
Journal of Parallel and Distributed Computing 130 (2019) 24–36

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Optimal power allocation and load balancing for non-dedicated
heterogeneous distributed embedded computing systems
Jing Huang a,b, Yan Liu a,b,∗, Renfa Li a,b,∗∗, Keqin Li a,c, JiYao An a,b, Yang Bai a,b, Fan Yang d,
Guoqi Xie a,b

a College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan, 410082, China
b Key Laboratory for Embedded and Network Computing of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
c Department of Computer Science, State University of New York, New Paltz, NY 12561, USA
d College of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China

h i g h l i g h t s

• The considered system is fully heterogeneous.
• Task types and priorities are diverse.
• Two new rules are observed from a great deal of data experiments.
• An optimal power allocation and load balancing strategy is proposed.

a r t i c l e i n f o

Article history:
Received 29 March 2017
Received in revised form 28 July 2018
Accepted 23 March 2019
Available online 29 March 2019

MSC:
00-01
99-00

Keywords:
Embedded and distributed system
Load distribution
Power allocation
Queueing model
Response time

a b s t r a c t

This paper investigates on the optimal power allocation and load balancing problem encountered
by heterogeneous and distributed embedded systems with mixed tasks. Given that each node has
real and different urgent tasks in the majority of practical heterogeneous embedded systems, three
priority disciplines are considered: dedicated jobs without priority, prioritized dedicated jobs without
preemption, and prioritized dedicated jobs with preemption. A model is established for hetero-
geneous embedded processors with dedicated-task-dependent dynamic power and load balancing
management; each processor is considered as an M/M/1 queueing sub-model with mixed generic and
dedicated tasks. The processors have different levels of power consumption, and each one can employ
any of the three disciplines. The objective of this study is to find an optimal load balancing (for generic
tasks) and power allocation strategy for heterogeneous processors preloaded by different amounts of
dedicated tasks such that the average response time of generic tasks is minimized. Considering that this
problem is a multi-constrained, multi-variable optimization problem for which a closed-form solution
is unlikely to be obtained, we propose an optimal power allocation and load balancing scheme by
employing Lagrange method and binary search approach, which are completed by utilizing two new
rules established by observing numerical variations of parameters. Several numerical examples are
presented to demonstrate the effectiveness of our solution. To the best of our knowledge, this is the
first work on analytical study that combines load balancing, energy efficiency, and priority of tasks in
heterogeneous and distributed embedded systems.

© 2019 Elsevier Inc. All rights reserved.

∗ Corresponding author at: College of Computer Science and Electronic
Engineering, Hunan University, Changsha, Hunan, 410082, China.
∗∗ Corresponding author.

E-mail addresses: jingh@hnu.edu.cn (J. Huang), liuyan@hnu.edu.cn (Y. Liu),
lirenfa@vip.sina.com.cn (R. Li), lik@newpaltz.edu (K. Li), anbobcn@aliyun.com
(J. An), baiyang@hnu.edu.cn (Y. Bai), yangfanf117@csuft.edu.cn (F. Yang),
xgqman@hnu.edu.cn (G. Xie).

1. Introduction

1.1. Motivation

In view of the increasing computing demands and perfor-
mance requirements of modern applications, complex embedded
platforms are now equipped with multiple computing nodes,
in which each node owns its dedicated jobs. These nodes vary
in computing speed and power consumption. As such, embed-
ded platforms exhibit characteristics of heterogeneous comput-
ing, embedded computing, and distributed computing. Typical

https://doi.org/10.1016/j.jpdc.2019.03.019
0743-7315/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2019.03.019
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2019.03.019&domain=pdf
mailto:jingh@hnu.edu.cn
mailto:liuyan@hnu.edu.cn
mailto:lirenfa@vip.sina.com.cn
mailto:lik@newpaltz.edu
mailto:anbobcn@aliyun.com
mailto:baiyang@hnu.edu.cn
mailto:yangfanf117@csuft.edu.cn
mailto:xgqman@hnu.edu.cn
https://doi.org/10.1016/j.jpdc.2019.03.019


J. Huang, Y. Liu, R. Li et al. / Journal of Parallel and Distributed Computing 130 (2019) 24–36 25

examples of embedded platforms are the BMW 7 Series cars, in
which over 100 electronic control units (ECUs) are embedded in
a single car with dedicated tasks for each ECU.

Computing performance is a vital metric when a system’s
quality of service (QoS) is being evaluated. Higher computing per-
formance results in a shorter average waiting time for tasks and a
higher system throughput. High computing performance depends
on the effective utilization of computing resources. Therefore,
assigning generic tasks to nodes without affecting their own ded-
icated tasks is an effective strategy for performance improvement
of embedded systems. In distributed systems, task allocation as-
signed by a load-balancing algorithm is directly related to the
overall performance of the entire system. Thus, an efficient load-
balancing strategy is vital to building a distributed-computing
architecture, particularly an embedded distributed system with
limited resource.

Energy efficiency is important in most computing environ-
ments. Embedded systems depend even more heavily on energy
efficiency and optimization than general systems. Energy effi-
ciency is related to the performance and runtime of a system, es-
pecially for battery-powered devices. Energy management can be
achieved by using dynamic power management (DPM) [19] or dy-
namic voltage scaling (DVS) [32] to regulate power consumption.
DPM implemented at the operating-system level provides the
supply voltage and clock-frequency adjustment schemes while
tasks are running. This strategy offers opportunities for tuning the
energy-delay tradeoff [27].

In distributed embedded systems, each node owns its ded-
icated tasks, which may be urgent tasks for the system. Thus,
in such environments, the priority of dedicated tasks should be
considered when tasks are being assigned to a node. The urgency
of the dedicated tasks of each node is not the same. Thus, the
priority strategy could be set in various ways. That is, some
dedicated tasks can be considered concomitant general tasks,
some tasks possess a higher priority than general tasks, and some
tasks possess a higher priority with pre-emption.

With the development of embedded computing, heteroge-
neous and multi-node architectures have become a trend. In
heterogeneous distributed embedded environments with limited
computing resource and power, a system should be capable of op-
erating with optimal load balancing and power allocation without
impacting the system’s important tasks.

1.2. Our contributions

In this paper, we aim to develop power- and performance-
constrained load-distribution methods for current and future em-
bedded architectures. We examine the problem of assigning a
set of general tasks to computing nodes of a computational het-
erogeneous embedded distributed system, wherein each node
is pre-loaded with different amounts of dedicated tasks and is
equipped with a DVS feature. However, each dedicated task for
each node has a different priority because of the differences in
urgency to the system. According to the urgency of the dedicated
tasks, three types of priority disciplines of nodes in the system
are as follows:

• Discipline 1: All general tasks and dedicated tasks on this
node are scheduled with a first-come, first-served discipline
without priority.
• Discipline 2: Dedicated tasks are always scheduled before

general tasks on this node. All tasks are executed without
interruption.
• Discipline 3: Dedicated tasks are always scheduled before

general tasks on this node and with pre-emption.

We refer to Discipline 1 as dedicated tasks without priority,
Discipline 2 as prioritized dedicated tasks without pre-emption,
and Discipline 3 as prioritized dedicated tasks with pre-emption.
Each node may employ any of the three disciplines. We treated
each embedded computing node as an M/M/1 queueing model
with infinite waiting-queue capacity.

The contributions of this study are as follows:

• An algorithm is proposed for finding the optimal load-
distribution and power-allocation schemes of the system,
such that the overall average response time for generic tasks
is minimized.
• The proposed algorithm is highly adaptable, such that it can

be used to deal with heterogeneous nodes with different
amounts of pre-loaded dedicated tasks, different queueing
disciplines, as well as different maximum speeds and power
consumption.
• We provide several numerical examples to demonstrate the

effectiveness of our algorithm from different perspectives.
We also plot the functions of overall response time of
generic tasks, node utilization of each node, power alloca-
tion on each node, and task assignment on each node of the
arrival rate of generic tasks. Through these functions, we can
observe the changing tendency of these parameters as the
arrival rate of generic tasks changes.

Our study is focused on a well-defined, multi-constrained,
and multi-variable problem. To the best of our knowledge, no
study has investigated an optimization problem that considers
the combination of load distribution, energy efficiency, and task
priority in heterogeneous embedded distributed systems. Our in-
vestigation makes a significant contribution to high-performance
and energy-efficient computing in modern heterogeneous and
distributed embedded systems.

2. Related work

Load distribution and balancing in general distributed and
parallel computing systems have been extensively studied, and
a huge body of literature exists [3,15,25,29]. The majority of
existing works on optimal load distribution have focused on
performance metrics and system characteristics. Performance
metrics include mean response time [7], arithmetic average re-
sponse time [13], average consensus [34], mean response ra-
tio [28], mean miss ration [9], and probability of load-balancing
success [21]. Distributed-system characteristics refer to two main
considerations: (1) whether the server is heterogeneous, and
(2) whether each server has its own dedicated jobs and whether
these jobs have higher priority. In Ref. [36], the authors studied
how to quickly find the minimum response time of an application
running on a heterogeneous system. In Ref. [35], the adaptive
dynamic scheduling on heterogeneous embedded systems was
investigated. In Ref. [6], the system contains non-priority dedi-
cated jobs and generic jobs, and the objective of this paper is to
seek assignment probabilities of generic jobs such that the aver-
age response time of a job is minimized. In Ref. [22], the author
considered a heterogeneous environment that includes general
jobs and multiple types of non-priority dedicated jobs; this work
explored the problem of optimal job-dispatching probabilities for
minimum average job response time. In Ref. [12], three types of
priorities, namely dedicated jobs without priority, priority dedi-
cated jobs without pre-emption, and priority dedicated jobs with
pre-emption were considered in a heterogeneous environment;
however, in Ref. [12], all of the priority disciplines of each node
are set to be the same and not heterogeneous. In Ref. [18],
the quantitative modeling and analytical calculation of elasticity
in distributed systems was studied. In Ref. [17], optimal task



26 J. Huang, Y. Liu, R. Li et al. / Journal of Parallel and Distributed Computing 130 (2019) 24–36

dispatching on multiple heterogeneous multi-server systems was
studied. Virtually, the nature of problems discussed in Refs. [18]
and [17] are still load balancing.

