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Abstract Resource allocation in edge computing is a
research hotspot and difficulty in academia and Indus-
try. The nature like urgency and the priority of tasks
are not taken into account, which is adverse to obtain
a good solution. Meanwhile, 5G has the characteristics
of higher network speed, high reliability, low latency,
and low-power massive connections. In this article, we
present a novel algorithm to solve the multi-objective
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resource allocation problem in 5G edge computing
(EC) network, the objective is to maximize the operator
profit and minimize the total completion time of tasks
with priorities from the perspective of service operators
under time and workload constraints. The algorithm is
based on the beluga whale optimization algorithm, and
it utilizes three methods to update the positions of bel-
uga whales by swimming, predating, and migrating. In
addition, to enhance the ability to escape from local
optima during searching the best beluga whale posi-
tion, it uses centroid information to improve the pro-
cess of searching the optimal position, and adds the
mutation operation in the process of position updat-
ing. Simulated results show that the proposed algo-
rithm is high efficient in terms of reducing total task
completion time and improving the revenue for oper-
ators, compared with existing strategies. For example,
our algorithm reduces the time by 1.87% and improves
the profit by 10.47% for 80 tasks in comparison with
MOPSO.

Keywords Edge computing · Multi-objective
optimization · Revenue maximization

1 Introduction and Background

With the rapid development of 5G communication
technology, various new applications emerge one after
another. Meanwhile, users have an increasing demand
for computationally intensive and latency sensitive
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applications. According to a Cisco report, global
mobile device usage is expected to reach 12.3 billion
units by 2022. The global smart technology indus-
try is developing rapidly, and the number of devices
such as smartwatches, mobile phones, and smart cars is
growing exponentially. The tasks generated by mobile
devices require a large amount of computing resources
to process, especially for applications such as virtual
reality (VR) and smart healthcare that have strict time
requirements. The traditional cloud computing model
often struggles to meet these real-time requirements,
as large-scale data transmission consumes a signifi-
cant amount of bandwidth resources, resulting in longer
transmission times and increased network bandwidth
pressure. As a computing paradigm with broad appli-
cation prospects, edge computing pushes the process-
ing and storage of computing tasks from the traditional
cloud computing center to the edge of the network
to respond to user requests faster and reduce network
latency.

A classic EC system usually includes edge servers,
base stations and user devices. Tasks generated on user
devices can be offloaded to edge servers for execution
or executed locally. Although edge servers have more
computing and storage resources than user devices,
they are still limited. When different resources are
allocated to computing tasks, it will lead to different
delays, energy consumption, costs, profits and so on.
In order to meet different needs, it is very important to
efficiently allocate resources in EC. Edge computing
resource allocation refers to the allocation of appro-
priate computing resources for a group of computing
tasks. It is a research hotspot and difficulty in academia
and industry.

There are plenty of researches on resource alloca-
tion in edge computing. Most of researches on resource
allocation in edge computing are from users’ perspec-
tive while a few of work are from service operators’
perspective. Huang et al. [1] propose approaches to
deal with the communication and computation resource
allocation problem in mobile edge computing (MEC)
having multiple mobile users and edge servers, aim-
ing to to maximize the user profit in terms of util-
ity. Zhang et al. [2] propose algorithms to solve the
resource allocation and task offloading problem con-
sidering resource constraints in mobile edge comput-
ing with multiple servers. The problem has four objec-
tives: maximize trust metrics, minimize task time delay,
maximize user experience utility, and minimize server

energy consumption. Both [1] and [2] do not con-
sider the time constraint. However, for latency-sensitive
applications such as autonomous driving, it is signifi-
cant to take deadline into consideration. If the deadline
can not be satisfied, it will cause traffic accidents. Peng
et al. [3] design an intelligent approach to solve the
single-objective resource allocation and computation
offloading problem in MEC, and the goal is to max-
imize the resource utilization and minimize the total
time, total energy consumption, as well as load balanc-
ing under multiple constraints like time and energy. All
above work are from the perspective of users. In fact,
operators hopes to attain as much profit as possible by
providing services for users with ensuring the quality
of service (QoS). Moreover, the nature like urgency
and the priority of tasks are not taken into account,
which is adverse to obtain a good solution. From ser-
vice operators’ perspective, Chen et al. [4] present an
online control method to figure out the resource allo-
cation problem in EC considering time and capacity
constraints with the objective of maximizing the profit
of operators. All above work do not consider task pri-
ority. However, different tasks have different nature
and emergency. Taking task priority into account will
obtain better resource allocation scheme and optimiza-
tion objective values. Sharif et al. [5] present an efficient
adaptive resource allocation algorithm to maximize the
utilization of resource and the number of user requests
in EC considering task priority, time and resource con-
straints. Although lots of researches on resource allo-
cation in EC have been done so far, there exist some
import problems that are not be solved.

Moreover, 5G has the characteristics of higher net-
work speed, high reliability, low latency, and low-
power massive connections. The 5G network adopts a
completely new network architecture, separating con-
trol plane functions from user plane functions and intro-
ducing UPF. As a key user plane function in 5G, UPF
controls the forwarding and routing of data. Sinking
UPF to the network edge can decrease transmission
latency, achieve local data flow diversion, and alle-
viate data transmission pressure on the core network.
Currently, there are only a few studies on UPF. Qian
et al. [6] study the computation and storage resource
allocation of UPF based on isolation performance in
dedicated 5G networks, aiming to minimize costs and
maximize resource utilization. Different resource allo-
cation schemes in 5G EC network will generate dif-
ferent results, such as different task completion time,
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energy consumption and revenue. Thus, it is consider-
ably important to allocate resources efficiently. What is
more, minimizing task completion time and maximiz-
ing the operator revenue are two conflict objectives so
that it is challenging to find a high efficient approach
to simultaneously optimize them.

