency.

To highlight the efficiency of our resource optimization,
we set up the following scheme for comparison.

• ROA: The scheme randomly sets the transmit rate and
optimizes the client scheduling variable, CPU frequency
variable, and bandwidth proportion variable.

• RBA: The scheme randomly sets bandwidth proportion
and optimizes the client scheduling variable, CPU fre-
quency variable, and transmit rate variable.

• RFA: The scheme randomly sets CPU frequency and
optimizes the client scheduling variable, bandwidth pro-
portion variable, and transmit rate variable.

• RXA: The scheme randomly sets client scheduling and
optimizes the CPU frequency variable, bandwidth pro-
portion variable, and transmit rate variable.

Fig. 8 compares the time delay of each client among the
proposed algorithm, ROA, RBA, and RFA. From Fig. 8, it can
be found that the time delay of the other three algorithms has
a significant difference between clients, while the proposed
algorithm balances the time delay of each client. In Fig. 9,
we further compare the clients’ average time delay, best
client’s time delay, and worst client’s time delay among the
proposed algorithm, ROA, RBA, RFA, and RXA. We can
visually observe that the time delay of ROA and RBA exceeds
the RFA and RXA, so the optimation of transmit rate and
bandwidth proportion is more beneficial in reducing time
delay than CPU frequency and client scheduling. Additionally,
compared to the proposed algorithm, ROA sacrifices the effi-
ciency of other clients to improve the average latency, which
will cause a serious waste of resources. Moreover, the pro-
posed algorithm has certain advantages over other algorithms.
Specifically, the proposed algorithm has a subtle difference in
the time delay between the best and worst clients, balancing
the time delay of each client and achieving efficiency and
fairness. This experiment’s results verify the superiority of the
proposed algorithm in achieving balanced and fair resource
allocation.

Fig. 9. Comparisons of the time delay of the average value, the best client,
and the worst client among the Proposed algorithm, ROA, RBA, RFA and
RXA under Emax = 0.35J and K = 10, N = 5.

Fig. 10. Impact of maximum transmit energy Emax on time delay under
K = 10 and N = 5.

E. Impact of Maximum Transmit Energy Emax

on Time Delay

Fig. 10 illustrates how the maximum transmit energy Emax

affects the worst client time delay under the contrastive
schemes. When the client’s available energy increases, the
worst client’s time delay for each scheme will correspondingly
decrease. Moreover, we also observe that when the energy is
below a certain threshold, the worst client time delay decreases
significantly with the increase of Emax. Until Emax exceeds
a certain threshold, the worst client time delay decreases
slowly with the increase of Emax. Furthermore, the proposed
algorithm consistently outperforms other algorithms.

F. Impact of the Number of Selecting Clients N
on Time Delay and FL

To consider the impact of the number of selecting clients
N on time delay, we expand the total number of clients to
100 and conduct N = 20, 30, 40, 50, 60, 70. Fig. 11 provides
time delay under different N among the proposed algorithm,
ROA, RBA, RFA, RXA. From Fig. 11, we find that scheduling
more clients will result in higher time delays due to limited
bandwidth resources. However, as N increases, the proposed
algorithm consistently maintains the lowest delay compared to
other existing resource optimization. In addition, the proposed
algorithm can reduce the delay increase as much as possible
so that the delay increase with N is slower.
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Fig. 11. Impact of the number of selecting clients N on time delay under
K = 100 and Emax = 0.5J .

Fig. 12. Impact of the number of selecting clients N on the number of
communication rounds to achieve the target accuracy 80%.

Fig. 13. Impact of the number of selecting clients N on the time delay of
total epoch to achieve the target accuracy 80%.

To consider the impact of the number of selecting clients
N on FL, we apply the above experimental apparatus to RP,
FedAvg, and RR. Due to limited space, we only present the
training results on the non-iid MNIST dataset. After massive
experiments, we find that FedAvg’s best convergence accuracy
in the case of attack is 80%. Fig. 12 and Fig. 13 record the
number of communication rounds and the time delay required
to achieve 80% accuracy, respectively. From Fig. 12, it can be
found that scheduling more clients can reduce the number of
communication rounds to achieve the target accuracy. Besides,
we also find that when N reaches a specific value, the number
of communication rounds to achieve the objective accuracy
is approaching stability. Fig. 13 shows that the time delay

increases with the increase of N , which is consistent with
the test result in Fig. 11. Additionally, Fig. 12 and Fig. 13
also indicate that the proposed algorithm can achieve objective
accuracy with lower communication rounds and delay.