Energy efficiency is necessary in both distributed (e.g., cloud
computing, grid computing) or embedded environments. For
large-scale distributed systems, high energy consumption leads
to severe economic, environmental, and ecological problems.
For embedded systems, high energy consumption will affect
the system’s runtime, particularly that of battery-power devices.
The intuitionistic policy for reducing power consumption is to
efficiently manage system power. In Ref. [11], the author in-
vestigated the green-energy-aware power-management problem
for distributed-computing data centers. In Ref. [8], the author
summarized and classified resource-management problems in
distributed-computing environments. In Ref. [20], the author
summarized the approaches and techniques proposed in recent
works in this discipline. The purpose of energy efficiency is to
make power consumption proportional to system utilization [4].
Energy efficiency can be achieved by applying many different
approaches, such as algorithmic, stochastic, and learning-based
approaches [1]. In Ref. [26], the author developed a methodology
for cycle-accurate simulation of performance and energy con-
sumption in embedded systems. In Ref. [39], a framework was
built for designing and analyzing the energy cost of algorithms.
Basic software techniques for energy efficiency are supported
by a mechanism called dynamic frequency scaling (equivalently,
DVS, dynamic speed scaling, and dynamic power scaling). DPM
at the operating-system level provides supply-voltage and clock-
frequency adjustment schemes implemented while tasks are run-
ning. A huge body of literature is available on this topic. In Ref. [5],
the author summarized several classes of power-managed sys-
tems and power-management strategies. These energy-saving
techniques explore the opportunities for tuning the energy-delay
tradeoff. In Ref. [23], the researcher specifically studied the prob-
lem of system-level design techniques for the energy efficiency
of embedded systems.

Both performance and energy efficiency are important for
most systems, especially for distributed embedded systems. In
general, three policies can be implemented to combine DPM and
performance to achieve energy efficiency. The first is to optimize
the performance by fixing the energy consumption constraint. In
Ref. [7], the author addressed the problem of minimizing average
response time of tasks under a given power. In Ref. [14], the
author minimized the average task response time of multiple
heterogeneous servers under the condition that the overall power
consumption of all servers does not exceed a pre-set power
limit. In Ref. [16], the author studied the problem of finding the
optimal speed scheme of servers with workload-dependent DPM
to minimize the average task response time under a given power.
The second consideration is to minimize the power consump-
tion under a performance constraint [30,31,37,39]. The author
of Ref. [30] proposed a method that seeks the minimum energy
consumption of a specific task set by using resource sharing that
meets the time constraint. In Ref. [31], the author used dynamic
voltage–frequency scaling to minimize power consumption for
precedence-constrained parallel task execution without increas-
ing the entire task’s execution time. The third consideration is
to optimize both power consumption and performance [10,33].
In Ref. [10], the energy consumption and the make span are
minimized without violating the deadlines and the tasks’ archi-
tectural requirements. In Ref. [33], the author minimized the
weighted sum of mean response time and power consumption
while scheduling processor sharing.

Table 1
Notations.
si The speed of node vi
λ̃i Arrival rate of dedicated tasks to vi
λ̂i Arrival rate of general tasks to vi
λi = λ̃i + λ̂i

λ̂ =

n∑
i=1
λ̂i

x̃i = r̃i/si Average execution time of dedicated tasks on vi
x̂i = r̂/si Average execution time of general tasks on vi
ũi = 1/̃xi Average service rate of dedicated tasks on vi
ûi = 1/̂xi Average service rate of general tasks on vi
m̃i = 2/̃u2

i The second moment of dedicated tasks on vi
m̂i = 2/̂u2

i The second moment of general tasks on vi
mi =

(̃
λi/λi

)
· m̃i +

(̂
λi/λi

)
· m̂i

ρ̂i λ̂i · x̂i = λ̂îr/si
ρ̃i λ̃i · x̃i = λ̃ĩri/si
ρi = ρ̂i + ρ̃i Average percentage of time that node vi is busy

Ti Average response time of general tasks on vi
T Average response time of general tasks on system

3. Models and problem formulation

3.1. Power model

The power dissipation of CMOS circuits mainly consists of
three parts, namely, dynamic, static, and short-circuits consump-
tion, among which dynamic power consumption is the dominant
component. The dynamic power consumption can be expressed
by P = kCV 2f where k is an activity factor, C is the loading capac-
itance, V is the supply voltage, and f is the clock frequency. The
speed s of a core is often defined as the number of instructions
the core can perform per second (IPS). Given that s ∝ f and f ∝ V ,
then P ∝ sα , where α is around 3 [38]. For ease of discussion, we
model the dynamic power allocated to node vi with speed si as
siαi . Thus, we formulate the power consumption of an embedded
computing node as Pi = siαi + Pi∗, where Pi∗ is the static power
consumption independent of the clock rate.

3.2. Queueing model

We establish a model to formulate and study the problem
of power allocation and load balancing in a heterogeneous dis-
tributed embedded environment. We assume that we have n
heterogeneous embedded computing nodes v1, v2, . . . , vn (sim-
ply called as a node), each of which has its own dedicated set of
jobs, which is a Poisson stream of tasks with arrival rate λ̃i that
can only be executed on it. There exists a general Poisson stream
of tasks with arrival rate λ̂ that needs to be executed by being
split into n sub-streams λ̂i assigned to each node. Thus, each node
deals with a combined stream of dedicated and general tasks. The
structure of the system is showed in Fig. 1. The task execution
requirements of dedicated and general tasks are exponential ran-
dom variables with mean r̃i and r̂ , respectively. Thus, the two
types of mean execution times on node vi are x̃i = r̃i/si, x̂i = r̂/si,
respectively. Since both the arrival rate and processing rate of
tasks submit to Poisson distribution, each node can be treated
as an M/M/1 queueing system. Parameters used are shown in
Table 1. To maintain the queue steady, we assume that ρi < 1,
for all 1 ≤ i ≤ n.

3.3. Problem formulation

Our problem can be specified as follows: given n numbers of
embedded nodes/cores v1, v2, . . . , vn, the arrival rates λ̃1, λ̃2, . . . ,



J. Huang, Y. Liu, R. Li et al. / Journal of Parallel and Distributed Computing 130 (2019) 24–36 27

Fig. 1. System structure.

λ̃n of dedicated tasks on the n nodes, the average tasks execution
requirements r̃1, r̃2, . . . , r̃n of dedicated tasks on the n nodes,
the total arrival rate λ̂ of general tasks, the average task exe-
cution requirements r̂ of general tasks, the base power supply
P∗1 , P

∗

2 , . . . , P
∗
n , the available power P , and the queueing discipline

of each node, find the tasks arrival rates λ̂1, λ̂2, . . . , λ̂n and the
core speeds s1, s2, . . . , sn such that the average response time of
general tasks on the system is minimized, namely,

T =
λ̂1

λ̂
T1 +

λ̂2

λ̂
T2 + · · · +

λ̂n

λ̂
Tn, (1)

subject to

λ̂1 + λ̂2 + · · · + λ̂n = λ̂, (2)

and

P =
n∑

i=1

Pi =
n∑

i=1

(siαi + Pi∗), (3)

where Ti (1 ≤ i ≤ n) represents the average response time of
generic tasks on vi.

4. The proposed method

4.1. Basic derivation

Each node is treated as an M/M/1 queuing system. For dif-
ferent queuing disciplines, the average response time of general
tasks Ti is different. We split all nodes into three groups according
to the queuing discipline. Group G1 includes all of the nodes
whose priority disciplines are Discipline 1, group G2 includes
all of the nodes whose priority disciplines are Discipline 2, and
group G3 includes all of the nodes whose priority disciplines are
Discipline 3. If vi ∈ G1, we have [[2], p. 700]

Ti = x̂i +
λimi

2 (1− ρi)

=
r̂
si
+

λ̂îr2 + λ̃ĩr2i
si
(
si − λ̂îr − λ̃ĩri

) . (4)

If vi ∈ G2, we have [[2], p. 702]

Ti = x̂i +
λimi

2 (1− ρ̃i) (1− ρi)

=
r̂
si
+

λ̂îr2 + λ̃ĩr2i(
si − λ̃ĩri

) (
si − λ̃ĩri − λ̂îr

) . (5)

If vi ∈ G3, we have [[2], p. 704]

Ti =
1

1− ρ̃i

(̂
xi +

λimi

2 (1− ρi)

)
=

1
si − λ̃ĩri

(̂
r +

λ̂îr2 + λ̃ĩr2i
si − λ̃ĩri − λ̂îr

)
.

