
Journal of Systems Architecture 160 (2025) 103360

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Collaborative optimization of offloading and pricing strategies in dynamic
MEC system via Stackelberg game
Jing Mei a, Cuibin Zeng a, Zhao Tong a,1,∗, Longbao Dai a, Keqin Li b,2

a College of Information Science and Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
b Department of Computer Science, State University of New York, New Paltz, NY, 12561, USA

A R T I C L E I N F O

Keywords:
Mobile edge computing
Energy harvesting
Lyapunov optimization
Stackelberg game

A B S T R A C T

The rapid advancement of 5G technology has indirectly propelled the growth of connected devices within the
Internet of Things (IoT). Within the IoT domain, mobile edge computing (MEC) has demonstrated potential in
task processing. However, as computational services expand, the reliable determination of user offloading
strategies and the rational establishment of service prices offered by servers to users continue to present
challenging research directions. The primary focus of this paper revolves around task offloading in the MEC
system, encompassing numerous user terminal devices that support energy harvesting (EH), a MEC server and
a central cloud server. The optimization goals are to maximize the utilities for both users and the MEC server
by adjusting offloading and pricing strategies. To guarantee the task queue’s stability within the system and
achieve a reasonable allocation of system resources, we propose a dynamic task offloading approach rooted in
Lyapunov optimization theory and Stackelberg game theory. In this algorithm, the MEC server takes on the role
of the leader, while each user terminal device acts as the follower. Aiming at the game equilibrium existence of
the algorithm, a series of mathematical analysis is carried out. Additionally, we conduct extensive simulation
experiments to validate the proposed algorithm’s effectiveness. The proposed algorithm achieves improvements
in user utility, with a 6.43% increase compared to the average time-constrained task offloading (ATCTO)
scheme, a 61.80% improvement over the local-only processing (LOP) scheme, and a 23.97% enhancement
over the genetic algorithm (GA) scheme. Meanwhile, it achieves a task queue backlog reduction of 50.00%
compared to ATCTO, 70.00% compared to LOP and 15.28% compared to GA.
1. Introduction

With the proliferation of 5G technology, its high speed and low
latency enable real-time connectivity, and the IoT stands as one of
the beneficiaries in the era of 5G. According to [1], it is forecasted
that the number of IoT devices will exceed 75 billions by 2025. This
explosive growth will significantly amplify the scale of mobile data
traffic. Effectively managing the surge in mobile data traffic can be
achieved through mobile data offloading [2]. However, relying solely
on cloud computing is difficult to improve user experience quality.
It is the increasing user demand for quality of experience that drives
the development of MEC. MEC moves computing power and resources
closer to users, usually on edge devices of the network. This aids in
reducing data transmission latency and supporting applications with
strong real-time requirements. Moreover, edge data processing reduces
the need to transmit sensitive data to remote servers, thereby enhancing

∗ Corresponding author.
E-mail addresses: jingmei1988@163.com (J. Mei), zeng1941183190@gmail.com (C. Zeng), tongzhao@hunnu.edu.cn (Z. Tong), awaken6758@gmail.com

(L. Dai), lik@newpaltz.edu (K. Li).
1 Member, IEEE.
2 Fellow, IEEE.

data privacy and security.
Energy consumption for local computing and wireless transmission

tasks on user terminal devices (e.g., wearable devices, tablets, and
smartphones) is sourced from their internal batteries. For convenience,
these user terminal devices will be referred to as ‘‘users’’. Due to limited
size of users, long lifetime battery might not be appropriate, while
smaller-capacity battery may require frequent replacements, causing
significant inconvenience. Fortunately, in recent years, EH technologies
have garnered significant attention. These technologies enable users
to harvest energy from the nature (e.g., solar), and store it in bat-
teries. By integrating rechargeable batteries with energy harvesting
technologies, the frequency of battery replacements can be notably
reduced. In the future, the IoT could potentially integrate various
energy harvesting methods [3]. Therefore, the integration of energy
harvesting technologies into MEC holds practical significance.
vailable online 12 February 2025
383-7621/© 2025 Elsevier B.V. All rights are reserved, including those for text and

https://doi.org/10.1016/j.sysarc.2025.103360
Received 3 September 2024; Received in revised form 7 January 2025; Accepted 3
data mining, AI training, and similar technologies.

1 January 2025

https://www.elsevier.com/locate/sysarc
https://www.elsevier.com/locate/sysarc
mailto:jingmei1988@163.com
mailto:zeng1941183190@gmail.com
mailto:tongzhao@hunnu.edu.cn
mailto:awaken6758@gmail.com
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.sysarc.2025.103360
https://doi.org/10.1016/j.sysarc.2025.103360

Journal of Systems Architecture 160 (2025) 103360J. Mei et al.

a
s
d
G
p

w
a

(
i
t

o
s

o
t
w
s

s
m

t

e

s

p
q

i
g
c

t
c

w
t
t

r

t

d
t
g

In order to flexibly respond to the changing demands between user
devices and MEC server, this study considers a dynamic MEC system.
In this system, factors such as the arrival of tasks and energy collection
will change with the change of time. The system can dynamically adjust
the task offloading strategy and the service pricing strategy of the
MEC server according to real-time conditions, thereby improving user
utility and MEC server utility. The authors considered the dynamic MEC
system in [4], but did not set the services provided by the MEC server
s paid services. In contrast, [5] explored the pricing issue in a dynamic
ystem, but the study implemented a unified service pricing for all user
evices and failed to consider the differences between user devices.
iven the heterogeneity of user devices, we introduced a differentiated
ricing strategy.

In this paper, we explore a dynamic MEC system enabled with EH,
hich is composed of multiple user terminal devices, a MEC server, and
 central cloud. Each user possesses the capability to harness energy

from the surrounding natural environment and store it in their built-in
rechargeable batteries. Users can offload tasks to the MEC server when
needed, and the MEC server can further offload tasks to the central
cloud as required. In this study, the MEC server’s computational capac-
ity is limited, necessitating revenue generation through user charges.
Generally, the energy consumed by users for wireless transmission tasks
is lower than that required for performing equivalent-sized local com-
puting tasks. In order to decrease energy consumption, users are more
likely to opt for the method of remote task offloading. Nevertheless, due
to the fact that the MEC server does not offer services free of charge,
each user needs to strike a balance between task offloading and service
pricing. The main purpose of our research is to determine the optimal
distribution of tasks between local computing and remote offloading
for users, while also determining suitable service pricing for individual
users for the MEC server.

Given that the optimization objective of this paper involves a dy-
namic long-term MEC scenario, i.e., the parameters and conditions
e.g., energy harvesting, task arrival) may change over time, mak-
ng the solution of the problem extremely challenging. To simplify
he problem, the authors in [5–7] focused their target optimization

on a short time slot, defined as a brief period during which sys-
tem conditions are assumed to be relatively stable. However, focusing
nly on a single time slot may cause system instability problems,
ince it is difficult to cope with rapid changes. To overcome this

difficulty, we employ Lyapunov optimization theory to transform the
long-term optimization problem into a sequence of short-term optimiza-
tion problems, enabling the achievement of long-term optimization
bjectives through the resolution of multiple short-term optimization
asks. To enhance the efficiency and rationality of resource allocation,
e introduce Stackelberg game theory. In this framework, the MEC

erver acts as a leader, formulating differentiated pricing strategies to
guide the offloading decisions of multiple user devices. By combin-
ing Lyapunov optimization theory with Stackelberg game theory, we
can effectively address the complexities in dynamic environments and
achieve long-term optimization objectives.

This research work makes the following main contributions:

• We explore task offloading and pricing in a multi-user environ-
ment with a single MEC server, incorporating energy harvesting
(EH) for users to utilize renewable energy for task computation.

• We utilize Lyapunov optimization theory to adapt to external
changes by breaking down long-term goals into short-term objec-
tives, stabilizing the task queue while optimizing performance.

• We propose a Stackelberg game model for task offloading and
pricing, where users consider energy use, queue length, and pric-
ing, while the MEC server applies differentiated pricing based on
offloaded tasks.
2

t

• We account for the practical limitation of the MEC server’s com-
puting capacity within each time slot, determined by its CPU
frequency. If the server cannot process all accumulated tasks from
users, it requests processing from the central cloud server at a
cost.

Next, we will introduce the remaining structure of this paper.
Section 2 delves into the related work. Section 3 defines the system
model and presents the optimization problems. Section 4 describes
the analysis and solution of the objective optimization problems. Sub-
equently, we introduce a multi-device task offloading and pricing
echanism algorithm (MDTOPMA) in Section 5. Section 6 evaluates

the algorithm’s performance through experiments. The final section
concludes by summarizing the contributions of this paper.

2. Related work

Numerous investigations have delved into the domain of computa-
ion offloading within the context of MEC. Ning et al. [8] presented

an energy-efficient scheduling framework for vehicle networking with
support for Multi-Access Edge Computing, aimed at minimizing the
nergy consumption of roadside units (RSUs) while meeting task la-

tency requirements. The authors proposed a heuristic algorithm to
address this issue. Mao et al. [9] focused on the joint optimization
of execution delay and device energy consumption, proposing a low-
complexity suboptimal algorithm based on an alternating minimization
strategy. The algorithm minimized the weighted sum of execution
delay and device energy consumption by adjusting task offloading
cheduling and transmission power allocation. Zhao et al. [10] pro-

posed an energy-efficient offloading algorithm to save mobile device
energy while meeting application response time requirements. Chen
et al. [11] investigated energy-efficient task offloading in MEC and
roposed a dynamic offloading algorithm that guarantees the average
ueue length. Li et al. [12] proposed a computational offloading mech-

anism based on a two-stage Stackelberg game and used two dynamic
terative algorithms to solve the utility optimization problem in the
ame. Although the above studies have their own merits, they do not
onsider the computing power of the device itself.

To overcome this deficiency, in recent years, many studies have
begun to consider introducing local computing resources. Based on
the size of the offloaded data, Hu et al. [13] determined the tasks
hat necessitate local handling. They proposed a MEC system energy
onsumption optimization problem and solved it in two stages. Wang

et al. [14] divided the computing task into two parts, one of which
ould be used for local computing. Their research intended to minimize

he AP’s overall energy consumption, however they did not consider
he energy consumption resulting from the MEC server’s computational

tasks. They omitted for the energy consumption consumed by the MEC
server during task processing.

To more comprehensively address issues such as task offloading and
energy management, and to achieve optimal performance with limited
esources, game theory is an appropriate approach. There is currently

a lot of work taking game theory into MEC. Li et al. [6] described the
interaction between mobile device (MD) and edge cloud server (ECS)
in the process of computing load as a Stackelberg game and confirmed
he equilibrium of this game. The authors in [5] proposed an optimal

resource purchase strategy with a set price, and proposed the optimal
pricing for edge cloud computing resources utilizing the Stackelberg
game model. Liu et al. [7] proposed the problem of transmission
power offloading optimization and edge cloud pricing in mobile edge
computing systems, and adopted the offloading strategy and price
control (OSPC) algorithm based on Stackelberg game to solve it. Bishoyi
et al. [15] presented a distributed algorithm utilizing the alternating
irection multiplier method (ADMM) to solve the Stackelberg game
hey proposed. Although Bishoyi et al. considered the Stackelberg
ame, they only considered the optimization of the problem within one
ime slot. Zeng et al. [16] introduced a reward system to incentivize

Journal of Systems Architecture 160 (2025) 103360J. Mei et al.
Table 1
Difference between our scheme and the main related schemes.