Different from previous work, in this article, we
study the problem of resource allocation in EC for
5G network considering task priorities, the time and
workload constraints, and the objective is to minimize
total task completion time and maximize the opera-
tor profit from the perspective of service operators.
Meta-heuristic algorithms are widely used to solve
optimization problems due to their many advantages
such as efficiency, flexibility, scalability, and robust-
ness [7–9]. Thus, we propose a meta-heuristic method,
the improved multi-objective beluga whale optimiza-
tion (IMOBWO) algorithm to work out the problem.
The algorithm uses four means to change the positions
of beluga whales: whale swimming, whale predating,
whale migrating, and whale mutation. In addition, we
devise three sets of experiments to test the algorithm,
and the simulation results show that our proposed algo-
rithm is effective and efficient.

The main contributions of this article include:

• We formulate the edge computing resource allo-
cation problem as a multi-objective problem, aim-
ing to minimize the total task completion time and
maximize the profit of operators under time and
workload constraints from the perspective of ser-
vice providers. Each task has a priority.

• We present a novel meta-heuristic algorithm named
IMOBWO to solve the formulated problem based
on the beluga whale optimization (BWO) algo-
rithm. In response to the problem of being easily
trapped in local optima during the searching pro-
cess of the best beluga whale position, this paper
uses centroid information to improve the process of
searching the optimal position, and adds the muta-
tion operation in the process of updating the beluga
whale position to enhance the ability to escape from
local optima.

• We design simulation experiments to verify the
effectiveness and efficiency of our proposed algo-
rithm. Simulation results demonstrate IMOBWO
can achieve good total task completion time, oper-
ator profit, and load balancing.

The remaining part of this article is arranged as fol-
lows. Section 2 outlines the relative work. Section 3
addresses the models and the studied optimization
problem. Section 4 introduces the proposed IMOBWO
algorithm. Section 5 conducts experiments to test the
effectiveness and efficiency of our presented algorithm.
Section 6 concludes this article by briefly summarizing
the whole work.

2 Related Work

In recent decades, researchers have conducted a great
many of work on resource allocation in edge com-
puting. These work either have different objectives
or constraints, and are briefly divided into two cate-
gories. one is from users’ perspective, and the majority
work belong to this category; the other is from service
providers’ perspective.

2.1 From the Perspective of Users

Xue and Guan [10] propose methods to solve the
resource allocation problem in MEC having multiple
mobile users and an edge server, and the goal is to min-
imize the cost that users buy computing resources. Li
et al. [11] design a resource allocation method based
on pricing via repeated bidding to maximize the social
welfare considering capacity and resource constraints
in a three-tier and heterogeneous EC system. Kumar
et al. [12] present a game-theory based resource allo-
cation method to minimize the total user cost in an
edge computing environment with satisfying the QoS
requirement under resource constraints. All these work
do not consider the time constraint, and are not suitable
for latency-sensitive applications.

Researches [13–15] design efficient algorithms to
tackle the resource allocation and task offloading prob-
lem in MEC with a single edge server, and the goal is to
minimize the total energy consumption under multiple
constraints like time and resource. Cao et al. [16] pro-
pose a two-level alternating iterative method to tackle
the resource allocation and task partial offloading prob-
lem in a multiple vehicle users and servers EC scenario,
and the objecitve is to minimize the sum of the weight
sum of energy consumption and system latency of all
tasks under multiple constraints such as time, energy,
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cost, capacity and so on. Wang et al. [17] present an
efficient resource allocation approach based on digital
twin assisted end-edge-cloud collaborative computing
to minimize the system cost which are the the sum of
the weight sum of energy consumption and latency of
all tasks under time constraint. An et al. [18] present
an efficient resource allocation approach to minimize
the sum of the weight sum of energy consumption and
latency of all tasks under time and resource constraints
in MEC with multiple edge servers. Šlapak et al. [19]
present a novel method to maximize the ratio of the
failed tasks to the total generated tasks of the resource
allocation problem in MEC considering time and bud-
get constraints. Wang et al. [20] present task offload
and resource allocation methods to solve two optimiza-
tion problems in a collaborative edge-cloud comput-
ing environment with multiple edge servers. One is to
maximize the total number of served mobile devices
under time and resource constraints; the other is to
minimize the total energy consumption under time and
resource constraints. Saleem et al. [21] propose effi-
cient algorithms to minimize the total latency of tasks
for the resource allocation and task assignment prob-
lem in cooperative MEC under time and energy con-
straints. Ansere et al. [22] present an efficient quan-
tum Deep Reinforcement Learning method to solve
the resource allocation problem in a Internet-of-Things
system based on MEC, and the goal is to maximize the
system efficiency under time, energy as well as resource
constraints. Huang et al. [23] design a deep reinforce-
ment learning method to deal with the resource alloca-
tion and task offloading problem in an EC-based vehic-
ular network to maximize the utility (i.e., the weight
sum of energy cost and revenue for vehicles process-
ing tasks) under time and resource constraints.

All above work do not consider task priority, which
may not make full use of the nature and emergency of
tasks to achieve better optimization objective values.
Sharif et al. [24] propose a method to solve the resource
allocation and task scheduling problem in EC consid-
ering task priority with the objective of minimizing the
bandwidth cost and the total task processing time. They
do not consider time constraint. Wang et al. [25] present
a meta-heuristic method to solve the resource allocation
and task offloading problem in MEC. The objective is
to minimize the weight sum of energy consumption and
latency of all vehicle tasks with priorities under time
and resource constraints. Different from our work, their

studied problem is single-objective and with distinct
objective.