(6)

Our target is to minimize Eq. (1). Note that λ̂ in Eq. (1) is a
fixed value, it could be ignored that would not impact the original
solution. To solve Eq. (1), we use the Lagrange multiplier system,
and set the following functions:

ψ(s1, s2, . . . , sn) = P −
n∑

i=1

Pi,

and

ϕ (̂λ1, λ̂2, . . . , λ̂n) =
n∑

i=1

λ̂i − λ̂,

as two Lagrange constraint functions, and construct a Lagrange
function:

L =
n∑

i=1

λ̂iTi + φψ(s1, s2, . . . , sn)+ τϕ (̂λ1, λ̂2, . . . , λ̂n), (7)

where φ and τ are two Lagrange multipliers.
Eq. (7) includes 2n + 2 variables, which are λ̂1, λ̂2, . . . , λ̂n,

s1, s2, . . . , sn, φ, τ . We take the partial derivative with respect to



28 J. Huang, Y. Liu, R. Li et al. / Journal of Parallel and Distributed Computing 130 (2019) 24–36

λ̂i, which is

∂
(̂
λiTi

)
∂λ̂i

= φ
∂ϕ

∂λ̂i
+ τ

∂ψ

∂λ̂i
. (8)

According to Eqs. (1) and (8), we have

Ti +
∂Ti
∂λ̂i

λ̂i = φ. (9)

In Eq. (9), Ti and ∂Ti
∂λ̂i

vary under different priority disciplines.
Hence, λ̂i should be solved according to the priority discipline of
vi.

For vi ∈ G1, based on Eqs. (4) and (9), we have

Ti +

(
r̂2
(
si − λ̃ĩri

)
+ λ̃ĩr 2̂r

si
(
si − λ̃ĩri − λ̂îr

)2
)
λ̂i = φ. (10)

Eq. (10) can be transformed into Eq. (11),

λ̂2i ai + λ̂ibi + ci = 0, (11)

where

ai = r̂2φsi,
bi = −2

(
si − λ̃ĩri

)
r̂φsi,

ci = −
(
(̂r − φsi)

(
si − λ̃ĩri

)
+ λ̃ĩr2i

) (
si − λ̃ĩri

)
.

Solving Eq. (11), we can get

λ̂i =
−bi − 2

√
bi2 − 4aici

2ai

=
ti
r̂
−

1
r̂

√
ti
(̂
rti + λ̃ĩr2i

)
siφ

,

(12)

where ti = si − λ̃ĩri. In fact, Eq. (11) has two solutions, we keep
the left one [12].

For vi ∈ G2, based on Eqs. (5) and (9), we have

r̂
si
+

(
2̂λîr2 + λ̃ĩr2i

) (
si − λ̃ĩri

)
− λ̂2i r̂

3(
si − λ̃ĩri

) (
si − λ̃ĩri − λ̂îr

)2 = φ. (13)

Eq. (13) can be transformed into Eq. (14),

λ̂2i ai + λ̂ibi + ci = 0, (14)

where

ai = (φ − r̂/si)
(
si − λ̃ĩri

)
r̂2 + r̂3,

bi = −2
(
si − λ̃ĩri

)
r̂
(
(φ − r̂/si)

(
si − λ̃ĩri

)
+ r̂

)
,

ci =
(
si − λ̃ĩri

) (
(φ − r̂/si)

(
si − λ̃ĩri

)2
− λ̃ĩr2i

)
.

Solving Eq. (14), we get

λ̂i =
ti
r̂
−

1
r̂

√ ti
(̂
rti + λ̃ĩr2i

)
φti +

r̂
si
λ̃ĩri

, (15)

where ti = si − λ̃ĩri.
For vi ∈ G3, based on Eqs. (6) and (9), we obtain

1
ti

(̂
r +

λ̂îr2 + λ̃ĩr2i(
ti − λ̂îr

) + λ̂îr2ti + λ̃2i r̂̃ r2i(
ti − λ̂îr

)2
)
= φ, (16)

and from Eq. (16) we get

λ̂2i ai + λ̂ibi + ci = 0, (17)

where

ai = φtîr2,

bi = r̂
(̂
rti − φti2 + λ̃ĩr2i + φtîλîr

)
,

ci = −ti
(̂
rti − φti2 + λ̃ĩr2i

)
− r̂2ti − λ̃î r̃ r2i ,

based on Eq. (17), we can obtain

λ̂i =
ti
r̂
−

1
r̂

√
r̂ ti + λ̃ĩr2i

φ
, (18)

where ti = si − λ̃ĩri.
By deriving λ̂i, we have obtained

λ̂i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ti
r̂
−

1
r̂

√
ti
(
tîr+λ̃ĩr2i

)
(φ + τi) si

, vi ∈ G1;

ti
r̂
−

1
r̂

√ ti
(̂
rti + λ̃ĩr2i

)
(φ + τi) ti +

r̂
si
λ̃ĩri

, vi ∈ G2;

ti
r̂
−

1
r̂

√
tîr + λ̃ĩr2i

φ
, vi ∈ G3;

(19)

where ti = si − λ̃ĩri. Next, we will solve si for all 1 ≤ i ≤ n.
We take the partial derivative with respect to si, that is

∂
(̂
λiTi

)
∂si

= φ
∂ϕ

∂si
+ τ

∂ψ

∂si
= −ταisiαi−1. (20)

From Eq. (20) we can get

τ = −
λ̂i

αisiαi−1
∂Ti
∂si
, (21)

where

∂Ti
∂si
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
r̂
si2
−

(̂
λîr2 + λ̃ĩr2i

) (̂
λîr + λ̃ĩri

)
si2
(
ti − λ̂îr

)2 , vi ∈ G1;

−
r̂
si2
−

(̂
λîr2 + λ̃ĩr2i

)
λ̂îr

ti2
(
ti − λ̂îr

)2 , vi ∈ G2;

−
r̂
ti2
−

(̂
λîr2 + λ̃ĩr2i

)
λ̂îr

ti2
(
ti − λ̂îr

)2 , vi ∈ G3,

(22)

and ti = si − λ̃ĩri.
By deriving λ̂i and si, we have obtained Eqs. (19) and (21). Our

target is to solve λ̂1, λ̂2, . . . , λ̂n, s1, s2, . . . , sn based on Eqs. (19)
and (21), meanwhile the solved λ̂1, λ̂2, . . . , λ̂n, s1, s2, . . . , sn can
satisfy constraints Eqs. (2) and (3). Eqs. (19) and (21) include
2n+ 2 variables, which are λ̂1, λ̂2, . . . , λ̂n, s1, s2, . . . , sn, φ and τ .
Our problem is a multi-constrained and multi-variable problem,
and is unlikely to get a closed-form solution. So we have to
analyze Eqs. (19) and (21) further.

4.2. Analysis

Since the closed-form solution is difficult to obtain, we could
work out the numerical solution. By observing Eqs (19) and (21),
we find that λ̂i could be viewed as a function of φ and si, and
τ could be viewed as a function of λ̂i and si. Taking λ̂i into the
function of τ , then τ is a function of φ and si. Let

λ̂i = fi(φ, si), (23)

and

τ = gi (̂λi, si) = gi(fi(φ, si), si) = −
λ̂i
∂ T̂i
∂si

αisiαi−1
. (24)



J. Huang, Y. Liu, R. Li et al. / Journal of Parallel and Distributed Computing 130 (2019) 24–36 29

Fig. 2. The function image of gi(fi(φ, si), si) when φ = 7.

Fig. 3. The function image of gi(fi(φ, si), si) when φ = 5.

Observing Eq. (24) we can find that if the value of φ is fixed, the
function gi (̂λi, si) includes only one variable si. This observation
is very helpful. Although si for different nodes may be different,
τ for all nodes is the same because it is a Lagrange multiplier.
If τ could determine si, then τ could also determine sj where
0 ≤ i, j ≤ n. In other words, τ may be able to determine si for all
0 ≤ i ≤ n.

In order to analyze the relationship between τ and si, we first
need to determine the monotonicity of τ with respect to si. τ =
gi (̂λi, si) is a high power and nonlinear function of si, which is dif-
ficult to analyze the monotonicity based on mathematical deriva-
tion. We assign 0.0001, 0.0002, . . . , 5 to si respectively, and then
obtain the corresponding gi(fi(φ, 0.0001), 0.0001), gi(fi(φ, 0.0002)
, 0.0002), . . . , gi(fi(φ, 5), 5). By drawing the points (0.0001,
gi(fi(φ, 0.0001), 0.0001)), . . . , (5, gi(fi(φ, 5), 5)) on the coordinate
axis, the monotonicity can be analyzed based on the graph of
gi (̂λi, si).

Fig. 2 shows graphs gi (̂λi, si) of four nodes all belonging to
G3, and each node is preloaded with different amounts of tasks,
where φ is set to 7. Meanwhile, the nodes shown in Figs. 3 and
4 are the same as that shown in Fig. 2 expect that φ is set to 5

Fig. 4. The function image of gi(fi(φ, si), si) when φ = 3.

and 3, respectively. From Figs. 2 to 4, we summarize a rule and
describe it as Rule 1. In fact, in order to verify this rule, many
related experiments have been tested, and we can obtain the
same result. Owing to limited space, it is impossible to list all of
these experiments.

Rule 1: With each fixed value of φ, the value of function
τ = gi (̂λi, si) initially increased with an increase in si and then
decreased as si continued to increase, for all 1 ≤ i ≤ n.

In Figs. 2 to 4, si represents the corresponding value of si when
gi (̂λi, si) is maximum, namely gi (̂λi, si) ≤ gi (̂λi, si). Obviously, each
gi (̂λi, si) is a convex function when si is located at [si,+∞]. On the
basis of convex optimization theory, λ̂1, λ̂2, . . . , λ̂n, s1, s2, . . . , sn
will be the optimal solution, if

∑n
i=1 fi(φ, si) = λ̂, P =

∑n
i=1

(siαi + P∗i ) and si ∈ [si,+∞] for all 1 ≤ i ≤ n could be met
simultaneously. To obtain the optimal solution, two steps are
designed. First, given a value of φ, find a τ that can be used to
determine the speeds s1, s2, . . . , sn under the power constraint
Eq. (3). Then, based on the first step, by adjusting the value
of φ, find the appropriate φ and τ that simultaneously meet
the constraints equation (3) and equation (2). The following two
paragraphs describe the two steps.

