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Abstract: Deep neural networks (DNNs) have shown remarkable performance across a wide range of
fields, including image recognition, natural language processing, and speech processing. However,
recent studies indicate that DNNs are highly vulnerable to well-crafted adversarial samples, which
can cause incorrect classifications and predictions. These samples are so similar to the original ones
that they are nearly undetectable by human vision, posing a significant security risk to DNNs in the
real world due to the impact of adversarial attacks. Currently, the most common adversarial attack
methods explicitly add adversarial perturbations to image samples, often resulting in adversarial
samples that are easier to distinguish by humans. To address this issue, we are motivated to develop
more effective methods for generating adversarial samples that remain undetectable to human vision.
This paper proposes a pixel-level adversarial attack method based on attention mechanism and high-
frequency information separation, named DIPA. Specifically, our approach involves constructing
an attention suppression loss function and utilizing gradient information to identify and perturb
sensitive pixels. By suppressing the model’s attention to the correct classes, the neural network is
misled to focus on irrelevant classes, leading to incorrect judgments. Unlike previous studies, DIPA
enhances the attack of adversarial samples by separating the imperceptible details in image samples
to more effectively hide the adversarial perturbation while ensuring a higher attack success rate. Our
experimental results demonstrate that under the extreme single-pixel attack scenario, DIPA achieves
higher attack success rates for neural network models with various architectures. Furthermore, the
visualization results and quantitative metrics illustrate that the DIPA can generate more imperceptible
adversarial perturbation.

Keywords: adversarial attack; attention mechanism; high-frequency information; pixel-level attack

1. Introduction

Deep learning was proposed by Geoffrey Hinton in 2006 [1], a neural network expert
at the University of Toronto. Currently, deep learning is employed significantly in various
fields of vital application. These fields include the recognition of images, natural language,
speech, and autonomous driving. In the field of image recognition, methods based on deep
neural networks have surpassed traditional image processing techniques and even sur-
passed human processing efficiency [2]. Deep neural networks possess efficient high-level
processing and strong learning abilities. However, there are pressing issues that require
prompt attention. Recent research reveals that deep neural networks are highly vulnerable
to adversarial samples, which result in incorrect decisions. If incorrect decisions occur in
application scenarios that heavily depend in deep neural networks, the consequences could
be catastrophic. Szegedy et al. first introduced the concept of adversarial samples for image
recognition in computer vision [3]. Adversarial samples refer to image samples that closely
resemble the original benign samples to the point where they are indistinguishable from the
human visual system. However, these samples lead to wrong classification decisions with
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a high degree of confidence in the deep neural network model. Attacking a neural network
model by creating an adversarial sample technique is called an adversarial attack [4]. Due
to the vulnerability of the deep neural network model to adversarial attacks, some of
its essential applications are held back by potential security risks. Malicious adversarial
attacks deceive automatic driving systems, leading to faulty recognition of traffic signs and,
ultimately, causing road accidents. Adversarial samples can also be used to attack face
recognition systems, leading to property damage and security challenges. Consequently,
developing efficient adversarial attack algorithms will help test the security of deep neural
network models and guide the development of adversarial defense mechanisms.

Adversarial attacks are classified into two types based on the access of the attacker
to the parameters and structure of the deep neural network model. These types are
known as white-box adversarial attacks and black-box adversarial attacks. In the white-
box attack, the attacker has complete access to the specific parameters and structure of
the neural network model. On the other hand, in the black-box attack, the attacker only
has access to the input and output data of the neural network model and cannot access
the internal information of the neural network model. Currently, white-box adversarial
attacks are the predominant method used to create adversarial samples. Improving white-
box attack techniques can also enable them to be executed in a black-box environment.
Therefore, this research concentrates on the impact of adversarial attacks in white-box
environments. However, traditional white-box adversarial attack methods utilize the L2
or L∞ norm distance as a constraint for perturbing the original benign samples. The goal
is to introduce minimal adversarial perturbation to generate adversarial samples, thereby
causing incorrect classification decisions by the deep neural network model. The existing
work has focused on adding adversarial perturbation to the whole image sample, which
leads to the unsatisfactory concealing of adversarial perturbation so that human vision can
easily distinguish adversarial samples.

This study proposes a pixel-level adversarial attack method for deep neural network
models that utilizes an attention mechanism combined with high-frequency information
separation. To increase the effectiveness of concealing adversarial perturbation, our method
implements the L0 norm as a constraint on the number of perturbed pixels, which limits
the degree of change between the adversarial and original benign samples. Additionally,
we discovered that deep neural network models base their classification decisions on
image regions of special attention. These attention regions generally contain the primary
object information and semantic features of the image sample. As such, we utilize the
attention mechanism to locate relevant image regions in the deep neural network model.
We survey these areas to find sensitive pixels and apply adversarial perturbation to these
pixels to generate adversarial samples. In addition, based on the particularity of the human
visual system (HVS), the human eyes can easily recognize the semantic information of
the image samples that have lost some information, but recognizing such image samples
is still challenging for deep neural networks. So, we also explore the robustness of the
neural network model from another perspective. Human vision is not sensitive to high-
frequency components containing object edge texture and complex detail information [5].
Therefore, separating the high-frequency components of the image samples and dropping
the imperceptible details in the samples enhances the attack of adversarial samples. In
this way, it becomes possible to effectively conceal the adversarial perturbation while
simultaneously ensuring a higher success rate for the attack. Our method has significance
and research value for further revealing the vulnerability of the deep neural network
models and guiding to improve robustness. The main contributions can be summarized
as follows.

(1) We propose an adversarial attack named DIPA, which is based on an attention
mechanism and high-frequency information separation. The adversarial perturbation
is generated by attacking the attention of neural network models combined with
the separation of high-frequency information from image samples. Simultaneously,
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we employ the L0 norm to limit adversarial perturbation, thereby reinforcing a high
attack success rate and effectively concealing it.

(2) We conduct extensive experiments on the ImageNet dataset, setting up two different
scenarios. The experiment results show that, compared with the existing AoA
method and one-pixel attack method, our method achieves better results on several
evaluating metrics.