2.2 From the Perspective of Service Providers

Habiba et al. [26] propose methods to work out the
resource allocation and task offloading problem in an
MEC system considering resource constraints, aiming
to maximize the sum valuation finished by the com-
puting resources of servers. Fan et al. [27] present an
efficient algorithm to solve the pricing of computing
resources and resource allocation problem for mobile
blockchain, aiming to maximize the revenue of edge
server operators under resource constraint. Both these
two work do not consider time constraint. Nguyen et
al. [28] present an efficient algorithm to maximize the
resource utility in terms of revenue of services by rea-
sonably pricing edge nodes for the resource alloca-
tion problem in EC under time and budget constraints.
Yuan and Zhou [29] present a meta-heuristic method to
solve the resource allocation and computation offload-
ing problem in a cloud and edge collaborative comput-
ing environment, and the goal is to maximize the rev-
enue of the system provider under multiple constraints
like time, energy and resource. Falsafain et al. [30]
present a branch-and-price method to solve the alloca-
tion of spectrum holes, and the aim is to maiximize the
utilization of total spectrum. Schieber et al. [31] pro-
pose three algorithms to solve the job schedule problem
with taking the theoretical aspects into account, and the
goal is to maximize throughput under time constraint.
Jamil et al. [32] design a reinforce learning-based eco-
driving approach to deal with traffic flow consisting of
autonomous vehicles and human-driven vehicles, and
the objective is to minimize the total vehicle delay and
fuel energy consumption. All these work do not con-
sider task priority.

Comparing with above work, we study the problem
of resource allocation in EC for 5G network, and the
goal is to minimize total task completion time and max-
imize the operator profit considering task priorities, the
time and workload constraints.

3 Models and Problem Definition

In this section, we will present the models and studied
problem in our paper.

123



Journal of Grid Computing             (2025) 23:4 Page 5 of 18     4 

3.1 System Model

The targeted 5G edge computing system considered in
this paper consists of three layers: industrial park, edge
server, and cloud center. The industrial park layer con-
tains multiple unmanned factories, a base station, and
a user plane function (UPF) device. The edge server
layer contains multiple edge servers, and the cloud cen-
ter includes a cloud server. Tasks generated by indus-
trial parks are first sent to UPF devices through base
stations, and then offloaded to edge servers for execu-
tion. Communication between an industrial park and a
base station is wireless communication; communica-
tion between a base station and a UPF device is wired
communication; communication between a UPF device
and an edge server is wired; communication between
an edge server and a cloud server is wired; communi-
cation between UPF devices is wired. Figure 1 gives a
system model example of 5G edge computing.

Denote S and U to be the set of all edge servers
and the set of UPF devices, respectively. That is, S =
{s1, s2, ..., sm} andU = {u1, u2, ..., un}, wherem is the
total number of edge servers and n is the total number
of UPF devices. We use the notation ai, j to represent
the connection between edge servers and UPF devices,
1 ≤ i ≤ n, 1 ≤ j ≤ m. If there is a path between UPF
ui and edge server s j , then ai, j = 1 ; on the contrary,
ai, j = 0. W = (wi, j )n×m is a distance matrix that
represents the hop distance between nodes, and defined
as follows:

wi, j =
{
k, if ai, j = 1
∞, if ai, j = 0

(1)

where the integer k is positive.
Different industrial parks generate multiple comput-

ing tasks. To meet the computing requirements of dif-
ferent businesses, each computing task is assigned a

Fig. 1 An example of 5G edge computing system model
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corresponding attribute, and represented by a quadru-
ple t = (

t si ze, t ide, tmax , tval
)
, where t si ze represents

the size of the task, in MB as the basic unit, t ide rep-
resents the ideal completion time of the task, tmax rep-
resents the maximum completion time of the task, and
t ide represents the reward given for completing the task.

3.2 Edge Computing Resource Allocation
Representation

As it is shown in Fig. 1, different industrial parks gen-
erate many computing tasks in each time slot. These
tasks are transmitted through UPF devices to various
edge servers for processing. Let qi be the number of
tasks transferred from industrial park i , and xi, j be the
edge server which task ti, j is offloaded to for process-
ing, where ti, j is the j th task generated from park i ,
1 ≤ i ≤ n, 1 ≤ j ≤ qi , 1 ≤ k ≤ m. We have

xi, j =

⎧⎪⎨
⎪⎩
k, if the task ti, j is offloaded to

execute on edge server k,

0, otherwise.

(2)

3.3 Computing Time

When a task is offloaded to an edge server for process-
ing, the completion time of the task is determined by
the transmission delay, network latency, waiting time,
and processing delay. The completion time denoted by
d f in
i, j of task ti, j can be expressed as

d f in
i, j = dneti + dtrai, j + dwait

i, j + d proc
i, j , (3)

where dneti represents the current network delay in the
park i , and according to the reference [33], it is calcu-
lated by

dneti = dide

1 − θ
, (4)

θ = d pass
i

τ
, (5)

where dide represents the delay when the network is
idle, and θ is the utilization rate of the current network.

τ represents a time slot, and d pass
i indicates the time

for data to pass through the network in park i . The ratio
of d pass

i to τ reflects the magnitude of utilization. The
larger the d pass

i value, the busier the network, which in
turn leads to an increase in network latency dneti .

dwait
i, j represents the queue waiting time for task ti, j

, and is calculated as follows:

dwait
i, j = αdEwt

xi, j , (6)

where α is the priority coefficient of task ti, j . Accord-
ing to the quantification method in reference [34], α =
0.5×

(
t si zei, j /c + tvali, j /v − 1

)
×

(
t si zei, j /c + tvali, j /v − 2

)
+tvali, j /v. v represents the value obtained from process-
ing 1MB sized computing task. c represents the size of
the basic computational task, and here c = 1MB. For
tasks with the same amount of computation, the larger
the task’s value, the higher its ranking. dEwt

xi, j represents
the average waiting time of task ti, j on edge server sxi, j .
According to queuing theory [35], we have

dEwt
xi, j = 1

μ(sxi, j ) − γ
. (7)

γ represents the task arrival rate, which is the number
of tasks that reach the edge server sxi, j per unit of time.
μ

(
sxi, j

)
represents the service rate, which is the recip-

rocal of the average service time per unit of task volume
on edge server sxi, j . The stronger the processing power
of the edge server sxi, j , the larger the value μ