This paragraph explains step one. For gi (̂λi, si), (si, gi (̂λi, si))
is a turning point, which makes gi (̂λi, si) obtain the maximum
value, i.e., gi (̂λi, si) ≤ gi (̂λi, si). The Lagrange multiplier τ should
have the same value for all gi (̂λi, si). Thus, the upper bound of
τ is the smallest maximum value of all gi (̂λi, si), namely τ ≤
Min

{
g1 (̂λ1, s1), g2 (̂λ2, s2), . . . , gn (̂λn, sn)

}
. At the right side of si,

gi (̂λi, si) is monotonically decreasing. In other words, with a given
τ , the corresponding si can be immediately obtained by using
binary search. Power Pi is a monotonically increasing function
of si for all 1 ≤ i ≤ n. Since τ could determine s1, s2, . . . , sn
(si ∈ [si,+∞]),

∑n
i=1 Pi = P can be obtained by adjusting τ .

At the first step we can obtain a value of τ which make
s1, s2, . . . , sn satisfy the power constraint Eq. (3). The remaining
work is to find the appropriate φ that satisfies

∑n
i=1 fi(φ, si) =

λ̂. λ̂i = fi(si, φ) contains two independent variables, si and φ.
Given a φ, based on step one, we can find s1, s2, . . . , sn that
satisfy power constraint Eq. (3). If φ is changed, we can still
obtain all new si satisfying Eq. (3). Of course, for different φ, the
obtained s1, s2, . . . , sn are different. It seems difficult that finding
the appropriate φ and τ satisfy Eqs. (2) and (3) at the same time.
However, by examining a large number of experimental data, we
observed that as long as all si locate at [si,+∞] and s1, s2, . . . , sn



30 J. Huang, Y. Liu, R. Li et al. / Journal of Parallel and Distributed Computing 130 (2019) 24–36

meet Eq. (3), the rangeability of si remains relatively stable even if
changing φ will change the value of si. This finding suggests that
the value of φ is the dominant factor affecting the value of λ̂i. On
this basis, we introduce the second observed rule.

Rule 2: On the premise of all si locating at [si,+∞] and
s1, s2, . . . , sn satisfying Eq. (3), λ̂i will increase monotonically with
φ, indicating that

∑n
i=1 λ̂i will increase monotonically with φ.

According to above analyses and Rules 1 and 2, we can design
algorithms to find the optimal solution λ̂1, λ̂2, . . . , λ̂n, s1, s2, . . . ,
sn, and corresponding Lagrange multipliers φ and τ . These algo-
rithms will be introduced in next section.

4.3. Algorithm design

In this section, we will design algorithms to find the optimal
solution λ̂1, λ̂2, . . . , λ̂n, s1, s2, . . . , sn, and the corresponding La-
grange multipliers φ and τ . Based on Rules 1 and 2 mentioned
in Section 4.2, our method is divided to four steps for solving
problem, which are described as follows.

1. Solve the searching region for si.
2. Find the turning point si on the searching region of si.
3. Fix the value of φ, and find a τ on region [s,+∞] which

can make s1, s2, . . . , sn satisfy Eq. (3).
4. Based on steps 1, 2 and 3, adjust φ until both Eqs. (2) and

(3) are satisfied.

The searching region for si is determined by λ̂i = fi(φ, si) > 0,
and could be solved based on Eq. (19).

For vi ∈ G1, we can get

si − λ̃ĩri
r̂

>
1
r̂

√(
si − λ̃ĩri

) (̂
r
(
si − λ̃ĩri

)
+ λ̃ĩr2i

)
siφ

.

Then, we will have

aisi2 + bisi + ci ≥ 0,

where

ai = φ, bi = −
(
λ̃ĩriφ + r̂

)
, ci = r̃i (̂r − r̃i) .

We set that

∆i = bi2 − 4aici =
(
λ̃ĩriφ + r̂

)2
− 4φ̃ri (̂r − r̃i) .

As we know, in real situations of distributed environments, we
always expect that a node whose CPU speed is improved could
be assigned with more tasks. We called it as ‘‘more energy more
tasks’’, which indicates that λ̂i increases with the increase of si.
Based on ‘‘more energy more tasks’’, we define the searching
region for si (vi ∈ G1) as follows:

si ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
λ̃ĩriφ + r̂

)
2φ

,∆i ≤ 0;

1
2φ

(√(
λ̃ĩriφ + r̂

)2
− 4φλ̃ĩri (̂r − r̃i)

+λ̃ĩriφ + r̂
)
,∆i > 0.

(25)

Similarly, for vi ∈ G2, we can obtain

aisi3 + bisi2 + cisi + di ≥ 0, (26)

where

ai = φ, bi = −
(
2φλ̃ĩri + r̂

)
,

ci = λ̃ĩri
(
2̂r + λφλ̃ĩri − r̃i

)
,

di = −
(̃
λĩri
)2 r̂.

Eq. (26) is a cubic polynomial equation about si. To solve it we
need to use Fan’s formula [24]. Let

Ai = bi2 − 3aici, Bi = bici − 9aidi, Ci = ci2 − 3bidi.

Let ∆i = Bi
2
− 4AiCi as the discriminant. Taking the value of ∆i

and the ‘‘more energy more tasks’’ into consideration, we obtain
the searching region for si (vi ∈ G2) as follows:

si ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−bi −
(

3√Y1 +
3√Y2

)
3ai

,∆i > 0;

−bi
3ai
+

Bi

Ai
,∆i = 0;

−bi +
√
A
(
cos θ3 +

√
3 sin θ

3

)
3a

,∆i < 0,

(27)

where

Y1,2 = Aibi + 3ai

(
−Bi ±

√
Bi

2
− 4AiCi

2

)
.

For vi ∈ G3, we obtain

φ
(
si − λ̃ĩri

)2
− r̂

(
si − λ̃ĩri

)
− λ̃ĩr2i ≥ 0. (28)

From Eq. (28) we obtain the searching region for si (vi ∈ G3),
which is

si ≥
r̂ +

√̂
r2 + 4φλ̃ĩr2i
2φ

+ λ̃ĩri, (29)

We have solved the searching region for si (0 ≤ i ≤ n). The
next step is to find the turning point si on the searching region
of si.

From Figs. 2 to 4, we observer that gi (̂λi, si) is an increasing
function when si locates at the left side of si, and gi (̂λi, si) is a
decreasing function when si locates at the right side of si. This
means that the derivative of gi (̂λi, si) is larger than 0, gi′

(̂
λi, si

)
>

0, if si < si, and gi′
(̂
λi, si

)
< 0 if si > si. Therefore, si can be solved

using binary search based on gi′
(̂
λi, si

)
. Due to the attention only

on si, for the sake of simplicity, we replace the partial derivative
of fi(φ, si) with f ′i (si), and replace the partial derivative of gi (̂λ, si)
with g ′i (̂λ, si).

g ′ i
(̂
λi, si

)
=

∂2T̂i
∂si2

fi (si)−
(
(αi − 1)fi(si)

si
− fi′(si)

)
∂ T̂i
∂si

αisiαi−1
(30)

where

fi′(si) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
r̂
−
(̂rti + di) si − tidi

2̂r
√
φtidisi3

, vi ∈ G1;

1
r̂
−
(tisîr + di (ti + si)) λ̃ĩrîr(
φtisi + λ̃ĩrîr

)3/22√ditisi
, vi ∈ G2;

1
r̂
−

1
2
√
diφ

, vi ∈ G3;



J. Huang, Y. Liu, R. Li et al. / Journal of Parallel and Distributed Computing 130 (2019) 24–36 31

di = r̂ ti + λ̃ĩr2i , ti = si − λ̃̃ri. For vi ∈ G1, we have

−
∂2T̂i
∂si2
=
−2̂r
ti3
+

2ti − λ̂îr

ti2
(
ti − λ̂îr

)2
×

(̂
λ′îr

2
−
(̂
λîr2 + λ̃ĩr2i

)
×

(
1
ti
+

1− λ̂′îr
ti − λ̂îr

))
−

1
ti

λ̂îr2 + λ̃ĩr2i(
ti − λ̂îr

) × ( 1
ti2
+

1− λ̂′îr(
ti − λ̂îr

)2
)
.

For vi ∈ G2, we have

−
∂2T̂i
∂si2
=

r̂
λsi2

(
fi′(si)−

2
si
λ̂i

)
+

Hi

λti
(
ti − λ̂îr

)2 ,
where

Hi = fi′(si)
(
2−

λ̂îr
ti

)
×
(
2̂λîr2 + λ̃ĩr2i

)
−
λ̂i
(̂
λîr2 + λ̃ĩr2i

)
ti
(
ti − λ̂îr

)
×

(
6ti + λ̂îr

(
2̂λîr
ti
− 6

)
+̂r2fi′(si)

(̂
λîr − 3ti

))
.

For vi ∈ G3, we have

−
∂2T̂i
∂si2
=
−2̂r
ti3
+

2ti − λ̂îr

ti2
(
ti − λ̂îr

)2
×

(
fi′(si )̂r2 −

(̂
λîr2 + λ̃ĩr2i

) (1
ti
+

1− fi′(si )̂r
ti − λ̂îr

))
−
(̂
λîr2 + λ̃ĩr2i

)
×

((
1− fi′(si )̂r

)
ti2 +

(
ti − λ̂îr

)2
ti3
(
ti − λ̂îr

)3
)
.