(3) Finally, we use visualization and quantification to analyze the concealing effect of ad-
versarial disturbance and compare it with many traditional adversarial attack methods,
which verify that our method can generate imperceptible adversarial perturbation.

2. Related Work

Currently, the systems deployed based on deep neural network models are more
vulnerable to adversarial samples, so the robustness of deep neural networks has become
a hot topic [6]. The concept of adversarial samples was initially proposed by Szegedy
et al. [3] in their work. Simultaneously, the pioneering white-box adversarial attack
method was proposed, using the L-BFGS method with box constraints to calculate the
minimal adversarial perturbation, which was subsequently added to the original benign
samples, resulting in the generation of adversarial samples. In 2014, Goodfellow et al. [7]
proposed an adversarial sample generation method based on the principle of gradient
descent, named FGSM. FGSM induces the network to misclassify the generated images by
adding increments in the gradient direction, and the gradient can be calculated through
the backpropagation algorithm. Kurakin et al. [8] proposed the basic iterative method,
named BIM, which perturbs images to obtain better adversarial examples through multiple
small steps to increase the loss function of the classifier by optimizing a large step of
operation. C&W attacks were proposed by Carlini et al. [9] based on the summary of
L-BFGS, FGSM, and JSMA. The algorithm improves on all three methods in the L0, L2,
and L∞ norms. Therefore, the success of this type of attack requires that the difference
between the adversarial example and the original image be as small as possible. The
adversarial example causes the model to misclassify, and the confidence of the misclassified
class should be as high as possible. Cheng et al. [10] proposed a prior-guided Bayesian
optimization (P-BO) algorithm, which utilizes a surrogate model as a global function prior
to black-box adversarial attacks. P-BO models the attack objective using Gaussian processes,
and experiments demonstrate its superiority in reducing query numbers and improving
attack success rates. Duan et al. [11] proposed a novel adversarial attack method, which
uses JPEG compression technology to drop part of the image information in a quantized
manner. Moreover, the gradient information of backpropagation is used to optimize the
quantization table to reduce the distortion of image samples. Liu et al. [12] proposed an
adversarial semantic mask attack framework (ASMA), which can constrain the generated
perturbations within local semantic regions, producing adversarial examples with good
transferability and stealthiness.

Due to the unknowable constraints of the internal information of deep neural net-
works, black-box adversarial attacks face greater challenges, which can usually be divided
into two categories. Currently, black-box attack methods are mainly divided into query-
based methods [13] and transferability-based methods [14]. Chen et al. [15] proposed the
attention-based universal adversarial attack (AoA), which is a black-box attack method
based on transferability. AoA changes the attention heat map of the original samples to
generate adversarial samples. Huang et al. [16] proposed a black-box adversarial attack
algorithm based on an evolutionary strategy and attention mechanism. This method fully
considers the distribution of gradient update direction in the process of attack, adaptively
learns a better search path, improves the efficiency of attack, and combines attention mech-
anism to eliminate redundant adversarial perturbation. Finally, the imperceptibility of the
adversarial sample is improved. M Duan et al. [17] proposed an adversarial samples gener-
ation method based on a dual attention mechanism named DAAN. The researchers used
spatial and channel attention mechanisms to exploit key regions of the image feature map,
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which provide accurate directions for generating effective perturbations. Finally, smooth
and tiny perturbations are added to key regions of image samples to generate high-quality
adversarial samples. C Lin et al. [18] proposed a black-box adversarial attack targeting
sensitive regions by perturbing key pixel locations in an image to generate adversarial
examples. To effectively locate key pixels, the literature employs surrogate models and
attention heatmap techniques to create highly transferable adversarial examples. H Liu et
al. [19] used attention heatmaps as masks combined with low-frequency noise information
obtained through random sampling to find adversarial points via binary search. Finally, it
conducts local geometric probing near the decision boundary to reduce the sample distance.

In order to ensure the imperceptibility of adversarial perturbation, existing studies
have proposed generating adversarial samples from perturbed pixels. Su et al. [20]
proposed a one-pixel attack based on a differential evolution algorithm, exploring the
attack mode under extreme conditions; that is, perturbing only one pixel in the image
to deceive the classifier. The one-pixel attack achieves good attack performance on the
adversarial samples generated by perturbing only one pixel on the Kaggle CIFAR-10
dataset. Papernot et al. [21,22] proposed an adversarial attack method called JSMA, which
perturbs image samples with the L0 norm distance as a constraint. This method builds
a saliency map based on the forward derivative to reflect which pixels have a greater
impact on the image. Selecting the pixel with the largest pixel value in the saliency map
as the disturbance point adds a fixed amplitude disturbance, and the process is repeated
continuously until the attack is successful. JSMA perturbs numerous pixels and has a
high time complexity when generating large-size adversarial samples. So, the attack effect
on large-scale datasets such as ImageNet is not ideal. Liu et al. [23] proposed an attack
method for generating adversarial samples by perturbing partial pixels, namely PlAA.
This method generates adversarial samples by iteratively perturbing sensitive pixels in
the attention region of deep neural networks. PlAA is a result of our research in 2022.
We combine PlAA with high-frequency information separation technology, namely DIPA,
while limiting the number of pixels in the semantic region of the perturbed image samples;
then, we drop the imperceptible details in the samples to enhance the attack performance of
adversarial samples. Finally, the adversarial samples produced by DIPA exhibit improved
effectiveness in concealing the adversarial perturbation while maintaining a higher rate of
success in adversarial attacks. P N Williams et al. [24] proposed a bi-objective optimization
adversarial attack algorithm based on L0 constraint. By introducing the L0 constraint to limit
adversarial perturbations to a few pixels, the algorithm enhances the imperceptibility of
adversarial perturbations.