(
sxi, j

)
. As

a result, the average waiting time dEwt
xi, j on edge server

sxi, j is smaller.
d proc
i, j represents the processing time of the task ti, j ,

and it is calculated as follows:

d proc
i, j = t si zei, j

fxi, j
, (8)

where fxi, j represents the processing capacity of edge
server sxi, j .

dtrai, j represents the transmission time of task ti, j , and
it is calculated by

dtrai, j =

⎧⎪⎨
⎪⎩

dtrai,ui
+ dtraui ,sxi, j

, sxi, j is in current park,

dtrai,ui
+ dtraui ,ui0

+ ∑l−1
s=0 d

tra
uis ,uis+1

+ dtraul ,sxi, j
,

otherwise,

(9)
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where dtrai,ui
represents the transmission time of task ti, j

from the terminal device to UPF device ui , dtraui ,sxi, j
rep-

resents the transmission time of task ti, j from UPF ui
to edge server sxi, j , d

tra
ui ,ul represents the transmission

time of task ti, j from UPF ui to UPF ul . The transmis-
sion time dtrax,y for task ti, j between different nodes x
and y can be expressed as:

dtrax,y =
⎧⎨
⎩

t si zei, j
Bwan , ti, j is transmitted by wires,

t si zei, j wx,y

Blan , ti, j is transmitted wirelessly,
(10)

where Bwan and Blan represent the bandwidth sizes
for wireless and wired transmission, respectively.

3.4 Quality of Service

The quality of service (QoS) provided by the operator is
closely related to the completion time of tasks [36]. This
article measures the quality of service of the operator
in terms of the total time taken to complete tasks. The
total time T tol for completing all tasks can be expressed
as

T tol =
∑n

i=1

∑qi

j=1
d f in
i, j . (11)

3.5 Energy Consumption of Edge Server

The energy consumption of servers is affected by mul-
tiple factors, such as the status of the memory, CPU,
network card, and so on, where the CPU is the most
significant energy-consuming device [37]. According
to the calculation method in reference [77], the energy
consumption ek of edge server sk from time t1 to t2 is
calculated by

ek =
∫ t2

t1
pk dx (12)

pk = pide + (pmax − pide) × ϕk (13)

ϕk = ω(sk)

ωmax
(14)

ω(sk) =
∑n

i=1

∑qi

j=1
(xi, j = k) (15)

where pk is the power of server sk , pide represents
the power when sk is idle, and pmax represents the
power when sk is fully operational. ϕk represents the
utilization efficiency of sk , and its value can be derived
from formula (14). ω (sk) represents the workload of
sk , and ωmax represents the maximum workload of sk .

The total energy consumption Etol of all edge
servers is calculated as follows

Etol =
∑m

k=1
ek . (16)

The total cost mcost caused by the energy consump-
tion of edge servers is computed by

mcost = pe × Etol , (17)

where pe represents the electricity price per kilowatt-
hour.

3.6 Revenue for Operators

To better simulate the revenue of operators, we adopts
a payment mechanism with penalties. The actual pay-
ment preali, j obtained by the edge node processing task
ti, j is calculated by

preali, j =

⎧⎪⎨
⎪⎩
tvali, j , d f in

i, j ≤ t idei, j

tvali, j − σ(d f in
i, j − t idei, j ), t idei, j < d f in

i, j ≤ tmax
i, j

0, d f in
i, j > tmax

i, j

(18)

σ = tvali, j

tmax
i, j − t idei, j

, (19)

where σ is the proportion by which the reward is
reduced represents the actual reward obtained by edge
servers. When d f in

i, j < t idei, j , operators receive full

reward; when t idei, j < d f in
i, j ≤ tmax

i, j , operators’ reward
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will be reduced; when d f in
i, j > tmax

i, j , the service deterio-
rates severely and operators will not receive any reward.

The total revenue ψ from processing tasks can be
represented as

ψ = min − mcost (20)

min =
∑n

i=1

∑qi

j=1
preali, j (21)

where min is the total revenue of operators.

3.7 Problem Formulation

Given the 5G EC system previously referred, the prob-
lem is described in mathematical language as follows

P : Minimize (−ψ, T tol) = (pe
∑m

k=1
ek

−
∑n

i=1

∑qi

j=1
preali, j ,

∑n

i=1

∑qi

j=1
d f in
i, j ), (22)

s.t. C1 : ∑m
k=1 (xi, j =k)=1, 1≤ i ≤n, 1≤ j ≤ qi ,

C2 : d f in
i, j ≤ tmax

i, j , 1 ≤ i ≤ n, 1 ≤ j ≤ qi ,
C3 : ω(sk) ≤ ωmax , 1 ≤ k ≤ m,

where constraint C1 ensures that a task can be only
assigned to one edge server, C2 is the completion time
constraint of tasks, and constraint C3 indicates that the
workload of an edge server does not outstrip its maxi-
mum load. That is, the objective is to minimize the total
task completion time and maximize the operator profit
under time and workload constraints.

4 The Proposed Algorithm

Inspired by the BWO algorithm which was first pro-
posed by Zhong et al. [38] in 2022, we design the
improved multi-objective BWO algorithm to work out
the problem above. We will present the details of the
IMOBWO algorithm below.

4.1 Constructions of the Beluga Whales and the
Fitness Function

For our studied problem, its solution is the edge server
assignment of all tasks generated by all industrial parks.

Therefore, each beluga whale is set to be the edge server
assignment of all tasks. We consider all tasks generated
in one time slot. Assume that there are total d tasks, and
then the beluga whale i can be expressed as

Xi = (xi,1, xi,2, · · · , xi,d), (23)

where xi, j ∈ {1, 2, ...,m} represents the edge server
assignment of task i . Also, Xi is called the position of
the beluga whale i .