Scheme Local computation MEC energy consumption Multiple time slots Differentiated pricing

[5] S.-H.Kim et al. ✓ × × ×

[6] M.Li et al. ✓ × × ✓

[7] X.Liu et al. ✓ × × ✓

[8] Z.Ning et al. × ✓ × ×

[9] Y.Mao et al. × × × ×

[10] X.Zhao et al. × ✓ × ×

[11] Y.Chen et al. × × ✓ ×

[12] F.Li et al. × ✓ × ✓

[13] X.Hu et al. ✓ × × ×

[14] F.Wang et al. ✓ × ✓ ×

[15] P.K.Bishoyi et al. ✓ ✓ × ✓

[16] F.Zeng et al. ✓ × × ✓

Our Scheme ✓ ✓ ✓ ✓
volunteer vehicles participating in Vehicular Edge Computing (VEC)
offloading and devised an enhanced genetic algorithm to explore the
optimal strategy for the VEC server. However, they also did not account
for changes in the number of tasks over time.

Among most of the studies mentioned before, some studies failed to
fully leverage local computing resources, some did not account for the
energy consumption associated with the MEC server’s computations,
and some only focused on the optimization of single slot goals (see
Table 1). To cope with these situations, each user in this paper supports
local computing through EH technology, while the MEC server consid-
ers computing energy consumption as its own overhead. In order to
achieve a reasonable allocation of resources among users and the MEC
server and tackle the long-term optimization problem, we combine the
Stackelberg game with Lyapunov optimization.

3. System model and problem formulation

In this section, we will provide an overview of the MEC system
architecture and various computation models. Based on these compu-
tational models, the optimization problems for both users and the MEC
server will be deduced.

3.1. Mobile edge computing system architecture

We investigate a system architecture consisting of three layers.
The first layer, called the user terminal device layer, consists of 𝑛
user devices (e.g., wearables, tablets, smartphones), indexed by 𝑁 =
{1, 2,… , 𝑛}. Each user is equipped with an energy harvesting device
that enables them to collect energy from the surrounding environment
to power their own operations. The second layer is known as the MEC
service layer, consisting of a single MEC server co-located with a base
station. Lastly, the third layer is denoted as the central cloud service
layer, consisting of a cloud server. The three-layer system architecture
is illustrated in Fig. 1.

In this architecture, users can transmit their computational tasks to
the base station via a wireless network using the time division multiple
access (TDMA) protocol. The base station forwards the tasks to the MEC
server for computation. Once tasks are completed, the MEC server sends
the results back to the base station, which then delivers them back to
the users. If the cumulative tasks offloaded by users exceed the MEC
server’s computational capacity, the excess tasks are offloaded to the
central cloud via a wired network, and the results are subsequently re-
turned by the central cloud. Excess tasks can be generated by adjusting
the relevant parameters, such as the task arrival rate, and available
computational resources. By adjusting these parameters, the total of-
floading demand can be controlled, simulating the scenario where the
3

Fig. 1. A mobile edge computing system architecture.

MEC server’s computational capacity is exceeded. We consider the cen-
tral cloud to possess formidable computational capabilities, enabling it
to handle a significant amount of tasks independently.

Various uncertainties and interferences exist in practical application
environments. To enhance system stability, we consider a time-slot-
based system and partition time into equidistant time slots. The system
is indexed by 𝑡 ∈ = {0, 1, 2,… , 𝑇 } with slot length 𝜏.

3.2. Computing task and task queue model

For each user 𝑖, at the start of the 𝑡th time slot, the user’s application
requests a set of tasks for computation. The size of the tasks is the task
arrival rate 𝑎𝑖(𝑡). The tasks received during the current time slot can
only be handled in future time slots. In order to achieve more flexible
task offloading, we assume that the computational tasks of the users
follow a data partitioning model [4,17], where the data bits of the
computational tasks are independent and can be arbitrarily partitioned
into multiple independent subtasks. Each user’s tasks are stored in the
task queue 𝑸 =

{

𝑄1, 𝑄2,… , 𝑄𝑛
}

.
Let 𝑄𝑖(𝑡) represent the tasks remaining incomplete for the 𝑖th user

in the preceding 𝑡 time slots. The amount of tasks in the queue can be

Journal of Systems Architecture 160 (2025) 103360J. Mei et al.

t

l
s

d
t

t
t

s

e

t

t

f

a
M
f
t
c
e
t
c

adjusted using the following formula.

𝑄𝑖(𝑡 + 1) = max{0, 𝑄𝑖(𝑡) − 𝑞𝑖(𝑡)} + 𝑎𝑖(𝑡), (1)

where 𝑞𝑖(𝑡) denotes the total tasks processed by user 𝑖 during the 𝑡th
ime slot. 𝑞𝑖(𝑡) can be modeled as 𝑞𝑖(𝑡) = 𝑞𝑖0(𝑡) + 𝑞𝑖1(𝑡), where 𝑞𝑖0(𝑡)

denotes the quantity of tasks processed locally by user 𝑖, and 𝑞𝑖1(𝑡)
signifies the quantity of tasks offloaded remotely by user 𝑖. 𝑞𝑖(𝑡) satisfies

0 ≤ 𝑞𝑖(𝑡) ≤ 𝑄𝑖(𝑡), 𝑡 ∈ . (2)

According to the definition of queue stability in [18], the constraint
for task queue stability is given as

lim
𝑡→+∞

E{𝑄𝑖(𝑡)}
𝑡

= 0, 𝑡 ∈ . (3)

3.3. Local execution and communication model

3.3.1. Local computing energy consumption model
Local task execution involves users using their available processing

resources to handle tasks, leading to local energy consumption. This
ocal energy consumption is dynamic, as it varies based on offloading
trategy. Same as [19], we model it as

𝐻𝑢
𝑖0(𝑡) = 𝑘𝑢𝑖 [𝑓

𝑢
𝑖]

2𝑞𝑖0(𝑡)𝑑𝑖, (4)

where 𝑘𝑢𝑖 is the capacitance switching coefficient, which is dependent
on the chip architecture [19], and the superscript 𝑢 is employed to
enote user-specific parameters, distinguishing them from the parame-
ers denoted by the same symbol for the MEC server; 𝑓 𝑢𝑖 represents the

CPU computing frequency of user 𝑖, while 𝑑𝑖 represents the computing
density of user 𝑖.

Given the computation frequency 𝑓 𝑢𝑖 and the time slot length 𝜏, the
local computing tasks are constrained as

0 ≤ 𝑞𝑖0(𝑡) ≤
𝑓 𝑢𝑖 𝜏
𝑑𝑖

, 𝑡 ∈ . (5)

3.3.2. Transmission energy consumption model
Let 𝑝𝑖 represent the transmission power of user 𝑖. When users offload

asks to the MEC server, they incur transmission energy consump-
ion [19], which is modeled as

𝐻𝑢
𝑖1(𝑡) = 𝑇 𝑡𝑟𝑖 (𝑡)𝑝𝑖, (6)

where 𝑇 𝑡𝑟𝑖 (𝑡) represents the duration of task transmission for user 𝑖.
The task transmission time does not exceed one time slot and

atisfies

0 ≤ 𝑇 𝑡𝑟𝑖 (𝑡) ≤ 𝜏 , 𝑡 ∈ . (7)

Based on Eqs. (4) and (6), the overall energy consumption 𝐻𝑢
𝑖 (𝑡) is

derived as 𝐻𝑢
𝑖 (𝑡) = 𝐻𝑢

𝑖0(𝑡) +𝐻𝑢
𝑖1(𝑡).

3.3.3. Energy harvesting model
We consider the user’s energy harvesting to follow the HUS strat-

gy [20], where the energy collected during the current time slot is
only available for use in subsequent time slots. Let 𝑒𝑖(𝑡) represent the
energy harvested by user 𝑖, and 𝐵𝑖(𝑡) represent the remaining energy in
he battery. The battery energy update is modeled as:

𝐵𝑖(𝑡 + 1) = min{max{𝐵𝑖(𝑡) −𝐻𝑢
𝑖 (𝑡), 0} + 𝑒𝑖(𝑡), 𝐵max

𝑖 }, (8)

where 𝐵max
𝑖 represents the maximum capacity of the battery.

The overall energy consumption generated by user 𝑖 cannot surpass
he remaining battery energy, i.e.,

0 ≤ 𝐻𝑢
𝑖 (𝑡) ≤ 𝐵𝑖(𝑡), 𝑡 ∈ . (9)
4

p

3.3.4. Transmission rate model
In the system architecture, data exchange between the users and

the MEC server occurs through wireless networks. During this data
exchange process, we consider Shannon’s formula as the calculation
formula for the channel’s data transfer rate. Similar to [11], the trans-
mission rate can be modeled as

𝑟𝑡𝑟𝑖 = 𝑤 log2

(

1 + 𝑝𝑖ℎ𝑖
𝑤𝑛0

)

, (10)

where 𝑤 signifies the base station’s bandwidth; 𝑛0 stands for the noise
power density; and ℎ𝑖 indicates the channel gain.

According to the transmission time and transmission rate, the of-
loading task size 𝑞𝑖1(𝑡) = 𝑇 𝑡𝑟𝑖 (𝑡)𝑟𝑡𝑟𝑖 can be deduced.

3.4. Mobile edge server processing model

When users offload tasks to the MEC server, the server receives and
processes these tasks, thereby resulting in energy consumption. The
energy consumption of the MEC server can be modeled as

𝐻𝑒(𝑡) = 𝑘𝑒(𝑓 𝑒)2
𝑛
∑

𝑖=1
𝑞𝑐𝑖1(𝑡), (11)

where 𝑘𝑒 is the capacitance switching coefficient of the MEC server;
𝑓 𝑒 represents the CPU computing frequency of the MEC server; 𝑞𝑐𝑖1(𝑡)
denotes the cycle count of the offloaded task for user 𝑖 and can be
described as 𝑞𝑐𝑖1(𝑡) = 𝑞𝑖1(𝑡)𝑑𝑖.

Considering the limited resources of the MEC server, it may not be
ble to fully process all the tasks offloaded by users. Consequently, the
EC server is required to upload the excess tasks to the central cloud

or synchronous processing. Let 𝑞𝑒 represent the processing capacity of
he MEC server within a time slot, i.e., the maximum number of task
ycles it can handle. When the amount of task cycles offloaded by users
xceeds the MEC server’s computational capacity, the excess portion is
ransferred to the central cloud. Consequently, the MEC server’s energy
onsumption model is expressed as

𝐻𝑒(𝑡) = 𝑘𝑒(𝑓 𝑒)2 min {𝑞𝑒, 𝑞𝑐 (𝑡)} , (12)

where 𝑞𝑒 = 𝑓 𝑒𝜏 and 𝑞𝑐 (𝑡) = ∑𝑛
𝑖=1 𝑞

𝑐
𝑖1(𝑡).

3.5. The utility optimization problem

3.5.1. MEC server utility optimization problem
The MEC server generates costs while processing tasks. It is assumed

that the MEC server obtains revenue by pricing data per cycle. We
adopt a differential pricing approach. Let 𝑅𝑒𝑖 (𝑡) represent the fee that
user 𝑖 needs to pay to the MEC server for offloading data per cycle and
define 𝑹(𝒕) =

{

𝑅𝑒1(𝑡), 𝑅𝑒2(𝑡),… , 𝑅𝑒𝑛(𝑡)
}

. Let 𝜋𝑒(𝑡) represent the revenue
obtained from processing all user tasks by the MEC server, which is
denoted as 𝜋𝑒(𝑡) = ∑𝑛

𝑖=1 𝑅
𝑒
𝑖 (𝑡)𝑞

𝑐
𝑖1(𝑡). Let 𝑐𝑒 represent the cost incurred by

the MEC server for each unit of energy consumption. When the amount
of tasks offloaded by all users exceeds the processing capacity of the
MEC server, the MEC server needs to pay a fee to the central cloud for
handling. Let 𝑞𝑟(𝑡) = max {0, 𝑞𝑐 (𝑡) − 𝑞𝑒} represent the tasks redirected to
the central cloud and 𝑅𝑐 represent the cost incurred by the MEC server
for offloading data to the central cloud per cycle. The optimization
problem 𝑬𝟏 of the MEC server can be modeled as

𝑬𝟏 ∶ max
𝑹(𝒕)

𝑠 = lim
𝑇→+∞

1
𝑇

𝑇−1
∑

𝑡=0
E{𝜋𝑒(𝑡) − 𝜖𝑒(𝑡)} (13)

s.t.0 ≤ 𝑅𝑒𝑖 (𝑡) ≤ 𝑅𝑒_max
𝑖 (𝑡), 𝑖 ∈ 𝑁 , 𝑡 ∈ , (14)

where 𝜖𝑒(𝑡) = 𝑐𝑒𝐻𝑒(𝑡) +𝑅𝑐𝑞𝑟(𝑡); 𝑅𝑒_max
𝑖 (𝑡) represents the maximum price

er cycle of data charged by the MEC server to user 𝑖.

