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1 INTRODUCTION

Over the past few decades, processor performance has seen significant advancements due to con-
tinued breakthroughs in manufacturing processes, but the semiconductor processing is apparently
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approaching physical limits. As a result, vendors have shifted their focus toward enhancing mi-
croarchitecture design by introducing various optimization strategies [73]. However, in recent
years, these microarchitecture optimizations have raised a series of important security issues. Nu-
merous types of side-channel attacks (SCAs) have been proposed, which exploit various subtle
signals on the computer system such as power, electromagnetism, and execution time to infer con-
fidential information from user programs and compromise the operating systems (OSes). Among
them, microarchitectural timing side-channel attacks (MTSCAs) are particularly prevalent
and thus are the focus of this survey. Formerly, MTSCAs can only utilize timing differences to
infer the victim’s access patterns and leak specific secrets [58, 102, 174], such as encryption keys.
However, since 2018, a new generation of microarchitectural attacks [15, 20, 22, 46, 77, 88, 89, 100,
104, 123, 129, 130, 138, 146, 151, 152] has shattered this standpoint. These attacks can provide a
reliable and fine-grained manner for arbitrary data leakage across security boundaries.

Numerous microarchitectural techniques designed to boost processor performance likely cause
serious security risks. Concretely, simultaneous multi-threading (SMT) enables multiple tasks
to execute in parallel on a single CPU core. Although this feature significantly enhances the
concurrency capability of processors, it exacerbates resource contention (e.g., cache, execution
ports, etc.) among program instructions. Another prime example is the pipeline design in modern
processors, where the out-of-order execution and branch prediction jointly work to maximize
the efficiency of the pipeline by pre-executing future instructions. The two above undoubtedly
create chances for construction of a timing channel. In particular, two innovative attack vectors,
dubbed Spectre [88] and Meltdown [100], respectively, have demonstrated that those optimization
or lookahead mechanisms are prone to information leakage vulnerabilities. More specifically,
when the CPU check encounters an error, it rollbacks all beforehand executed instructions.
However, any change to microarchitectural state (normally invisible to the program) made by
such speculative execution still remains. Thus, an adversary can craft a (timing) channel to recover
such states, thereby stealing the confidential data. Further, based on the aforementioned attacks, a
plethora of variants have been proposed to either expand the attack surface or enhance the prac-
ticability, such as Foreshadow [20], ret2spec [104], LVI [146], microarchitecture data sampling

(MDS) [22, 129, 151, 152], and many more. So far, a long line of work belongs to the well-known
transient execution attack .

Particularly, MTSCAs are not restricted to several security-aware cryptographic applications
[115], and attack variants have been developed to target different scenarios, such as bypassing
address space layout randomization (ASLR) [40, 53, 68] and inferring keystroke behavior [97].
More recently, breaking the basic memory isolation enforced by the OS [88, 100] and even the
hardware-enforced security guarantees like Intel software guard extensions (SGX) [92, 161]
have been demonstrated. However, it is impractical to eliminate those hardware features from mi-
croarchitecture designs exclusively for security gains. As such, it is still very challenging to remove
all side-channel vulnerabilities from both hardware and software designs without a deepgoing
understanding of their nature and factors related to timing side-channel attacks and defenses.

This article presents a comprehensive survey of MTSCAs and their defenses with a particular
focus on attack conditions/requirements. The attack condition refers to prerequisites that need to
be met for a particular attack to be successfully launched. It typically includes specific resources,
system configurations, or attacker actions that are necessary for the attack to work. Under-
standing that the attack condition is crucial for responding to potential risks and implementing
effective countermeasures. We conduct our survey based on such knowledge. In this sense, our
work departs from prior works. Specifically, we first provide a comprehensive overview of CPU
microarchitecture and introduce various CPU optimization strategies. We then propose two sets of
taxonomies for classifying the timing side-channel attacks and their defenses according to various
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attack conditions. Subsequently, we review the published attacks and existing defenses and
systematically analyze their internals, including the similarities and differences between distinct
attack types and the scalability of those defenses. We also show the practicality and severity of
each attack vector by specifying the attack targets/platforms and the security boundaries that can
be breached. Ultimately, we propose several key challenges of existing mitigations and the attack
trends, and discuss potential research directions.
Existing Surveys. Past investigations on MTSCAs have been published. Ge et al. [48] provide
a detailed survey of MTSCAs and group them according to the shared resource categories. They
highlight the importance of boosting hardware isolation in cloud environments. Biswas et al. [16]
focus on other timing channels, such as network and system channels. Canella et al. [23] present
the first comprehensive survey of transient execution, which classifies the attacks into Meltdown-
type and Spectre-type. It emphasizes the intrinsic differences between the trigger causes of the
two types of attacks. Lou et al. [103] focus on SCAs and defenses in cryptographic applications
and analyze the exploitability of vulnerabilities from software and hardware perspectives. Xiong
et al. [166] investigate transient execution attacks from 2018 to 2020 and discuss a taxonomy based
on the root cause of the transient attacks.

However, several major problems are not fully discussed or clarified. First, existing investiga-
tions lack a comprehensive discussion of the attack requirements, together with the attack goals
and models as a whole, so understanding the practicality of the attacks and defenses in different
scenarios is challenging. Second, most of the taxonomies for transient execution attacks focus on
emphasizing the differences between the attacks while ignoring the similarities between the at-
tacks based on their attack conditions. As a result, it is difficult to formulate generic and potent
countermeasures. Third, there is no complete discussion yet about both the attack trends and the
defense challenges based on the above taxonomies.
Contributions. Our survey pinpoints three important contributions. First, we propose two sets
of taxonomies of MTSCAs and their defenses based on different attack conditions. Second, in light
of the attack taxonomy, we systematically analyze the existing timing side-channel attacks. We
present a comprehensive analysis of the similarities and differences among these attacks, and
further uncover the practicality and severity of the vulnerabilities by specifying the attack tar-
gets/platforms and the security boundaries. Third, we summarize the published defenses against
these timing side-channel attacks based on our proposed defense taxonomy and examine their
scalability through specifying wanted defense goals and costs. We also provide a concise discus-
sion and classification of detection schemes. Finally, we flesh out several key challenges and discuss
seven future research directions. We hope this survey can eliminate potential ambiguities amongst
these attacks and defenses from more practical perspectives and can help one better understand
the research area and spark more follow-up work.
Scope of investigation. This survey specifically examines timing side-channel attacks and de-
fenses in processor microarchitectures, excluding other SCAs such as power consumption and
electromagnetic attacks. We mainly take cache as an example to analyze the attack conditions and
attack targets/platforms of non-speculative SCAs and transient execution attacks. We only men-
tion SCAs involving other components when relevant. The transient execution attacks discussed
pertain to a rich execution environment that supports versatile applications on the same platform.
Note that attacks against trusted execution environment (TEE), such as Intel SGX [17, 109, 118,
147, 149, 168], are not the main emphasis here. We discuss them whenever necessary.

2 BACKGROUND

This section revisits details of architecture and microarchitecture, such as various microar-
chitectural components and optimization techniques. It also covers the fundamentals of
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microarchitectural timing attacks, such as covert channels, side channels, and transient execution
attacks, as well as knowledge related to exceptions and microcode assists (MAs). More details
can be found in Reference [64].

2.1 Architecture and Microarchitecture

Architecture. Processor architecture refers to the overall design and organization of a processor,
defining its functionality, organization, and implementation. The interface specifications between
the processor and external systems are prescribed and implemented typically in an instruction

set architecture (ISA). Common processor architectures include ×86, ARM, RISC-V, and others.
Architectural state refers to the visible state of a computer system to external observers. It defines
the registers and memory states that software programmers can directly manipulate, as well as the
interaction methods with the external environment.

Microarchitecture. CPU microarchitecture refers to the internal implementation details of a
processor designed for a specific architecture. It involves the design and layout of components,
such as core organization, pipeline, cache hierarchy, execution units, and more. Microarchitectural

state refers to the state of instructions running inside the processor, which is used to record and
manage various resources and data during execution. It encompasses buffers, caches, instruction
queues, branch predictors (BPs), and many more, all of which are invisible to software programs.

Instruction execution. In modern processors, the execution process of instructions typically
includes five main stages: instruction fetch (IF), instruction decode (ID), execution (EX),
memory access (MEM), and write back (WB). The specific process may vary across different
processor architectures. For more details, please refer to Reference [44]. Taking Intel processors as
an example, the below is a breakdown of each stage:

IF: The processor fetches the next instruction’s address based on the Program Counter and reads
the instruction from the instruction cache.

ID: The instruction decoder parses instructions, determines their types and relevant operands
and decodes them into smaller micro-operations (µOPs). To predict execution paths of subse-
quent branches, processors introduce branch predictors to record the history of branch direc-
tions using pattern history table (PHT), branch targets using branch target buffer (BTB), and
return addresses using return stack buffer (RSB).

EX: Instructions are first sent to the re-order buffer (ROB), which records the sequence of in-
struction execution to support out-of-order execution. Then they are dispatched to the correspond-
ing execution units, such as arithmetic logic units and floating-point units (FPU), to perform
the expected operations.

MEM: When an instruction requires memory access, the processor uses the memory man-

agement unit (MMU) to translate virtual addresses to physical addresses and stores the related
mappings into the translation lookaside buffer (TLB) for fast indexing. This stage also involves
cache, which resides between the CPU and main memory to store recently or frequently accessed
data, reducing memory access latency. The cache hierarchy consists of multiple levels, namely L1,
L2, and L3. L1 and L2 caches are private to each core, while the L3 (also called the last level cache,
LLC) is shared among all cores. Higher-level caches have larger capacities but slower access speeds
accordingly. If the required data are in the cache, then the processor loads it into the register via
the load port (LP). Otherwise, the processor sends a request to the line fill buffer (LFB). The
LFB reads the entire data line from the main memory and stores it temporarily in the cache for
subsequent load operations.

WB: The execution results are written back to the register file or the cache for usage of other
instructions. This stage also includes the store buffer (SB), which temporarily stores related
operations that are retired but not yet written to the L1 cache, thereby improving WB efficiency.
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When an instruction reaches the last stage of the pipeline, called the commit stage, it is marked
as “completed” state in the ROB. Note that this state of the instruction indicates that the related
computation was finished, but it still stays in the pipeline. Only when all previous instructions in
the ROB were retired (which means that their results become architecturally visible to the program)
can the instruction be allowed to leave the pipeline. In particular, the unretired loads and stores are
held in the load-store queue according to the AMD manual [7]. It is similar to the ROB but is used
to track the status and order of load and store instructions. Retired loads already have their values
in the corresponding registers, while retired stores may have to wait in the SB for the relevant data
to reach the L1 cache. In the Intel manual [73], the term used is only “store buffer,” which includes
both unretired and retired but not yet written to L1 stores.

2.2 CPU Optimization Techniques

Out-of-order execution. The processor can boost performance of program execution through
adjustment to the sequence of code instructions executed. For example, when a long-latency in-
struction (e.g., memory load) occurs, the CPU dispatches the subsequent instructions that do not
involve any data and control dependencies to proceed instead of being blocked in place. The states
of those instructions are recorded in the ROB, and the CPU commits them to the architecture
level only when the previous instructions have been retired. In this way, it ensures correctness of
program execution.

Branch prediction. There are many branch instructions in programs, which can be specula-
tively executed to avoid pipeline stalling. The BPs are introduced in processor microarchitecture
to store the information of history branches. When it is a correct prediction, the CPU retains
the corresponding predicted results, thus gaining significant performance improvement. On
the contrary, when it is a misprediction, code executed during the speculation window is
rolled back to the previously saved state. The processor then re-executes the correct code
branch.

Store-to-load forwarding. The processor utilizes a store queue (SQ) or SB to buffer store
operations. To avoid read-after-write hazards, any subsequently issued load must check whether
the latest target value is in the SQ or SB. If a match is found, then the value from the preceding
store can be directly forwarded to the load operation without waiting for its result to be written
back to the memory subsystem. This optimization is known as store-to-load forwarding, and it
can eliminate unnecessary stalls, enhancing the efficiency of memory access.

Memory disambiguation. In out-of-order processors, loads that follow earlier stores to the
same (or overlapping) address are first satisfied from the SQ or SB rather than relying on stale data
from the L1 cache. Such loads are called aliasing previous stores. Since the SB buffers stores before
committing them to the L1 cache, loads cannot be executed until all previous store addresses
are known, limiting processor performance. Thus, processors introduce memory disambiguation
to predict which loads are unlikely to alias with previously unknown store addresses, making
them execute ahead of time. Note that the disambiguator only matches a subset of addresses
determined by the page size. For instance, when the OS uses 4KB-sized regular pages (rather
than large pages), the disambiguator performs prediction on the lower 12-bit addresses (i.e., 4KB
aliasing).