To evaluate the quality of each solution, we use (11)
and (20) to compute the fitness function value. That is,
the fitness function value of the solution Xi is expressed
as

f (Xi ) = ( f1(Xi ), f2(Xi )), (24)

where f1(Xi ) and f2(Xi ) are computed by (11) and
(20), respectively.

4.2 The Method to Compute the Best Beluga Whale
Position in a Beluga Whale Population

Suppose that there are h beluga whales in a beluga
whale population, and we will introduce how to obtain
the best beluga whale in a given beluga whale popula-
tion. First, apply the non-dominated sorting strategy for
the multi-objective problem to get the optimal solution
set. Second, calculate the number of beluga whales in
the optimal solution set, denoted by k. Third, calculate
the centroid C = ( f1(Xc), f2(Xc)) of of the fitness
value for the optimal solution set by

C = ( f1(Xc), f2(Xc))

=
(

1

k

∑k

i=1
f1(Xi ),

1

k

∑k

i=1
f2(Xi )

)
,

(25)

Finally, compute the best beluga whale position Xbest

by

Xbest = min{D(X1), D(X2), ..., D(Xk)}, (26)

D(Xi ) =
√

( f1(Xi ) − f1(Xc))2 + ( f2(Xi ) − f2(Xc))2, (27)

That is, the beluga whale position that is closest to the
centroid is the best beluga whale position.
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Algorithm 1 shows the strategy for computing the
the best beluga whale position in a beluga whale pop-
ulation.

Algorithm 1 The method to compute the best beluga
whale position.
Require: The size of the beluga whale population h, the posi-

tions Xt
1, X

t
2, ..., X

t
h of beluga whales in the population for

the t th iteration.
Ensure: The best beluga whale position Xt

best .
1: for i ← 1 to h do
2: Calculate the fitness value f(Xt

i ) by (24);
3: end for
4: Calculate the optimal solution set by the non-dominated sort-

ing strategy;
5: Calculate the number of whales in the optimal solution set;
6: Calculate the centroid of the fitness value of the optimal solu-

tion set by (25);
7: Calculate the best beluga whale position by (26);

4.3 Ways for Updating Positions of Beluga Whales

Beluga whales can change their positions in three ways:
swimming, predation, and migration. Which way is
taken to update the positions is determined by the bal-
ance factor B f and the fall factor W f . They are com-
puted by

B f = B0

(
1 − t

2Tmax

)
(28)

W f = 0.1 − 0.05t

Tmax
, (29)

where B0 is a randomly generated value from the inter-
val (0,1), t is the current iteration number, as well as
Tmax represents the maximum iteration number.

4.3.1 Position Updation by Swimming

When beluga whales are swimming, their positions are
changed by

xt+1
i, j = xti,p j

+
(
xtr,p − xti,p j

)
(1 + r1) sin (2πr2) ,

∀ j ∈ [1, d] and j%2 = 1,

(30)

xt+1
i, j = xti,p j

+
(
xtr,p − xti,p j

)
(1 + r1) cos (2πr2) ,

∀ j ∈ [1, d] and j%2 = 0,

(31)

where xt+1
i, j is the position of the beluga whale i in the

dimension j in the iteration time t + 1. p j , r and p are
random integers, p j ∈ [1, d], r ∈ [1, h], p ∈ [1, d]. r1

and r2 are both random numbers from the interval (0,
1).

Algorithm 2 is the process of updating the positions
of whales during their swimming phase.

Algorithm 2 The method of updating positions by
swimming.
Require: h, Xt

1, X
t
2, ..., X

t
h , the individual dimension d.

Ensure: Xt+1
1 , Xt+1

2 , ..., Xt+1
h after the t th iteration.

1: Generate integer r from [1, h];
2: Generate r1, r2 from (0, 1);
3: for i ← 1 to h do
4: Produce integers p and p j from [1, d];
5: Update the position of beluga whale i by (30) and (31);
6: end for

4.3.2 Position Updation by Predation

When beluga whales prey, their positions are changed
by

Xt+1
i = r3X

t
best − r4X

t
i + C1LF

(
Xt
r − Xt

i

)
, (32)

where Xt+1
i is the position of beluga whale i in the

iteration time t + 1. r ∈ [1, h], is a random integer.
Xt
best is the best whale position in the t th iteration.

r3 and r4 are both random numbers from the interval
(0, 1).C1 is the random jump intensity, used to measure
Levy flight intensity, and LF is the Levy flight function.
They are computed by

C1 = 2r4

(
1 − t

Tmax

)
, (33)

LF = 0.05 × u × σ

|v|1/β
, (34)
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σ =
(

�(1 + β) × sin (πβ/2)

�((1 + β) /2) × β × 2(β−1)/2

)1/β

, (35)

where v and u are random numbers following normal
0-1 distributions. β is a constant.

Algorithm 3 is the process of updating positions of
white whales during their hunting phase.

Algorithm 3 The method of updating positions by pre-
dation.
Require: h, Xt

1, X
t
2, ..., X

t
h , Xt

best .
Ensure: Xt+1

1 , Xt+1
2 , ..., Xt+1

h .
1: Generate r3, r4 from (0, 1);
2: Calculate C1 by (33);
3: Calculate LF by (34) and (35);
4: for i ← 1 to h do
5: Generate integer r from [1, h];
6: Calculate the position of beluga whale i by (32);
7: end for

4.3.3 Position Updation by Migration

When white whales migrate, the updation of their posi-
tions are computed by

Xt+1
i = r5X

t
i − r6X

t
r + r7Cstep, (36)

Cstep = (ub − lb) exp (−C2t/Tmax ) , (37)

C2 = 2W f × h, (38)

where r7, r6 and r5 are random values from the interval
(0, 1). Cbest is the stride of a falling whale. C2 is the
step factor associated to the fall probability of whale
and population size. lb and ub are the lower and upper
bounds of the variables in the problems, respectively.

Algorithm 4 describes the process for updating posi-
tions of beluga whales during their migration phase.