V. CONCLUSION

In this paper, we proposed a reputation-based scheduling
framework to minimize the total train delay in wireless FL
systems. Firstly, we have designed a reputation model in
a wireless FL system to evaluate the client’s data quality.
Then, we jointly optimized client scheduling, transmit rate,
bandwidth proportion, and CPU frequency allocation to mini-
mize the total delay. To solve this combinatorial optimization
problem, we have decoupled the optimization variables and
transformed them into three sub-problems. Then, we designed
efficient algorithms for each subproblem. Ultimately, the
results manifest that the developed algorithm has excellent
convergence speed and can ensure delay fairness among
clients. Meanwhile, convergence accuracy and total delay can
be achieved in balance. In the future, we will respond to more
malicious attacks and strengthen our robustness.

APPENDIX I
PROOF OF THEOREM 1

(C5), (C6) in (27) are linear constraints. For (C7),
we need to make some changes. Let c1 = N0An

hn(τ) , c2 =
uIdnCnfn(τ)2 − Emax, where c1(c1 > 0) and c2 are
constants. Then, (C7) can be expressed by f(ϑn(τ)) =
c1B

ϑn(τ) (2
ϑn(τ)

B − 1) + c2, ϑn(τ) ⩾ 0. According to convex

optimization theory [37], the convexity of a unary function
depends on whether its second-order derivative is greater than
0. The second-order derivative of f(ϑn(τ)) is expressed by
d2f(ϑn(τ))

ϑn(τ)2 = c1

(
2ϑn(τ)/B

(ϑn(τ)
B ln 2 − 1

)2 + 2ϑn(τ)/B −

2
)
/(ϑn(τ)/B)3. Next, we analyze the sign of d2f(ϑn(τ))

ϑn(τ)2 .

It is obvious that the sign of d2f(ϑn(τ))
ϑn(τ)2 depends on the

sign of £(ϑn(τ)) = 2ϑn(τ)/B
(ϑn(τ)

B ln 2− 1
)2 + 2ϑn(τ)/B −

2. The first-order derivative of £(ϑn(τ)) is expressed by
d£(ϑn(τ))

ϑn(τ) = (ϑn(τ)/B)32ϑn(τ)/B ln 23 ⩾ 0. So £(ϑn(τ))
increases with ϑn(τ), and has the minimum value 0 in
ϑn(τ) = 0. Then, we have d2f(ϑn(τ))

ϑn(τ)2 ⩾ 0. Hence, (C7)
is a convex function of ϑn(τ). For (C8), we let c3 =
An, c4 = IdnCn

fn(τ) − G, where c3(c3 > 0) and c4 are con-
stants. Then, (C8) can be expressed by f(αn(τ), ϑn(τ)) =

c3
αn(τ)ϑn(τ) − c4, 0 ⩽ αn(τ) ⩽ 1, ϑn(τ) ⩾ 0. We can
get the the hessian matrix of f(αn(τ), ϑn(τ)), denoted by
H =

(
2/αn(τ)3ϑn(τ) 1/αn(τ)2ϑn(τ)2

1/αn(τ)2ϑn(τ)2 2/αn(τ)ϑn(τ)3

)
. It is effortless to prove

that H is positive definite by calculating that every principal
minor of order is greater than 0. Therefore, we can obtain that
(C8) is a convex constraint, and then we demonstrate that (27)
is a convex optimization problem.

APPENDIX II
PROOF OF THE OPTIMAL SOLUTION o∗k(τ)

Let χ = ϑn(τ)
B , (31) can be rewritten as χ2χ ln 2 −

2χ = c6
c5
− 1, where c5 = BνnN0An

hn(τ) , c6 = φn
An

αn(τ) .
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Let c6
c5
− 1 = β. We have 2χ ln 2χ − 2χ = β. Let

2χ = m. Then, (31) can be rewritten as m lnm − m = β.
Further transformation leads to m

e ln m
e = β

e . m
e ln m

e = β
e can

be converted to β
e = β

me
β
m . Since xex = y, x = W (y), we can

obtain m = β

W ( β
e )

. Bring the value of m,χ into 2χ = m,

we can get ϑn(τ) = B log2
β

W ( β
e )

. In the end, we can gain

the optimal solution o∗n(τ) = α∗n(τ)B log2
β

W ( β
e )

.
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