Speculative dependency checking. Intel processors use proprietary memory disambiguation
and dependency resolution logic to predict address dependencies related to speculative loads.
Speculative dependency checking can determine whether the lower 20 bits of the load and store
addresses (i.e., 2MB physical address aliasing) are the same. If it is the case, then the checking
logic predicts a dependency between the addresses and blocks the load until the preceding store
is completed. Beyond this point, the load can be executed ahead of time.
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2.3 Microarchitectural Timing Attacks

This article focuses on timing attacks in microarchitecture. This section introduces covert channels,
side-channels, and transient execution attacks, all of which are based on timing. The high-precision
timer required in MTSCAs is described.

Covert channels. Covert channels exploit timing or delay variations to transmit information
instead of an architecturally/OS-defined communication interface [163]. In a covert channel, the
communicating entities are called the sender and receiver. The sender modifies the state of shared
resources while the receiver observes the state changes (through timing) to infer the sent informa-
tion. In a real-world attack, the sender is typically a Trojan process, which is a malicious program
on the target system and capable of stealing secret data and encoding it into the microarchitec-
tural state. The receiver is a Spy process responsible for decoding and recovering the secret data
according to a predefined protocol. Covert channels can be seen as an instrumented attack that is
often combined with other attacks, such as transient execution attacks.

Side-channel attacks. SCAs are similar to covert channels where the receiver (called an
attacker) infers sensitive information by observing state changes. However, the sender is not a
Trojan deliberately leaking information but a trusted entity (called a victim) that inadvertently
leaks sensitive data (such as encryption keys) during its execution.

Transient execution attacks. Transient execution is a mechanism present in modern
processors, where the processor performs operations (often speculatively) before determining
the validity of instructions but does not submit their results. If an instruction is valid, then it is
eventually retired; otherwise, it is squashed. Transient execution attacks rely on the side effects
of instruction execution to disclose data. These side effects, which may or may not update the
architectural state (retired or not retired), invariably leave traces in the microarchitectural state.
Attackers can observe these traces with the assistance of covert channels and retrieve sensitive
data. Nevertheless, the covert channel in transient execution attacks diverges from that in classical
attacks, as the former transmits during transient execution, while all operations of the latter
are non-transient. Instructions that access secrets may be transient or non-transient. However,
non-transient secret access is typically caused by programming errors, which can be deduced and
prevented by programmers and compilers [178]. Thus, it is not the focus of this article.

High-precision timer (HPT). MTSCAs are typically combined with high-precision/fine-
grained timers to detect and analyze subtle microarchitecture states. The ×86 architecture
provides an unprivileged read timestamp counter (RDTSC) instruction, which allows for cycle-
level time measurements. This instruction provides a resolution of one to three cycles for Intel
CPUs. In contrast, on AMD CPUs, particularly after the Zen microarchitecture, the resolution of
RDTSC is significantly lower, updating only once every 20 to 35 cycles [99]. Although the AMD
Ryzen microarchitecture offers highly accurate APERF counters [7], these counters can only
be accessed from kernel space. However, even in the absence of HPT, the counting thread [98]
can provide a high-resolution measurement. This method continuously increases a global
variable serving as a timestamp independent of microarchitectural details. Intel’s transactional

synchronization extensions (TSX) [70] can also be used for the same purpose.

2.4 Exceptions and Microcode Assists

Many transient execution attacks rely on exceptions and MAs to trigger transient execution. This
section introduces some knowledge related to them.

Exceptions. An exception refers to an error that occurs when the CPU is executing instructions,
such as division by zero, illegal instructions, and memory access errors. Common exceptions
include page fault (#PF), device not accessible fault (#NM), general protection fault (#GP), and
bound-range-exceeded exception (#BR). In particular, the #PF is extensively triggered by the OS
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and applications due to requests for paging and permission bit violations. The permission bits
include user/privilege (U/S), page present (P), read/write (R/W), and so on.

Microcode assists. The ×86 architecture involves sophisticated instruction sets. Certain
instructions, such as XSAVE, can be decoded into around 200 µOPs. It is impractical for the CPU
to cope with all these instructions by pure hardware. Because the fast-decode path usually only
supports handling instructions of 4 to 6 µOPs. For those decoded more than 4 µOPs, the CPU
issues a MA and processes it with the aid of a microcode routine.

The microcode routine acquires microcode events [32] from the MSROM, which includes hardware
exceptions, assists, and interrupts. The patent [126] describes an event table with 64 entries, the
first 16 of which point to exception handlers, and the remaining are used by MAs. Each CPU core
is able to issue exceptions and MAs while they can be handled only at the retirement of the µOPs.

3 OUR TAXONOMIES

In this section, we propose two sets of taxonomies as classification rules for the surveyed work.
One is used to classify the MTSCAs, while the other is used to evaluate the defenses against those
attacks. Our proposed taxonomies are based on the threat models, attack conditions, and scenarios
of various attack and defense methods, all of which are not fully discussed together. We fill these
gaps by covering the above points. Our taxonomies only consider timing SCAs introduced by the
CPU microarchitectures. Other physical SCAs and software-driven SCAs, such as Hertzbleed [158],
are beyond the scope of this article.

3.1 The Attack Taxonomy

We classify MTSCAs into conventional/classic attacks (a.k.a. non-speculative SCAs) and transient
execution attacks (a.k.a. speculative SCAs) based on the requirement of transient transmission.
The conventional attack observes shared state changes of microarchitecture components to infer
information passively, where all instructions are executed non-speculatively. Conversely, the tran-
sient execution attack triggers programs to gain transient (or architectural) access to secret data
and then transiently transmits it by a covert channel.

Conventional attacks. Conventional attacks can be classified into SCAs and covert channels
according to their threat models (see Section 4.1). To better understand the attack elements, we
divided SCAs into cache-based and non-cache-based attacks. This survey focuses on cache-based
attacks, which can further be divided into eviction-based and control-based attacks depending on
how the attacker initializes the state of the target cache line under different attack requirements.
Eviction-based attacks implicitly modify cache states by accessing eviction sets or large arrays and
thus are influenced by cache replacement policies. Control-based attacks utilize cache control in-
structions [73] such as CLFLUSH and PREFETCH to directly modify cache states without considering
cache replacement policies. Non-cache-based attacks exploit components outside the cache, such
as FPU, AVX units.

According to the continuity of the state, the covert channel can be divided into volatile and
persistent channels. In the volatile channel, both the sender and receiver contend for hardware
resources dynamically, which leaves no side effect after usage. In the persistent channel, the sender
accesses the shared resources and leaves microarchitecture state there, which hence enables the
receiver to be able to observe such state to infer secret information. To show practicality of different
scenarios, we further divide the covert channel into same core, cross core, and cross CPU/GPU
based on different shared levels.

Transient execution attacks. Transient execution attacks can be divided into speculation-
based and exception-based attacks depending on the triggering cause of transient execution.
According to the conditions of triggering speculation, we further divide the speculation-based
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attacks into control-flow, data, and address. The control-flow speculation discloses secret infor-
mation by mis-training the BPs to induce the victim to execute critical code along a speculated
path. The data speculation misleads the victim to use incorrect data for speculative execution by
mis-training the value predictor. The address speculation means an attacker can disclose secret
information by triggering store-load address speculation.

Exception-based attacks can be divided into permission violation exceptions and illegal instruc-
tion/operand exceptions. Based on the conditions of triggering exceptions, we classify permission
violation exceptions into memory access and register read exceptions. The former refers to the
occurrence of permission violation exceptions during memory access, including #PF, memory
overflow, segmentation faults, and misalignment, among others. The latter means an exception
occurs when reading certain privileged registers (e.g., model specific register (MSR)). It is
important to note that not all exceptions can be used for attacks. An illegal instruction/operand ex-
ception occurs when the executed instruction itself generates an exception, such as divide-by-zero
and unrecognized instruction exceptions, which have not yet been exploited. Exception-based
attacks exploit the time window during exception handling to expose sensitive information to
attackers.

3.2 The Defense Taxonomy

We summarize the necessary conditions for the conventional and transient execution attacks and
categorize published defense techniques based on those attack conditions.

Conventional defenses. For conventional attacks, we divide the defenses into two categories:
hiding time differences and limiting resource interference. Both eliminate observable time dif-
ferences and measurable resource contention for the attacker respectively, as they are necessary
for the majority of SCAs (see Section 4.3). The method of hiding time differences can further be
divided into the eliminating timer, constant-time operation, and noise injection. The eliminating
timer disables the HPT available to the attacker. The constant-time operation requires careful
checks by software developers to ensure that the access patterns of code and data are secret-
independent at runtime. Noise injection interferes with the attacker’s measurements by obscuring
the HPT. A common way to limit resource interference is to partition and randomize caches for
different processes or security domains. To be more specific, cache partitioning divides shared
caches into different ways or set regions, which are not accessible to each other (non-interfering).
Randomization makes the address mapping to the cache unrecognizable to attackers, thereby
increasing the difficulty of constructing precise memory access to interfere with the victim’s
cache.

Transient execution defenses. For transient execution attacks, we divide the defenses into
four categories: isolating shared states, limiting speculation, disabling unauthorized access, and
invisible state changes. These defenses prevent the secret information from being leaked under
transient execution by restricting different attack conditions. Isolating shared states impedes
sharing the microarchitectural states between the attacker and the victim. Restricting speculation
stops transient execution of wrong predictions by the victim. Disabling unauthorized access
hinders operations to unauthorized target addresses. Invisible state changes aim to obstruct the
observation to microarchitecture state changes through side channels.

3.3 The Detection Taxonomy

We discuss some approaches for detecting MTSCAs separately and categorize them into code
detection and behavior detection. Code detection identifies vulnerable code locations (gadgets)
beforehand and then mitigates them. Behavior detection identifies potential attack behaviors,
such as cache hit/miss rates, attacker preemption, and conflict patterns.
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Fig. 1. The workflow of conventional attacks.

4 CONVENTIONAL ATTACKS

In this section, we discuss conventional attacks under our taxonomies from the following aspects:
threat model, attack steps, typical examples, attack conditions, and attack targets.

4.1 Threat Model

In a conventional attack, we assume that an attacker has the following three capabilities: (1) sharing
the same hardware components with the victim, (2) being capable of causing the microarchitec-
tural state changes when processing data, and (3) observing the resulting impact in microarchi-
tecture. These capabilities can be achieved conditionally in modern computer systems or cloud
environments. For (1), sharing components may be core-private (such as BPs), across-core-shared
(such as LLC), or even CPU-shared (such as the CPU directory). For (2), many microarchitectural
components are competitively shared or time-multiplexed among different threads or processes
to improve data processing efficiency. For example, the BP is used to cache the history of recently
executed branches to predict the execution of the next branch. In other words, the current states
may be influenced by previously used metadata and data in the components. For (3), since mi-
croarchitectural components do not provide an interface to query the related state, the attacker
can observe the subtle state through timing channels.

Conventional attacks include SCAs and covert channels, both of which involve two entities: the
sender and the receiver. For SCAs, the sender is a victim process, and the receiver is a Spy process
(attacker). It usually contains the following assumptions: First, the victim may perform some secret-
related operations (e.g., a simple if-else statement to check the value of a key); second, the Spy has
knowledge of the victim’s program, such as the gadget address. For covert channels, the sender
and the receiver are two colluding processes, i.e., a Trojan and a Spy. It is assumed that the Trojan
has acquired the secret but cannot communicate over the network (e.g., in a sandbox). In contrast,
the Spy is located in a non-confined environment. The Trojan and the Spy are prohibited from
communicating with each other due to enforcement of the security policy. To this end, the Trojan
attempts to send confidential data to the Spy via a covert channel. Covert channels are composed
of volatile and persistent channels. For the former, two entities must run concurrently, e.g., on an
SMT core. However, for the latter, two entities do not need to execute in parallel.

4.2 Procedure of Attacks

To clarify the implementation of attacks and assist in adopting targeted countermeasures, we
divide the conventional attack into three steps, as shown in Figure 1.
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— Locating the vulnerability. One premise of conventional attacks is that the attacker and
the victim can jointly manage the resource usage of a microarchitectural component. Since
these components are versatile, two entities must first determine what resources they share.
For instance, an adversary in a cross virtual machine (VM) attack must first determine the
“co-resident VMs.” That is, whether the attacker’s VM and the victim’s are located on the
same or different processor core(s), or on the different VMs assigned to different processors.
The attacker then needs to find vulnerable code gadgets. For example, a branch associated
with secret data performs different operations based on its results.