In response to the problem of falling into local
optima during the optimization process of beluga
whales, this paper adds a mutation operation during

Algorithm 4 The method of updating positions by
migration.
Require: h, Xt

1, X
t
2, ..., X

t
h , lb, ub.

Ensure: Xt+1
1 , Xt+1

2 , ..., Xt+1
h .

1: Generate r5, r6, and r7 from (0, 1);
2: Generate integer r from [1, h];
3: Calculate C2 by (38);
4: for i ← 1 to h do
5: Calculate Cstep according to formula (37);
6: Calculate the position of beluga whale i by (36);
7: end for

the search process for the best position to strengthen
the ability of algorithm to escape local optima. Specifi-
cally, the mutation is operated as follows: (1) calculate
the mutation factor pt ; (2) when the randomly gener-
ated mutation probability is greater than the mutation
factor, calculate the number of beluga whales for muta-
tion and perform mutation operation on the mutated
whales.

The mutation factor pt and the number of mutated
whales Nt are computed by

pt = p0 × (Tmax − t)

Tmax
, (39)

Nt = l0 × h ×
(

1 − t

Tmax

)
, (40)

where p0 is the mutation rate and l0 is the scaling factor.
When the selected individual beluga whale i under-

goes a mutation, its position is updated as follows

xt+1
i,q = lb + r5(ub − lb), (41)

where xt+1
i,q represents the mutation of offspring i in a

random dimension q, q ∈ [1, d].
Algorithm 5 shows the process of mutation opera-

tion of beluga whales.

4.4 The IMOBWO Algorithm

Algorithm 6 shows how the improved multi-objective
beluga whale optimization algorithm works. Since the
time complexities of Algorithms 1 to 5 are O(hnqm +
h2nq), O(hnq), O(hnq), O(hnq), and O(hnqm), the
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Algorithm 5 The mutation operation.
Require: h, Xt

1, X
t
2, ..., X

t
h , ub, lb, p0, and l0.

Ensure: Xt+1
1 , Xt+1

2 , ..., Xt+1
h .

1: Calculate pt by (39);
2: Generate e from (0, 1);
3: Generate integer r from [1, h];
4: if e < pt then
5: for i ← 1 to h do
6: Calculate f (Xi ) by (24);
7: end for
8: end if
9: Calculate Nt by (40);
10: Update the positions of Nt randomly selected beluga whales

by (41);

time complexity of Algorithm 6 is Tmax × (O(hnqm+
h2nq)+O(hnq)+O(hnq)+O(hnq)+O(hnqm)) =
O(Tmaxhnq(h + m)), where h, n,m, Tmax , q are the
size of population, the number of industrial parks, the
number of edge servers, the maximum number of tasks
generated in one time slot in all parks, and the maxi-
mum number of iterations, respectively.

Algorithm 6 The IMOBWO algorithm.
Require: h, Tmax , d.
Ensure: The globally best beluga whale position Xbest and its

fitness value f (Xbest ) = ( f1(Xbest ), f2(Xbest )).
1: Initialize the beluga whale population X0

1, X0
2, ..., X0

h , t = 0,
Xbest ;

2: while t < Tmax do
3: Call Algorithm 1 to compute the fitness values of all beluga

whales and the best whale position Xt
best in current iteration;

4: if Xt
best is better than Xbest then

5: Xbest ← Xt
best ;

6: end if
7: Calculate B f by (28);
8: Calculate W f by (29);
9: if B f > 0.5 then
10: Call Algorithm 2 to renew the beluga whale positions;
11: end if
12: if B f < 0.5 then
13: Call Algorithm 3 to renew the beluga whale positions;
14: end if
15: if B f < W f then
16: Call Algorithm 4 to renew the beluga whale positions;
17: end if
18: Call Algorithm 5 to renew the beluga whale positions;
19: t = t + 1;
20: end while

4.5 Validation of the Effectiveness for the IMOBWO
Algorithm

To verify the effectiveness of IMOBWO, we apply
the widely used multi-objective test functions ZDT1-
ZDT4 and ZDT6 proposed in 2000 for testing, choose
the MOGA algorithm [39] as well as the MOPSO algo-
rithm [40] as comparison algorithms, and take the spac-
ing (SP) and error ratio (ER) as evaluation indicators,
like many other related work. The maximum number
of iterations for each algorithm on each test function
is 1000, and the experimental results show that each
algorithm runs 20 times on the same test function.

(1) SP: The standard deviation used to measure the
distance between each solution and other solutions
is an important indicator for evaluating solution
differences. It is calculated as follows:

SP =
√

1

n − 1

∑n

i=1
(d̄ − di )

2
, (42)

where di is the Euclidean distance between the i-th
solution and other solutions, d̄ is the average of all
di , and n is the number of elements in the solution
set. The smaller the SP value, the more uniform
and diverse the solution set.

(2) ER: Used to indicate the percentage of optimal
solutions. The smaller the ER value, the higher the
proportion of the obtained optimal solution set in
the Pareto front. It is calculated as follows:

ER = 1

n

∑n

i=1
ei . (43)

When the i-th non dominated solution is in the true
Pareto front, ei = 0; otherwise, ei = 1.