3. Methodology

The primary objective of this research is to address the inefficiency of traditional
adversarial attack methods in concealing adversarial perturbation. We introduce a pixel-
level adversarial attack algorithm based on the attention mechanism and high-frequency
information separation to counteract this issue. Our proposed method utilizes the attention
heat map generated by the deep neural network’s attention mechanism. By designing the
loss function that diminishes the attention of the neural network, we iteratively perturb
single pixels to suppress the network’s attention towards the correct class. The outcome
is an erroneous classification decision, as the model redirects its attention towards the
irrelevant class. The human visual system has the ability to quickly locate and identify the
primary object in an image while also interpreting its semantic information. However, the
details and complexities of the foreground and background are often overlooked by human
visual perception. Within the frequency domain, the low-frequency component of an image
typically comprises the main semantic information and the basic structure of the object
in question, whereas the high-frequency component generally encompasses the target
object’s edge details and complex background information. To separate high-frequency
information from the image, we employ the discrete wavelet transform frequency domain
processing technology. The justification for using the discrete wavelet transform (DWT) for
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high-frequency information separation and its suitability for the study can be detailed as
follows. DWT provides a multi-resolution analysis by decomposing a signal into different
frequency components while maintaining temporal localization. DWT is versatile and can
be adapted to different types of signals by choosing appropriate wavelet functions (such as
Haar, Daubechies, etc.). DWT has been widely used and validated in various domains, such
as signal processing, image processing, and data compression, demonstrating its robustness
and effectiveness in high-frequency information separation. The study can rely on this
proven track record to ensure that the methodology is sound and has a high likelihood of
success in achieving the desired outcomes. Additionally, the number of perturbed pixels
is limited to ensure high-quality adversarial samples are generated. This paper presents
a pixel-level adversarial sample generation method based on attention mechanism and
high-frequency information separation, which includes four key stages: discrete wavelet
transform for high-frequency information separation, attention heat map generation and
application, attention suppression loss function design, and pixel-level adversarial sample
generation. The specific frame design is shown in Figure 1.

Figure 1. Workflow of our DIPA method, which illustrates the process of high-frequency information
separation (left) and pixel-level attack on attention (right).

Firstly, the image samples are decomposed into the frequency domain using the
discrete wavelet transform. High-frequency information on vertical and diagonal edge
features is dropped during image reconstruction, perturbing the resulting image samples at
the pixel level. Secondly, an attention heat map is generated using a deep neural network’s
attention mechanisms to highlight specific regions of the image. The attention suppression
loss function is then designed based on this map, which allows the neural network to
potentially make incorrect classification decisions by suppressing its attention toward the
correct image class. The DIPA method generates adversarial samples by searching for
and perturbing sensitive pixels based on the gradient information of the loss function to
the original benign samples. The method uses the L0 norm as a constraint to limit the
number of perturbed pixels. This approach is effective at increasing attack success rates
and concealing adversarial perturbation.

3.1. High-Frequency Information Separation Based on Discrete Wavelet Transform

Based on current research on the human visual system, it is evident that humans are
more sensitive to object structures and smooth areas of an image. Adversarial perturbations
are, therefore, generally observable, but intricate texture details, including object edges and
complex background information, are less noticeable. As shown in Figure 2, x represents
the input image, and x̄ is the image sample reconstructed using low-frequency components
(LL) and horizontal edge features (LH), which have the same basic shape and resolution
as the original image x. Image distortion in the dense fishnet background in part A is
less noticeable to the human eye compared to distortion on smooth areas and subjects in
part B. This prompts us to separate the high-frequency components representing complex
background information and to attack the neural network model by dropping irrelevant
information and perturbing sensitive pixels. As a time-frequency analysis tool, discrete
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wavelet transform can convert image samples from the spatial domain to the frequency
domain and decompose samples into a low-frequency component and three high-frequency
components, namely XLL, XLH , XHL, and XHH . The calculation formulas are shown in (1)
and (2).

XLL = LXLT , XLH = HXLT , (1)

XHL = LXHT , XHH = HXHT , (2)

where L and H represent the low-pass filter and high-pass filter of the orthogonal wavelet,
respectively. This paper uses the Haar wavelet basis function, and the coefficients of the
low-pass filter are shown in Formula (3).[

1/
√

2 1/
√

2
1/

√
2 1/

√
2

]
, (3)

where L contains the low-pass decomposition filter coefficient and low-pass reconstruction
filter coefficient. High-pass filter coefficients are shown in Formula (4).[

−1/
√

2 1/
√

2
1/

√
2 −1/

√
2

]
. (4)

The high-pass filter also includes high-pass decomposition filter coefficients and high-pass
reconstruction filter coefficients. The two-dimensional Haar discrete wavelet transform
first uses a low-pass filter and a high-pass filter to perform column filtering on the image.
In order to ensure the computational simplicity of the Haar discrete wavelet transform,
the frequency component will be downsampled with a frequency of 2 after each filtering
process. Then, the low-pass filter and high-pass filter are used to process each frequency
component again, and the image sample is decomposed into four frequency sub-bands. We
use XLL and XLH to reconstruct the image and change downsampling to upsampling with
a frequency of 2. At the same time, considering that only two high-frequency components,
XHL and XHH , are dropped, the image will not be seriously distorted due to the loss of too
much detailed information. The image reconstruction formula is shown in (5).

X̄ = LTXLLL + HTXLH L

= LT(LXLT)L + HT(HXLT)L.
(5)

Facilitating image decomposition and reconstruction, discrete wavelet transform can pre-
serve critical image information. A high-quality adversarial sample can then be produced
by combining the perturbation of sensitive pixels with the separation of high-frequency
information.

3.2. Designing Attention Suppression Loss Function

The suppression the loss function is designed with the intention of reducing the at-
tention of deep neural networks on the correct class of an image sample. By doing so, the
model’s attention towards other irrelevant classes gradually surpasses the attention to-
wards the correct class. Consequently, this leads to erroneous classification decisions made
by the deep neural network models. Hence, our approach leverages the softmax gradient
LRP (SGLRP) method to generate an attention heat map that effectively differentiates the
attention towards the target class from other irrelevant classes [25]. Furthermore, we com-
pute the gradient of the attention suppression loss function with respect to the input image
sample. The input image, which has been separated from some high-frequency information
by discrete wavelet transform, is utilized to calculate the attention heat map. The attention
heat map generated by the deep neural network models of different architectures is shown
in Figure 3.
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Figure 2. Illustration of high-frequency information separation. The complex background informa-
tion (fishnet) dropped by DIPA is difficult for human vision to perceive. Furthermore, restricting
adversarial perturbation on object structure and smooth region can improve the perceptual quality of
adversarial samples.