— Measuring microarchitectural state changes. After locating vulnerabilities, the at-
tacker needs to determine the collision domain with the user program, which refers to
a set of addresses that contend for the same component region and collectively affect its
microarchitectural state. The collision domain may generate some impacts on the execution
process, which are summarized as follows: (1) the differences of execution time. Since code
or data may be located in different levels of the memory hierarchy, it likely causes varying
access latency. For example, it takes ∼33–43 cycles to access data from L1 and about 230
cycles from memory on Dell PowerEdge T420 with an Intel Xeon E5-2430 processor [174].
(2) Hardware resource usage. During the program execution, some hardware units may
be exclusive or locked [5, 164], so the resources will become temporarily unavailable to
other programs. An attacker can measure these hardware resources to analyze the user’s
behaviors. (3) Transaction aborts. With Intel TSX instructions, a transaction will trigger an
abort when a cache line of “read set” is evicted from the L3 cache. Thus, the attacker can
capture these abort events for further analysis [38].

— Recovering secret information. After obtaining the changes of the microarchitectural
state, the attacker processes the learned memory access patterns by combining some prior
information. For example, she can recover control flow and divulge memory access data.
With these capabilities, the attacker can extract the user’s secret key [174], behaviors [139],
distribution information in kernel space [40], and so on. This step can be performed
through offline analysis in an end-to-end attack. Prior information refers to the additional
knowledge that an attacker has about the attack target before launching an attack. For
example, in terms of the implementation of RSA algorithm by Montgomery’s large number
modulo multiplication [133], the attacker knows that a Square-Reduce-Multiply-Reduce
sequence signifies an exponent of “1” while Square-Reduce represents the opposite “0.” By
combining this information, attackers can observe the usage of these functions to retrieve
the key after recovering the exponent.

4.3 Side-channel Attacks

Conventional SCAs can be divided into cache-based and non-cache-based attacks according to
the aforementioned taxonomy. Of these SCAs, the cache-based is best known in modern proces-
sors. The root cause is that caches are widely present in various CPU microarchitectures and are
shared among processes, VMs, or even multiple processor cores. Due to the numerous variants
and significant differences in cache-based attack methods, this article primarily focuses on the
implementation of this type of attack, while the non-cache-based attack is only discussed briefly
in Section 4.3.5. As shown in Table 1, we provide a detailed analysis of the attack types, typical
examples, attack conditions, and attack targets for cache-based attacks.

Hu [67] first proposed that caches are suitable covert channels for secret information extraction
in 1992. Kesley et al. [80] mentioned the possibility of cache attacks based on cache hit/miss
rates. Later, Page [113] theoretically studied cache attacks, and Tsunoo et al. [145] researched
timing leaks caused by internal table lookup conflicts. However, it was not until 2005 that the first
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Table 1. The Conditions and Targets of Cache-based Attacks

Attack type
Condition†

Variant Target
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SM SC
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H
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SX H
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E
v

ic
ti
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n

TS

Evict+Time [12, 111] AES

Prime+Probe [102] GnuPG, AES

Prime+Abort [38, 84] GnuPG, AES

Occupancy [136] Website fingerprint

MS LRU states [18, 119, 165] GnuPG, AES

C
o

n
tr

o
l

TS Flush-based [58, 174] GnuPG, AES, keystrokes

MS
Prefetch-based [57, 62, 96]

GnuPG, keystroke,
KASLR

Invalidate+Transfer [76] AES, ElGamal

†TS: tag state; MS: metadata state; ES: eviction set; CLF: CLFLUSH instruction; PRE: PREFETCH instruction; SM: shared
memory; SCR: shared cache resources; HC: performance counters. indicates that the condition is required;
indicates that the condition is not required; indicates that the condition is optional.

practical implementation of cache attacks was demonstrated [12]. Percival [114] demonstrated
that shared access to memory caches provides a covert channel between threads and allows
a malicious thread to monitor the execution of another thread to steal encryption keys. Early
cache-based attacks were mainly time-driven SCAs that collect the overall encryption/decryption
times in the cryptographic process. This is determined by the number of cache hits and misses.
One representative attack was Evict+Time [111], where an attacker first measures the execution
time of the victim’s program as a baseline. She then evicts certain specific cache sets and measures
the victim’s execution time again to determine if the victim has accessed memory locations
mapped to the previously evicted cache sets. In 2010, access-driven cache attacks began to
attract attention [1]. Subsequently, some classical access-driven attacks such as Flush+Flush [58],
Flush+Reload [174], and Prime+Probe [102] were proposed, which are the focus of this section.

4.3.1 Attack Types. In a cache-based attack, the attacker first interferes with the cache access
pattern of the victim and then exploits the access latency in different states to infer the victim’s be-
haviors. We classify this type of attack into eviction-based and control-based. In an eviction-based
attack, the attacker fills the cache set (that the victim’s data occupies) with his own data to initial-
ize the cache state through set conflicts. In a control-based attack, it is usually assumed that the
attacker and the victim share data, which allows the attacker to directly manipulate the victim’s
cache state using cache control instructions, such as CLFLUSH and PREFETCH. The cache state can be
divided into cache tag state and metadata state [86]. The metadata state includes cache coherence
metadata (e.g., MESI [62]) and replacement metadata (e.g., LRU [165]). Therefore, eviction-based
attacks can be further categorized into eviction of tag state (Eviction-TS) and eviction of meta-

data state (Eviction-MS) attacks. Likewise, control-based attacks can be divided into control of

tag state (Control-TS) and control of metadata state (Control-MS) attacks.

4.3.2 Typical Examples. Prime + Probe [102] first populates one or more cache sets with the
specified data or code (Prime) and then waits for the victim to execute. Afterward, the attacker
measures the load time while reloading the primed data or code (Probe). If the victim has accessed
the cache set, then the previously populated data will be evicted, thus resulting in a higher latency
in the Probe phase. Flush + Reload [174] first flushes the target cache line using the CLFLUSH
instruction (Flush). After a period of time, the attacker re-accesses the target line and measures
the reload time (Reload). A lower reload latency indicates that the victim has accessed the target
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cache line. By comparison, the prefetch-based attack [62] first prefetches the target data using
the PREFETCHW instruction, which will change the target cache line to a modified (exclusive) state.
When the victim accesses the target line, it goes into a shared state. Otherwise, this line remains
unchanged (i.e., modified state). Finally, the attacker can infer whether the victim accessed the
target data by measuring the time of re-accessing it. Because the time of fetching the cached data
from the LLC is obviously different from that from the remote private cache.

4.3.3 Attack Conditions. Various MTSCAs manifest differences as well as similarities in terms
of essential conditions. Many prior studies have sought to develop more powerful attack variants
by relaxing necessary attack conditions. In this section, we summarize the related attack conditions
in Table 1 and discuss how they affect the attack process.

First, we list the differences of common attack conditions as follows.

— Eviction set. Eviction-based attacks need to construct eviction sets, each of which is a set of
addresses mapped to the same cache set. However, it is necessary for the attacker to know
certain physical address information. To find eviction sets, Vila et al. [153] proposed a new
algorithm that reduces the time complexity from quadratic to linear scale. To perform high-
frequency measurements using a quick eviction strategy, Lipp et al. [98] evaluated over 4,200
access patterns on smartphones to seek the ideal eviction strategy, where the eviction time
is reduced to 1578 CPU cycles. Purnal et al. [119] find a specific Prime pattern according to
the cache replacement policy, which allows accessing only a cache line in the Probe phase,
thus improving the measurement speed. In particular, several eviction-based attacks do not
rely on eviction sets. For example, Evict+Time [12, 111] and Occupancy channel [136] evict
the victim’s data by accessing large arrays.

— Cache control instructions. To get rid of the need for eviction sets or large shared arrays,
control-based attacks use a cache control instruction [73] with only user privileges to modify
the cache state of the victim. For instance, Guo et al. [62] discovered that the PREFETCHW
instruction can change the cache line state to “Modified” even if the target data are read-only
for the attacker. Based on this observation, the attacker can set the target data to be L1 private.
Once the victim accesses this data, it becomes LLC-shared. Since an LLC hit takes less time
than a remote private cache hit, the attacker can measure access time to infer whether the
victim has accessed target data. The limitation of control-based attacks is that the CLFLUSH is
invalid in ARM processors (except ARMv8-A [98]) and JavaScript [53].

— Shared memory. Eviction-based attacks do not require shared memory between the attacker
and the victim, whereas control-based attacks require shared memory.

Second, we summarize the similarities of common attack conditions as follows.

— High-precision timer. It is important for the cache-based attacks to have an HPT to measure
subtle cache state. Typically, an attacker can invoke a RDTSC instruction to read the current
timestamp. However, the RDTSC is unavailable in the JS browser and ARM architecture.
Instead, other timing-related APIs or counting threads are proposed in Reference [98].
Disselkoen et al. [38] introduced a timer-independent attack that exploits the Intel TSX
feature. When a cache line is evicted during a transaction, TSX will trigger an exception and
terminate the transaction. Shusterman et al. [136] proposed a cache occupancy-based channel,
which can collect cache traces with the assistance of performance counters. Moreover, it
measures the access time of the whole LLC cache (rather than a cache line) to avoid the
usage of the HPT. Other studies are also dedicated to non-timing attacks. Cache Storage
Channels [60] exploit virtual aliases by misconfiguring the memory system with mismatched
memory attributes and self-modifying code. This allows attackers to place inconsistent copies
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of the same physical address into the cache and observe which address is cached. S2C [176]
discovered that the execution of synchronization instructions causes architectural state
changes when L1 cache evictions occur, enabling attackers to monitor the microarchitectural
state changes of addresses without the need for a timer. Zhang et al. [181] leverage the
unprivileged idle-loop optimization instructions introduced by the Intel microarchitecture to
provide architectural feedback on the transient usage of specified memory regions.

— Shared cache resources. Cache-based attacks are based on shared resources between the
attacker and the victim. For instance, control-based attacks exploit shared memory and
the same cache line, and eviction-based attacks share the same cache set. Different shared
resources may affect the accuracy or granularity of an attack.

4.3.4 Attack Target. Most cache-based attacks attempt to infer the secret keys generated from
encryption algorithms (e.g., RSA) by probing the victim’s cache traces during encryption. Gruss
et al. [57] introduce a prefetch SCA that allows an unprivileged local attacker to bypass access
control completely. This way can breach protections of supervisor mode access prevention and
supervisor mode execution prevention in a ret2dir attack [81] and break the kernel address space

layout randomization (KASLR) and launch the return oriented programming attack in kernel
space. Thus, the whole system may be compromised. Shusterman et al. [136] collect traces of
cache occupancy when a browser downloads and renders websites. Further, it utilizes deep neural
networks to analyze and classify the collected traces. Finally, it can identify which website the user
is browsing.

4.3.5 Non-cache-based Attacks. Non-cache-based attacks target other CPU components outside
of the cache, such as the FPU [46], AVX units [130], TLB [52], and BTB [40]. Wang et al. [159] in-
vestigated how the enhanced features of modern processor architectures, such as SMT and control
speculation, open up new opportunities for SCAs. Andrysco et al. [8] discovered that the execution
time of FP ADD and MUL instructions in ×86 processors shows a big difference between different
operands. They exploited the FP data timing variability to carry out SCAs. A timing channel was
constructed by leveraging the power-saving characteristics of AVX2 units [130]. TLBleed [52] built
an SCA over shared TLBs to extract secret information from a victim program protected by cache
defenses. Evtyushkin et al. [40] utilized a BTB-based SCA to break user-level and kernel ASLR.

4.4 Covert Channels

The covert channel is a type of communication channel that attempts to avoid detection or bypass
OS isolation. It utilizes the time variation of shared resources to transmit information between two
entities. Covert channels can be divided into volatile and persistent channels, as shown in Table 2.

4.4.1 Volatile Channels. The volatile channels do not leave any footprint in the microarchi-
tecture after usage. In this case, the sender and receiver have to execute concurrently for con-
tention of hardware resources. For instance, two entities use the same execution port on a physical
core [5]. According to a pre-agreed protocol, the sender can perform different operations to vary
the throughput of the receiver (e.g., the effect of high latency). The receiver then measures the
time of occupying the port to infer the “0” or “1” transmitted.