Tables 1 and 2 show the SP and ER values of our
IMOBWO algorithm compared to other comparative
algorithms on five given test functions. The underlined
part is the optimal value. It can be seen that IMOBWO
achieves 5 optimal mean and standard deviation val-
ues on the SP indicator, and obtains 4 optimal mean
values and 4 optimal standard deviations on the ER
indicator. They indicate that the solutions computed
by the IMOBWO algorithm have better diversity and
convergence on the whole. This is because IMOBWO
improves the search strategy for the best beluga position
and adds the mutation operation. At the same time, the
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Table 1 Comparison of SP evaluation indicators between our algorithm and other multi-objective algorithms

MOGA MOPSO IMOBWO
Test function Average value Standard deviation Average value Standard deviation Average value Standard deviation

ZDT1 6.16 × 10−2 5.94 × 10−4 7.08 × 10−2 5.94 × 10−4 9.76 × 10−3 9.73 × 10−5

ZDT2 1.83 × 10−2 2.03 × 10−3 1.76 × 10−2 4.96 × 10−3 7.38 × 10−3 1.62 × 10−4

ZDT3 8.87 × 10−2 5.73 × 10−2 9.47 × 10−2 5.87 × 10−2 7.07 × 10−3 1.91 × 10−4

ZDT4 3.04 × 10−2 1.67 × 10−3 3.96 × 10−2 1.93 × 10−3 8.71 × 10−3 1.23 × 10−4

ZDT6 4.06 × 10−2 1.95 × 10−2 4.96 × 10−2 2.43 × 10−2 8.32 × 10−3 8.93 × 10−4

probability of mutation occurring in IMOBWO gradu-
ally decreases with the increase of iteration times, mak-
ing IMOBWO has good convergence.

5 Simulation and Evaluation

This section conducts experiments to assess the effi-
ciency and effectiveness of our presented IMOBWO
algorithm by comparing with the Random algorithm
which randomly allocates a task to an edge server, the
Greedy algorithm which allocates a task to the edge
server that makes the task have the minimum comple-
tion time and energy consumption, the MOGA algo-
rithm [39], and the MOPSO algorithm [40].

5.1 Experimental Parameter Setting

In order to make the experiment more realistic, this
article investigated the server rental prices [41–43],
commercial electricity prices, and key indicators of
5G networks of different cloud service operators. The
rental price of servers is influenced by factors such
as CPU memory configuration and server area nodes,
usually ranging from several thousand to several hun-
dred thousand RMB per year. For example, the Alibaba

Cloud GPU computing type GN6V cloud server (8-
core 60GB, equipped with Intel Xeon (Skylake) Plat-
inum 8163 CPU, with a full state power of 150W),
priced at 26.50RMB/h, with a maximum public net-
work bandwidth (transmission network bandwidth on
the Internet, used to connect different data centers or
user devices) of 100Mbps, and an internal network
bandwidth (network transmission bandwidth used for
communication between servers in the same data cen-
ter) of 1Gbps; the commercial electricity price is 0.8433
RMB/kWh [44]. Therefore, the input-output ratio of
operators is approximately 1:150. After understanding
the above situation, the basic experimental parameters
are set as shown in Table 3. In addition, the initial pop-
ulation size is set to be 40 [45, 46], and the maximum
number of iterations is set to 400.

To verify the performance of our presented algo-
rithm under different task numbers and maximum com-
pletion time constraints, this paper conducts three sets
of comparative experiments as following:

1. The first set of experiments: Set the number of edge
servers to be 10, the task number to be 100, and
the maximum task completion time range to be
[150,750] ms. The aim is to test the convergence
of algorithms MOGA, MOPSA, and IMOBWO at

Table 2 Comparison of ER evaluation indicators between our algorithm and other multi-objective algorithms

MOGA MOPSO IMOBWO
Test function Average value Standard deviation Average value Standard deviation Average value Standard deviation

ZDT1 9.23 × 10−3 1.34 × 10−2 8.14 × 10−3 2.52 × 10−3 7.93 × 10−4 1.37 × 10−4

ZDT2 9.57 × 10−3 3.66 × 10−3 9.19 × 10−3 2.14 × 10−3 5.45 × 10−3 1.28 × 10−5

ZDT3 2.69 × 10−2 8.32 × 10−3 2.36 × 10−2 7.56 × 10−3 9.76 × 10−3 9.72 × 10−3

ZDT4 2.37 × 10−2 4.87 × 10−3 2.67 × 10−2 4.13 × 10−3 2.87 × 10−2 2.47 × 10−3

ZDT6 2.75 × 10−3 2.65 × 10−3 2.57 × 10−3 1.87 × 10−3 1.98 × 10−3 2.09 × 10−3
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Table 3 Experimental parameter

Parameter Description Value

fi Server processing capacity [50, 75]GB

pmax Server maximum power 150W

Bwan wireless network bandwidth 30Mbps

Blan wired network bandwidth 300Mbps

t si ze task size [1, 3]MB

tval task value [1, 5]RMB

pe energy consumption price 0.15RMB/s

τ time interval 1s

dide Network idle latency 3ms

wi, j distance coefficient [2, 4]

different iterations. The maximum number of iter-
ations is set based on this set of experiments.

2. The second set of experiments: Set the number of
edge servers to be 10, the maximum completion
time of tasks to be 400ms, and the total number of
tasks to change from 20 to 100. The aim is to verify
the performance of the presented algorithm under
different task quantities.

3. The third set of experiments: Set the total number
of tasks to be 100, the number of edge servers to
be 10, and the maximum completion time of the
task to change from 200ms to 600ms. The aim is
to verify the performance of the presented algo-

rithm under different maximum task completion
time constraints.

5.2 Simulation Experimental Results

5.2.1 The Result and Discuss for the First Set of
Experiments

Figure 2 shows the changes of total completion time
of tasks and total revenue for operators computed by
algorithms MOGA, MOPSO, and IMOBWO when the
iteration times increase. From Fig. 2a, it is observed that
when the iteration times larger than 80, IMOBWO can

Fig. 2 The total completion time of tasks (a) and the total revenue for operators (b) when the iteration number increases computed by
algorithms
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get the minimum total task completion time among all
algorithms. When the iteration times larger than 350,
all three algorithms can get a stable total task comple-
tion time. From Fig. 2b, it is observed that when the
iteration times larger than 230, IMOBWO can calcu-
late the maximum total revenue for operators among all
algorithms. When the iteration times larger than 350,
all three algorithms can get a stable total revenue for
operators. Thus, we set the maximum number of itera-
tions to be 400 in the following two sets of experiments.
Obviously, our proposed IMOBWO algorithm is con-
vergent.