Figure 3. Attention heat maps for DNNs. The pixel-wise heat maps show how the input contributes
to the prediction. Deep neural network models with different architectures have similar attention
heat maps.

We set xori as a benign input sample and yori as its corresponding class label. The
attention heat map of the image sample is represented by h(xori, yori), which has the same
matrix dimension as xori. The attention suppression loss function Loss comprises two
loss functions: the logarithmic suppression loss function Llog and the cross-entropy loss
function Lc. The Llog is shown in Equation (6).

Llog(x) = log(∥h(x, yori )∥1). (6)

The logarithmic suppression loss function serves to diminish the deep neural network
model’s attention towards the correct class of image sample, leading to erroneous classifica-
tion decisions. The Lc is shown in Equation (7).

Lc(x) = −
n

∑
i=1

p(xi) log(q(xi)). (7)
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The cross-entropy loss function is used to increase the confidence of adversarial
samples, which ultimately leads to deep neural networks classifying these samples into
incorrect classes with high confidence. The Loss(x) is shown in Equation (8).

Loss(x) = Llog(x) + αLc(p, q). (8)

The attention suppression loss functions suppress DNNs’ attention to the correct
classes, as shown in Figure 4. The parameter α is the weight parameter between the
logarithmic suppression loss function Llog and the cross-entropy loss function Lc. We set
the initial value of α to α = 1000 because the ImageNet dataset used in the experiments in
this paper has a total of 1000 classes, which makes the two components of the suppression
loss function have similar variances for different inputs.

Figure 4. Attack on attention for DNNS. The attention suppression loss function distracts the attention
from the correct to irrelevant regions and similar distraction could be observed for different networks.

3.3. Pixel-Level Attack Algorithm Based on Attention Mechanism

Generating adversarial samples is the core step of the adversarial attack algorithm.
The main idea of our method is to minimize the attention suppression loss function Loss(x),
guided by the gradient information of the loss function to the original benign samples,
and iteratively search and perturb sensitive pixels to generate adversarial samples. First,
the SGLRP method is used to calculate the attention heat map of the deep neural network
models for the input image sample, construct the attention suppression loss function, and
calculate the gradient information of the suppression loss function Loss(x) to the input
sample x. By obtaining a gradient matrix M that matches the dimensions of the input
sample x, we can assess the extent to which each pixel can suppress the attention of the
deep neural networks. Each element in the gradient matrix M quantifies the degree of
suppression for the corresponding pixel. Hence, based on the gradient matrix M, we
identify the pixel with the highest gradient value, as it is deemed to have a substantial
influence in suppressing the deep neural network model’s attention towards the correct
class. Formally, let x0

adv = xori, and the gradient matrix M is calculated as shown in
Formula (9).

M =
∂Loss(xk

adv)

∂xk
adv

. (9)

Specifically, the greater the element value in the gradient matrix M, the stronger the
effect on suppressing attention. To account for the fact that each pixel value in an image
sample is a composition of the brightness values from the three RGB channels, it becomes
essential to compute the sum of gradient values across these channels. This aggregation
results in the formation of the gradient sum matrix Msum. By evaluating this matrix, we can
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identify the pixel with the highest gradient value and its corresponding impact on attention
suppression within the neural network model. Subsequently, utilizing the information
from Msum, we identify the pixel with the highest gradient value. This particular pixel is
then targeted for perturbation, which enables us to generate the adversarial samples. The
gradient sum matrix Msum and the disturbance process are shown in Formulas (10)–(12).

Msum = sum(M, reduction_indices = 2), (10)

index = argmax(Msum), (11)

x(k+1)
adv = xk

adv[index]− ε ∗ M[index]. (12)

To indicate the summation of the gradient matrix M along the rows, we have set
the parameter reduction_indices = 2 in our specification. In order to perturb the sensitive
pixels, we assign the parameter ϵ a specific value, which represents the intensity of the
perturbation. Given that we perturb only one pixel in each iteration, the resulting distortion
to the image sample is minimal. Consequently, there is no need to enforce any limitations
on the strength of the perturbation. The procedure of attack is summarized in Algorithm 1.

Algorithm 1 Adversarial Attack.

Require:
Origin sample (xori, yori);
Discrete wavelet transform (DWT);
Inverse discrete wavelet transform (IDWT);
Loss Loss(x);
Iterator threshold θ;
Attack step length ϵ;

Ensure:
Adversarial sample xadv;

1: xLL, xLH , xHL, xHH = DWT(xori);
2: x̄ = IDWT(xLL, xLH);
3: x0

adv = x̄;
4: set k = 0;
5: while k < θ do
6: M =

∂Loss(xk
adv)

∂xk
adv

;

7: Msum = sum(M, reduction_indices = 2);
8: index = argmax(Msum);
9: xk+1

adv = xk
adv[index[0 : 2]]− ϵ ∗ M[index[0 : 2]];

10: k = k + 1;
11: if F(xk

adv) ̸= yori then
12: break;
13: end if
14: end while
15: return xk

adv;

Our method mainly adds pixel-level adversarial perturbation to image samples which
drop some high-frequency components, and emphasizing the pixel with the largest gradient
value has a significant impact on suppressing the attention of the neural network model.
Therefore, adversarial samples can be generated by iteratively perturbing only a few
sensitive pixels with the maximum gradient value. Additionally, since the adversarial
samples have only a few pixel changes in the main part of the image compared with the
original samples, moreover the dropped part of the information is mainly related to the
edge details and complex textures that are not easy to perceive. This is why the overall
distortion of the image sample is tiny, and human vision can hardly observe the difference
between the adversarial sample and the original sample. Our adversarial attack method
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improves the search efficiency of sensitive pixels, further confirming the vulnerability of
deep neural networks.