Journal of Systems Architecture 160 (2025) 103360J. Mei et al.

l

c
f
T

m

𝜆

M

w

t

d

t

s
u

(
c

3.5.2. User utility optimization problem
A higher total task quantity processed by users in a time slot implies

a reduced task queue, thereby increasing user satisfaction. We adopt the
logarithmic utility function [21], modeling it as

𝜔𝑖(𝑡) = 𝜒
1
∑

𝑗=0
log2(1 + 𝑞𝑖𝑗 (𝑡)), (15)

where 𝜒 is a weight parameter.
In general, for a same task, the energy consumption resulting from

ocal execution exceeds that of transmitting the same quantity of of-
floaded tasks [22]. Therefore, we consider that offloading an appro-
priate amount of tasks remotely is advantageous for reducing energy
onsumption. Consequently, we incorporate the energy saved by of-
loading tasks compared to local processing into the user utility model.
he saved energy is modeled as

𝜓𝑖(𝑡) = 𝑘𝑢𝑖 [𝑓
𝑢
𝑖]

2𝑞𝑖1(𝑡)𝑑𝑖 −
𝑞𝑖1(𝑡)𝑝𝑖
𝑟𝑡𝑟𝑖

. (16)

Considering that the MEC server does not provide services to users
for free, user 𝑖 is required to pay a certain cost to the MEC server,
determined by the offloaded task cycle count. The offloading cost is

odeled as

𝑐𝑖(𝑡) = 𝑅𝑒𝑖 (𝑡)𝑞
𝑐
𝑖1(𝑡). (17)

The user’s utility is related to the total quantity of tasks handled by
the user and the energy savings achieved. The user’s costs are related to
the total energy consumption and the offloading costs. Therefore, the
user’s utility optimization problem 𝑷 𝟏 can be described as

𝑷 𝟏 ∶ max
𝑇 𝑡𝑟𝑖 (𝑡),𝑞𝑖0(𝑡)

𝑢𝑖 = lim
𝑇→+∞

1
𝑇

𝑇−1
∑

𝑡=0
E{𝑢𝑖(𝑡)} (18)

s.t.(2), (3), (5), (7) and (9),

where 𝑢𝑖(𝑡) = 𝜋𝑢𝑖 (𝑡) − 𝜖𝑢𝑖 (𝑡), 𝜋𝑢𝑖 (𝑡) = 𝜔𝑖(𝑡) + 𝜓𝑖(𝑡), 𝜖𝑢𝑖 (𝑡) = 𝐻𝑢
𝑖 (𝑡) + 𝜆𝑐𝑖(𝑡), and

is a weight parameter.

4. Problem analysis and solution

In this section, the game relationship and related processes between
the users and the MEC server will be introduced in detail. To transform
long-term optimization problem into multiple short-term optimization
problem and ensure the task queue’s stability, the Lyapunov optimiza-
tion theory will be adopted. The optimal strategies of both users and

EC will be taken into consideration.

4.1. The game relationship between users and MEC server

Without adequate incentive measures, the MEC server may be less
illing to participate in computation offloading [23]. To incentivize the

MEC server, we employ a strategy rooted in Stackelberg game theory
to enable multiple users and the MEC server to both achieve their
respective benefits. In this game process, the MEC server plays the role
of the leader, while users act as followers. In the 𝑡th time slot, firstly,
the MEC server will provide each user with an initial service quotation
𝑅𝑒𝑖 (𝑡). Secondly, each user is required to make task offloading strategy
(i.e., 𝑞𝑖0(𝑡) and 𝑇 𝑡𝑟𝑖 (𝑡)) based on the price. Subsequently, the MEC
server will update the corresponding prices based on the user’s remote
offloading task 𝑞𝑖1(𝑡) and its own computational capacity. Following
this, users will update their task offloading decisions. As this process
continues, through multiple iterative steps, until a balance is reached
between users’ task offloading decisions and the MEC server prices, the
iteration for the current time slot concludes. At this point, a Stackelberg
equilibrium is achieved between users and the MEC server.
5

4.2. Problem transformation based on Lyapunov optimization

Since the initial optimization problem involves the situation in
the long-term range, and the parameters such as energy acquisition
and task arrival will change over time, this makes it complicated to
solve the initial problem directly. However, Lyapunov optimization
can transform this long-term problem into multiple tractable short-
erm problems, so that only these short-term problems need to be dealt

with, and the original difficult problem can be solved more efficiently.
Moreover, through Lyapunov optimization, the user’s task queue can
remain stable (i.e., satisfying Eq. (3)). Therefore Lyapunov optimization
theory is employed.

The Lyapunov function for user 𝑖 can be defined as

𝐿𝑖(𝑡) ≜
1
2
[𝑄𝑖(𝑡)]2. (19)

Based on [24], the Lyapunov drift for user 𝑖 can be defined as

𝛥𝑖(𝑡) ≜ E
{

𝐿𝑖(𝑡 + 1) − 𝐿𝑖(𝑡)|𝑄𝑖(𝑡)
}

. (20)

To balance queue stability and user utility optimization, we intro-
uce the concept of drift-plus-penalty function, which makes a trade-off

between task queue stability and user utility. By incorporating an
additional penalty term into the Lyapunov function, we can optimize
he user utility while satisfying the queue stability condition.

To ensure queue stability, it is necessary to minimize Lyapunov
drift. However, the objective is to maximize user utility, we transform
the maximization of the user utility function into the minimization of
the user loss function (i.e., the negative of the user utility function).
The drift-plus-penalty function for user 𝑖 is represented as 𝛥𝑖(𝑡) −
𝑉 E

{

𝑢𝑖(𝑡)|𝑄𝑖(𝑡)
}

, where V is a non-negative weight parameter.
When considering Lyapunov drift-plus-penalty function, the lack of

information about the following time slot (i.e., 𝐿𝑖(𝑡 + 1)) makes direct
olving challenging. To remove the reliance on future information, we
se scaling to get an upper bound on this function.

Theorem 1. When a control parameter 𝑉 > 0 is chosen, and considering
that both 𝑞𝑖(𝑡) ∈

{

0, 1,… , 𝑄𝑖(𝑡)
}

and 𝑎𝑖(𝑡) ∈ {0, 1,… , 𝑎max}, we obtain
𝛥𝑖(𝑡) − 𝑉 E

{

𝑢𝑖(𝑡)|𝑄𝑖(𝑡)
}

≤ 𝑧 − E
{

𝑞𝑖(𝑡)[𝑄𝑖(𝑡) + 𝑎𝑖(𝑡)]|𝑄𝑖(𝑡)
}

−𝑉 E
{

𝑢𝑖(𝑡)|𝑄𝑖(𝑡)
}

, (21)

where 𝑧 = 1
2 {[𝑄𝑖(𝑡)]

2 + (𝑎max)2} +𝑄𝑖(𝑡)𝑎𝑖(𝑡).

Proof. Taking the square of both sides of Eq. (1) and we find that
𝑚𝑎𝑥[𝑥, 0])2 < 𝑥2 for any 𝑥 ∈ R. Therefore, the inequality can be
alculated as

[𝑄𝑖(𝑡 + 1)]2 = {

max{0, 𝑄𝑖(𝑡) − 𝑞𝑖(𝑡)} + 𝑎𝑖(𝑡)
}2

≤ [𝑄𝑖(𝑡) − 𝑞𝑖(𝑡)]2 + [𝑎𝑖(𝑡)]2
+ 2𝑎𝑖(𝑡)[𝑄𝑖(𝑡) − 𝑞𝑖(𝑡)]
= [𝑄𝑖(𝑡)]2 + [𝑞𝑖(𝑡)]2 + [𝑎𝑖(𝑡)]2
− 2𝑄𝑖(𝑡)𝑞𝑖(𝑡) + 2𝑎𝑖(𝑡)[𝑄𝑖(𝑡) − 𝑞𝑖(𝑡)]
≤ 2[𝑄𝑖(𝑡)]2 + (𝑎max)2 − 2𝑄𝑖(𝑡)𝑞𝑖(𝑡)
+ 2𝑎𝑖(𝑡)[𝑄𝑖(𝑡) − 𝑞𝑖(𝑡)]. (22)

Based on Definition (19) and the aforementioned inequality, the
Lagrangian function for the time slot 𝑡 + 1 is computed as

𝐿𝑖(𝑡 + 1) = 1
2
[𝑄𝑖(𝑡 + 1)]2

≤ [𝑄𝑖(𝑡)]2 +
(𝑎max)2

2
−𝑄𝑖(𝑡)𝑞𝑖(𝑡) (23)
+ 𝑎𝑖(𝑡)[𝑄𝑖(𝑡) − 𝑞𝑖(𝑡)].

Journal of Systems Architecture 160 (2025) 103360J. Mei et al.

i

t

c

𝑇
i

𝑇

𝜇

w
a

p
o
s
c
o

n

c

Based on Definitions (19) and (20), as well as Eq. (23), the inequal-
ty can be derived as

𝛥𝑖(𝑡) ≤
1
2
{[𝑄𝑖(𝑡)]2 + (𝑎max)2}

+ 𝑄𝑖(𝑡)𝑎𝑚𝑎𝑥𝑖 (𝑡) − E
{

𝑞𝑖(𝑡)[𝑄𝑖(𝑡) + 𝑎𝑖(𝑡)]|𝑄𝑖(𝑡)
}

. (24)

By adding the expression −𝑉 E
{

𝑢𝑖(𝑡)|𝑄𝑖(𝑡)
}

to both sides of Eq. (24),
we can deduce Eq. (21).

Taking into account the impact of task queue length on user expe-
rience, we incorporate the task queue length into the consideration of
user utility through Lyapunov optimization. According to Theorem 1,
the original problem 𝑷 𝟏 is transformed into 𝑷 𝟐, described as

𝑷 𝟐 ∶ min
𝑇 𝑡𝑟𝑖 (𝑡),𝑞𝑖0(𝑡)

𝑖(𝑡) = −{

𝑞𝑖(𝑡)[𝑄𝑖(𝑡) + 𝑎𝑖(𝑡)]
}

− 𝑉 𝑢𝑖(𝑡) (25)

s.t.(2), (5), (7) and (9).

4.3. Optimal strategy for users

Each user in the system can collect a certain amount of energy
during each time slot and store it in a battery. Users can use this
battery energy for local task processing or task offloading to the MEC
server. Each user must address two essential inquiries: (i) How many
tasks should be processed locally in each time slot; (ii) How much task
ransfer time is required in each time slot.