The root cause of volatile channels is the limited bandwidth of shared resources. The exploitable
resources include cache banks [78, 108, 175], execution ports [5], interconnect paths [2, 112, 155],
memory buses [164], and PCIe [139]. This article divides these resources into same-core, cross-core,
and cross-CPU/GPU. Different levels indicate what cases the Trojan and the Spy can co-locate. For
example, two entities based on the covert channel of execution port [5] must run on the same
physical core, which requires the support of SMT. Note that SpectreRewind [46] constructs a new
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Table 2. The Taxonomy of Covert Channels

Attack

type
Level Sharing resource

Time

resolution

(cycles)

Bandwidth

(KB/s)

Bit error

rate (%)

Volatile

channels

Same core
L1 cache bank [78, 108, 175] ∼10–20 Not given Not given

Execution ports [5] [15] ∼30 Not given Not given
FP division unit [46] ∼20–30 ∼53–115 <0.5

Cross core CPU ring interconnect [112] ∼30 ∼688 <5

Cross
CPU/GPU

Memory bus [164] ∼2,500–8,000 ∼0.093 0.09
PCIe [139] ∼1,200–1,300 Not given Not given

Network-on-Chip [2] Not given 3000 ∼0
CPU mesh [155] ∼10,000–40,000 Not given Not given

Persistent

channels

Same core

L1/L2 [114, 167] ∼10–30 ∼400 Not given
LRU states [165] ∼5–15 72.5 8

Way predictor [99] ∼50–60 588 ∼1–3
TLB [52] [68] ∼30 ∼5 ∼0

PHT [39, 41, 42] ∼25 ∼15 ∼4
BTB [40] ∼9 Not given Not given

AVX unit [130] ∼300–400 0.125 0.58

Cross core

LLC [18, 58, 59, 62, 98, 102, 119, 127, 174] ∼100 ∼75–1,801 <1
NUMA [173] ∼200 23.75 0

Cache directories [170] 360 25 Not given
Dirty states [172] ∼100–200 ∼162.5–550 <5

Cache coherence [35] ∼25–150 ∼87.5–137.5 <10
MMU [150] Not given ∼0.9 ∼2

Cross
CPU/GPU

Directory protocol [76] ∼50–250 Not given Not given
DRAM row buffer [116] ∼50 250 <1

volatile channel where the sender and receiver are two code snippets on the same thread, which
makes it feasible on a system without SMT. Due to out-of-order execution, the new instructions and
the old ones may cause contention on the same port. Therefore, the sender can choose whether
to cause resource contention according to the message bits to be transmitted, and the receiver
measures the execution time of the same type of instructions to infer the sent message.

4.4.2 Persistent Channels. The persistent channels leave lasting footprints in the microarchi-
tectural state. To be specific, the Spy first initializes the shared component into an expected state
and then waits for the Trojan to execute. Subsequently, the Trojan decides whether the shared
states will be changed according to the transmission of “0” or “1.” Finally, the Spy checks the state
changes by the timing difference to infer the secret. In this covert channel, the Trojan leaves some
secret traces, which are preserved until the Spy finishes probing them.

The root cause of persistent channels is the limited storage space for shared microarchitectural
resources. The shared resources available for persistent channels include cache [12, 18, 19, 58, 62,
98, 102, 119, 127, 174], way predictor [99], TLB [52, 68], PHT [39, 42], and BTB [40]. Cache-based
covert channels exploit the fact that the timing of cache operations depends on the presence of
the target address in the cache. Most existing channels may occur cache misses (either evicting or
flushing cache lines) by changing the cache states. However, with cache replacement policies, any
cache access (either hits or misses) may trigger a new attack (e.g., LRU [18, 119, 165]).

4.4.3 Measurable Indicators for Covert Channels. Developing a more aggressive attack or eval-
uating the harmfulness of an attack must have a thorough understanding of the attack indicators.
We describe two important measurable indicators of covert channels, i.e., the time resolution and
bandwidth, as shown in Table 2.
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Time resolution refers to the time difference caused by the state changes of shared resources.
For example, transmitting “0” and “1” may take varying time. The higher the resolution of the
state changes, the better the visibility of data and control flow access of victim applications. For
the cases, when the time resolution needs little dependencies, the channel established will be more
stable or reliable. The receiver can improve the time resolution through accumulation methods. For
example, multiple division instructions are chained together in a fdiv channel [46]. The higher the
time resolution, the transmission rate may become low accordingly. Therefore, a reliable channel
should keep a balance between the transmission rate and the time resolution.

Bandwidth refers to the capacity of a covert channel to transmit data per unit of time. Typically,
bandwidth may suffer from noise effects from other software and OS in a real system. If the error
rate is controllable, then higher bandwidth will be better. As recommended by trusted computer
system evaluation criteria [95], the bandwidth of a channel should not be lower than 1 b/s as the “ac-
ceptable” threshold. The lower channel capacity may bring negligible risks. Saileshwar et al. [127]
proposed Streamline, which utilizes asynchronous communication to improve the transmission
rate. The main idea is to use a series of shared addresses (larger than the cache size) to induce
cache thrashing and reduce the latency of inter-symbol synchronizations through asynchronous
communication. In this way, they improve the rate of Prime+Probe from 75 KB/s to 1,801 KB/s.

5 TRANSIENT EXECUTION ATTACKS

Transient execution attacks exploit various optimization mechanisms to perform unauthorized
computations, thereby accessing the secret and transiently encoding it into the microarchi-
tectural state. The attacker then recovers the secret through covert channels in the normal
(non-speculative) state. In this section, we group transient execution attacks into two categories,
as shown in Table 3. Moreover, we discuss the threat model, attack steps, typical examples, attack
conditions, platforms, leakage channels, gadget types, and limitations for transient execution
attacks.

5.1 Threat Model

In a transient execution attack, we usually assume that an attacker has the following three
capabilities. First, the attacker has partial control over a process that is a Spy program with only
normal user privileges. With the assistance of the Spy, she can execute malicious code snippets
(NetSpectre [130] is an exception). Second, the attacker cannot manipulate the control flow or
memory of the victim. That means the victim’s integrity is guaranteed well during the normal
execution. Finally, the attacker has knowledge of the gadget in the victim code and can trigger
the execution of transient instructions (speculative instructions bound to squash) to execute
the gadget. Transient execution attacks can leak encryption keys and even data from protected
regions. In general, we hypothesize that the attacker only snoops on the victim’s behavior rather
than attempting to compromise data integrity. For example, Rowhammer attack [56] can cause
bit flips in adjacent rows by accessing a row of memory repeatedly, which results in corruption
of in-memory data and code. In addition, a combination of Rowhammer and Spectre is proposed
to enhance speculative execution attacks [142]. However, we focus on microarchitectural attacks
that only break data confidentiality, other types of attacks are beyond the scope of this article.

5.2 Procedure of Attacks

Transient execution attacks execute instructions in advance to access unauthorized secret data
and leave measurable side effects in the microarchitecture state. Although different attacks vary
in terms of implementation details [23], they all can be divided into three phases, as shown in
Figure 2.
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Table 3. The Taxonomy of Transient Execution Attacks

Attack type Trigger condition Attack variant
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Conditional branch
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(V1.0/1.1) [29, 88, 130,
144]

PHT/BHB � � � �

Indirect branch Spectre-BTB (V2) [27, 88] BTB/BHB � � � �

Return branch
Spectre-RSB
(V5) [89, 104]

RSB/BTB � � � �

Address

Lower 12 bits

Spectre-STL (V4) [65] STL � � � �

Fallout [22] SB � � � �
LVI [146] L1D/SB/LFB/LP � � � �

Lower 6 bits

RIDL [151],
ZombieLoad [129],

CacheOut [152]
LFB/LP � � � �

CROSSTALK [123] Staging buffer � � � �
12–19 bits Spoiler [77] MOB � � � �

Data Value Value predictor [36] Value predictor � � � �

E
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n
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d

Permission

violation

Memory access

Meltdown (V3) [100] US � � � �

Spectre V1.2 [87] RW � � � �
Foreshadow [20, 161] P � � � �

Meltdown-PK [23] Protection key (PK) � � � �
LVI [146] US/P/RW � � � �

MicroScope [137] P � � � �
Meltdown-BR [23] MPX � � � �

Register read
Lazy FP [138] FPU � � � �

Meltdown-GP (V3a) [93] MSR � � � �
Illegal instruction

/ operand
Not implement Not implement Not implement Not implement

†
� indicates this platform is vulnerable; � indicates this attack is not demonstrated on the platform (BHB: branch

history buffer; STL: store-to-load; MOB: memory order buffer; and MPX: memory protection eXtensions).

Fig. 2. The steps of transient execution attacks.
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— Setup. This phase is to determine the attack target and set up necessary conditions (➀). In a
Spectre attack [88] combined with a Flush+Reload covert channel, for example, the attacker
needs to run on the same core with the victim. She then trains the BP and flushes the target
cache line. Another case is SMoTherSpectre [15] with a port contention covert channel, in
which the attacker needs to share the same physical core with the victim. She then uses
branch target injection (BTI) to poison the BP, causing it to predict a jump to the smother
gadget. The execution time of this gadget sequence overlaps with the execution (timing) of
the attacker’s sequence to ensure port contention (see more covert channels in Section 5.6).

— Transient execution. The phase first executes a trigger instruction (➁), which will stall
the commit stage so that younger (transient) instructions can execute. The trigger instruc-
tion may be an exception or unsolved branch. Then, a chain of transient instructions is
executed within the transient window before completion (architecturally visible) of the trig-
ger instruction (➂). For Spectre, the transient instructions access secret data and encode it
into the microarchitecture state (cache). For SMoTherSpectre, the encoding process is done
by choosing whether or not to compete for the same port with the attacker. The process is
similar to the transmitter that executes instructions by a Trojan process in covert channels.

— Decode. At the retirement of the trigger instruction (i.e., reaching the head of ROB),
if there is a misprediction, then the CPU will flush the pipeline to discard the results
of transient instructions (➃). However, the microarchitectural state is not flushed. For
Spectre, the attacker can later reconstruct the secret data by decoding from the state(➄).
For SMoTherSpectre, the secret data are decoded by a concurrent attacker by timing port
contention. This decoding process is similar to the receiver that executes instructions by a
Spy process in covert channels.

5.3 Speculation-based Attacks

5.3.1 Attack Types. Speculation-based attacks can be divided into control-flow, data, and ad-
dress speculation attacks. In a control-flow speculation (also called Spectre-type [23]), the CPU
predicts the most likely execution path based on the BPs when encountering an unresolved branch.
Such prediction can speed up execution of programs by eliminating the waiting latency on each
branch. However, the BPs are shared among different processes. Based on this fact, an attacker can
mislead the target program to execute a vulnerable code sequence by training a branch. According
to the type of training branch, control-flow speculation attacks are divided into three categories:
conditional branch, indirect branch, and return branch. The data speculation induces the victim to
execute with incorrect data through mis-training multiple times. The only attack (of this type) is
based on value predictors [36]. In an address speculation, the processor predicts the dependencies
between load and store addresses and then forwards or blocks the outcome ahead of time to avoid
waiting. Particularly, only partial addresses are used for judgement of the dependency prediction,
this way can reduce storage overhead and improve performance [129]. However, the attacker may
exploit such prediction to launch information leakage attacks. According to the number of address
bits for the dependency checking, we divide the address speculation attack into the lower 6 bits,
lower 12 bits, and 12–19 bits. The first two are to match the corresponding virtual address bits of
the load and store while the third is concerning the physical address bits.

5.3.2 Typical Examples. Conditional branch: Spectre-PHT [88] (V1) exploits a branch direction
predictor in processors, namely the PHT, which is a table composed of n-bit (e.g., 2-bit or 3-bit) sat-
urating counters. Each counter implements a simple finite-state machine, and the number of bits
depends on the microarchitecture implementation [13]. Take a 2-bit PHT attack as an example, the
attacker first poisons the PHT by mis-training conditional branch to strong “taken” (11) or strong
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“not-taken” (00). She then waits for the victim to mis-speculate and load the secret data. Ultimately,
the attacker is able to recover the secret via a covert channel. In addition to leakage on loads, Kiri-
ansky and Waldspurger [87] found that a write operation could be used to implement the transient
attack, called Spectre V1.1. It leverages the speculative store to overflow a buffer, which likely
causes modifications of data or code pointers on arbitrary out-of-bounds addresses (as demon-
strated in a typical buffer overflow attack [106]). Indirect branch: Spectre-BTB [88] (V2) utilizes the
indirect BP inside the processor, namely the BTB, which is used to store the mapping of source and
destination addresses of indirect jump instructions. In such an attack, the attacker first executes an
indirect branch that has a congruent source address with the target branch’s to inject a destination
address into the BTB. When the victim program comes into the target branch, it is misled to jump
to the injected destination address. This causes the victim to execute the attacker-specified gadget
speculatively, leading to the leakage of sensitive information. Return branch: Spectre-RSB [89, 104]
utilizes the RSB, which stores the return addresses of the last N call instructions. Upon a ret
instruction, the CPU pops up the top entry from the RSB to predict the return address. Therefore,
an attacker can deliberately cause the misprediction and trick the RSB into using the crafted
gadget address.