4. Experiments

In this section, we present the experimental process, results, and analysis of our attack
method. We conducted experiments in two different scenarios: the extreme single-pixel
attack scenario and the white-box attack scenario. We validated the effectiveness and
advantages of the DIPA method through two experimental scenarios. We also utilized
cutting-edge perceptual similarity measurement technology to assess the perceptual quality
of adversarial samples.

4.1. Experiment Setup

The experimental dataset is the validation set of the ImageNet dataset, which has a
total of 1000 classes and 50,000 image samples. We chose the ImageNet dataset because
it is widely used in current research on image classification. Compared to other datasets
like CIFAR-10 or CIFAR-100, ImageNet offers samples with higher resolution and a larger
number of categories. This allows for effective validation of our method’s efficacy. Al-
though transformer-based models have good performance in computer vision, the actual
application is still dominated by CNN-based models [26]. In this experiment, eight well-
trained deep neural network models in Keras applications [27] were selected to attack and
verify the effectiveness of the method, namely VGG19 and VGG16 [28], InceptionV3 [29],
ResNet50 and ResNet152 [30], and DenseNet169, DenseNet121, and DenseNet201 [31]. We
preprocessed image samples using Keras preprocessing, which entailed central cropping
and resizing to a resolution of 224x224. Initially, the dataset was filtered for each model by
purging image samples that have been incorrectly classified. That is, subsequent attacked
image samples can be correctly classified by the depth neural network model. We filtered
1000 image samples for each neural network model for attack testing. In addition, the
number of iterations was θ = 20, and the disturbance intensity was set to ϵ = 155. The
number of iterations θ was used to limit the number of perturbed pixels, and the intensity
of disturbance ϵ was used to limit the magnitude of the adversarial perturbations applied to
the pixels, preventing noticeable disturbance in the image samples. Through experimental
validation and by referring to related literature, setting the number of iterations to θ = 20
and the perturbation strength to ϵ = 155 can achieve an optimal balance between attack
success rate and perceptual quality.

4.2. Evaluation Metrics

In terms of attack performance, our focus lies mainly on the attack success rate and the
perceptual quality of adversarial samples. Accordingly, we propose six evaluation metrics
to assess the effectiveness of the DIPA method.

1. Average root mean square error (AvgRMSE):

AvgRMSE =
∑

NAtt_suc
i=1

√∥∥xi
adv − xi

ori

∥∥2
2/Np

NAtt−suc
. (13)

In the experiment, the deep neural network models generate multiple adversarial
samples, which we evaluate using the average root mean square error (AvgRMSE) to
determine the degree of change. Where NAtt_suc represents the number of adversarial
samples generated by our method, and Np represents the total number of pixels in
the image sample. The AvgRMSE metric is shown in Equation (13).

2. Attack success rate (ASR):

ASR =
NAtt_suc

N
. (14)

Following the generation of adversarial samples, we input them into the model to
gauge their capacity to deceive. Where NAtt_suc represents the number of adversarial
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samples generated by our method that successfully attacks the target model, and
variable N denotes the total number of image samples. The ASR metric is shown in
Equation (14).

3. Average confidence (AvgCon f idence):

AvgCon f idence =
∑

NAtt_suc
i=1 pi

NAtt_suc
, (15)

where NAtt_suc represents the number of adversarial samples generated by our method,
and Pi represents the confidence when adversarial sample i is misclassified by the
neural network model. As shown in Equation (15), the AvgCon f idence metric refers
to the average confidence when the neural network models misclassify all adversarial
samples.

4. Time complexity (AvgTime):

AvgTime =
∑

NAtt_suc
i=1 Ti

NAtt_suc
, (16)

where NAtt_suc represents the number of adversarial samples generated by our method,
and Ti is the time spent in generating adversarial sample i. As shown in Equation (16),
the AvgTime metric refers to the average time complexity of our method to generate
adversarial samples.

5. Number of disturbed pixels (AvgPixels):

AvgPixels =
∑

NAtt_suc
j=1 Pixj

NAtt_suc
, (17)

where NAtt_suc represents the number of adversarial samples generated by our method,
and Pixj represents the number of pixels disturbed by our method when generating
adversarial sample j in the white-box attack scenario. AvgPixels is shown in Equa-
tion (17).

6. Learning-based perceptual similarity metrics (Lpips): Currently, the most common
method to measure the similarity between two image samples is based on distance,
such as SSIM [32] and FSIM [33] based on L2 Euclidean distance, etc. These methods
use a simple distance function to calculate the similarity directly. However, humans
can easily and quickly assess the perceptual similarity between two images, but the
process is highly complex. The method based on distance measurement does not
consider the details of human perception and cannot fit well with the human percep-
tual similarity between two images. Therefore, we choose a learn-based perceptual
similarity measurement (Lpips) [34] method that aligns with human perception judg-
ment. The Lpips method visualizes the degree of change between the adversarial
sample and the original sample by utilizing a perceptual distance space map. It also
quantifies the concealing effect of adversarial perturbation using the Lpips perceptual
loss metric. Thus, the advantages and characteristics of the DIPA method can be
verified more reasonably.

4.3. Results Analysis in Single-Pixel Attack Scenario

In this section, we evaluate the efficiency and effectiveness of a single-pixel attack
scenario, which generates adversarial samples by perturbing only one pixel. The aim of
this experiment is to investigate whether attention mechanisms can accurately search for
sensitive pixels and to determine whether disturbing sensitive pixels can attack the deep
neural network models. We conducted a comparison between our experimental results
and the existing one-pixel attack methods [9]. The evaluation metrics for the experimental
results of the one-pixel attack method are presented in Table 1. To validate the effectiveness
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of the DIPA method, we performed experiments on neural network models with diverse
architectures. The experimental results of the single-pixel attack are provided in Table 2.

Table 1. Experimental results of the one-pixel attack.

Metrics Victim AlexNet_BVLC

ASR 16.04%

AvgConfidence 22.91

AvgRMSE 14.32

AvgTime (s) -

Table 2. Experimental results of DIPA on different network architectures.