4.3.1. Optimal local task strategy
Referring to (25), we calculate the first-order partial derivative of

𝑖(𝑡) with respect to 𝑞𝑖0(𝑡) as
𝜕𝑖(𝑡)
𝜕 𝑞𝑖0(𝑡)

= −[𝑄𝑖(𝑡) + 𝑎𝑖(𝑡)]

− 𝑉 [
𝜒

(1 + 𝑞𝑖0(𝑡)) ln 2
− 𝑘𝑢𝑖 [𝑓

𝑢
𝑖]

2𝑑𝑖], (26)

and the second-order partial derivative of 𝑖(𝑡) with respect to 𝑞𝑖0(𝑡) is
omputed as
𝜕2𝑖(𝑡)
𝜕 𝑞𝑖0(𝑡)2

=
𝑉 𝜒

[1 + 𝑞𝑖0(𝑡)]2 ln 2
. (27)

Since Eq. (27) is non-negative, 𝑖(𝑡) exhibits convexity concerning
𝑞𝑖0(𝑡).

Following Eq. (25), we calculate the first-order partial derivative of
𝑖(𝑡) with respect to 𝑇 𝑡𝑟𝑖 (𝑡) as
𝜕𝑖(𝑡)
𝜕 𝑇 𝑡𝑟𝑖 (𝑡)

= −[𝑄𝑖(𝑡) + 𝑎𝑖(𝑡)]𝑟𝑡𝑟𝑖

− 𝑉 [
𝜒 𝑟𝑡𝑟𝑖 (𝑡)

(1 + 𝑞𝑖1(𝑡)) ln 2
+ 𝑘𝑢𝑖 [𝑓

𝑢
𝑖]

2𝑟𝑡𝑟𝑖 (𝑡)𝑑𝑖 + 𝐶], (28)

where 𝐶 = −2𝑝𝑖 − 𝜆𝑖𝑅𝑒𝑖 (𝑡)𝑟𝑡𝑟𝑖 𝑑𝑖; and the second-order partial derivative
of 𝑖(𝑡) with respect to 𝑇 𝑡𝑟𝑖 (𝑡) is calculated as
𝜕2𝑖(𝑡)
𝜕 𝑇 𝑡𝑟𝑖 (𝑡)2

=
𝑉 𝜒(𝑟𝑡𝑟𝑖 (𝑡))2

(1 + 𝑞𝑖1(𝑡))2 ln 2
. (29)

Since Eq. (29) is non-negative, 𝑖(𝑡) is also convex with respect to
𝑡𝑟
𝑖 (𝑡). In conclusion, 𝑖(𝑡) is a convex function with respect to 𝑞𝑖0(𝑡) and
s also convex with respect to 𝑇 𝑡𝑟𝑖 (𝑡), and the constraints of problem 𝑷 𝟐

are affine. Therefore, 𝑷 𝟐 can be solved using the method of Lagrange
multipliers. Let 𝝁 = {𝜇1, 𝜇2,… , 𝜇6} denote the Lagrange multipliers.
Similar to [25], the Lagrangian function of Eq. (25) is expressed as

𝑖(𝑞𝑖0(𝑡), 𝑇 𝑡𝑟𝑖 (𝑡),𝝁) = 𝑖(𝑡) + 𝜇1[𝑞𝑖(𝑡) −𝑄𝑖(𝑡)]
+ 𝜇2[𝐻𝑢

𝑖 (𝑡) − 𝐵𝑖(𝑡)] + 𝜇3[𝑇 𝑡𝑟𝑖 (𝑡) − 𝜏]

− 𝜇 𝑇 𝑡𝑟 + 𝜇 [𝑞 (𝑡) − 𝑓 𝑢𝑖 𝜏] − 𝜇 𝑞 (𝑡). (30)
6

4 𝑖 5 𝑖0 𝑑𝑖
6 𝑖0
The first-order partial derivative of 𝑖 with respect to 𝑞𝑖0(𝑡) is given
by the following expression
𝜕𝑖
𝜕 𝑞𝑖0(𝑡)

=
𝜕𝑖(𝑡)
𝜕 𝑞𝑖0(𝑡)

+ 𝜇1 + 𝜇2𝑘𝑢𝑖 (𝑓
𝑢
𝑖)

2𝑑𝑖 + 𝜇5 − 𝜇6. (31)

Solving for 𝜕𝑖∕𝜕 𝑞𝑖0(𝑡) = 0, the optimal local task workload 𝑞∗𝑖0(𝑡)
can be calculated as

𝑞∗𝑖0(𝑡) =
𝑉 𝜒
𝑔 ln 2 − 1, (32)

where 𝑔 = [𝜇1 + 𝜇5 − 𝜇6 −𝑄𝑖(𝑡) − 𝑎𝑖(𝑡)] + 𝑘𝑢𝑖 (𝑓 𝑢𝑖)2𝑑𝑖[𝜇2 + 𝑉].

4.3.2. Optimal offloading task strategy
Compute the first-order partial derivative of 𝑖 with respect to 𝑇 𝑡𝑟𝑖 (𝑡),

𝜕𝑖
𝜕 𝑇 𝑡𝑟𝑖 (𝑡)

=
𝜕𝑖(𝑡)
𝜕 𝑇 𝑡𝑟𝑖 (𝑡)

+ 𝜇1𝑟𝑡𝑟𝑖 + 𝜇2𝑝𝑖 + 𝜇3 − 𝜇4. (33)

By solving for 𝜕𝑖∕𝜕 𝑇 𝑡𝑟𝑖 (𝑡) = 0, the optimal task transmission time
𝑡𝑟
𝑖 (𝑡) can be obtained as

𝑇 ∗
𝑖 (𝑡) =

𝑉 𝜒
𝑦 ln 2 − 1

𝑟𝑡𝑟𝑖
, (34)

where 𝑦 = [𝑉 𝜆𝑅𝑒𝑖 (𝑡)𝑑𝑖 −𝑄𝑖(𝑡) − 𝑎𝑖(𝑡) + 𝜇1 − 𝑉 𝑘𝑢𝑖 (𝑓 𝑢𝑖)2𝑑𝑖]𝑟𝑡𝑟𝑖 + [2𝑉 + 𝜇2]𝑝𝑖 +
3 − 𝜇4.

To ensure that the user 𝑖 maintains an transmission time 𝑇 ∗
𝑖 (𝑡) ≥ 0,

e solve for 𝑇 ∗
𝑖 (𝑡) = 0 to obtain the maximum price the user 𝑖 can

ccept, denoted as 𝑅𝑒_max
𝑖 (𝑡).

𝑅𝑒_max
𝑖 (𝑡) = 𝜒

𝜆𝑑𝑖 ln 2
+
𝜇4 − 𝜇3 − 𝑝𝑖(2𝑉 + 𝜇2)

𝑉 𝜆𝑑𝑖𝑟𝑡𝑟𝑖
+
𝑄𝑖(𝑡) + 𝑎𝑖(𝑡) − 𝜇1 + 𝑉 𝑘𝑢𝑖 (𝑓 𝑢𝑖)2𝑑𝑖

𝑉 𝜆𝑑𝑖
. (35)

By referring to Eq. (34), we can obtain the optimal amount of
remote offloading tasks (i.e., 𝑞∗𝑖1(𝑡)) for user 𝑖 within the 𝑡th time slot.

𝑞∗𝑖1(𝑡) = 𝑇 ∗
𝑖 (𝑡)𝑟

𝑡𝑟
𝑖 . (36)

4.4. Optimal strategy for MEC server

According to the dynamic programming theory, it breaks down the
roblem into a sequence of sub-problems, and uses the properties of
verlapping sub-problems to reduce the amount of computation. In the
ame way, in long-term optimization problem, each time slot can be
onsidered a stage, and by making optimal strategies in each stage,
ptimal result can be achieved in the long run. According to [17], the

optimization problem 𝑬𝟏 can be transformed into 𝑬𝟐 as

𝑬𝟐 ∶ max
𝑹(𝒕)

(𝑡) = 𝜋𝑒(𝑡) − 𝜖𝑒(𝑡) (37)

s.t.(14).

For the MEC server, the optimal price (i.e., 𝑅𝑒𝑖 (𝑡)) for each user
eeds to be determined. By combining Eqs. (36) and (37), the first-order

partial derivative of (𝑡) with respect to 𝑅𝑒𝑖 (𝑡) is calculated as

𝜕(𝑡)
𝜕 𝑅𝑒𝑖 (𝑡)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑞∗𝑖1(𝑡)𝑑𝑖 if𝑞𝑒 < 𝑞𝑐 (𝑡);

−
𝑉 2𝜆𝑑2𝑖 [𝑟

𝑡𝑟
𝑖]

2𝜒
𝑦2 ln 2 [𝑅𝑒𝑖 (𝑡) − 𝑅𝑐],

𝑞∗𝑖1(𝑡)𝑑𝑖 if𝑞𝑒 ≥ 𝑞𝑐 (𝑡);

−
𝑉 2𝜆𝑑2𝑖 [𝑟

𝑡𝑟
𝑖]

2𝜒
𝑦2 ln 2 [𝑅𝑒𝑖 (𝑡) − 𝑐𝑒𝑘𝑒(𝑓 𝑒)2],

(38)

and the second-order partial derivative of (𝑡) with respect to 𝑅𝑒𝑖 (𝑡) is
alculated as

𝜕2(𝑡)
𝜕 𝑅𝑒𝑖 (𝑡)2

=

⎧

⎪

⎨

⎪

2𝑉 2𝜆𝑑2𝑖 [𝑟
𝑡𝑟
𝑖]

2𝜒 𝑧1
𝑦3 ln 2 , if𝑞𝑒 < 𝑞𝑐 (𝑡);

2𝑉 2𝜆𝑑2𝑖 [𝑟
𝑡𝑟
𝑖]

2𝜒 𝑧2 , if𝑞𝑒 ≥ 𝑞𝑐 (𝑡);
(39)
⎩ 𝑦3 ln 2

Journal of Systems Architecture 160 (2025) 103360J. Mei et al.

w
d
n
c

p

S
l
i

s

i

A

r
e
i
u

i
f
r
f
m

M

a

s

𝜇

𝜇

𝜇

𝜇

where 𝑧1 = [𝑄𝑖(𝑡) + 𝑎𝑖(𝑡) −𝜇1 +𝑉 𝑘𝑢𝑖 (𝑓 𝑢𝑖)2𝑑𝑖 −𝑉 𝜆𝑅𝑐𝑖 (𝑡)𝑑𝑖]𝑟𝑡𝑟𝑖 − [2𝑉 +𝜇2]𝑝𝑖 −
𝜇3 + 𝜇4 and 𝑧2 = [𝑄𝑖(𝑡) + 𝑎𝑖(𝑡) − 𝜇1 + 𝑉 𝑘𝑢𝑖 (𝑓 𝑢𝑖)2𝑑𝑖 − 𝑉 𝜆𝑐𝑒𝑘𝑒(𝑓 𝑒)2𝑑𝑖]𝑟𝑡𝑟𝑖 −
[2𝑉 + 𝜇2]𝑝𝑖 − 𝜇3 + 𝜇4.

Due to 𝑦 > 0 and the numerator of the second derivative of (𝑡)
ith respect to 𝑅𝑒𝑖 (𝑡) being constant when the MEC server makes game
ecisions, the sign of the second derivative depends on the sign of the
umerator. Consequently, in any iteration, (𝑡) is either a concave or
onvex function relative to 𝑅𝑒𝑖 (𝑡). If (𝑡) exhibits convexity concerning
𝑅𝑒𝑖 (𝑡), then the optimal solution of 𝑅𝑒𝑖 (𝑡) is at one of the endpoints of the
constraint range. Therefore, we can deduce that the optimal solution for
𝑅𝑒𝑖 (𝑡), denoted as 𝑅∗

𝑖 (𝑡), is calculated as

𝑅∗
𝑖 (𝑡) = 𝑅𝑒_max

𝑖 (𝑡). (40)

If (𝑡) exhibits concavity concerning 𝑅𝑒𝑖 (𝑡), and it is straightforward
to ascertain that the constraints of optimization problem 𝑬𝟐 are affine,
then we can employ the Lagrange multiplier method to obtain the
solution for 𝑅∗

𝑖 (𝑡). The Lagrangian function for Eq. (37) is expressed
as

𝑒(𝑹(𝒕), 𝜼) = (𝑡) − 𝜂1𝑅𝑒𝑖 (𝑡) + 𝜂2[𝑅𝑒𝑖 (𝑡) − 𝑅𝑒_max
𝑖 (𝑡)], (41)

where 𝜼 = {𝜂1, 𝜂2} denotes the Lagrange multipliers, with each multi-
lier being non-negative.