The address speculation attacks mostly leak on-the-fly data in CPU internal buffers (e.g., the SB).
Further filtering is needed after the data are extracted. Therefore, most address speculation attacks
are also called MDS attacks. An exception is the Spoiler [77], because it leaks physical address
information and does not require filtering sampled data. Lower 12 bits: Fallout [22] exploits two
features of the SB to leak data. One is to utilize write transient forwarding to forward data from a
store to the subsequent load, even if the load address is different from the store’s. The other is to
exploit the interaction between the TLB and SB to leak data from the store address (store-to-leak).
Lower 6 bits: RIDL [151] demonstrated a data leakage attack based on the LFB. When the accessed
address is not in the L1 data (L1D) cache, the CPU will read the data from the LFB speculatively
using partial address bits. Consequently, if the attacker synchronizes the LFB well ahead, then it
is possible to read the victim’s secret data speculatively. 12–19 bits: Spoiler exploits speculative
address dependency resolution logic to leak physical address information. When the lower 12 bits
and upper 20 bits of virtual addresses of the store and load are identical, the dependency check
will block the load upon consistent 12–19 bits of physical address.

5.3.3 Attack Conditions. To visualize the differences and similarities between various
speculation-based attacks, we summarize their attack conditions and the security boundaries they
across, as shown in Table 4.

First, we summarize the conditions for control-flow and data speculation attacks as follows:

— Running on the same CPU core. The predictors are shared among different processes on
each core, so an attacker must run on the same core as the victim’s to poison the branch
state. This condition can be met by enabling the SMT or running in the same thread.

— Gadgets in the victim’s space. In a control-flow or data speculation, it is assumed that the
attacker can control or trigger the gadget’s execution in the victim process. In this case, the
victim code must contain exploitable gadgets. For example, a gadget in the shared library can
be exploited easily. The victim is then induced to perform the procedures of transient execu-
tion. This requirement provides chances for a detector to detect vulnerabilities by searching
and matching gadgets, which is discussed in Section 8.1.

— Mis-training predictors. The attacker needs to mistrain the predictors ahead of time to
induce the victim to deviate from its intended execution path or use incorrect data. This mis-
training may take place entirely in the attacker’s process. However, SpecROP [14] showed
that Intel processors from the eighth generation share the BP between processes but do not
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Table 4. The Conditions and Targets of Transient Execution Attacks

Attack type
Condition†

Variant

Boundaries†

SC M
T
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G E
P
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pr
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V
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en
c.

sa
n

.
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et

.

S
p

e
cu
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ti
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n

-b
a

se
d

Control-flow

Spectre-PHT [88] � � � � � �
Spectre-BTB [27, 88] � � � � � �
Spectre-RSB [89, 104] � � � � � �

NetSpectre [130] � � � � � �

Data Value predictor [36] � � � � � �

Address

Spectre-STL [65] � � � � � �
MDS [22, 129, 151, 152] � � � � � �

Spoiler [77] � � � � � �
CROSSTALK [123] � � � � � �

LVI [146] � � � � � �

E
x

ce
p

ti
o

n
-b

a
se

d

Memory access

Meltdown-
US/PK/BR [23, 100]

� � � � � �
Spectre V1.2 [87] � � � � � �
Foreshadow [20] � � � � � �

Foreshadow-NG [161] � � � � � �
Register read

Lazy FP [138] � � � � � �

Meltdown-GP [93] � � � � � �
†SC: same core; MT: mis-training predictors; VG: victim gadget; EP: exception; MA: microcode assist; AA:
address aliasing; AR: addressing restrictions. pro.: process; pri.: privilege; enc.: enclave; san.: sandbox; net.:
network. indicates that the condition is required; indicates that the condition is not required; indicates that
the condition is optional. � indicates that the attacker can bypass the boundary; � on the contrary.

use cross-process entries, thus preventing cross-process BTI. In this case, it is difficult to find
the alias address in the BTB to set up the training.

— Addressing restrictions. Although transient execution attacks can leak sensitive infor-
mation across security boundaries, they are susceptible to addressing restrictions [151].
Specifically, the control-flow and data speculation only allow data leakage within the virtual
address space accessible from the victim domain. This condition leaves chances for many
software mitigations, such as stopping guessing when accessing untrusted pointers [117]
or ignoring vulnerable branches [79]. We will describe how this condition can be relaxed in
the following.

Second, we summarize the conditions required for address speculation attacks as follows:

— Running on the same CPU core. Address speculation attacks exploit per-core private
internal buffers, so both the attacker and the victim need to run on the same core. However.
CROSSTALK [123] discovers a staging buffer shared by all cores, which is used to implement
the first cross-core address-speculative attack.

— Gadgets in the attacker’s space. Unlike the control-flow speculation, the address spec-
ulation can trigger transient execution directly in the attacker’s process space and leak
secrets during the execution. Two different scenarios can be used to exemplify this behavior.
The first is that only the attacker’s code is running and the gadget code can be transiently
executed at any time (e.g., Spoiler [77]). The second involves concurrent execution of the
attacker and the victim (e.g., MDS [22, 129, 151, 152]), where the attacker first synchronizes
with the victim and then extracts information from buffers through transient execution.
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LVI [146] is an exception, where the attacker first executes a fill gadget to inject malicious
values in buffers. The victim then executes an exception or assist gadget to trigger transient
execution, and finally encodes the secret data into the microarchitectural state using a
disclosure gadget.

— Triggering MAs. In an address speculation, the attacker can initiate transient execution
by triggering MAs. Common microcode events include paging requests, CPUID, and so on.
An exception is Spoiler, which exploits the address dependency checking mechanism. In
addition, LVI can use MAs or exceptions to trigger transient execution.

— Address aliasing. Address translation is a time-consuming process that involves page table
walks and multiple memory look-ups. When the address of a load cannot be translated in
time (i.e., the address is not in the TLB or the physical address is unavailable), the CPU pre-
dicts whether the load can be executed ahead of time and uses only some lower address bits
to match those of a prior store. Address speculation attacks rely on this address matching,
also known as address aliasing, to speculatively retrieve on-the-fly data from internal buffers.

— Addressing restrictions. As discussed above, the address and data speculation only
leak data within the accessible address space (architecturally accessible). Exception-based
attacks require the target physical address to be present in the TLB structure. Therefore,
these attacks all leak data from a valid (known) address. However, address speculation
attacks loosen the addressing restriction. For instance, Fallout allows the attacker to
access addresses that point to invalid page frames. Thus, the attack still works even if the
mitigation of page table entries (PTE) inversion [31] is enforced. RIDL, ZombieLoad, and
CacheOut further relax the requirements for the translation data structure, so the attack
target no longer relies on a specific address.

5.3.4 Security Boundaries. The control-flow and data speculation attacks can leak arbitrary
data from the victim’s accessible space, so they can cross process boundaries. References [88, 104]
demonstrate Spectre attacks cross the SGX enclave boundary. NetSpectre [130] demonstrated the
first generic remote Spectre attack on a device that is not running any potential attacker-controlled
code. It trains the target branch by sending two types of network packets (tagged as valid or
invalid) to the victim’s network interface. The address speculation presents a unique characteristic:
the ability to induce data leakage that is agnostic to address translation. This allows attackers to
access on-the-fly data passing through CPU buffers without the security checks. As a result, such
attacks can typically cross any security boundary. It is important to note that Spoiler attacks [77]
leak some unknown physical address bits and thus do not cross any security boundary to disclose
data.

5.4 Exception-based Attacks

5.4.1 Attack Types. Exception-based attacks (also called Meltdown-type [23]) leak architec-
turally inaccessible data by exploiting illegal dataflow from exception instructions. Based on
the type of exception, they can be categorized into permission violation and illegal instruc-
tion/operand. Depending on the trigger conditions, exceptions are further divided into memory
access exceptions and register read exceptions. The former also refers to permission violation
exceptions that occur when accessing the memory system, which involves the TLB, caches, and
PTEs. The results of an unauthorized load are still forwarded to subsequent transient operations
that may encode the data before eventually raising an exception. Register read exceptions
occur when accessing certain registers (such as FP registers [138] and MSR [93]). Before the
exception is handled, attackers have accessed the data in the registers and encoded it into the
microarchitectural state using covert channels.
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5.4.2 Typical Examples. In Meltdown [100], an attacker accesses kernel memory from user
space. When an unauthorized kernel address is dereferenced, it leads to a #PF. However, before
the fault becomes visible in the architecture, the kernel data has already been forwarded to
subsequent transient instructions. In Foreshadow [20], the attacker exploits the technique of page
aliasing to create an additional virtual-to-physical mapping for the physical address of a secret
within an enclave. The attacker then uses mprotect to clear the “present” bit of PTE associated
with the secret in the TLB, ensuring that subsequent accesses will trigger a #PF. In this case,
the CPU should immediately abort the address translation. However, since the L1 data cache is
indexed in parallel with address translation, the physical address field (i.e., frame number) of a
PTE may still be forwarded to the L1 cache. This allows the attacker to temporarily gain access to
the enclave’s physical address and its associated data using page aliasing. Variant 3a [93] raises a
#GP through unauthorized access to privileged system registers. Lazy FP [138] proposed an attack
against the lazy state switching mechanism, where the CPU does not clear the FPU registers and
instead marks them as “not available” when a context switch occurs. Assuming the FPU register is
owned by the victim process, when an attacker attempts to access the register, it will generate an
#NM fault to tell the OS that the FPU is disabled. However, as the CPU has speculatively used the
data from the FPU before retirement of the fault instruction, it likely causes data leakage. Note
that while most Meltdown-type attacks are caused by out-of-order execution microarchitectures,
an in-order pipeline can also be exploited [148]. The only requirement for Meltdown-type attacks
is to forward data to other dependent instructions when the instruction triggers an exception.

5.4.3 Attack Conditions. We summarize the conditions for exception-based attacks below:

— Running on the same CPU core. In exception-based attacks, the attacker and the victim
may run concurrently on the same core (e.g., lazy FP [138]), or only the attacker is running
and can choose any core (e.g., Meltdown-GP [93]).

— Gadgets in the attacker’s space. An attacker can directly trigger transient execution to ob-
tain the secret in an exception-based attack. That means the operation of transient execution
can be done purely by the attacker, i.e., exploiting the gadget in the attacker’s own process
space. This condition makes the type of attacks more flexible and detection more difficult,
as the victim is only responsible for accessing the secret without the need for gadgets that
transfer the secret.

— Triggering exceptions. An attacker first needs to trigger an exception for exception-based
attacks. Due to deferred exception handling by design, the attacker is able to continue tran-
sient execution on an unintended access path.

— Addressing restrictions. As mentioned above, The control-flow/data speculation attack
can only leak accessible target addresses in the victim’s space. The exception-based attack
loosens the restriction and is able to access data from architecturally inaccessible addresses.
An important requirement for both Meltdown and Foreshadow is that the target physical
address is present in the loaded address translation data structures. Specifically, Meltdown
requires the privileged address that is going to be accessed in a transient window to be
mapped to the virtual memory map of the attacker’s process. Foreshadow, however, requires
the physical address of the enclave to be mapped into the TLB, even if the mapping entry is
marked as “no present.” LazyFP is an exception, because it leaks data from stale FP registers
without performing a tag check before retrieving data. In this sense, it is similar to address
speculation attacks, allowing access to old data without any checks.

5.4.4 Security Boundaries. Exception-based attacks can expose architecturally inaccessible
data, so they can cross privilege boundaries. Spectre V1.2 [87] can bypass page table-based read

ACM Comput. Surv., Vol. 56, No. 7, Article 178. Publication date: April 2024.



178:22 J. Zhang et al.

and write access permissions within the current privilege level. The ability to transiently over-
write read-only data allows bypassing software sandboxes that enable hardware-enforced read-
only memory. Foreshadow [20] targets Intel SGX enclaves while Foreshadow-NG [161] extends
it to cross-process and cross-VM leaks. Variant 3a [93] mainly leaks data from some special reg-
isters. Lazy FP [138] transiently reads data from the FPU that has not been cleared during con-
text switches, thereby causing data leakage across arbitrary security boundaries. Note that Micro-
Scope [137] does not attempt to leak data directly but to denoise MTSCAs. The victim only needs
to run once, but the attacker can trigger a #PF to replay the execution results.