The binary search will be used many times. In order to avoid
repeatedly using a list of search methods, we define it in Al-
gorithm 1. According to this definition, si could be solved by
biSearch(lowsi,maxsi, gi′

(̂
λi, si

)
> 0), where lowsi is supported

by Eqs. (25), (27), and (29); maxsi can be an appropriate value,
for instance, it could be set to 5 because at present most proces-
sor’s maximal frequency is less than 5 GHz.

Algorithm 1 biSearch(lb, ub, criterion)
Require: lb, ub, criterion.
Ensure: var .
1: while (ub− lb > ε) do
2: var ← (ub+ lb)/2;
3: if criterion then
4: lb← var;
5: else
6: ub← var;
7: end if
8: end while
9: return var .

In this paragraph, we will introduce how to find a τ on region
[s,+∞] which can make s1, s2, . . . , sn satisfy Eq. (3). τ is a com-
mon Lagrange multiplier. Since τ is considered as τ = gi (̂λi, si),
the upper bound of τ is the smallest maximum value of all
gi (̂λi, si) (Algorithm 2). On region [s,+∞], gi (̂λi, si) is a decreasing
function of si. In other words, given a τ , the corresponding si can

be solved by binary search, i.e., biSearch(si,maxsi, gi (̂λi, si) > τ ).
Since τ is a monotonous function of si, τ is also a monotonous
function of

∑n
i=1 (si

αi + Pi∗). Algorithm 3 shows how to find a
τ which can make s1, s2, . . . , sn satisfy

∑n
i=1 (si

αi + Pi∗) ≤ P . In
Algorithm 3, the si shown in line 7 is calculated by biSearch(si,
maxsi, gi (̂λi, si) > τ ).

Algorithm 2 findUBof_τ (φ, s1, ..., sn)

Require: φ, s1, . . . , sn.
Ensure: uBof _τ .
1: uBof _τ ← γ ;
2: for (1← i; i ≤ n; i++) do
3: temp← gi(fi(si), si);
4: if temp < γ then
5: uBof _τ ← temp;
6: end if
7: end for
8: return uBof _τ .

Algorithm 3 calculateAllsi

Require: φ, P .
Ensure: s1, s2, . . . , sn.
1: s1, s2, . . . , sn;
2: for (1← i; i ≤ n; i← i+ 1) do
3: si ← biSearch(lowsi,maxsi, gi′

(̂
λi, si

)
> 0));

4: end for
5: ub← findUBof_τ (φ, s1, s2, ..., sn)
6: lb← 0;

7: τ ←biSearch(lb, ub,
n∑

i=1
(siαi + Pi∗) < P);

8: return τ , s1, s2, ..., sn.

Based on the Rule 2 mentioned in Section 4.2, we can use
binary search to obtain the appropriate φ, which can then be used
to calculate τ , s1, s2, . . . , sn and λ̂1, λ̂2, . . . , λ̂n that meet Eqs. (2)
and (3) at the same time.
Algorithm 4 calculateLBof_φ

Require: λ̃1, . . . , λ̃n, s1, . . . , sn, r̃1, r̃2, . . . , r̃n, P .
Ensure: lBof _φ.
1: uBof _φ← 1.0;
2: repeat
3: φ← 2φ;
4: for (1← i; i ≤ n; i← i+ 1) do
5: si ← biSearch(lowsi,maxsi, gi′

(̂
λi, si

)
> 0));

6: end for
7: τ ← findUBof_τ (φ, s1, s2, ..., sn);
8: for (1← i; i ≤ n; i++) do
9: si ← biSearch(si,maxsi, gi (̂λi, si) > τ );

10: end for
11: until (

n∑
i=1

(siαi + Pi∗) ≥ P)

12: lb← 0, ub← φ;

13: φ←biSearch(lb, ub,
n∑

i=1
(siαi + Pi∗) ≥ P);

14: //The si in line 13 is calculated by
//si ← biSearch(lowsi,maxsi, gi′

(̂
λi, si

)
> 0));

//τ ← findUBof_τ (φ, s1, s2, ..., sn);
//si ← biSearch(si,maxsi, gi (̂λi, si) > τ );

15: return s1, . . . , sn, φB, λ̂B ←
n∑

i=1
fi (si, φ).



32 J. Huang, Y. Liu, R. Li et al. / Journal of Parallel and Distributed Computing 130 (2019) 24–36

As mentioned, the major steps of our method can be summed
up as: given a φ, search a τ that can be used to find s1, s2, . . . , sn
satisfying Eq. (3); and then adjust φ until both Eqs. (2) and (3) are
satisfied. We know that

∑n
i=1 fi(φ, si) decreases monotonically

when φ decreases, therefore a small value of λ̂ will be matched
with a small φ. However, Figs. 2 to 4 suggest that when φ is small,
there may not exist a τ that makes all si not only locate at the
right side of si but also satisfy Eq. (3), i.e., P =

∑n
i=1 (si

αi + Pi∗).
For instance, from Figs. 2 to 4, g1(f1(φ, s1), s1) is about 28, 15 and
5 when φ is 7, 5 and 3, respectively. If φ becomes smaller, then τ
will also become smaller, causing si to become larger. If φ is too
small, then

∑n
i=1 (si

αi + Pi∗) ≤ P cannot be satisfied.
To deal with the situation with a small λ̂, we will find a thresh-

old φB. When φ ≥ φB, there exists a τ that makes s1, s2, . . . , sn
not only locate at the right side of si but also satisfy Eq. (3).
When φ < φB, such a τ does not exist. According to whether
τ exists, φB can be solved by binary search. Assume that we get∑n

i=1 fi(φ, si) = λ̂B and s1, s2, . . . , sn = s1B, s2B, . . . , snB satisfying∑n
i=1 (si

αi + Pi∗) = P , when φ = φB. When λ̂ < λ̂B, we still adopt
s1B, s2B, . . . , snB, that is, keep the speeds of nodes unchanged.
Based on s1B, s2B, . . . , snB and

∑n
i=1 λ̂i = λ̂, the load balancing

λ̂1, λ̂2, . . . , λ̂n can be solved by binary search.
Notice that the φB and λ̂B are independent of λ̂. For a system

under analysis, we first calculate the threshold φB and λ̂B. Algo-
rithm 4 shows how φB can be obtained. Algorithm 5 shows how
the final λ̂1, λ̂2, . . . , λ̂n, s1, s2, . . . , sn, φ and τ can be determined.

Algorithm 5 caculate_T

Require: λ̃1, . . . , λ̃n, s1, . . . , sn, r̃1, . . . , r̃n, r̂, P, λ̂.
Ensure: λ̂1, . . . , λ̂n, s1, . . . , sn, φ, τ .
1: si, φB, λ̂B ← calculateLBof _φ;
2: if (̂λ > λ̂B) then
3: lb← φB;
4: repeat
5: φ← 2φ;
6: s1, s2, . . . , sn ← calculateAllsi;
7: until λ̂1 + λ̂2 + · · · + λ̂n > λ̂

8: ub← φ;

9: φ←biSearch(lb, ub,
n∑

i=1
fi(φ, si) < λ̂); //The speeds

// s1, s2, . . . , sn in line 9 are calculated by Algorithm 3.
10: else
11: lb← 0, ub← φB;

12: φ ←biSearch(lb, ub,
n∑

i=1
λ̂i < λ̂); //Note that speed si is not

// considered here.
13: end if
14: return λ̂1, . . . , λ̂n, s1, . . . , sn, φ, τ , T1, T2, . . . , Tn, T .

5. Numerical examples

In this section, we demonstrate a number of numerical exam-
ples. All parameters in our examples are for illustration only. They
can be changed to any others real values.

Example 1. In this example, we consider the situation in which
the preloaded tasks of each node are heterogeneous, whereas the
priority discipline and dynamic power consumption of each node
are homogeneous. We consider a group of n = 7 embedded nodes
v1, v2, . . . , v7. The base power consumption is Pi∗ = 0.1 W for all
1 ≤ i ≤ n. The preloaded dedicated tasks and αi of each node
are shown in Table 2. The unit of task execution requirement
is giga instructions, and the unit of task arrival rate is number

Table 2
The input parameters in Example 1.
i 1 2 3 4 5 6 7

λ̃i 1.0 1.0 2.0 2.0 2.0 2.0 2.0
r̃i 0.1 0.15 0.2 0.25 0.3 0.35 0.35
αi 2.7 2.7 2.7 2.7 2.7 2.7 2.7

Table 3
Numerical data in Example 1 when system priority strategy is Discipline 1.
i λ̂i si Pi ρ Ti
1 3.3843571 1.7802273 4.8455195 0.7215510 0.6777390
2 3.2485873 1.7719359 4.7860795 0.7263273 0.6868395
3 2.5641919 1.7236169 4.4490062 0.7527584 0.7396214
4 2.2602470 1.7003776 4.2924948 0.7592939 0.7832926
5 1.9304618 1.6686682 4.0847307 0.7644788 0.8448245
6 1.5560704 1.6187616 3.7710801 0.7688745 0.9354861
7 1.5560704 1.6187616 3.7710801 0.7688745 0.9354861