By solving for 𝜕𝑒∕𝜕 𝑅𝑒𝑖 (𝑡) = 0, the optimal processing price 𝑅∗
𝑖 (𝑡) is

calculated as

𝑅∗
𝑖 (𝑡) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[𝑞∗𝑖1(𝑡)𝑑𝑖 − 𝜂1 + 𝜂2]
𝑦2 ln 2

𝑉 2𝜆𝑑2𝑖 (𝑟
𝑡𝑟
𝑖)

2𝜒
if𝑞𝑒 < 𝑞𝑐 (𝑡);

+𝑅𝑐 ,

[𝑞∗𝑖1(𝑡)𝑑𝑖 − 𝜂1 + 𝜂2]
𝑦2 ln 2

𝑉 2𝜆𝑑2𝑖 (𝑟
𝑡𝑟
𝑖)

2𝜒
if𝑞𝑒 ≥ 𝑞𝑐 (𝑡);

+𝑐𝑒𝑘𝑒(𝑓 𝑒)2,

(42)

4.5. Stackelberg equilibrium analysis

In this section, we demonstrate that the optimal strategy
(

𝑇 ∗
𝑖 (𝑡), 𝑅∗

𝑖
(𝑡)), 𝑖 ∈ 𝑁 between the users and the MEC server is the Stakelberg
equilibrium solution. We consider the MEC server as a leader in a
tackelberg game, and users as followers. For simplicity, the game equi-
ibrium within a time slot will be analyzed. The Stackelberg equilibrium
s defined in the following.

Definition 1. (

𝑇 𝑆 𝐸𝑖 (𝑡), 𝑅𝑆 𝐸𝑖 (𝑡)
)

is a Stackelberg equilibrium solution
when the price 𝑅∗

𝑖 (𝑡) of leader is determined, and 𝑇 𝑆 𝐸𝑖 (𝑡) satisfies

𝑖
(

𝑇 𝑆 𝐸𝑖 (𝑡)
)

= inf
𝑇min
𝑖 (𝑡)≤𝑇 𝑡𝑟𝑖 (𝑡)≤𝑇max

𝑖 (𝑡)

{

𝑖
(

𝑇 𝑡𝑟𝑖 (𝑡)
)}

,∀𝑡 ∈ , (43)

and when the task transmission time 𝑇 ∗
𝑖 (𝑡) is determined, and 𝑅𝑆 𝐸𝑖 (𝑡)

atisfies

(

𝑅𝑆 𝐸𝑖 (𝑡)
)

= sup
𝑅min
𝑖 (𝑡)≤𝑅𝑒𝑖 (𝑡)≤𝑅

max
𝑖 (𝑡)

{

(

𝑅𝑒𝑖 (𝑡)
)}

,∀𝑡 ∈ . (44)

Next, it will be verified whether the optimal solution
(

𝑇 ∗
𝑖 (𝑡), 𝑅∗

𝑖 (𝑡)
)

s the Stackelberg equilibrium solution
(

𝑇 𝑆 𝐸𝑖 (𝑡), 𝑅𝑆 𝐸𝑖 (𝑡)
)

.

Lemma 2. If the price 𝑅∗
𝑖 (𝑡) of the leader is fixed, the function 𝑖

(

𝑇 𝑡𝑟𝑖 (𝑡)
)

of user 𝑖 takes the minimum value at 𝑇 ∗
𝑖 .

Proof. Based on Eq. (29), 𝑖(𝑡) exhibits convexity concerning 𝑇 𝑡𝑟𝑖 (𝑡),
indicating that the function 𝑖(𝑡) attains its minimum value at 𝑇 ∗

𝑖 (𝑡).
ccording to Definition 1, 𝑇 ∗

𝑖 (𝑡) is the 𝑇 𝑆 𝐸𝑖 (𝑡).

Lemma 3. For users, the optimal task transmission time 𝑇 ∗
𝑖 (𝑡) decreases

with the increased price 𝑅𝑒𝑖 (𝑡).
7

Proof. By taking the first-order partial derivative of Eq. (34) with
espect to 𝑅𝑒𝑖 (𝑡), 𝜕 𝑇 ∗

𝑖 (𝑡)∕𝜕 𝑅𝑒𝑖 (𝑡) = −𝑉 2𝜒 𝜆𝑑𝑖𝑟𝑡𝑟𝑖 ∕ (𝑦 ln 2)2 is obtained. It is
vident that 𝜕 𝑇 ∗

𝑖 (𝑡)∕𝜕 𝑅𝑒𝑖 (𝑡) < 0, indicating that 𝑇 𝑡𝑟𝑖 (𝑡) decreases as 𝑅𝑒𝑖 (𝑡)
ncreases. This implies that as the price of the MEC server increases,
sers are less willing to offload tasks.

Lemma 4. If the optimal task transmission time 𝑇 ∗
𝑖 (𝑡) of user 𝑖 is fixed,

the
(

𝑅𝑒𝑖 (𝑡)
)

of the MEC server takes the maximum value at 𝑅∗
𝑖 (𝑡).

Proof. Based on the optimal strategy for the MEC server discussed
n this section of the paper, it can be concluded that the optimization
unction (i.e., (𝑡)) of the MEC server is either concave or convex with
espect to the variable 𝑅𝑒𝑖 (𝑡) in each iteration. When the optimization
unction (𝑡) is convex, the efficiency of the MEC server reaches its
aximum at 𝑅𝑒𝑖 (𝑡) = 𝑅∗

𝑖 (𝑡), as shown in Eq. (40). Similarly, when (𝑡)
is concave, the efficiency of the MEC server reaches its maximum at
𝑅𝑒𝑖 (𝑡) = 𝑅∗

𝑖 (𝑡), as indicated by Eq. (42). According to Definition 1,
𝑅𝑆 𝐸𝑖 (𝑡) = 𝑅∗

𝑖 (𝑡).

In conclusion,
(

𝑇 ∗
𝑖 (𝑡), 𝑅∗

𝑖 (𝑡)
)

represents the optimal decision for task
transmission time and price, and it is also the Stackelberg equilibrium
solution

(

𝑇 𝑆 𝐸𝑖 (𝑡), 𝑅𝑆 𝐸𝑖 (𝑡)
)

.

5. Multi-device task offloading and pricing mechanism algorithm

We will delve into the updates of Lagrange multipliers and MEC
server prices in this section. At the end of this section, pseudocode for
the algorithm that describes the game process between users and the

EC server is provided.

5.1. Lagrange multiplier update strategy

According to Eqs. (32) and (34), the optimal local task workload and
task transmission time can be determined, respectively. As the results
re obtained using the Lagrange multiplier method, it is necessary to

update these multipliers to ensure the satisfaction of constraints during
the optimization process. A standard subgradient method is employed
to update the Lagrange multipliers (i.e., 𝝁). The update method is
hown as

𝜇1 =
{

𝜇1 + 𝛼
[

𝑞𝑖(𝑡) −𝑄𝑖(𝑡)
]}+ ,

2 =
{

𝜇2 + 𝛼
[

𝐻𝑢
𝑖 (𝑡) − 𝐵𝑖(𝑡)

]}+ ,

3 =
{

𝜇3 + 𝛼
[

𝑇 ∗
𝑖 (𝑡) − 𝜏

]}+ ,

4 =
[

𝜇4 − 𝛼 𝑇 ∗
𝑖 (𝑡)

]+ , (45)

5 =
{

𝜇5 + 𝛼
[

𝑞∗𝑖0(𝑡) −
𝑓 𝑢𝑖 𝜏
𝑑𝑖

]}+

,

𝜇6 =
[

𝜇6 − 𝛼 𝑞∗𝑖0(𝑡)
]+ ,

where 𝛼 represents the iteration step size and [𝑥]+ = max{0, 𝑥}.
The local task workload and task transmission time for each user are

computed by updating the Lagrange multipliers and the price in each
iteration.

5.2. Price update strategy

In one iteration, when the function (𝑡) exhibits convexity con-
cerning the price 𝑅𝑒𝑖 (𝑡), the optimal price 𝑅∗

𝑖 (𝑡) = 𝑅𝑒_max
𝑖 (𝑡). However,

when the function (𝑡) is concave with respect to the price 𝑅𝑒𝑖 (𝑡), it is
difficult to compute the optimal price 𝑅∗

𝑖 (𝑡) based on 𝜕(𝑡)∕𝜕 𝑅𝑒𝑖 (𝑡) = 0.
To address this, the gradient ascent method is employed to update the
price 𝑅𝑒𝑖 (𝑡), using the first-order partial derivative of the MEC server
utility function with respect to the price as the Marginal Utility [26] to
update the price. The update expression can be derived as

𝑅𝑒_𝜅+1𝑖 (𝑡) = 𝑅𝑒_𝜅𝑖 (𝑡) + 𝛽 𝜕(𝑡)
𝑒_𝜅 , (46)
𝜕 𝑅𝑖 (𝑡)

Journal of Systems Architecture 160 (2025) 103360J. Mei et al.

t

c

p

p

d
l
1
u
u
s
t
c
t
i

d
o

t
o
t
a
s

f

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3

s
d
c

f

p
1

f

where 𝛽 represents the iteration step size and 𝜅 represents the number
of iterations within the current time slot.

Due to the constraint (14), after one iteration, the service price of
he MEC server is calculated as

𝑅𝑒_𝜅+1𝑖 (𝑡) = min
{

𝑅𝑒_max
𝑖 (𝑡),max

{

0, 𝑅𝑒_𝜅𝑖 (𝑡)
}}

. (47)

Finally, the price of the (𝜅 + 1)-th iteration within the 𝑡th time slot
an be expressed as

𝑅𝑒_𝜅+1𝑖 (𝑡) =
⎧

⎪

⎨

⎪

⎩

𝑅𝑒_𝜅𝑖 (𝑡), if 𝜕2(𝑡)
𝜕 𝑅𝑒_𝜅𝑖 (𝑡)2 ≤ 0;

𝑅𝑒_max
𝑖 (𝑡), if 𝜕2(𝑡)

𝜕 𝑅𝑒_𝜅𝑖 (𝑡)2 > 0;
(48)

To provide a clearer description of the price updating process, the
seudocode for price updating is presented in the Alg. 1.