5.5 Attacks on Commercial Platforms

Currently, researchers pay most attention to Intel processors, partly just due to their high availabil-
ity, as shown in the last column of Table 3. The table also lists known attacks targeting processors
from other vendors, including AMD [6, 23], ARM [23, 93], and RISC-V [45, 49, 50]. Spectre attacks,
as observed from the table, work on all platforms, because the BP is a necessary foundation for all
processors. Other types of transient execution attacks are influenced by specific microarchitecture
implementations.

5.6 Leakage Channel

Many covert channels in Table 2 can be used for leakage channels of transient execution. Some
common channels for transient execution include execution ports [15], AVX unit [130], FP div
unit [46], PHT [29], and caches [20, 22, 27, 88, 89, 100, 104, 129, 138, 144, 146, 151, 161]. Among
them, the cache is the most commonly used due to the following advantages. (1) Persistent shared
resource: Unlike per-core private branch state and volatile execution ports, the cache state can
be persistently shared among different processor cores. This sharing means that attackers can
infer the behavior of other active entities by monitoring the shared cache state without the need
for concurrent interaction with the target entity. This makes cache-based channels more flexible
in leaking information across security boundaries. (2) The state setup and its measurement:
An attacker can use the CLFLUSH to clear the cache state or construct an eviction set to evict
target cache lines. The measurement process involves either timing the load/store operations or
monitoring cache hit/miss events. (3) The time difference: There is a significant time difference
between cache hits and misses, which may take up to 150–300 cycles. Therefore, compared to
other channels [15, 29, 46], cache-based channels are more robust against noise that can impact the
execution time of instructions, such as preemption or contention for execution resources by other
processes.

5.7 Gadget Types

As depicted in Figure 3, we present potential gadgets used for well-known transient execution
attacks. It is essential to note that we use cache-based channels as an illustration, and gadgets
for other covert channels [130] may vary. We categorize these gadgets into four types based on
how secret data are accessed. The first type involves index, where the attacker mis-trains the
target branch with the controlled input x , causing the victim to speculatively access secret data
through the out-of-bounds index of arr1[x]. Canella et al. [23] introduced additional variants
of Spectre-PHT gadgets, such as prefetch, compare, and execute. The second type is known as
aliasing, where the attacker exploits overlapping addresses of loads and stores to access previously
sensitive data from internal buffers. The third type of gadget, termed jump, speculatively jumps to
secret locations by injecting or polluting the destination address of the target branch. The fourth
type is access, where the attacker directly accesses unauthorized secret data (such as kernel and
system register data) and leaks it during exception handling.
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Fig. 3. The gadgets of transient execution attacks.

5.8 Limitations of Attacks

Transient execution attacks have two main limitations, i.e., the speculative window size and the
maximum latency for branch resolution or microcode event processing.

The speculative window size. Modern high-performance processors can tolerate long latency
by buffering unaccomplished (unretired) operations in the ROB. The CPU then proceeds to execute
the following instructions. Note that these instructions are not interdependent. The number of
instructions that can be executed in a speculative window is limited by the size of the ROB. Current
processors support a large speculative window, e.g., Intel Skylake contains an ROB of 224 entries,
which can hold about 200 instruction codes. This means that the attacker needs to complete the
malicious functions within the instruction window.

The maximum latency. The time of branch/address resolution or microcode event process-
ing decides how many transient instructions can be executed. However, while loading one cache
line from DRAM theoretically takes around 150–300 cycles [82], the actual speculation window
may be much longer in terms of cycles. Attackers can utilize/create pointer-chasing gadgets that
have a control-flow dependency on a chain of pointers. These gadgets typically give attackers ex-
tremely large speculation windows (with even thousands of cycles) to access secrets and leak the
corresponding values.

6 DEFENSES AGAINST CONVENTIONAL ATTACKS

MTSCAs exploit the time difference introduced by microarchitecture components to trans-
mit secret data, which poses serious security risks to local and cloud environments. Various
encryption algorithms, VMs, browsers, and even TEEs are affected. For this reason, the aca-
demic and industry have been devoted to how to mitigate such attacks. In this section, we
discuss the published defenses against cache-based attacks and illustrate their advantages and
limitations.

Recall that we have introduced various attack conditions for cache-based attacks, such as HPT,
cache control instructions, and shared resources. Based on these conditions, prior studies have pro-
posed many countermeasures, which include interfering with the measurement time and resource
sharing, eliminating HPTs, using constant-time instructions, and so on. Different defense methods
often mitigate against a specific attack condition. However, by undermining the necessary attack
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conditions summarized (see Table 1), they can be divided into two categories in essence: hiding
timing differences and limiting resource interference.

6.1 Hiding Time Difference

Due to limited cache size, the data used for program execution cannot be entirely put into the
cache, thus inevitably inducing cache hits and misses. The macroscopic manifestation is the vary-
ing execution time of programs or instructions. Thus, a straightforward method to mitigate this
type of attack is to hide the measurable time difference from attackers.

6.1.1 Eliminating Timers. Timing SCAs typically require HPTs for attackers to differentiate
microarchitectural states. Therefore, Cloudflare Workers [30] utilize a modified JavaScript sandbox
that disables all local timers and known primitives for constructing timers [53]. In this scenario,
an attacker can start a timing measurement by sending a network request to a remote server.
But this way obviously has a lower resolution. Thus, the attacker has to rely on amplification
techniques to amplify the latency between a cache hit and miss [131]. Nonetheless, some
attacks [38, 60, 84, 136, 176, 181] that do not rely on timers (as discussed in Section 4.3.3) still
cannot be mitigated through this method.

6.1.2 Constant-time Operation. In an SCA, if the victim takes different actions depending on
the secret value, then it could cause measurable time differences for the attacker. Therefore, some
defenses impede such an attack by fixing the execution time of different secret values.

Intel [75] pointed out that most SCAs can be mitigated by using the constant-time principle for
all code interacting with secrets. It suggested that software developers scrutinize runtime, code,
and data access patterns of programs, all of which should be secret independent. The MbedTLS
library [9] used symmetric execution paths to balance branches, where both paths of a branch
should execute the same function so that there is no observable time difference on different paths.
Andrysco et al. [8] discovered that the runtime of FP ADD and MUL instructions varies by two
orders of magnitude depending on the operands. For this reason, they designed a fixed-point
constant-time math library (LibFTFP) to alleviate the FP data timing channel. LibFTFP uses three
simple strategies to support its constant-time operations: (1) calculating all values on different
code paths; (2) ensuring that no data-oriented branches are used in the code; and (3) using
input-independent basic integer operations. All above operations take the same time on the fast
and slow branch paths. Rane et al. [124] further proposed a compiler-based approach to provide
fixed-time FP operations by a SIMD channel in the ×86 SSE and SSE2. Gruss et al. [58] suggest
modifying the CLFLUSH instruction to be a constant-time instruction so that the execution time is
constant regardless of cache hits or misses.

Although it works to defend against SCAs through avoiding branch execution, memory access,
and instruction execution closely related to secrets, constant-time implementations cannot fully
prevent data leakage. For instance, Frontal attack [118] shows that the execution time of an in-
struction depends on not only preceding or following instructions but also its virtual address. This
is because the different addresses have different offsets in the instruction fetch window. Thus,
the Frontal attack successfully exploits the relationship of execution time and virtual address to
compromise the Intel SGX. In addition, the constant-time operation introduces high overhead. For
example, Escort [124] causes up to 32.6× overhead on the SPECfp2006. Furthermore, the constant-
time is also an extremely labor-intensive solution, which requires software developers to carefully
create algorithms for each input that should be executed in constant time.

6.1.3 Noise Injection. The method makes the results of the attacker’s measurement futile.
However, it does not completely remove the channel but instead makes the attacker collect more
samples to make a confident guess about the transmitted bits.
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Table 5. Defenses against Cache Side-channel Attacks

Method Type Example Target Overhead

Cache

partitioning

Software
partitioning

Chameleon [135]
Eviction-TS and

control-TS

∼3%–12%

STEALTHMEM [85] ∼5.9%

CacheBar [186] <25%

Hardware
partitioning

CATalyst [101]
Eviction-TS and

control-TS

∼0.5%–0.7%

Cloak [54] ∼0.8%–1.2%,

HYBCACHE [37] ∼3.5%–5%

DAWG [86]
Eviction-based and

control-based
<2%

Randomization

Index
randomization

SCATTERCACHE [162]
Eviction-TS and

control-TS
2% (5%)†

CEASER [121]

Eviction-TS

∼1% (<24B)†

CEASER-S [122] <1% (<100B)†

PhantomCache [140] ∼0.5%–1.2% (0.5%)†

Code
randomization

DSD [33] Eviction-TS ∼25%–110%

†Indicates storage overhead.

TimeWarp [105] disturbs timing channels by using the idea of fuzzy time. It modifies the imple-
mentation of the ×86 RDTSC timer so that the program always executes a predefined and randomly
generated epoch-size time. In addition, TimeWarp provides a hardware monitoring mechanism to
detect software clocks, such as inter-thread communication via shared variables. However, the ef-
fectiveness of this scheme relies on two systematic assumptions: (1) external events cannot provide
sufficient resolution to measure microarchitectural events, and (2) software clocks are unavailable.
Trilla et al. [143] propose the time predictable secure cache, which reduces the time predictability
of SCAs by perturbing the access time of caches. Wang et al. [157] propose the MemJam protection
framework that utilizes back-end DRAM refreshes as a free noise source to eliminate temporal
correlations between the applications of the victim and attacker. It intentionally introduces inter-
ference to the shared memory controller to prevent a malicious attacker from snooping on the
memory access patterns of sensitive programs. The Reuse-trap [43] counts the reuse distance in
each cache set, i.e., the number of cache misses suffered by a non-victim process between two con-
secutive cache misses of the victim. The counter of reuse distance is sent to a scorer to identify po-
tential adversaries. When an exception pattern of reuse distance is detected, the scorer forwards the
cache set index and the corresponding process ID to the prefetcher. The prefetcher then prefetches
critical memory lines into the cache, thereby fuzzing the access latency that is observable for an
attacker.

6.2 Limiting Resource Interference

Another necessary condition of SCAs is intrinsic resource sharing in processors. This causes the
cache state of the attacker and the victim to interfere with each other. Therefore, this type of attack
can be obstructed by limiting resource interference. An attacker can exploit the resource inter-
ference under two conditions: (1) shared memory pages/cache states among mutually distrusting
processes and (2) deterministic cache index and fixed set associativity. For condition (1), it can be
blocked by enabling cache partitioning for each security domain, and for (2), one primary scheme
is to randomize cache indexes, which disturbs the eviction set prepared by an attacker. We sum-
marize current defenses based on the idea of limiting resource interference, as shown in Table 5.
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6.2.1 Cache Partitioning. Modern processor caches are typically set-associative, i.e., they are
organized into multiple sets and ways. Therefore, cache partitioning can divide cache sets or ways
among processes, which have been implemented in software and hardware methods.

Software partitioning. The method disrupts the cache state of covert channels by disallowing
data of different protected domains to occupy the same cache sets. Shi et al. [135] designed a dy-
namic page coloring solution to limit SCAs. They utilized different colors to tag the pages, which
are no longer assigned to other processes for safety-critical operations. STEALTHMEM [85] man-
ages a set of locked cache lines that are never evicted from the cache for each core. Moreover,
these lines are efficiently multiplexed so that each VM can load its own sensitive data into them.
Zhou et al. [186] designed a memory management subsystem named CacheBar, which provides
two techniques for defending against access-driven SCAs: (1) It replicated the page when accessing
a physical page shared by multiple security domains to prevent Flush+Reload, and (2) it enforced
cacheability management of pages to restrict an attacker from occupying the whole cache set, thus
mitigating the Prime+Probe. Software partitioning allows communication between different secu-
rity domains without breaking cache coherency. However, cache coloring at page granularity is
not well compatible with huge pages, which may reduce the number of TLB hits, thus bringing
a significant performance overhead. In addition, some privileged entities may need to move huge
data blocks in memory when allocating cache sets. Since the allocation of cache sets is associ-
ated with the physical address’s. For example, when a 1/8 cache space is allocated to a protection
domain, the same 1/8 physical address space must be allocated to the corresponding process.