5.2.2 The Result and Discuss for the Second Set of
Experiments

Figure 3 displays the changes of total completion
time of tasks and total revenue for operators computed
by algorithms Random, Greedy, MOGA, MOPSO, and
IMOBWO when the total number of tasks increases. It
is observed that when the task number increases, total
completion time of tasks and total revenue for oper-
ators obtained by all five algorithms increase, where
IMOBWO can achieve the minimum total completion
time of tasks and the maximum total revenue for opera-
tors. This is because more tasks will consume more total
task completion time, and more tasks will lead to more
total revenue for operators. Table 4 lists the reduction
percentage of the total completion time of tasks and the
improvement percentage of the total revenue for oper-
ators by comparing our proposed IMOBWO and four
baseline algorithms for the values in Fig. 3.

Figure 4 shows the maximum number of tasks, the
minimum number of tasks, and the maximum number
difference of tasks on one edge server computed by
algorithms Random, Greedy, MOGA, MOPSO, and
IMOBWO when the total number of tasks increases.
It is observed that when the task number increases,
IMOBWO can achieve the minimum maximum num-
ber of tasks, the maximum minimum number of tasks,
and the minimum maximum number difference of
tasks among all five algorithms. Thus, IMOBWO can
achieve better load balancing.

5.2.3 The Result and Discuss for the Third Set of
Experiments

Figure 5 displays the changes of total completion
time of tasks and total revenue for operators computed

by algorithms Random, Greedy, MOGA, MOPSO,
and IMOBWO when the maximum completion time
increases. It is observed that when the maximum com-
pletion time increases, IMOBWO can achieve the min-
imum total completion time of tasks and the maximum
total revenue for operators among all five algorithms.
Table 5 lists the reduction percentage of the total com-
pletion time of tasks and the improvement percentage
of the total revenue for operators by comparing our pro-
posed IMOBWO and four baseline algorithms for the
values in Fig. 5.

Figure 6 shows the maximum number of tasks, the
minimum number of tasks, and the maximum num-
ber difference of tasks on one edge server computed
by algorithms Random, Greedy, MOGA, MOPSO,
and IMOBWO when the maximum completion time
increases. It is observed that when the task number
increases, IMOBWO can achieve the minimum maxi-
mum number of tasks, the maximum minimum num-
ber of tasks, and the minimum maximum number
difference of tasks among all five algorithms. Thus,
IMOBWO can achieve better load balancing.

On the whole, our proposed IMOBWO algorithm is
high efficient.

6 Conclusion

This article designs a multi-objective optimization
algorithm, the improved beluga whale optimization
algorithm to deal with the resource allocation prob-
lem in EC of 5G network. The objective is to minimize
the total completion time of tasks and maximize the
total profit for operators. The proposed algorithm takes
four operations including whale swimming, whale pre-
dating, whale migrating, and whale mutation to update
the solutions of the studied problem. Simulation exper-
iments demonstrate that our proposed algorithm can
achieve good total task completion time, total operator
revenue, and loading balance. Additionally, we have
yet to verified the advantages of our proposed algo-
rithm in broader and more realistic networks, different
types of tasks (such as latency-sensitive tasks and batch
tasks), different edge computing environments, and dif-
ferent load conditions. When these conditions change,
new problems may arise. At this point, our proposed
algorithm may not be the best suitable to solve these
problems. In the future, we will develop more general
algorithms to solve resource allocation problems under
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Fig. 3 The total completion time of tasks (a) and the total revenue for operators (b) when the task number increases computed by
algorithms

Table 4 The reduction percentage of the total completion time of tasks and the improvement percentage of the total revenue for
operators by comparing our proposed IMOBWO and four baseline algorithms for the values in Fig. 3

IMOBWO vs Random IMOBWO vs Greedy IMOBWO vs MOGA IMOBWO vs MOPSO
Task Number Time Revenue Time Revenue Time Revenue Time Revenue

20 8.96% 67.27% 5.22% 19.48% 3.59% 9.52% 3.21% 2.22%

40 11.23% 64.29% 4.18% 16.46% 1.29% 15.00% 1.18% 5.75%

60 8.53% 44.62% 7.82% 11.90% 1.04% 17.50% 0.98% 9.30%

80 9.34% 20.25% 8.86% 21.79% 2.48% 9.20% 1.87% 10.47%

100 11.12% 28.77% 10.11% 16.05% 3.80% 8.05% 3.47% 6.82%

Fig. 4 The maximum tasks (a), the minimum tasks (b), and the maximum number difference of tasks (c) on edge servers when the task
number increases computed by algorithms
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Fig. 5 The total completion time of tasks (a) and the total revenue for operators (b) when the maximum completion time increases
computed by algorithms

Table 5 The reduction percentage of the total completion time of tasks and the improvement percentage of the total revenue for
operators by comparing our proposed IMOBWO and four baseline algorithms for the values in Fig. 5

IMOBWO vs Random IMOBWO vs Greedy IMOBWO vs MOGA IMOBWO vs MOPSO
Maximum Time Time Revenue Time Revenue Time Revenue Time Revenue

200 7.38% 146.15% 1.89% 166.67% 1.89% 88.24% 1.86% 54.36%

300 6.19% 131.45% 2.21% 171.43% 2.21% 72.73% 1.89% 43.15%

400 7.43% 30.91% 1.73% 27.12% 1.73% 14.29% 1.52% 12.50%

500 7.06% 11.48% 1.58% 16.67% 1.58% 7.69% 1.26% 3.26%

600 7.28% 21.74% 1.65% 18.99% 1.65% 8.05% 1.39% 5.56%

Fig. 6 The maximum tasks (a), the minimum tasks (b), and the maximum number difference of tasks (c) on edge servers when the
maximum completion time increases computed by algorithms
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different network conditions, types of tasks, edge com-
puting environments, and load conditions. Moreover,
there are many other factors that we do not consider
in this article, such as edge caching, user experience,
energy efficiency, etc., which we will investigate in our
next work.
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