Algorithm 1 Price Update Algorithm

1: Input:𝑘𝑢𝑖 , 𝑓
𝑢
𝑖 , 𝑑𝑖, 𝜏, 𝑝𝑖, 𝝁, 𝑟𝑡𝑟𝑖 , 𝑘𝑒, 𝑉 , 𝜆, 𝜒 , 𝑓 𝑒, 𝑐𝑒, 𝑅𝑐 , 𝑞𝑐 , 𝑖 ∈ 𝑁 ;

2: Output:𝑅𝑒𝑖 (𝑡), 𝑖 ∈ 𝑁 ;
3: for all 𝑖 ∈ 𝑁 do
4: Calculate 𝜕(𝑡)∕𝜕 𝑅𝑒𝑖 (𝑡) based on Eq. (38);
5: Calculate 𝜕2(𝑡)∕𝜕 𝑅𝑒𝑖 (𝑡)2 based on Eq. (39);
6: Calculate 𝑅𝑒_max

𝑖 (𝑡) based on Eq. (40);
7: Calculate 𝑅𝑒_𝑖𝑡𝑖 (𝑡) based on Eq. (47);
8: Calculate 𝑅𝑒𝑖 (𝑡) based on Eq. (48);
9: end for

5.3. Multi-device task offloading and pricing mechanism algorithm

By integrating the content in Section 4 and Section 5 of this pa-
er, the optimization of 𝑞𝑖0(𝑡), 𝑇 𝑡𝑟𝑖 (𝑡), and 𝑅𝑒𝑖 (𝑡) for each time slot is

formulated. The implementation process of the proposed Multi-Device
Task Offloading and Pricing Mechanism Algorithm is outlined in the
Alg. 2. The core of this algorithm lies in lines 8 to 22 of the pseu-
ocode. In pseudocode, lines 8 to 13 describe how each user calculates
ocal processing tasks and transfer time based on price. Lines 14 to
8 demonstrate the redistribution of transmission time for each user
sing time slot constraints when the total transmission time of all
sers exceeds one time slot. Lines 19 to 22 illustrate how the MEC
erver updates the prices based on each user’s offloading tasks. The
ime complexity of the algorithm primarily arises from the iterative
omputation of task offloading and pricing for each user device. In each
ime slot, the time complexity is 𝑂(𝐷 ⋅ 𝑁), where 𝐷 is the number of
terations and 𝑁 is the number of users.

6. Performance evaluation

In order to assess the validity of MDTOPMA, we will organize three
istinct sets of simulations. First of all, we demonstrate the convergence
f the game through iterative experiments within a time slot. And the

stability of the queue is validated through experiments spanning mul-
iple time slots. Second, under the premise of confirming the existence
f game equilibrium, we will focus on parameter tuning experiments
o evaluate the impact of different parameters on performance. Finally,
n empirical study is conducted to compare it with the benchmark
chemes.

6.1. Simulation setting

For each user, the CPU computing frequency 𝑓 𝑢𝑖 is uniformly dis-
tributed within [0.9, 1.2] GHz [15] and the capacitance switching coef-
icient 𝑘𝑢𝑖 is distributed within [10−28, 10−27] [18,19]. The transmission

power 𝑝𝑖 is uniformly distributed within [100,150] mW [11]. The task
arrival quantity 𝑎 (𝑡) follows a uniform distribution within the range
8

𝑖 t
Algorithm 2 Multi-Device Task Offloading and Pricing Mechanism
Algorithm (MDTOPMA)
1: Input:𝑘𝑢𝑖 , 𝑓

𝑢
𝑖 , 𝑑𝑖, 𝜏, 𝑝𝑖, 𝐵max

𝑖 , 𝑤, ℎ𝑖, 𝑛0, 𝑘𝑒, 𝑓 𝑒, 𝑐𝑒, 𝑅𝑐 , 𝑖 ∈ 𝑁 ;
2: Output:optimal solution 𝑞∗𝑖0(𝑡), 𝑇

∗
𝑖 (𝑡), 𝑅

∗
𝑖 (𝑡), 𝑖 ∈ 𝑁 , 𝑡 ∈ , 𝑡𝑜𝑡𝑎𝑙 𝐼 𝑡;

3: initial 𝜆, 𝛼, 𝛽, 𝑄𝑖(0), 𝐵𝑖(0), 𝝁 ← [𝜇1, ..., 𝜇6], 𝝈 ← [𝜎1, ..., 𝜎6];
4: 𝝁𝒑𝒓𝒆 ← 𝝁;
5: for all 𝑖 ∈ 𝑁 do
6: Calculate 𝑟𝑡𝑟𝑖 by Eq. (10);
7: end for
8: for 𝑡 ∈ do
9: 𝑖𝑡← 0;
0: while 𝑖𝑡 ≤ 𝑡𝑜𝑡𝑎𝑙 𝐼 𝑡 or 𝝁 − 𝝁𝒑𝒓𝒆 ≥ 𝝈 do
1: for all 𝑖 ∈ 𝑁 do
2: Calculate 𝑞𝑖0(𝑡) and 𝑇 𝑡𝑟𝑖 (𝑡) according to
3: Eq. (32) and Eq. (34) respectively;
4: 𝑡𝑖𝑚𝑒 ← 𝑡𝑖𝑚𝑒 + 𝑇 𝑡𝑟𝑖 (𝑡);
5: end for
6: if 𝑡𝑖𝑚𝑒 > 𝜏 then
7: for all 𝑖 ∈ 𝑁 do
8: 𝑇 𝑡𝑟𝑖 (𝑡) ← 𝜏 𝑇 𝑡𝑟𝑖 (𝑡)∕𝑡𝑖𝑚𝑒;
9: end for
0: end if
1: for 𝑖 ∈ 𝑁 do
2: 𝑞𝑐𝑖1(𝑡) ← 𝑇 𝑡𝑟𝑖 (𝑡)𝑟𝑡𝑟𝑖 ∕𝑑𝑖;
3: 𝑞𝑐 ← 𝑞𝑐 + 𝑞𝑐𝑖1(𝑡), 𝑖 ← 𝑖 + 1;
4: end for
5: Call Algorithm 1;
6: 𝝁𝒑𝒓𝒆 ← 𝝁, calculate 𝝁 by Eq. (45);
7: 𝑖𝑡← 𝑖𝑡 + 1;
8: end while
9: 𝑞∗𝑖0(𝑡) ← 𝑞𝑖0(𝑡), 𝑇 ∗

𝑖 (𝑡) ← 𝑇 𝑡𝑟𝑖 (𝑡), 𝑅∗
𝑖 (𝑡) ← 𝑅𝑒𝑖 (𝑡);

0: end for

of [2000, 6000] bits [11]. The bandwidth of the base station 𝑤 is
et to 20 MHz [27]. The task computation density 𝑑𝑖 is uniformly
istributed within [2,12]×103 cycles/bit. The time slot duration 𝜏 is
onfigured as 0.1 s [28]. 𝜆 is set to 100. The noise power density
𝑛0 is set to 10−9 W/Hz. The channel gain adheres to an exponential
distribution, denoted as E(1) [29]. The harvested energy 𝑒𝑖(𝑡) is uni-
ormly distributed within [0, 20] mJ/s [30]. For the MEC server, the

CPU computing frequency 𝑓 𝑒 is set to 3 GHz [27] and the capacitance
switching coefficient 𝑘𝑒 is set to 10−28 [19]. All the simulations are
erformed on a workstation PC with an Intel i5 12600KF processor,
6 GB of memory, and Windows 10 operating system.

6.2. Game convergence simulation experiments

In this simulation, we primarily focus on the convergence of the
Stackelberg game and the stability of the system. For ease of obser-
vation, there are 4 users considered in this simulation. In Fig. 2, we
plot the differentiated prices of the MEC server, tasks offloaded by
users, tasks processed locally by users, and user utility as the number of
iterations accumulates. Fig. 2(a) shows that the prices of the MEC server
tend to stabilize after a certain number of iterations. In the figure, the
inal price obtained by each user through the game is different. This

is attributed to the heterogeneity among users, for instance, a certain
user with higher energy consumption when processing tasks locally
tends to lean towards offloading tasks. By observing Eq. (42), it can be
seen that 𝜕2𝑅∗

𝑖 (𝑡)∕𝜕 𝑞∗𝑖1(𝑡)2 > 0, the MEC server will increase the service
price of the user accordingly. In addition, since each user’s task arrival
and energy collection may be different, this will also result in varying
task size offloaded by each user, consequently leading to differentiated
pricing by the MEC server. Fig. 2(b) and Fig. 2(c) demonstrate that
he offloaded tasks and locally processed tasks for each user tend to

Journal of Systems Architecture 160 (2025) 103360

9

J. Mei et al.

Fig. 2. Price, offloaded tasks, locally processed tasks, and user utility versus iteration.

Fig. 3. Price, offloaded tasks, locally processed tasks, and queue backlog versus time.

Journal of Systems Architecture 160 (2025) 103360J. Mei et al.

u
a
u

t

S
a

s
u
t
t
e
t

g
w

c
l

h
i

C
I

w
e

Fig. 4. Average processed tasks and queue backlog vary with different values of 𝑉 .

stabilize after a certain number of iterations. The trend in Fig. 2(b)
exhibits a characteristic of initially increasing and then decreasing.
This phenomenon stems from the relatively low initial prices depicted
in Fig. 2(a), resulting in a sharp increase in the tasks offloaded by
sers. However, as prices rise, the offloaded tasks gradually decrease,
ligning with the anticipated trend. Additionally, Lemma 3 can be
sed to substantiate this observation. If the MEC server offers a higher

price to a particular user, that user typically reduces the amount of
asks offloaded, such as user 3. Based on the three previous figures in

Fig. 2, it can be inferred that user utility also tends to stabilize with the
number of iterations, which aligns with the results shown in Fig. 2(d).
According to the results in Fig. 2, it can be confirmed that there exists a
tackelberg equilibrium between the users and the MEC server within
 time slot.

In Fig. 3, we present the variations of the MEC server prices, user
offloaded tasks, user local processing tasks, and the backlog in the user
task queue with varying time slots. Fig. 3(a) illustrates the gradual
tabilization of differential prices provided by the MEC server to every
ser during long-term evolution. Due to the heterogeneity of users and
he varying task arrival rates and energy harvesting conditions in each
ime slot, the prices calculated through the game may also differ for
ach user. Fig. 3(b) depicts the increasing trend of remote offloaded
asks for each user starting from zero and gradually decreasing there-

after. This pattern can be attributed to the initially low prices shown in
Fig. 3(a), which encourage users to offload more tasks. However, as the
prices subsequently rise, users’ inclination for offloading diminishes,
leading to a reduction in the amount of offloaded tasks. Fig. 3(c) and
Fig. 3(d) illustrate the steady state of user local processing tasks and
user task queue during long-term evolution, respectively. The arrival
of tasks in each time slot is uncertain, so the queue in Fig. 3(d) shows
10
Fig. 5. Average remote offloaded tasks with different values of 𝑎𝑖(𝑡).

a state of continuous ups and downs. But overall, the task queue is
radually stabilizing. This is consistent with what we expect to achieve
ith Lyapunov optimization.

Observing both Fig. 2 and Fig. 3, it is evident that the game
onverges in both short-term and long-term scenarios, ensuring the
ong-term stability of the MEC system.

6.3. Parameter tuning simulation experiments

In this simulation, multiple experiments are conducted to demon-
strate the dynamic task offloading and update of prices with consid-
eration of 20 users. In Fig. 4, the average processed tasks and queue
backlog for users are plotted with varying parameter 𝑉 . Fig. 4(a)
depicts how the average processed tasks correlates with the parameter
𝑉 . The observed phenomenon shows that as 𝑉 decreases, the average
processing tasks present a downward trend. According to Eq. (25), as
the parameter 𝑉 decreases, the proportion of −𝑄𝑖(𝑡) in the minimization
Eq. (25) increases, which means that the task queue backlog will show
an upward trend. Therefore, it can be deduced that as V decreases,
the average processing tasks of users will show a downward trend.
This aligns with the findings exhibited in Fig. 4(a). Fig. 4(b) illustrates
ow the average queue backlog varies with the parameter 𝑉 . As 𝑉
ncreases, we can observe a decreasing trend in the queue backlog. This

phenomenon aligns with the trend of increasing processed tasks shown
in Fig. 4(a).

Fig. 5, the average remote offloaded tasks for users are plotted with
varying 𝑎𝑖(𝑡). It can be observed that as the task arrival rate increases,
the average number of tasks offloaded by users also increases. This is
because with an increase in the task arrival rate, the backlog in the task
queue also grows. To maintain queue stability, users tend to offload
more tasks.