Metrics Victim AlexNet_BVLC VGG19 VGG16 IncV3 RN50 RN152 DN121 DN169 DN201

ASR 43.2% 50.2% 43.5% 56.8% 16.7% 23.3% 13.1% 12.4% 15.2%

AvgConfidence 69.552 68.987 69.650 20.833 45.710 55.465 45.461 40.979 49.898

AvgRMSE 16.437 16.534 16.310 12.433 18.434 18.839 18.116 18.629 18.977

AvgTime (s) 1.4 2.4 1.5 6.0 6.4 14.8 35.7 44.6 48.1

It can be seen from Table 1 that the existing one-pixel attack methods mainly use
differential evolution algorithms to search for sensitive pixels. They have achieved an
attack success rate of only 16.04% on large-size ImageNet datasets. The reason may be that
large-size image samples increase the search space for sensitive pixels, making one-pixel
attack methods inaccurate in searching for sensitive pixels, resulting in an unsatisfactory
attack success rate on large-size image samples.

By comparing the results presented in Table 2 with those in Table 1, it can be seen
that the DIPA demonstrates significant enhancements in both the ASR and AvgCon f idence
metric when applied to large image samples on the same dataset and neural network
models. Specifically, in the AlexNet_BVLC model, the DIPA method improves ASR and
AvgCon f idence metrics by 27.16% and 46.642, respectively. Additionally, Table 2 provides
insights into the impact of DNN depth on the ASR and AvgTime of single-pixel attacks. As
the depth of the network model increases, the ASR gradually decreases, but the AvgTime
gradually increases. This indicates that deep neural networks incur a higher time cost, and
the attack success rate of the single-pixel attack is relatively poor. However, shallow neural
network models can achieve an attack success rate of more than 40% in just a few seconds.
On average, all deep neural network models misclassify adversarial examples generated
by single-pixel attacks with high confidence. It is worth mentioning that the experimental
results verify the effectiveness and efficiency of the DIPA method in a single pixel attack
scenario.

4.4. Results Analysis in the White-Box Attack Scenario

This section assesses the efficacy and efficiency of our method in the context of white-
box attacks. Firstly, the high-frequency information of the input image is separated, and
then sensitive pixel points are iteratively selected and perturbed using the gradient infor-
mation of the target neural network model. Our method compares the existing adversarial
attack on attention methods (AoA) [10]. AoA attacks the attention of neural network
models and achieves a stronger attack effect. The experimental results are shown in Table 3.
As shown in Table 3, from the overall perspective, the DIPA method achieved a comparable
attack success rate to that of the AoA method. Most networks exhibit an attack success rate
exceeding 90%.
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Table 3. Attack success rate of white-box attacks on different network architectures.

Metrics Victim VGG19 VGG16 IncV3 RN50 RN152 DN121 DN169 DN201

AoA 99.99% 99.85% 89.84% 93.94% 86.78% 96.14% 94.09% 93.44%

DIPA 98.8% 98.5% 96.4% 97.6% 95.6% 84.7% 88.4% 93.2%

In addition, except for Inception-V3, all network models can misclassify adversarial
samples with high confidence. The AvgCon f idence metric for Inception-V3 is only 21.054,
and we speculate that it may be related to the network architecture of the Inception-V3
neural network model. It can be seen from Table 3 that the time complexity is affected by
network depth. On average, DIPA is capable of attacking shallow neural network models
within a few seconds. For instance, the attack duration for VGG19 is approximately 3.3 s,
VGG16 takes around 3.5 s, and Inception-V3 requires approximately 8.2 s. Deep neural
network models with more network layers require more time to attack. For example,
ResNet50 is 18.9 s, ResNet152 is 32.1 s, and DenseNet121 is 38.5 s, and the time complexity
of the DenseNet169 and DenseNet201 neural network models is approximately one minute.
The average root mean square error serves as an indicator of the degree of modification in
the adversarial sample relative to the original sample. The Inception-V3 neural network
model has the lowest AvgRMSE of 18.742. A higher AvgRMSE indicates that generating
an adversarial sample requires the disturbance of a more significant number of pixels,
resulting in more significant changes when compared to the original sample. According
to Table 4, the average number of pixels modified to generate adversarial samples for
all networks is ten or fewer. This indicates that the DIPA method can still generate tiny
adversarial perturbations and more realistic adversarial samples on ImageNet datasets
with complex features.

Table 4. Evaluation metrics of DIPA on different network architectures.

Metrics Victim VGG19 VGG16 IncV3 RN50 RN152 DN121 DN169 DN201

AvgPixels 2.415 2.561 2.318 5.231 4.448 8.372 8.415 6.483

AvgConfidence 69.940 70.260 21.054 43.977 58.185 43.497 47.696 43.910

AvgRMSE 20.143 20.158 18.742 28.970 30.744 29.907 32.703 25.621

AvgTime (s) 3.3 3.5 8.2 18.9 32.1 38.5 54.6 52.5

4.5. Results Analysis in Perceptual Quality

Most methods of adversarial attacks are based on the L2 or L∞ norms and are used
to limit the intensity of adversarial perturbation, but in order to achieve a higher attack
success rate, the concealing effect of adversarial perturbation is not ideal. Existing AoA
methods typically impose an overall constraint on the cumulative modification intensity as
the primary constraint condition. These methods perturb all pixels of the image to generate
adversarial samples. In contrast, our method deviates from traditional attack on attention
methods. Our approach focuses on selectively modifying only a small number of pixels
within a short time frame without restricting the intensity of the modifications. As a result,
our method achieves minimal overall image distortion while generating adversarial sam-
ples. Moreover, in contrast to traditional adversarial attack methods that add perturbation
to image samples, our method attacks neural network models by dropping some irrelevant
image information, which can more effectively hide adversarial perturbation.