Table 4
Numerical data in Example 1 when system priority strategy is Discipline 2.
mi λ̂i si Pi ρ Ti
1 3.5044902 1.7645399 4.7334562 0.7517945 0.8009452
2 3.3534759 1.7585929 4.6914135 0.7527134 0.8184316
3 2.5885737 1.7217729 4.4364556 0.7585209 0.9258621
4 2.2529669 1.7042148 4.3180886 0.7560892 1.0064470
5 1.8871207 1.6782739 4.1469674 0.7510646 1.1212838
6 1.4566834 1.6294367 3.8368121 0.7424892 1.3005808
7 1.4566834 1.6294367 3.8368121 0.7424892 1.3005808

Table 5
Numerical data in Example 1 when system priority strategy is Discipline 3.
mi λ̂i si Pi ρ Ti
1 3.5086541 1.7601689 4.7025312 0.7544894 0.8238614
2 3.3605310 1.7559519 4.6728197 0.7552517 0.8469965
3 2.6052192 1.7265133 4.4687668 0.7598126 0.9894422
4 2.2680335 1.7101187 4.3576597 0.7565625 1.0888493
5 1.8932808 1.6829125 4.1772389 0.7502756 1.2283187
6 1.4321355 1.6251766 3.8104921 0.7391488 1.4502760
7 1.4321355 1.6251766 3.8104921 0.7391488 1.4502760

of tasks per second. The general tasks execution requirement is
r̂ = 0.35 (giga instructions), and its arrival rate is λ̂ = 16.5
per/second. We assume P = 30 W. In Tables 3, 4, and 5, we show
the optimal load distribution λ̂1, λ̂2, . . . , λ̂7, the optimal node
speed s1, s2, . . . , s7, the node utilizations ρ1, ρ2, . . . , ρ7 and the
average general task response time T1, T2, . . . , T7, respectively, for
Discipline 1, Discipline 2 and Discipline 3. The overall average
task response time of the n nodes is T = 0.7717698 s, T =
0.9770131 s and T = 1.0462909 s, respectively.

Example 2. In this example, we consider the situation in which
the preloaded tasks and the priority discipline of each node are
homogeneous, whereas the dynamic power consumption of each
node are heterogeneous. We also consider a group of n = 7
embedded nodes. The base power consumption is P∗i = 0.1 W for
all 1 ≤ i ≤ n. The preloaded dedicated tasks and αi of each node
are shown in Table 6. The arrival rate of general task is λ̂ = 11
per second and its tasks execution requirement is r̂ = 0.35 (giga
instructions), and P = 40 W. The significance of Tables 7, 8, 9
is the same as that of Tables 3, 4, 5. The overall average task re-
sponse time of the n nodes is T = 0.6543409 s (Discipline 1), T =
0.9065909 s (Discipline 2) and T = 1.0261497 s (Discipline 3).

Example 3. In this example, we consider the situation in which
the preloaded tasks and dynamic power consumption are ho-
mogeneous, whereas the priority disciplines are heterogeneous.
We consider a group of n = 6 embedded nodes v1, v2, . . . , v6.



J. Huang, Y. Liu, R. Li et al. / Journal of Parallel and Distributed Computing 130 (2019) 24–36 33

Table 6
The input parameters in Example 2.
i 1 2 3 4 5 6 7

λ̃i 2.0 2.0 2.0 2.0 2.0 2.0 2.0
r̃i 0.3 0.3 0.3 0.3 0.3 0.3 0.3
αi 2.7 2.75 2.8 2.85 2.9 2.95 3.0

Table 7
Numerical data in Example 2 when system priority strategy is Discipline 1.
i λ̂i si Pi ρ Ti
1 2.0112581 1.8567479 5.4165872 0.7022710 0.6039040
2 1.8397337 1.7787064 4.9728921 0.6993322 0.6229132
3 1.6853880 1.7078066 4.5753640 0.6967333 0.6418618
4 1.5457792 1.6430560 4.2172695 0.6944514 0.6607954
5 1.4188454 1.5836093 3.8929697 0.6924661 0.6797675
6 1.3028176 1.5287329 3.5976655 0.6907591 0.6988433
7 1.1961643 1.4777832 3.3272469 0.6893145 0.7181025

Table 8
Numerical data in Example 2 when system priority strategy is Discipline 2.
i λ̂i si Pi ρ Ti
1 2.0147694 1.8430858 5.3116237 0.7081435 0.8281885
2 1.8445937 1.7712306 4.9167774 0.7032442 0.8570339
3 1.6899333 1.7055341 4.5587093 0.6985944 0.8862125
4 1.5485460 1.6451083 4.2319435 0.6941737 0.9158489
5 1.4184926 1.5891786 3.9317825 0.6899617 0.9460990
6 1.2980502 1.5370483 3.6540879 0.6859365 0.9771668
7 1.1856296 1.4880648 3.3950767 0.6820740 1.0093296

Table 9
Numerical data in Example 2 when system priority strategy is Discipline 3.
i λ̂i si Pi ρ Ti
1 2.0359684 1.8471058 5.3423719 0.7106192 0.9248241
2 1.8612456 1.7748791 4.9441116 0.7050823 0.9613408
3 1.7007907 1.7083003 4.5789877 0.6996876 0.9988055
4 1.5522012 1.6464157 4.2413086 0.6943996 1.0375050
5 1.4132456 1.5883294 3.9258478 0.6891743 1.0778459
6 1.2816665 1.5331226 3.6273766 0.6839526 1.1204471
7 1.1548776 1.4797246 3.3399830 0.6786446 1.1663282

Table 10
The input parameters in Example 3.
i 1 2 3 4 5 6

λ̃i 2.0 2.0 2.0 2.0 2.0 2.0
r̃i 0.3 0.3 0.3 0.3 0.3 0.3
αi 2.8 2.8 2.8 2.8 2.8 2.8
Type D1 D1 D2 D2 D3 D3

We set that the priority discipline of node v1, v2 is Discipline
1 (abbreviated as D1), the priority discipline of nodes v3, v4 is
Discipline 2 (abbreviated as D2), and the priority discipline of
nodes v5, v6 is Discipline 3 (abbreviated as D3). We set P∗i = 0.1
W for all 1 ≤ i ≤ n. The preloaded dedicated tasks and αi of each
node are showed in Table 10. The tasks execution requirement is
r̂ = 0.35 (giga instructions). We assume that we are given P = 35
W. For comparison, we set the arrival rate of general task is λ̂ = 8
and λ̂ = 15 per second, respectively. Tables 11 and 12 show
the optimal load distribution, node speed, node utilization, and
average general task response time of each node respectively for
λ̂ = 8 and λ̂ = 15 per second. The overall average task response
time of the n nodes is T = 0.7279155 s and T = 2.5403782 s,
respectively.

Example 4. In this example, we consider the situation in which
all the preloaded tasks, priority discipline, and dynamic power
consumption of each node in the system are heterogeneous.
We consider a group of n = 9 embedded nodes v1, v2, . . . , v9,

Table 11
Numerical data in Example 3 when λ̂ = 8 per second.
i λ̂i si Pi ρ Ti
1 1.7182053 1.7239624 4.6949192 0.6968665 0.6364412
2 1.7182053 1.7239624 4.6949192 0.6968665 0.6364412
3 1.2645688 1.6483945 4.1529501 0.6324936 0.7396511
4 1.2645688 1.6483945 4.1529501 0.6324936 0.7396511
5 1.0173393 1.5726778 3.6529685 0.6079240 0.8677396
6 1.0173393 1.5726778 3.6529685 0.6079240 0.8677396

Table 12
Numerical data in Example 3 when λ̂ = 15 per second.
i λ̂i si Pi ρ Ti
1 2.5417158 1.6389749 4.0884348 0.9088610 2.2205668
2 2.5417158 1.6389749 4.0884348 0.9088610 2.2205668
3 2.4752352 1.6541260 4.1925318 0.8864695 2.6525934
4 2.4752352 1.6541260 4.1925318 0.8864695 2.6525934
5 2.4830422 1.6578105 4.2181080 0.8861475 2.7558910
6 2.4830422 1.6578105 4.2181080 0.8861475 2.7558910

Table 13
The input parameters in Example 4.
i 1 2 3 4 5 6 7 8 9

λ̃i 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
r̃i 0.2 0.3 0.3 0.2 0.3 0.3 0.2 0.3 0.3
αi 2.8 2.8 2.85 2.8 2.8 2.85 2.8 2.8 2.85
Type D1 D1 D1 D2 D2 D2 D3 D3 D3

Table 14
Numerical data in Example 4.
i λ̂i si Pi ρ Ti
1 2.3586593 1.6868677 4.4234147 0.7265126 0.6815649
2 1.7094800 1.6200410 3.9607605 0.7396837 0.7860181
3 1.5924250 1.5677335 3.7018526 0.7382305 0.8062289
4 2.1778665 1.6805501 4.3782302 0.6915909 0.7307691
5 1.3589734 1.5829530 3.7183496 0.6795152 0.9159103
6 1.2196821 1.5219815 3.4102952 0.6747051 0.9516179
7 2.1879243 1.6954609 4.4853658 0.6875850 0.7773529
8 1.2849491 1.5729938 3.6549676 0.6673466 1.0224255
9 1.1100148 1.4984927 3.2667644 0.6596662 1.0791154

where the priority discipline of nodes v1, v2, . . . , v3 is Discipline 1
(abbreviated as D1), the priority discipline of nodes v4, v5, . . . , v6
is Discipline 2 (abbreviated as D2) and the priority discipline of
nodes v7, v8, . . . , v9 is Discipline 3 (abbreviated as D3). P∗i = 0.1
W for all 1 ≤ i ≤ n. The preloaded dedicated tasks and αi of each
node are shown in Table 13. The arrival rate of general task is
λ̂ = 15 per second, and its tasks execution requirement is r̂ =
0.35 (giga instructions). We assume that we are given P = 35 W.
In Table 14, we show the optimal load distribution, node speed,
node utilization and the average general task response time of
each node. The overall average task response time of the n nodes
is T = 0.8565089 s.