In Fig. 6, we plot the offloaded tasks, prices, and the MEC server util-
ity with varying values of the parameter 𝜆. In Fig. 6(a), as 𝜆 increases,
the convergence price of the MEC server decreases. This is because
𝜆 is weighted on the offloading cost function (i.e., 𝑐𝑖(𝑡)) of users.
With increase of 𝜆, the proportion of user offloading costs increases,
leading to a decreased inclination among users for task offloading.

onsequently, MEC server stimulate task offloading by reducing prices.
n Fig. 6(b), as the value of 𝜆 decreases, users tend to offload more

tasks. This is because a lower 𝜆 results in a smaller proportion of user
offloading costs, leading to an increased desire for task offloading.
Fig. 6(c) illustrates that the effectiveness of the MEC server increases

ith lower 𝜆. This experimental result can be calculated based on the
xperimental data in Fig. 6(a) and Fig. 6(b).

6.4. Comparison with benchmark schemes

To further evaluate the MDTOPMA′s performance, there are three
schemes compared with MDTOPMA:

Journal of Systems Architecture 160 (2025) 103360J. Mei et al.

c
c

u

Fig. 6. Price, offloaded tasks, and the MEC server utility with different values of 𝜆.
Fig. 7. User utility and task queue backlog with four different schemes.
c
m
L
l
u
t
r
t
s
r
n
t
o
c

q

• Local-Only Processing (LOP) scheme [19]: In each time slot,
users solely process all tasks locally, i.e., 𝑇 ∗

𝑖 (𝑡) = 0.
• Average Time-Constrained Task Offloading (ATCTO) scheme:

In each time slot, the channel transmission time for each user’s of-
floaded tasks must not surpass a predefined threshold, i.e., 𝑇 𝑡𝑟𝑖 (𝑡) ≤
𝜏∕𝑛. The ATCTO scheme is inspired by the Equal Allocation Strat-
egy from [11], which emphasizes fairly distributing the offloading
time among users.

• Genetic Algorithm (GA) scheme: In this study, we use a genetic
algorithm for comparison and initialize a population of 20 indi-
viduals, each representing offloading strategies for users and a
pricing strategy for the MEC server. After multiple iterations, we
select the individual with the highest fitness for comparison.

In Fig. 7, the average user utility and average queue backlog are
plotted alongside different algorithm schemes. In the experimental
results, our MDTOPMA surpasses the other schemes in user utility
and task queue backlog. In Fig. 7(a), it can be observed that the
improvement in user utility by LOP is significantly smaller than other
schemes. This is because LOP only allows users to process tasks locally,
neglecting the computing capacity of the MEC server, and the energy
onsumption of remote offloading is generally lower than the energy
onsumption generated by local computing tasks. Fig. 7(b) demon-

strates that the task queue backlog of LOP is significantly higher than
that of our proposed algorithm. This is mainly due to the fact that LOP
does not utilize the MEC server’s computational resources. In Fig. 7,
the performance of ATCTO is less than our scheme. For instance, if a
ser calculates the optimal transmission time T, such that 𝑇 ∗

𝑖 (𝑡) > 𝜏∕𝑛,
but is constrained by 𝑇 𝑡𝑟𝑖 (𝑡) ≤ 𝜏∕𝑛, it results in the user being unable to
achieve the optimal performance. Although ATCTO allows each user to
have a transmission time ranging from 0 to 𝜏∕𝑛, ensuring that each user
has a fair opportunity to utilize network resources, achieving better
performance is challenging. In Fig. 7, GA’s task queue performance is
better than ATCTO, but the user benefit is lower than ATCTO. This
is due to the randomness of GA. Even when the price is high, users
11
may still choose to remotely offload many tasks, resulting in reduced
utilities.

7. Conclusion

In this paper, we study a task offloading problem for a MEC system
onsisting of three layers of cloud–edge-device, where each user ter-
inal device supports EH. While solving the optimization problem, the

yapunov optimization theory is applied to convert the long-term prob-
em into problem of each time slot and stabilize the task queue of each
ser. In order to reasonably allocate resources between the users and
he MEC server, the Stackelberg game theory is employed to regulate
esources. Combining the above two theories, we apply the MDTOPMA
o solve the optimal offloading strategy of each user and the pricing
trategy of the MEC server in each time slot. The simulation experiment
esults indicate that, when compared to other algorithms, MDTOPMA
ot only enhances user benefits but also reduces the backlog of user
ask queues. In the simulation experiment of parameter performance
ptimization, the adjustment of parameter value also leads to better
hoice of offloading decision and pricing decision.

CRediT authorship contribution statement

Jing Mei: Writing – review & editing, Investigation, Funding ac-
uisition, Formal analysis. Cuibin Zeng: Writing – original draft, Re-

sources, Methodology. Zhao Tong: Writing – review & editing, Method-
ology, Funding acquisition, Conceptualization. Longbao Dai: Writing –
review & editing, Investigation, Conceptualization. Keqin Li: Writing –
review & editing, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Journal of Systems Architecture 160 (2025) 103360J. Mei et al.
Acknowledgments

The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions. This work was supported by
the Program of National Natural Science Foundation of China (grant
No. 62072174, 61502165), Provincial Natural Science Foundation of
Hunan, China (grant No. 2020JJ5370, 2022JJ40278, 2023JJ30083),
Scientific Research Fund of Hunan Provincial Education Department,
China (grant No. 22A0026, 22A0592), Graduate Research Innovation-
Program of Hunan Province (Grant No. CX20240548).

Data availability

Data will be made available on request.

References

[1] Ana Bera, 80 IoT statistics (infographic), 2019, https://safeatlast.co/blog/iot-
statistics/, Website.

[2] K.P. Naveen, R. Sundaresan, Double-auction mechanisms for resource trading
markets, IEEE/ACM Trans. Netw. 29 (3) (2021) 1210–1223, http://dx.doi.org/
10.1109/TNET.2021.3058251.

[3] D. Ma, G. Lan, M. Hassan, W. Hu, S.K. Das, Sensing, computing, and commu-
nications for energy harvesting iots: A survey, IEEE Commun. Surv. & Tutorials
22 (2) (2020) 1222–1250, http://dx.doi.org/10.1109/COMST.2019.2962526.

[4] J. Peng, H. Qiu, J. Cai, W. Xu, J. Wang, D2d-assisted multi-user cooperative
partial offloading, transmission scheduling and computation allocating for mec,
IEEE Trans. Wirel. Commun. 20 (8) (2021) 4858–4873, http://dx.doi.org/10.
1109/TWC.2021.3062616.

[5] S.-H. Kim, S. Park, M. Chen, C.-H. Youn, An optimal pricing scheme for
the energy-efficient mobile edge computation offloading with ofdma, IEEE
Commun. Lett. 22 (9) (2018) 1922–1925, http://dx.doi.org/10.1109/LCOMM.
2018.2849401.

[6] M. Li, Q. Wu, J. Zhu, R. Zheng, M. Zhang, A computing offloading game for
mobile devices and edge cloud servers, Wirel. Commun. Mob. Comput. 2018
(2018) 1–10.

[7] Z. Liu, J. Fu, Y. Zhang, Computation offloading and pricing in mobile edge
computing based on stackelberg game, Wirel. Netw. 27 (7) (2021) 4795–4806,
http://dx.doi.org/10.1007/s11276-021-02767-z.

[8] Z. Ning, J. Huang, X. Wang, J.J.P.C. Rodrigues, L. Guo, Mobile edge computing-
enabled internet of vehicles: Toward energy-efficient scheduling, IEEE Netw. 33
(5) (2019) 198–205, http://dx.doi.org/10.1109/MNET.2019.1800309.

[9] Y. Mao, J. Zhang, K.B. Letaief, Joint task offloading scheduling and transmit
power allocation for mobile-edge computing systems, in: 2017 IEEE Wireless
Communications and Networking Conference, WCNC, 2017, pp. 1–6, http://dx.
doi.org/10.1109/WCNC.2017.7925615.

[10] X. Zhao, L. Zhao, K. Liang, An energy consumption oriented offloading algorithm
for fog computing, in: Quality, Reliability, Security and Robustness in Heteroge-
neous Networks: 12th International Conference, QShine 2016, Seoul, Korea, July
7–8, 2016, Proceedings 12, Springer, 2017, pp. 293–301.

[11] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu, X. Shen, Energy efficient
dynamic offloading in mobile edge computing for internet of things, IEEE Trans.
Cloud Comput. 9 (3) (2021) 1050–1060, http://dx.doi.org/10.1109/TCC.2019.
2898657.

[12] F. Li, H. Yao, J. Du, C. Jiang, Y. Qian, Stackelberg game-based computation
offloading in social and cognitive industrial internet of things, IEEE Trans. Ind.
Inform. 16 (8) (2020) 5444–5455, http://dx.doi.org/10.1109/TII.2019.2961662.

[13] X. Hu, K.-K. Wong, K. Yang, Wireless powered cooperation-assisted mobile
edge computing, IEEE Trans. Wirel. Commun. 17 (4) (2018) 2375–2388, http:
//dx.doi.org/10.1109/TWC.2018.2794345.

[14] F. Wang, J. Xu, X. Wang, S. Cui, Joint offloading and computing optimization in
wireless powered mobile-edge computing systems, IEEE Trans. Wirel. Commun.
17 (3) (2018) 1784–1797, http://dx.doi.org/10.1109/TWC.2017.2785305.

[15] P.K. Bishoyi, S. Misra, Enabling green mobile-edge computing for 5g-based
healthcare applications, IEEE Trans. Green Commun. Netw. 5 (3) (2021)
1623–1631, http://dx.doi.org/10.1109/TGCN.2021.3075903.

[16] F. Zeng, Q. Chen, L. Meng, J. Wu, Volunteer assisted collaborative offloading
and resource allocation in vehicular edge computing, IEEE Trans. Intell. Transp.
Syst. 22 (6) (2021) 3247–3257, http://dx.doi.org/10.1109/TITS.2020.2980422.

[17] S. Xia, Z. Yao, Y. Li, S. Mao, Online distributed offloading and computing
resource management with energy harvesting for heterogeneous mec-enabled iot,
IEEE Trans. Wirel. Commun. 20 (10) (2021) 6743–6757, http://dx.doi.org/10.
1109/TWC.2021.3076201.

[18] Q. Zhang, L. Gui, F. Hou, J. Chen, S. Zhu, F. Tian, Dynamic task offloading
and resource allocation for mobile-edge computing in dense cloud ran, IEEE
Int. Things J. 7 (4) (2020) 3282–3299, http://dx.doi.org/10.1109/JIOT.2020.
2967502.
12
[19] M. Guo, W. Wang, X. Huang, Y. Chen, L. Zhang, L. Chen, Lyapunov-based partial
computation offloading for multiple mobile devices enabled by harvested energy
in mec, IEEE Int. Things J. 9 (11) (2022) 9025–9035, http://dx.doi.org/10.1109/
JIOT.2021.3118016.

[20] C. Qiu, Y. Hu, Y. Chen, Lyapunov optimized cooperative communications with
stochastic energy harvesting relay, IEEE Int. Things J. 5 (2) (2018) 1323–1333,
http://dx.doi.org/10.1109/JIOT.2018.2793850.

[21] B. Cao, S. Xia, J. Han, Y. Li, A distributed game methodology for crowdsensing
in uncertain wireless scenario, IEEE Trans. Mob. Comput. 19 (1) (2020) 15–28,
http://dx.doi.org/10.1109/TMC.2019.2892953.

[22] M. Tao, K. Ota, M. Dong, H. Yuan, Stackelberg game-based pricing and offloading
in mobile edge computing, IEEE Wirel. Commun. Lett. 11 (5) (2022) 883–887,
http://dx.doi.org/10.1109/LWC.2021.3138938.