4.5.1. Perceptual Quality Visualization Experiment

The adversarial examples generated by our method are shown in Figure 5.
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Figure 5. Illustration of adversarial samples. (a) shows the original benign sample, (b) shows the
adversarial sample generated by the AoA method, and (c) shows the adversarial sample generated
by DIPA. The prediction classes of the ResNet50 and corresponding confidence are provided.

Figure 5a,b shows the benign and the adversarial samples generated by the AoA
method, respectively. Figure 5c shows the adversarial samples generated by our method.
The prediction class of the neural network model and the corresponding confidence are
provided below the image. Upon comparing the adversarial images, it becomes apparent
that the ones generated by AoA exhibit prominent wavy patterns that span the entire
image, while our method generates adversarial images that are nearly indistinguishable
from the original samples. Additionally, relying solely on visual perception is insufficient
to demonstrate the effectiveness of our method in concealing adversarial perturbation.
Thus, we employ the Lpips perceptual loss as a quantitative perceptual metric to assess the
perceptual quality of adversarial samples. The way to measure the similarity between two
images is similar to the way humans visual, so our method can more effectively quantify
the concealing effect of adversarial perturbation. The lower the Lpips perceived loss value,
the higher the perceived quality in adversarial samples.

Figure 6 illustrates the perceptual distance space map generated using the Lpips
method. The perceptual loss computed through the Lpips method is presented below
the image. Our method outperforms the AoA method, as demonstrated by the lower
perceptual loss (0.073 compared to 0.185). This indicates that compared to the AoA method,
the adversarial samples generated by our method are more perceptual, consistent with
benign samples. The Lpips perception metric provides additional evidence supporting
the effectiveness of our method in concealing adversarial perturbations. As shown in
Figure 6a, it can be observed that compared to benign samples, the adversarial samples of
AoA have significant differences in the main semantic objects in the image. This includes
perturbation made to the main object, which is the area of special attention to human vision.
However, as shown in Figure 6b, the difference between the adversarial samples generated
by our method and the benign samples is mainly distributed on the irrelevant background,
the perturbation intensity is low, and only a few pixels in the main semantic object area
change. In other words, our method is based on the visual characteristics of human vision
and comprehensively considers two aspects. Firstly, because human vision always pays
attention to the structural part of the object when judging the semantic information of the
image, and the deep neural network models also make classification decisions based on
the attention region. Therefore, we limit the adversarial perturbation in the main semantic
object region and accurately search and perturb a few of the sensitive pixels based on the
attention mechanism. Secondly, human vision is not sensitive to the object edge details
and complex background information of the image. We drop high-frequency information
instead of adding perturbation when attacking neural network models to achieve a balance
between attack success rates and the quality of adversarial samples.
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Figure 6. Lpips Perceptual distance space map. The original benign samples are compared with the
adversarial samples on pixel-by-pixel basis to generate perceptual distance space map, which shows
the distribution of the perturbed pixels, and the pixel brightness shows perturbation intensity.

In addition, the mechanism of separating high-frequency information is to generate ad-
versarial samples by removing imperceptible details from image samples. The experiment
also uses K-means clustering to analyze the color depth of image samples. As depicted in
Figure 7, adversarial samples generated by AoA require more storage space due to their
larger image size and additional information, including more colors. For example, the
image sample labels are Guenon and Sheepdog, the image sizes are 101 KB and 94.9 KB,
and the color components are 205 colors and 194 colors, respectively. The labels of the
adversarial samples generated by the AoA method are Macaque and Hound. The image
sizes are increased to 110 KB and 99.8 KB, respectively, and the image sizes are increased
by 9% and 5% compared with the original samples. In contrast, the adversarial samples
generated by separating high-frequency information contain fewer colors and are labeled
Howler and Samoyed, respectively. The color composition is reduced to 97 colors and
82 colors, representing a size reduction of 39% and 64% compared to the original samples.
The method of removing detailed information from image samples in the frequency domain
appears to be a promising technique for adversarial attacks.

Figure 7. Illustration of separating high-frequency information. Compared to the clean images, the
adversarial images generated by DIPA have fewer details composed of fewer colors, decreasing in
size (by 39% and 64%).
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4.5.2. Comparison with Traditional Adversarial Attack Methods

In addition, we assess and compare the strength and perceived quality of the adversar-
ial samples generated by several traditional adversarial attack methods. The parameters of
the traditional adversarial attack method are set as follows. The learning rate of the Adam
optimizer for the C&W adversarial attack method is set to 0.01, the maximum disturbance
limit ϵ of BIM, PGD [35], and AutoAttack (AA) [36] methods under L∞ norm constraints
is set to 8/255, the iteration step for each round is set to α = 1/255, and the disturbance
strength of FGSM method is eps = 0.1. Our experiment conducted validation and compari-
son on seven neural network models, including three neural network models with different
architectures and multiple neural network models with the same architecture and different
depths. The accuracy and parameter number of image classification tasks on the ImageNet
dataset are shown in Table 5.

Table 5. Pretraining model accuracy information.

Model Acc Top1 Acc Top5 Params

VGG16 73.360% 91.516% 138.4 M
VGG19 74.218% 91.842% 143.7 M
ResNet50 81.198% 95.340% 25.0 M
ResNet152 82.284% 96.002% 60.2 M
DenseNet121 74.434% 91.972% 8.0 M
DenseNet169 75.600% 92.806% 14.1 M
DenseNet201 76.896% 93.37% 20.0 M

Models with more sophisticated architectures, such as deeper networks or those with
attention mechanisms, generally performed better. These models are better at capturing
intricate patterns and can be more resistant to adversarial attacks. Simpler models, or those
with fewer layers, showed decreased performance as they are less capable of handling
complex data perturbations introduced by DIPA. Some models exhibited a peculiar increase
in AvgCon f idence, indicating that adversarial examples were not just misclassified but
misclassified with high confidence. This suggests that DIPA effectively exploits specific
vulnerabilities in these models. While some models showed a high AvgRMSE, indicating
significant changes from the original samples, others had a lower AvgRMSE, suggesting
subtler but effective perturbations. This variability points to differences in how models
perceive and react to adversarial noise.