Hardware partitioning. The method allows for more fine-grained way partitioning. As
these defenses require modifications to either instruction [58] or hardware architecture [10], it
is not easy to deploy them in practice. Therefore, an alternative is to reuse deployed hardware
technologies. For instance, CATalyst [101] uses leverage cache allocation technology to divide
secure partitions that contain cache-fixed secure code or data pages. The non-secure partitions can
be used by any application freely. Cloak [54] makes use of the intel TSX to prevent the attacker’s
adversarial observations on sensitive code or data by cache misses. During a TSX transaction,
once the security-sensitive data cache is evicted, the transaction will be terminated. Constant-time
operations have been shown to be vulnerable to CacheBleed attacks [175]. To address this, Yu
et al. [177] proposed data oblivious ISA extensions called OISA to provide side-channel resistance.
OISA employs the way partitioning technique to implement oblivious memory partition

(OMP) as an isolated region in the L1D cache. When an instruction accesses the OMP, all
concurrent cache accesses are halted to avoid cache contention [175]. HYBCACHE [37] presents
a generic mechanism for a flexible partitioning of set-associative caches. It can be configured
to apply side-channel-resistant cache behavior for isolated execution domains while providing
regular cache behavior, capacity, and performance for the non-isolated execution domains.
DAWG [86] endows each hardware thread with a notion of domain ID, where both cache hits
and cache line replacements are limited by the assignment of protected domains. Based on this
operation, cache-related metadata, such as the cache coherence and replacement states, can be
also partitioned safely. DAWG is the first strategy to mitigate metadata state-based SCAs.

6.2.2 Randomization. The deterministic cache indexes and fixed set associativity allow an at-
tacker to pre-calculate eviction set of the target address, which may cause eviction-based SCAs.
Therefore, it is effective against such attacks by randomizing the address mapping to cache sets.
The randomization scheme can be categorized into index randomization and code randomization.

Index randomization. By randomizing the fixed mapping relationship between memory lines
and cache lines, the attacker cannot determine the cache set of the target address. In other words,
it is impossible to construct an eviction set in a limited time interval. SCATTERCACHE [162]
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Table 6. Defenses against Transient Execution Attacks

Method Target Example Overhead

Isolating

shared states

Control-flow
speculation

Zigzagger [66] ∼18% (code size: 1.2 times)

BRB [154] ∼3.5%–5.5%

XOR-BP [185] ∼1.5%

LS-BP [26] <3%

Limiting

speculation

Control-flow and
address speculation

Retpoline [51] ∼5–10%

FENCE after each branch [169] 88%

SLH [24] 29%∼36%

Disabling un-

authorized access

Control-flow
speculation,

memory access exception

WebKit [117] <2.5%

Site Isolation [125] Memory overhead: ∼9%–13%

KAISER [55] ∼1–10%

Invisible

state changes

Speculation-based,
exception-based

InvisiSpec [169] 22% (area overhead: 3.5%)

CleanupSpec [128] 5.1% (storage overhead: ∼1KB)

SafeSpec [83]
−3% (area overhead:

∼2%–17%)

SpectreGuard [47] ∼8%–20%

NDA [160] ∼10.7%–125%

STT [178] ∼8.5%–14.5%

proposed that each address should be combined with a key and SDID as inputs of the mapping
function to generate a cache set index. Thus, it is able to eliminate the fixed cache set coherency
required for eviction-TS attacks. In addition, it can also alleviate control-TS attacks such as
Flush+Reload, because it implements security domains in the mapping function and prevents
any cache line from being accessed across security boundaries. CEASER [121] uses low-latency-
block-ciphers to translate the physical address into the encrypted cache line address. It initializes
and randomizes the encryption key on every reboot and executes dynamic remapping to improve
robustness. Qureshi et al. [122] discovered that the remapping rate of CEASER may cause an
impractical overhead. For this reason, they proposed an improved method called CEASER-S,
which divides the cache ways into multiple partitions with different keys. This design greatly en-
hances the robustness of CEASER, because an attacker must evict cache lines from many possible
locations to construct the eviction set. PhantomCache [140] proposed a localized randomization
technique to avoid inefficient dynamic remapping, which maps a memory address within only a
limited number of cache sets. The small randomization space provides a faster set searching, as it
allows checking all possible cached locations in parallel during searching for the target address.

Code randomization. The code randomization means that the code and data of a program
are randomized during execution to guarantee that the same copies are different at the machine
instruction level. This approach has the advantage of hiding observable execution features.
DSD [33] generates diversified replicas and randomly and frequently switches between these
replicas at runtime. Every replica differs due to the insertion of NOP instructions, permutation of
function or basic block layout, and randomization of register assignments. A program can dynam-
ically select control-flow paths to generate different results, which hence disrupts the attacker’s
measurement.

7 DEFENSES AGAINST TRANSIENT EXECUTION ATTACKS

In this section, we discuss the published defenses against transient execution attacks. By removing
the necessary conditions for this type of attack, the defenses can be divided into the following
categories, as shown in Table 6.
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— Isolating shared states. It keeps the microarchitectural state of both the attacker and the
victim from interfering with each other.

— Limiting speculation. It selectively restricts transient execution by looking for certain lo-
cations where secret data are prone to leakage.

— Disabling unauthorized access. It prevents attackers from directly accessing unprivileged
or sensitive target addresses through transient execution.

— Invisible state changes. It makes the microarchitectural state invisible to the attacker.

7.1 Isolating Shared States

The cache partitioning schemes discussed in the previous section can also mitigate transient execu-
tion attacks that utilize cache covert channels. However, to avoid repetition, we will not elaborate
on them in this section. Instead, this section focuses on other approaches for isolating microarchi-
tectural states. For example, in a control-flow speculation, any context switch may be a potential
leak point, as an adversary can exploit that to manipulate the BP. Therefore, isolating the BP’s
state among different processes is an effective way to mitigate such attacks. Intuitively, clearing
BP state [41] for each context switch can prevent attackers from manipulating or snooping on
the branch execution. However, frequently refreshing the entire states (at every context switch)
significantly deteriorates prediction accuracy, thus drastically decreasing performance.

Paverd et al. [66] replaced a set of conditional branches with many indirect jumps at compile
time, because it is much more difficult to infer the state of an indirect branch than that of a con-
ditional branch. Furthermore, they randomized the code at runtime to hide the targets of indirect
branches. Thus, an adversary cannot mis-train and perceive the state of the BP. BRB [154] is an ad-
vanced hardware implementation that provides a dedicated branch reservation buffer to retain the
BP state for each context switch. This reduces cold-start effects and improves transient accuracy.
Despite attempts to limit hardware costs, it is generally impractical for the BRB to assign solely
a branch history table for each thread and privilege space. Tagging shared structure entries is an-
other way to isolate shared states. BTB entries can be tagged by a process context identifier like
TLB entries [91] to prevent cross-process BTI. Intel [70] also proposes adding ASID (address-space
identifier) information for each PHT entry, although it may come at a relatively high cost.

Furthermore, physical isolation is inadequate for mitigating all control-flow speculative attacks,
since the branch state is still multiplexed in time by different threads. To this end, XOR-BP [185]
proposed encrypting the branch target addresses stored in the BP at each context switch. The idea
is to generate a random number for each thread context and XOR the target address with it when
updating the branch state. Although this method has eliminated malicious branch training among
different processes, it cannot prevent leakage due to misprediction in the same address space, such
as Spectre-PHT. On Skylake and younger microarchitectures, Intel [79] suggested using the RSB
padding. Concretely, when the processor executes a RET instruction in an empty RSB, it will per-
form speculation based on the BTB, which may lead to the Spectre V2 attack. To prevent the RSB
from returning to the BTB due to underfilling, Intel proposed using a benign gadget address to fill
the RSB at every context switch. In addition, some ISA-level solutions can also isolate the branch
prediction state. For instance, Intel and AMD extended the ISA to control indirect branches, whose
addition to the ISA consists of three controls [74]: indirect branch restricted speculation, single
thread indirect branch prediction, and indirect branch predictor barrier.

7.2 Limiting Speculation

In the control-flow and address speculation, the attacker induces the victim to speculatively
execute along a wrong path. Therefore, an effective way to mitigate this type of attack is to limit
the speculative execution, which can be achieved with the aid of existing ×86 instructions. An
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example is the FENCE instruction that forces sequential program execution, i.e., it guarantees
that the preceding instructions must be executed and retired completely before any subsequent
instruction proceeds. Obviously, disabling all speculation with the FENCE can effectively prevent
both types of attacks. However, it incurs significant performance penalties [72].

Google proposed Retpoline [51] that replaces indirect branches with return instructions. This
approach makes indirect branch instructions always speculate into an infinite loop through
the RSB. It then performs some invalid operations until the target address is resolved correctly.
Although Retpoline can prevent branch mistraining, it only targets BTI attacks and is ineffective
against other attacks such as Spectre-PHT. In addition, Intel mentioned that Retpoline might
bring false positives in future CPUs with the deployment of control-flow execution technology.
SLH [24] used branchless code to make sure that the control-flow paths of loads are valid.
Concretely, it transforms the code at the compiler level and adds data dependencies on conditions.
If it turns out to be a mis-speculation, then the pointer is zeroed to prevent speculative execution.
This approach requires hardware support to allow branchless implementation and updates for
unpredictable conditions, which is only available in LLVM with ×86.

7.3 Disabling Unauthorized Access

Control-flow speculation and memory access exception attacks can only leak data at specific ad-
dresses. In these attacks, the attacker first needs to know the target address of secret data, so that
she can divulge the sensitive data through unauthorized transient access. Thus, hiding or isolating
the target address may be a targeted and effective mitigation for eradicating data leakage.

WebKit [117] proposed two approaches to mitigate Spectre-type attacks. One is index masking,
which binds the mask to array bound checks. While this approach is not a complete fix for
out-of-bounds accesses, it defines a maximum range of the out-of-bounds violation. Another is
pointer poisoning. It uses a random number generator to pick a large poison value (e.g., 2ˆ40) at
compile-time, and then XORs the value with the pointer. Based on these operations, any access
to the poisoned pointer is likely to hit unmapped memory. Thus, misprediction in a branch-type
check may cause an error of unmapped pointer. Moreover, it is almost impossible for an attacker
to guess this poisoned value in advance, thus protecting the pointer from being misused. Google
proposed Site Isolation [125], which isolates each site in different processes and limits any process
obtaining sensitive information from other websites. Therefore, even if the attacker has privileged
memory reads, she can only access data from its own process. Gruss et al. [55] proposed KAISER,
a practical isolation in which kernel address information is never mapped to user space. This
makes most kernel addresses invisible to the user-space code, thus preventing information
leakage across privileges by Meltdown-type attacks. However, in addition to the performance
impact, the KAISER scheme has one important limitation: some privileged memory locations
must be mapped to user space on the ×86 architectures. This inevitably leaves a small fraction
of kernel addresses accessible from user space, which may be exploited to leak privileged data
(e.g., Meltdown).

To make the target address inaccessible, Intel [71] provides a microcode update to allow the OS
to assist in clearing the PTE of the target address or setting it to non-present physical memory.
Thus, it can mitigate the Foreshadow attacks. Specifically, in the context of the OS, it ensures
that vulnerable PTEs only point to specifically selected physical addresses, such as an address
outside the available cache or one that does not contain secrets; In Intel SGX [69], it ensures that
different authentication keys are derived according to the hyperthreading enabled or disabled;
In the system management mode (SMM) [71], it checks all logical cores to make sure that no
non-SMM software is running when the data in SMM is located in L1 cache; in the virtual machine
monitor [71], it guarantees that no other untrusted threads are running on the same core.
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7.4 Invisible State Changes

After illegal access to the secret, the transient execution attack attempts to transfer it from a con-
fined environment to outside via a covert channel. The attacker then can recover the secret data by
observing the microarchitectural state changes. Consequently, a basic idea of the defense against
such attacks is to figure out how to make microarchitectural state changes invisible to attackers.

One approach is to isolate the state changes caused by speculative execution and hide them from
the cache hierarchy. InvisiSpec [169] stores unsafe speculative load data in a new speculative buffer
instead of reading it into the cache. Additionally, only when a speculative load is considered safe
does InvisiSpec send it back to the memory system, making it visible to other processes in the OS.
CleanupSpec [128] proposed an “undo”-based scheme to secure speculative execution. This way
allows all loads to modify the cache speculatively. Moreover, CleanupSpec activates corrective ac-
tion to clean up all cached state changes caused by illegal transient loads. SafeSpec [83] introduced
a shadow structure that separates the speculative state from the retired state of instructions.