[23] Y. Liu, C. Xu, Y. Zhan, Z. Liu, J. Guan, H. Zhang, Incentive mechanism for
computation offloading using edge computing: A stackelberg game approach,
Comput. Netw. 129 (DEC.24) (2017) 399–409.

[24] Y. Li, S. Xia, M. Zheng, B. Cao, Q. Liu, Lyapunov optimization-based trade-
off policy for mobile cloud offloading in heterogeneous wireless networks, IEEE
Trans. Cloud Comput. 10 (1) (2022) 491–505, http://dx.doi.org/10.1109/TCC.
2019.2938504.

[25] X. Chen, Z. Lu, W. Ni, X. Wang, F. Wang, S. Zhang, S. Xu, Cooling-aware
optimization of edge server configuration and edge computation offloading for
wirelessly powered devices, IEEE Trans. Veh. Technol. 70 (5) (2021) 5043–5056,
http://dx.doi.org/10.1109/TVT.2021.3076057.

[26] M.S.S. Rao, S.A. Soman, Marginal pricing of transmission services using min–
max fairness policy, IEEE Trans. Power Syst. 30 (2) (2015) 573–584, http:
//dx.doi.org/10.1109/TPWRS.2014.2331424.

[27] L. Chen, S. Zhou, J. Xu, Computation peer offloading for energy-constrained
mobile edge computing in small-cell networks, IEEE/ACM Trans. Netw. 26 (4)
(2018) 1619–1632, http://dx.doi.org/10.1109/TNET.2018.2841758.

[28] Y. Dai, K. Zhang, S. Maharjan, Y. Zhang, Deep reinforcement learning for
stochastic computation offloading in digital twin networks, IEEE Trans. Ind.
Inform. 17 (7) (2021) 4968–4977, http://dx.doi.org/10.1109/TII.2020.3016320.

[29] J. Mei, L. Dai, Z. Tong, X. Deng, K. Li, Throughput-aware dynamic task offloading
under resource constant for mec with energy harvesting devices, IEEE Trans.
Netw. Serv. Manag. (2023) 1, http://dx.doi.org/10.1109/TNSM.2023.3243629.

[30] X. Lyu, W. Ni, H. Tian, R.P. Liu, X. Wang, G.B. Giannakis, A. Paulraj, Op-
timal schedule of mobile edge computing for internet of things using partial
information, IEEE J. Sel. Areas Commun. 35 (11) (2017) 2606–2615, http:
//dx.doi.org/10.1109/JSAC.2017.2760186.

Jing Mei received the Ph.D degree in computer science
from Hunan University, China, in 2015. She is currently
an associate professor in the College of Information Sci-
ence and Engineering in Hunan Normal University. Her
research interests include cloud computing, fog computing
and mobile edge computing, high performance computing,
task scheduling and resource management, etc. She has
published more than 30 research articles in international
conference and journals, such as IEEE Transactions on Com-
puters, IEEE Transactions on Parallel and Distributed System,
IEEE Transactions on Service Computing, Cluster Computing,
Journal of Grid Computing, Journal of Supercomputing.

Cuibin Zeng received the B.S. degree in computer science
and technology from Jishou University, Jishou, China, in
2022. He is currently pursuing the M.S. degree at the
College of Information Science and Engineering, Hunan
Normal University, Changsha, China. His research focuses
on resource scheduling and price allocation in mobile edge
computing.

Zhao Tong received the Ph.D degree in computer science
from Hunan University, Changsha, China in 2014. He was a
visiting scholar at the Georgia State University from 2017 to
2018. He is currently an associate professor at the College
of Information Science and Engineering of Hunan Normal
University, the young backbone teacher of Hunan Province,
China. His research interests include parallel and distributed
computing systems, resource management, big data and
machine learning algorithm. He has published more than 25
research papers in international conferences and journals,
such as IEEE-TPDS, Information Sciences, FGCS, NCA, and
JPDC, PDCAT, etc. He is a senior member of the China
Computer Federation (CCF) and a Member of the IEEE.

https://safeatlast.co/blog/iot-statistics/
https://safeatlast.co/blog/iot-statistics/
https://safeatlast.co/blog/iot-statistics/
http://dx.doi.org/10.1109/TNET.2021.3058251
http://dx.doi.org/10.1109/TNET.2021.3058251
http://dx.doi.org/10.1109/TNET.2021.3058251
http://dx.doi.org/10.1109/COMST.2019.2962526
http://dx.doi.org/10.1109/TWC.2021.3062616
http://dx.doi.org/10.1109/TWC.2021.3062616
http://dx.doi.org/10.1109/TWC.2021.3062616
http://dx.doi.org/10.1109/LCOMM.2018.2849401
http://dx.doi.org/10.1109/LCOMM.2018.2849401
http://dx.doi.org/10.1109/LCOMM.2018.2849401
http://refhub.elsevier.com/S1383-7621(25)00032-3/sb6
http://refhub.elsevier.com/S1383-7621(25)00032-3/sb6
http://refhub.elsevier.com/S1383-7621(25)00032-3/sb6
http://refhub.elsevier.com/S1383-7621(25)00032-3/sb6
http://refhub.elsevier.com/S1383-7621(25)00032-3/sb6
http://dx.doi.org/10.1007/s11276-021-02767-z
http://dx.doi.org/10.1109/MNET.2019.1800309
http://dx.doi.org/10.1109/WCNC.2017.7925615
http://dx.doi.org/10.1109/WCNC.2017.7925615
http://dx.doi.org/10.1109/WCNC.2017.7925615
http://refhub.elsevier.com/S1383-7621(25)00032-3/sb10
http://refhub.elsevier.com/S1383-7621(25)00032-3/sb10
http://refhub.elsevier.com/S1383-7621(25)00032-3/sb10
http://refhub.elsevier.com/S1383-7621(25)00032-3/sb10
http://refhub.elsevier.com/S1383-7621(25)00032-3/sb10
http://refhub.elsevier.com/S1383-7621(25)00032-3/sb10
http://refhub.elsevier.com/S1383-7621(25)00032-3/sb10
http://dx.doi.org/10.1109/TCC.2019.2898657
http://dx.doi.org/10.1109/TCC.2019.2898657
http://dx.doi.org/10.1109/TCC.2019.2898657
http://dx.doi.org/10.1109/TII.2019.2961662
http://dx.doi.org/10.1109/TWC.2018.2794345
http://dx.doi.org/10.1109/TWC.2018.2794345
http://dx.doi.org/10.1109/TWC.2018.2794345
http://dx.doi.org/10.1109/TWC.2017.2785305
http://dx.doi.org/10.1109/TGCN.2021.3075903
http://dx.doi.org/10.1109/TITS.2020.2980422
http://dx.doi.org/10.1109/TWC.2021.3076201
http://dx.doi.org/10.1109/TWC.2021.3076201
http://dx.doi.org/10.1109/TWC.2021.3076201
http://dx.doi.org/10.1109/JIOT.2020.2967502
http://dx.doi.org/10.1109/JIOT.2020.2967502
http://dx.doi.org/10.1109/JIOT.2020.2967502
http://dx.doi.org/10.1109/JIOT.2021.3118016
http://dx.doi.org/10.1109/JIOT.2021.3118016
http://dx.doi.org/10.1109/JIOT.2021.3118016
http://dx.doi.org/10.1109/JIOT.2018.2793850
http://dx.doi.org/10.1109/TMC.2019.2892953
http://dx.doi.org/10.1109/LWC.2021.3138938
http://refhub.elsevier.com/S1383-7621(25)00032-3/sb23
http://refhub.elsevier.com/S1383-7621(25)00032-3/sb23
http://refhub.elsevier.com/S1383-7621(25)00032-3/sb23
http://refhub.elsevier.com/S1383-7621(25)00032-3/sb23
http://refhub.elsevier.com/S1383-7621(25)00032-3/sb23
http://dx.doi.org/10.1109/TCC.2019.2938504
http://dx.doi.org/10.1109/TCC.2019.2938504
http://dx.doi.org/10.1109/TCC.2019.2938504
http://dx.doi.org/10.1109/TVT.2021.3076057
http://dx.doi.org/10.1109/TPWRS.2014.2331424
http://dx.doi.org/10.1109/TPWRS.2014.2331424
http://dx.doi.org/10.1109/TPWRS.2014.2331424
http://dx.doi.org/10.1109/TNET.2018.2841758
http://dx.doi.org/10.1109/TII.2020.3016320
http://dx.doi.org/10.1109/TNSM.2023.3243629
http://dx.doi.org/10.1109/JSAC.2017.2760186
http://dx.doi.org/10.1109/JSAC.2017.2760186
http://dx.doi.org/10.1109/JSAC.2017.2760186

Journal of Systems Architecture 160 (2025) 103360J. Mei et al.
Longbao Dai received the B.S. degree in computer science
and technology from Hunan University of Science and
Engineering, Yongzhou, China, in 2021. He is currently
working toward the M.S. degree at the College of Infor-
mation Science and Engineering, Hunan Normal University,
Changsha, China. His research interests focus on distributed
parallel computing, modeling and resource pricing and allo-
cation in mobile edge computing systems, and combinatorial
optimization.

Keqin Li is a SUNY Distinguished Professor of Computer
Science with the State University of New York. He is
also a National Distinguished Professor with Hunan Uni-
versity, China. His current research interests include cloud
computing, fog computing and mobile edge computing,
energy–efficient computing and communication, embed-
ded systems and cyber–physical systems, heterogeneous
computing systems, big data computing, high–performance
computing, CPU–GPU hybrid and cooperative computing,
computer architectures and systems, computer networking,
13
machine learning, intelligent and soft computing. He has
authored or co-authored over 850 journal articles, book
chapters, and refereed conference papers, and has received
several best paper awards. He holds over 70 patents an-
nounced or authorized by the Chinese National Intellectual
Property Administration. He is among the world’s top 5
most influential scientists in parallel and distributed com-
puting in terms of both single–year impact and career–long
impact based on a composite indicator of Scopus citation
database. He has chaired many international conferences.
He is currently an associate editor of the ACM Comput-
ing Surveys and the CCF Transactions on High Performance
Computing. He has served on the editorial boards of the
IEEE Transactions on Parallel and Distributed Systems, the IEEE
Transactions on Computers, the IEEE Transactions on Cloud
Computing, the IEEE Transactions on Services Computing, and
the IEEE Transactions on Sustainable Computing. He is an
IEEE Fellow and an AAIA Fellow. He is also a Member
of Academia Europaea (Academician of the Academy of
Europe).

	Collaborative optimization of offloading and pricing strategies in dynamic MEC system via Stackelberg game
	Introduction
	Related work
	System model and problem formulation
	Mobile Edge Computing System Architecture
	Computing Task and Task Queue Model
	Local Execution and Communication Model
	Local computing energy consumption model
	Transmission energy consumption model
	Energy harvesting model
	Transmission rate model

	Mobile Edge Server Processing Model
	The Utility Optimization Problem
	MEC server utility optimization problem
	User utility optimization problem

	Problem Analysis and Solution
	The Game Relationship between Users and MEC Server
	Problem Transformation Based on Lyapunov Optimization
	Optimal Strategy for Users
	Optimal local task strategy
	Optimal offloading task strategy

	Optimal Strategy for MEC server
	Stackelberg Equilibrium Analysis

	Multi-Device Task Offloading and Pricing Mechanism Algorithm
	Lagrange Multiplier Update Strategy
	Price Update Strategy
	Multi-Device Task Offloading and Pricing Mechanism Algorithm

	Performance Evaluation
	Simulation Setting
	Game convergence simulation experiments
	Parameter Tuning Simulation Experiments
	Comparison with Benchmark Schemes

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