Example 5. In this example, we consider a small λ̂ under the
same situation as in Example 4. We demonstrate the same data
with the same input as in Example 4 except that general task
arrival rate is λ̂ = 8 per second. The result is shown in Table 15.
The overall average task response time of the n nodes is T =
0.4940509 s.

We draw the following important observations from our ex-
perimental data.



34 J. Huang, Y. Liu, R. Li et al. / Journal of Parallel and Distributed Computing 130 (2019) 24–36

Table 15
Numerical data in Example 5.
i λ̂i si Pi ρ Ti
1 1.6501422 1.7133585 4.6162202 0.5705459 0.4280746
2 1.0466706 1.6373952 4.0776802 0.5901658 0.4942597
3 0.9410390 1.5814358 3.7922998 0.5876708 0.5076584
4 1.4230518 1.7031233 4.5410849 0.5273065 0.4479289
5 0.6273117 1.5830631 3.7190541 0.5177046 0.5632899
6 0.4992032 1.5132609 3.3565251 0.5119547 0.5888270
7 1.3626619 1.7188485 4.6568559 0.5101855 0.4877666
8 0.3802008 1.5528580 3.5290115 0.4720781 0.6573717
9 0.0697183 1.4004384 2.7112739 0.4458613 0.7407852

• As shown in Tables 3, 4, and 5, for any two nodes with
the same priority discipline and α, the node with a smaller
amount of preloaded tasks will be assigned with a greater
amount of generic tasks and power.
• As shown in Tables 7, 8, and 9, for any two nodes with the

same priority discipline and amount of preloaded tasks, the
node with smaller α will be assigned with more tasks and
more power.
• As shown in Tables 11 and 12, for any two nodes with the

same priority discipline, α, and amount of preloaded tasks,
the two nodes will be assigned with the same amount of
generic tasks and power.
• As shown in Tables 14 and 15, for any two nodes with the

same α and amount of preloaded tasks, the utilization of the
node with more urgent tasks will be lower.
• As shown in Tables 11, 12, 14, and 15, in the case of hetero-

geneous priority of nodes, for any two nodes with the same
α and amount of preloaded tasks, the node with priority
Discipline 1 will be assigned with more tasks than the node
with priority Discipline 2 or Discipline 3, but the node with
priority Discipline 2 and the node with priority Discipline 3
can possibly be assigned with almost the same tasks size.

We will plot the average task response time T as a function of
λ̂. Thus, we need to know the maximum general task arrival rate
λ̂max that the system can handle. For any node type, we always
have

lim
φ→∞

λ̂i = lim
φ→∞

fi(φ, si) =
si − λ̃ĩri

r̂
,

where 1 ≤ i ≤ n. Then we have

lim
φ→∞

gi
(̂
λi, si

)
→∞,

where 1 ≤ i ≤ n. This equation indicates that there always exists
a common τ that can satisfy the power constraint when φ is
large enough. However the given power P is limited; therefore, to
obtain λ̂max, we just need to set φ large enough. Then, Algorithm
3 can be used to obtain an approximate λ̂max. The average task
response time is related to the preloaded tasks, αi and node
queueing discipline. We use the same preloaded tasks, αi and
node queueing discipline in Example 3. Fig. 5 shows the average
task response time T as a function of λ̂.

As shown in Fig. 5, the average response time T will increase
exponentially when the arrival rate λ̂ of generic tasks will be
larger, and it also shows that our algorithm is feasible.

We also plot the node utilization of each node ρi as a function
of λ̂ (Fig. 6), the power allocation Pi as a function of λ̂ (Fig. 7),
and the task assignment λ̂i as a function λ̂ (Fig. 8). We assume
that the given power is 30 W when these functions are plotted.
Fig. 6 shows that as λ̂ increases, the difference between the
utilizations of each node decreases. From Fig. 7, we know that the
power allocated to each node tends to stabilize as λ̂ increases,
and the difference between the power allocated to each node

Fig. 5. Average task response time T vs. λ̂ and P .

Fig. 6. Node utilization ρi vs. λ̂.

becomes narrow. Fig. 8 reveals that the key factors affecting the
task assignment λ̂i are the preloaded tasks and αi, not priority
discipline, when λ̂ is very large.

6. Conclusions

We have mentioned the necessity of heterogeneous
distributed-computing architecture for the development of em-
bedded computing, as well as the importance and significance
of performance optimization and power reduction in an em-
bedded and distributed environment. We described a queue-
ing model for a group of complete heterogeneous computing
nodes with different speeds and an energy-consumption model.
We presented a power-allocation and load-balancing problem
under the condition that each node employs different queue-
ing disciplines. We constructed our solution as a multi-variable
and multi-constrained problem that we addressed by utilizing
the Lagrange multipliers and binary search approach, which are
demonstrated with some numerical examples. Our work makes
an initial contribution to optimal load balancing with a dynamic
power constraint for multiple queueing systems with multiple
embedded computing nodes in heterogeneous and distributed
embedded systems.



J. Huang, Y. Liu, R. Li et al. / Journal of Parallel and Distributed Computing 130 (2019) 24–36 35

Fig. 7. Power assignment Pi vs. λ̂.

Fig. 8. Generic task assignment λ̂i vs. λ̂.

Acknowledgements

The authors are grateful to the anonymous reviewers for their
suggestions to improve the manuscript. This work was supported
by the National Natural Science Foundation of China (Grant No.
61872135, 61300037), the Natural Science Foundation of Hunan
Province (Grant No. 2018JJ2066).

References

[1] S. Albers, Energy-efficient algorithms, Commun. ACM 53 (5) (2010)
86–96.

[2] A.O. Allen, Probability, Statistics, and Queueing Theory with Computer
Science Applications, Academic Press, 1990.

[3] J. Balasangameshwara, N. Raju, A hybrid policy for fault tolerant load
balancing in grid computing environments, J. Netw. Comput. Appl. 35 (1)
(2012) 412–422.

[4] L.A. Barroso, U. Hölzle, The case for energy-proportional computing,
Computer 40 (12) (2007) 33–37.

[5] L. Benini, A. Bogliolo, G. De Micheli, A survey of design techniques for
system-level dynamic power management, IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 8 (3) (2000) 299–316.

[6] F. Bonomi, A. Kumar, Adaptive optimal load balancing in a nonhomoge-
neous multiserver system with a central job scheduler, IEEE Trans. Comput.
39 (10) (1990) 1232–1250.

[7] J. Cao, K. Li, I. Stojmenovic, Optimal power allocation and load distribution
for multiple heterogeneous multicore server processors across clouds and
data centers, IEEE Trans. Comput. 63 (1) (2014) 45–58.

[8] M. Guzek, P. Bouvry, E.-G. Talbi, A survey of evolutionary computation for
resource management of processing in cloud computing [review article],
IEEE Comput. Intell. Mag. 10 (2) (2015) 53–67.

[9] L. He, S.A. Jarvis, D.P. Spooner, H. Jiang, D.N. Dillenberger, G.R. Nudd,
Allocating non-real-time and soft real-time jobs in multiclusters, IEEE
Trans. Parallel Distrib. Syst. 17 (2) (2006) 99–112.

[10] S.U. Khan, I. Ahmad, A cooperative game theoretical technique for joint
optimization of energy consumption and response time in computational
grids, IEEE Trans. Parallel Distrib. Syst. 20 (3) (2009) 346–360.

[11] F. Kong, X. Liu, A survey on green-energy-aware power management for
datacenters, ACM Comput. Surv. 47 (2) (2015) 30.

[12] K. Li, Optimal load distribution in nondedicated heterogeneous clus-
ter and grid computing environments, J. Syst. Archit. 54 (1–2) (1991)
111–123.

[13] K. Li, Optimizing average job response time via decentralized probabilistic
job dispatching in heterogeneous multiple computer systems, Comput. J.
41 (4) (1998) 223–230.

[14] K. Li, Optimal power allocation among multiple heterogeneous servers in
a data center, Sustain. Comput.: Inform. Syst. 2 (1) (2012) 13–22.

[15] K. Li, Optimal load distribution for multiple heterogeneous blade servers
in a cloud computing environment, J. Grid Comput. 11 (1) (2013)
27–46.

[16] K. Li, Improving multicore server performance and reducing energy con-
sumption by workload dependent dynamic power management, IEEE
Trans. Cloud Comput. 4 (2) (2016) 122–137.

[17] K. Li, Optimal task dispatching on multiple heterogeneous multiserver
systems with dynamic speed and power management, IEEE Trans. Sustain.
Comput. 2 (2) (2017) 167–182.

[18] K. Li, Quantitative modeling and analytical calculation of elasticity in cloud
computing, IEEE Trans. Cloud Comput. PP (99) (2017) 1–1.

[19] Q. Qiu, M. Pedram, Dynamic power management based on continuous-time
markov decision processes, in: Proceedings of the 36th Annual ACM/IEEE
Design Automation Conference, ACM, 1999, pp. 555–561.

[20] A. Rahman, X. Liu, F. Kong, A survey on geographic load balancing based
data center power management in the smart grid environment, IEEE
Commun. Surv. Tutor. 16 (1) (2014) 214–233.

[21] C. Rommen, The probability of load balancing success in a homogeneous
network, IEEE Trans. Softw. Eng. 17 (9) (1991) 922–933.

[22] K.W. Ross, D.D. Yao, Optimal load balancing and scheduling in a distributed
computer system, J. ACM 38 (3) (1991) 676–689.