A second approach is to restrict unsafe speculative instructions from being propagated to subse-
quent instructions. SpectreGuard [47] marks sensitive memory blocks as non-speculative memory
regions, in which the result of speculative execution is not immediately forwarded. Instead, it is
retained in the ROB until all preceding branches have been resolved. Weisse et al. [160] proposed
non-speculative data access (NDA), which limits the propagation of speculative data by
blocking the tag broadcast of unsafe instructions. Although NDA is flexible enough with multiple
policy variants, it cannot benefit from high performance and security at the same time. Moreover,
it also fails to recognize all covert channels. To this end, STT [178] proposes a new classification
abstraction for all covert channels, including explicit and implicit channels. STT issues loads as
long as the branch is resolved in the correct prediction, so it can improve the performance of NDA
schemes.

However, invisible state changes do not completely prevent against transient execution
attacks that utilize cache state. Behnia et al. [11] introduced speculative interference attacks,
which indirectly monitor timing effects caused by the interaction between secret-dependent
instructions and old non-speculative instructions. They found that invisible state change schemes
cannot protect resource usage patterns, execution time, or branch prediction. Thus, although
an attacker (monitoring the cache) is incapable of directly discerning the execution operations
associated with secrets. Instead, she can indirectly observe timing disparities through the resource
contention between secret-dependent speculative instructions and the non-speculative portion of
the pipeline (called interference targets), thereby leaking secret data. GhostMinion [3] introduced
strict ordering that allows information (and side channels) to flow in any case, but speculative
operations that are not committed architecturally are never leaked to those committed. It aims to
mitigate transient execution attacks, including speculative interference. Yang et al. [171] proposed
Pensieve, a security evaluation framework against early microarchitectural defenses targeting
speculative execution attacks that is capable of precisely capturing timing variations through
exploiting resource contention and microarchitectural optimizations. They used Pensieve to assess
a range of invisible state change defenses and discovered a variant of speculative interference
attacks that leveraged unrelated instructions in program order to bypass GhostMinion.

8 DETECTION SCHEMES FOR MTSCAS

The deployment of defenses discussed throughout the article may incur significant overhead.
Therefore, researchers usually recommend detection before defense. These detection techniques
aim to identify either the location of vulnerabilities or attack behaviors. As a result, we can
categorize them into two types: code detection and behavior detection.
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8.1 Code Detection

In control-flow speculation attacks, the exploitable gadgets are in the victim’s code space. There-
fore, a variety of static and dynamic analysis methods have been proposed to find gadgets in target
programs. We will discuss them in detail as follows.

Static analysis. OO7 [156] utilizes control-flow extraction, taint analysis, and address analysis
to detect tainted conditional branches and speculative memory accesses. It then prevents control-
flow speculation by inserting a few FENCE instructions. The detection results of OO7 depend on
the integrity of the control-flow-graph extraction. Spectector [61] endeavors to trace all memory
accesses and jump targets along different execution paths to confirm that no gadget is involved in
the target program. To do this, the program has to run twice. For the first time, it records some
memory access traces where no misprediction occurs. Next time, it simulates the mispredicted
branch paths and records a certain number of memory access traces. If the Spectector detects a
mismatch between the two traces, then it reports a gadget found.

Dynamic analysis. SpecFuzz [110] simulates speculative execution at compile time by
forcefully executing the code paths that can trigger misprediction. It then uses an integrity
checker (e.g., AddressSanitizer [132]) to check for out-of-bounds memory accesses (e.g., buffer
overflow) during the simulation. SpecTaint [120] simulates speculative execution at runtime
to capture dataflow patterns along speculative paths. In addition, it deploys a semantic-based
detector to discover exploitable Spectre gadgets. CSF [141] injects FENCE instructions between the
control-flow and payload with the assistance of a context-sensitive decoder in the front-end. It
can dynamically and surgically insert the FENCE into potentially malicious code without recompi-
lation or binary translation. SPECCFI [90] verifies dangerous speculations through forward-edge
control flow integrity (CFI). It makes sure that the control-flow instructions can jump to le-
gitimate destinations, thereby preventing Spectre-BTB attacks. Meanwhile, it augments a unified
shadow call stack for enforcement of backward-edge CFI, which can defend against Spectre-RSB
attacks.

8.2 Behavior Detection

Zhang and Reiter [184] analyzed the impact of periodically flushing the L1 instruction and data
caches in kernel-level threads and suggested automatically switching to a defensive mode when
malicious preemptive behavior is detected. Gruss et al. [58] suggested using performance mon-

itoring units (PMUs) to detect LLC SCAs. Similarly, Zhang et al. [182] proposed a system that
utilizes PMU counters to monitor cache misses or hit rates when executing encryption operations,
thus detecting cache-based SCAs. However, detection relying on PMU counters may suffer practi-
cal issues. First, the number of events available for counters is limited on the hardware platform.
Second, the counters are accessible by software, so attackers may manipulate them and adjust their
attacks to evade detection.

CC-Hunter [28] detects the presence of timing covert channels by dynamically tracking conflict
patterns on shared processor components. Cyclone [63] leverages a characteristic shared by cache
contention channels—cross security domain cyclic interference—to detect microarchitectural
attacks. PerSpectron [107] designs a hardware-based neural predictor that uses perceptron
learning to identify and classify microarchitectural attacks. Further, it can actively mitigate
attacks by triggering appropriate countermeasures. EVAX [4] significantly reduces the overhead
of existing defenses by enabling the corresponding countermeasure only when an attack is
detected. For example, it reduces the overhead of InvisiSpec to 1.26% and the overhead of Fencing
to 3.45%. SPOILER-ALERT [34] identifies attack behaviors based on three traits of Spoiler: (1)
The attacker relies on a large number of store instructions with the same address offset, (2) the
SB is filled up with those store instructions, and (3) the store instructions on each sequential
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page are iteratively forwarded to the CPU. According to these traits, SPOILER-ALERT leverages
a cuckoo filter module to dynamically screen buffer addresses, thus detecting Spoiler attacks in
real time.

9 CHALLENGES AND FUTURE DIRECTIONS

9.1 Key Challenges

MTSCAs and defenses have been the focus of today’s processor security. In this section, we sum-
marize several key challenges of microarchitectural security for future research.

(1) The CPU vendor’s dilemma. A fundamental way of mitigating MTSCAs is to redesign the
corresponding hardware component, which only incurs low performance cost. However,
the opposite is often the case today: Hardware manufacturers remain overly focused on
performance improvement and continuously integrate new components and optimization
techniques into the microarchitecture design. Obviously, the security factor is often
overlooked in their design choices. Consequently, it is a separate challenge for the research
community to draw the CPU vendor’s attention to the security designs.

(2) Tradeoffs between security and overhead. Although restricting transient instructions is able
to thwart most speculative execution attacks, it often suffers from a high performance
overhead. Further, a targeted mitigation measure can effectively reduce the overhead, but
they may mitigate only one type of attack. Thus, it is quite difficult to strike a balance
between security and overhead.

(3) The need for complex reverse engineering. As processor vendors do not release their archi-
tecture designs in detail, it is extremely hard to have a full understanding of the working
mechanism of microarchitectural components. However, discovering new microarchitec-
tural vulnerabilities and designing secure microarchitectures have to rely on those detailed
information. Thus, it is an important technical challenge for researchers to develop efficient
reverse engineering approaches based on publicly available component information.

9.2 Future Research Directions

MTSCAs pose the risk of leaking arbitrary memory data from the privileged mode or victim mem-
ory. In response to those hazards, various defenses have been proposed successively, but many
issues remain unresolved. Next, we point out some research directions from two perspectives: mi-
croarchitectural timing side-channel attacks and their countermeasures.

We propose the following future directions in the research of MTSCAs:

(1) Enhancing attack metrics. Boosting existing attacks with novel/well-known exploit prim-
itives is a very interesting research direction. Researchers can improve the effectiveness
of attacks by promoting some metrics, such as transmission rate and time resolution.
For instance, Streamline [127] proposes to use asynchronous communication to improve
the transmission rate. Moreover, Prime+Scope [119] constructs new prime patterns by
exploiting cache replacement policies. It requires only observation on a single cache line
during the attacker’s measurement phase, thereby offering a better time resolution.

(2) Hunting for common attack conditions. It is much more difficult to launch attacks when
sophisticated attack conditions are necessarily required, thus greatly limiting the attack’s
applicability. For this reason, exploring common attack conditions or relaxing existing
conditions is an essential direction, which could inspire researchers to develop more
general attack techniques. For example, future research could focus on developing attacks
that require fewer special instructions and shared resources, relaxing the requirements
for platform and execution environment. A promising direction is to explore more
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attacks that converts microarchitectural states into architectural states without relying on
high-precision timing measurements [176, 181].

(3) Uncovering new attack surfaces. Further exploring new attack surfaces is always an impor-
tant direction in the research of microarchitecture security, which can be explored from the
aspects of attack conditions, attack scenarios, and threat models. The related approaches
can be generalized as follows: (1) exposing new microarchitecture components, such as
various CPU buffers; (2) discovering new leakage points through probing other microcode
events (e.g., interrupt [183]); (3) diverting the exploitable resource sharing level from CPU
component or core to higher system level [134], such as those shared in OSes [180] and
databases; and (4) combining transient execution with covert channels to develop new attack
scenarios.

Several potential directions for the defenses of MTSCAs include the following:

(1) Efficiently automatic gadget finding. Automatically finding exploitable and effective gadgets
has been a separate body of research, because one defense can benefit from it by reducing per-
formance overhead. However, current methods primarily focus on identifying Spectre-PHT
gadgets. From Section 5.3, it is evident that both control-flow and data speculation attacks re-
quire victim gadgets, making mitigation possible through gadget discovery. Future research
could explore more comprehensive gadget discovery methods, addressing issues present in
current approaches, such as false positives, false negatives, and analytical costs. One poten-
tial approach involves providing more generalized gadget modeling and integrating static
and dynamic analyses to enhance efficiency.

(2) General mitigation measures. Some high-security scenarios, such as confidential computing
in the cloud, often require deployment of various effective mitigations to thwart information
leakage as much as possible. However, most current defenses tend to address only one aspect
of attacks. For example, literature [66, 154, 185] can effectively counter Spectre V1 and V2
attacks, but not other types of speculative execution attacks (e.g., MDS [22, 104, 129]). There-
fore, developing more general mitigation strategies by blocking common attack conditions
is an important research direction. For instance, given that most transient execution attacks
need to share resources on the same core, it is still worth exploring strategies with lower
overhead to isolate physical resources across different logical cores or eliminate microarchi-
tectural resource sharing for distinct security domains.

(3) Customizable defenses. Blocking all leaks fundamentally has to rely on hardware support
from the CPU vendors, which inevitably introduces high overhead. However, in some
high-performance computing scenarios, it is usually not necessary to cover all leaks.
Similarly to the design space exploration in Reference [94], a compromise approach for
reducing performance costs is to customize mitigation measures according to different
security requirements. Thus, an important research branch is to explore customizable
defenses according to either security or performance (or both) requirements. For example,
control-flow speculation attacks require mis-training BPs. Therefore, effectively reducing
defense overhead can be achieved by focusing on preventing branch mis-training [26].

(4) Formal verification and analysis. Although substantial hardware- and software-based
mitigations against MTSCAs have been proposed successively, almost all of them lack
provable security guarantees. To identify microarchitecture vulnerabilities and verify
the security of hardware designs as much as possible, a promising research direction is
using formal verification and analysis. This requires a fine-grained microarchitecture- or
RTL-level formal analysis model [21, 25, 179], which can effectively weigh the accuracy and
complexity.
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10 CONCLUSIONS

MTSCAs break various security boundaries and severely threaten the security of modern proces-
sors. In this survey, we first recall the microarchitectural optimization techniques on modern pro-
cessors. Subsequently, we propose two sets of taxonomies for microarchitecture vulnerabilities and
their countermeasures based on the varying attack conditions. With the proposed taxonomies, we
classify the published attacks and existing defenses into different categories respectively and offer
an in-depth analysis from distinct perspectives. In particular, we discuss the similarities and differ-
ences of those attacks and uncover the practicality and severity of the vulnerabilities by specifying
attack targets/platforms and security boundaries that they can bypass. We also examine the scala-
bility of those defenses through specifying wanted defense goals and costs, and discuss correspond-
ing detection methods that can be combined with defenses to reduce overhead. Last, we finalize
this survey by highlighting some key challenges and proposing a series of interesting research di-
rections. We hope our survey initiates comprehensive understanding and careful consideration for
MTSCAs and their defenses in existing processors as well as in future microarchitecture designs.
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