This experiment verifies the performance of five attack methods under four metrics,
including iteration times, time complexity, attack success rate, and Lpips perceived loss.
Each model is attacked by the corresponding adversarial attack method to generate 200 ad-
versarial samples, and the attack success rate and average Lpips loss are calculated. As
shown in Table 6. Our method outperforms five traditional adversarial attack methods
according to the Lipis metric. These results demonstrate that the adversarial samples gener-
ated using our proposed attack method are visually more similar to the original and induce
fewer changes in the feature space. DIPA has the smallest Lpips value while achieving a
high attack success rate. DIPA achieves a balance between a high attack success rate and a
low imperceptibility.

The C&W adversarial attack method is an optimization-based technique that iteratively
optimizes the target loss function to search for the smallest perturbation required to generate
adversarial samples. We set the number of iterations of the C&W attack method to 1000
in this experiment. Although the C&W method has higher time complexity and better
conceals adversarial perturbation under the l∞ norm limit, perturbation waves in smooth
areas of an image can still be easily observed.
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Table 6. Comparison of experimental results.

Model Attack Iteration Run Time (s) ASR Lpips

FGSM 1 22 96.2% 0.306
BIM 10 243 94.0% 0.089
PGD 10 56 98.3% 0.129

VGG16 C&W 1000 ≥10,000 99.2% 0.394
AA 100 62 99.5% 0.394

Ours 20 292 98.5% 0.060

FGSM 1 24 94.1% 0.301
BIM 10 255 94.3% 0.091
PGD 10 66 97.9% 0.128

VGG19 C&W 1000 ≥10,000 99.3% 0.395
AA 100 72 99.2% 0.395

Ours 20 300 98.8% 0.062

FGSM 1 85 94.1% 0.304
BIM 10 248 92.6% 0.091
PGD 10 187 99.9% 0.107

ResNet50 C&W 1000 ≥10,000 98.8% 0.390
AA 100 74 96.8% 0.396

Ours 20 1405 97.6% 0.063

FGSM 1 67 94.2% 0.308
BIM 10 320 91.7% 0.096
PGD 10 257 99.7% 0.126

ResNet152 C&W 1000 ≥10,000 97.3% 0.397
AA 100 192 97.1% 0.396

Ours 20 ≥1000 95.6% 0.068

FGSM 1 63 98.5% 0.307
BIM 10 264 92.4% 0.094
PGD 10 167 99.4% 0.12

DenseNet121 C&W 1000 ≥10,000 98.3% 0.402
AA 100 126 97.3% 0.387

Ours 20 ≥5000 90.7% 0.070

FGSM 1 75 96.7% 0.308
BIM 10 229 90.8% 0.092
PGD 10 231 99.7% 0.126

DenseNet169 C&W 1000 ≥10,000 96.2% 0.407
AA 100 182 97.1% 0.384

Ours 20 ≥5000 89.4% 0.068

FGSM 1 131 94.0% 0.304
BIM 10 330 93.8% 0.092
PGD 10 273 99.4 0.126

DenseNet201 C&W 1000 ≥10,000 95.4 0.408
AA 100 246 98.5 0.389

Ours 20 ≥5000 93.2 0.069

As shown in Figure 8, compared with the perceptual distance space map, the C&W
method adds perturbation to the entire image, resulting in slight distortion to the image
sample. According to the perceptual distance space map of our method, there may be slight
distortion in the edge details and complex textures of image objects due to the separation
of high-frequency information. However, the human visual system is not sensitive to edge
distortion and does not pay attention to irrelevant details. Preserving object structure and
low-frequency components that are sensitive to human visual perception makes the DIPA
method ideal for concealing adversarial perturbation. In addition, DIPA adds fewer adver-
sarial perturbations to generate adversarial samples, and the adversarial perturbations are
mainly distributed in the object edge and the background.
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Figure 8. Comparison of perceived distance space map. As can be observed from the perceptual
distance space map, DIPA generates fewer adversarial perturbations, distributed in the object edge
and the background, which are less noticeable.

5. Conclusions

Our study focuses on adversarial attacks in computer vision for image sample clas-
sification tasks using a deep neural network model’s attention visualization mechanism,
resulting in the DIPA method. Our method is intended to generate high-quality adversarial
samples, which will effectively conceal adversarial perturbations involved in attacking
deep neural network models. We designed two experimental scenarios to assess the effec-
tiveness of the DIPA. The effectiveness of utilizing the attention mechanism in combination
with gradient information to search sensitive pixels in the single-pixel attack scenario is
verified, and the success rate metric of the attack exceeds that of the current one-pixel attack
method. Our method’s ability to achieve high success rates in a short period of time in
the white-box attack scenario is verified. Furthermore, the effectiveness of our method is
demonstrated across various neural network models with differing architectures. Subse-
quently, we analyze the latent effects of adversarial perturbation using visualization and
quantification techniques. We visualize the alterations induced on adversarial samples as
compared to the original samples by leveraging image comparison and perceptual distance
space maps. We use the Lpips perceptual quality quantification tool to assess the perceptual
quality of adversarial samples and compare our results with those obtained from multiple
traditional adversarial attack methods. From the comparative experimental results, the
Lpips perception loss of adversarial samples generated by DIPA is lower, indicating that
DIPA is more effective in hiding adversarial perturbation and adversarial samples have
higher perception quality. Currently, there are many tools used to separate high-frequency
information, and the methods used for image compression or frequency domain conver-
sion can basically achieve the separation of high-frequency information. In the future,
we plan to investigate the efficacy of various approaches for separating high-frequency
information when generating adversarial samples. We will explore the attack effect of
DIPA on other image datasets, such as CIFAR-10 and CIFAR-100 datasets, and discuss the
subtle differences in DIPA attacks on different datasets. The DIPA attack proposed in this
paper primarily entails the compression of image information. While the target subject
information is preserved during compression, imperceptible perturbations are introduced
to the high-frequency components. In our future work, we aim to identify adversarial
samples by assessing the integrity of the image information. Additionally, we will attempt
to reconstruct image samples using generative models to defend against such adversarial
attacks.
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