[23] M.T. Schmitz, B.M. Al-Hashimi, P. Eles, System-Level Design Techniques for
Energy-Efficient Embedded Systems, Springer Science & Business Media,
2004.

[24] F. Shengjin, A new extracting formula and a new distinguishing means on
the one variable cubic equation, Nat. Sci. J. Hainan Teach. Coll. 2 (2) (1989)
91–398.

[25] B.A. Shirazi, K.M. Kavi, A.R. Hurson, Scheduling and Load Balancing in
Parallel and Distributed Systems, IEEE Computer Society Press, 1995.

[26] T. Simunic, L. Benini, G. De Micheli, Energy-efficient design of battery-
powered embedded systems, IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 9 (1) (2001) 15–28.

[27] M.R. Stan, K. Skadron, Guest editors’ introduction: power-aware
computing, Computer 36 (12) (2003) 35–38.

[28] X. Tang, S.T. Chanson, Optimizing static job scheduling in a network of
heterogeneous computers, in: Parallel Processing, 2000. Proceedings. 2000
International Conference on, 2000, pp. 373–382.

[29] Y. Tian, C. Lin, K. Li, Managing performance and power consumption
tradeoff for multiple heterogeneous servers in cloud computing, Clust.
Comput. 17 (3) (2014) 943–955.

[30] T.-H. Tsai, L.-F. Fan, Y.-S. Chen, T. Yao, Triple speed: energy-aware real-
time task synchronization in homogeneous multi-core systems, IEEE Trans.
Comput. 65 (4) (2016) 1297–1309.

[31] L. Wang, S.U. Khan, D. Chen, J. Kołodziej, R. Ranjan, C.-Z. Xu, A. Zomaya,
Energy-aware parallel task scheduling in a cluster, Future Gener. Comput.
Syst. 29 (7) (2013) 1661–1670.

[32] M. Weiser, B. Welch, A. Demers, S. Shenker, Scheduling for reduced cpu
energy, in: Mobile Computing, Springer, 1994, pp. 449–471.

[33] A. Wierman, L.L. Andrew, A. Tang, Power-aware speed scaling in processor
sharing systems, in: INFOCOM, IEEE, 2009, pp. 2007–2015.

[34] L. Xiao, S. Boyd, S.-J. Kim, Distributed average consensus with least-
mean-square deviation, J. Parallel Distrib. Comput. 67 (1) (2007)
33–46.

[35] G. Xie, G. Zeng, Z. Li, R. Li, K. Li, Adaptive dynamic scheduling on
multifunctional mixed-criticality automotive cyber-physical systems, IEEE
Trans. Veh. Technol. 66 (8) (2017) 6676–6692.

http://refhub.elsevier.com/S0743-7315(19)30235-7/sb1
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb1
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb1
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb2
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb2
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb2
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb3
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb3
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb3
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb3
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb3
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb4
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb4
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb4
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb5
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb5
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb5
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb5
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb5
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb6
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb6
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb6
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb6
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb6
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb7
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb7
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb7
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb7
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb7
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb8
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb8
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb8
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb8
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb8
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb9
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb9
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb9
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb9
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb9
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb10
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb10
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb10
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb10
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb10
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb11
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb11
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb11
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb12
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb12
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb12
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb12
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb12
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb13
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb13
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb13
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb13
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb13
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb14
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb14
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb14
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb15
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb15
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb15
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb15
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb15
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb16
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb16
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb16
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb16
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb16
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb17
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb17
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb17
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb17
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb17
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb18
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb18
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb18
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb19
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb19
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb19
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb19
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb19
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb20
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb20
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb20
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb20
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb20
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb21
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb21
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb21
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb22
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb22
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb22
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb23
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb23
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb23
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb23
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb23
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb24
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb24
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb24
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb24
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb24
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb25
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb25
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb25
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb26
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb26
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb26
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb26
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb26
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb27
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb27
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb27
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb28
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb28
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb28
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb28
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb28
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb29
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb29
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb29
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb29
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb29
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb30
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb30
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb30
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb30
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb30
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb31
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb31
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb31
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb31
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb31
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb32
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb32
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb32
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb33
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb33
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb33
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb34
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb34
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb34
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb34
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb34
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb35
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb35
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb35
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb35
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb35


36 J. Huang, Y. Liu, R. Li et al. / Journal of Parallel and Distributed Computing 130 (2019) 24–36

[36] G. Xie, G. Zeng, Y. Liu, J. Zhou, R. Li, K. Li, Fast functional safety verification
for distributed automotive applications during early design phase, IEEE
Trans. Ind. Electron. 65 (5) (2018) 4378–4391.

[37] B. Yang, Z. Li, S. Chen, T. Wang, Stackelberg game approach for energy-
aware resource allocation in data centers, IEEE Trans. Parallel Distrib. Syst.
27 (12) (2016) 1–1.

[38] B. Zhai, D. Blaauw, D. Sylvester, K. Flautner, Theoretical and practical limits
of dynamic voltage scaling, in: Design Automation Conference, DAC 2004,
San Diego, CA, USA, June, 2004, pp. 868–873.

[39] X. Zheng, Y. Cai, Optimal server provisioning and frequency adjustment
in server clusters, in: Parallel Processing Workshops (ICPPW), 2010 39th
International Conference on, IEEE, 2010, pp. 504–511.

Jing Huang received his Ph.D. degree in Computer
Science and Technology from Hunan University, Chang-
sha, China, in 2018. He is working as a Postdoctoral
Researcher at Hunan University. His research interests
include parallel computing, high-performance comput-
ing, distributed computing, energy-efficient computing,
heterogeneous computing, cloud computing, machine
learning.

Yan Liu received the PhD degree in computer sci-
ence and technology from Hunan University, China,
2010. He is an associate professor at the College of
Computer Science and Electronic Engineering of Hunan
University, China. His research areas include parallel
and distributed system and embedded system.

Renfa Li is a Professor of computer science and
electronic engineering, and the Dean of College of
Computer Science and Electronic Engineering, Hunan
University, China. He is the Director of the Key Lab-
oratory for Embedded and Network Computing of
Hunan Province, China. His major interests include
computer architectures, embedded computing systems,
cyber–physical systems, and Internet of things. He is
a member of the council of CCF, a senior member of
IEEE, and a senior member of ACM.

Keqin Li is a SUNY Distinguished Professor of com-
puter science with the State University of New York.
He is also a Distinguished Professor at Hunan Uni-
versity, China. His current research interests include
cloud computing, fog computing and mobile edge
computing, energy-efficient computing and communi-
cation, embedded systems and cyber physical systems,
heterogeneous computing systems, big data comput-
ing, high-performance computing, CPU-GPU hybrid and
cooperative computing, computer architectures and
systems, computer networking, machine learning, in-

telligent and soft computing. He has published over 630 journal articles,

book chapters, and refereed conference papers, and has received several best
paper awards. He currently serves or has served on the editorial boards of the
IEEE Transactions on Parallel and Distributed Systems, the IEEE Transactions on
Computers, the IEEE Transactions on Cloud Computing, the IEEE Transactions on
Services Computing, and the IEEE Transactions on Sustainable Computing. He is
an IEEE Fellow.

Jiyao An received the M.Sc. degree in Mathematics
from Xiangtan University, China, the Ph.D. degree in
Mechanical Engineering from Hunan University, China,
in 1998, and 2012, respectively. He was a visiting
scholar with the Department of Applied Mathematics,
University of Waterloo, Ontario, Canada, from 2013
to 2014. Since 2000, he joined the College of Com-
puter Science and Electronic Engineering in Hunan
University, Changsha, China, where he is currently an
Professor. His research interests include cyber–physical
systems (CPS), Takagi–Sugeno fuzzy systems, parallel

and distributed computing, and computing intelligence. He has publish more
than 50 papers in international and domestic journals and refereed conference
papers. He is a member of the IEEE and ACM, and a senior member of CCF. He
is an active reviewer of international journals.

Yang Bai received her B.S. and M.S. degrees from
Hunan University in 2013 and 2016, respectively.
She is currently working on the Ph.D. degree at
Hunan Province, Hunan University. Her research in-
terests include service computing, embedded systems,
cyber–physical systems.

Fan Yang received the PhD degree in computer science
and technology from Hunan University, China, in 2016.
He is currently an assistant professor in Central South
University of Forestry and Technology.He was a visit
scholar with Michigan State University, from 2014-
2015. His research interests include cyber-physical
systems, embedded systems, and modeling. He is a
member of China Computer Federation.

Guoqi Xie received his Ph.D. degree in computer sci-
ence from Hunan University, China, in 2014. He was
a postdoctoral researcher at Nagoya University, Japan,
from 2014 to 2015. Since 2015 he is working as a
Postdoctoral Researcher at Hunan University, China,
since 2015. His major interests include embedded sys-
tems, distributed systems, real-time systems, in-vehicle
networks, and cyber–physical systems. He is a member
of IEEE and ACM.

http://refhub.elsevier.com/S0743-7315(19)30235-7/sb36
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb36
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb36
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb36
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb36
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb37
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb37
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb37
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb37
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb37
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb38
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb38
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb38
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb38
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb38
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb39
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb39
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb39
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb39
http://refhub.elsevier.com/S0743-7315(19)30235-7/sb39

	Optimal power allocation and load balancing for non-dedicated heterogeneous distributed embedded computing systems
	Introduction
	Motivation
	Our contributions

	Related work
	Models and problem formulation
	Power model
	Queueing model
	Problem formulation

	The proposed method
	Basic derivation
	Analysis
	Algorithm design

	Numerical examples
	Conclusions
	Acknowledgements
	References


