
Enhanced Parallel Application Scheduling Algorithm with

Energy Consumption Constraint in Heterogeneous

Distributed Systems¤

Jinghong Li†,¶, Guoqi Xie‡,||, Keqin Li§,** and Zhuo Tang†,††

†College of Computer Science and Electronic Engineering,

Hunan University, P. R. China

‡Key Laboratory for Embedded and
Network Computing of Hunan Province,

College of Computer Science and Electronic Engineering,

Hunan University, P. R. China

§Department of Computer Science,

State University of New York, USA
¶li_jinghong@hnu.edu.cn

||xgqman@hnu.edu.cn
**lik@newpaltz.edu

††tangzhuo@szzt.com.cn

Received 20 June 2018
Accepted 30 October 2018

Published 14 December 2018

Energy consumption has always been one of the main design problems in heterogeneous

distributed systems, whether for large cluster computer systems or small handheld terminal
devices. And as energy consumption explodes for complex performance, many e®orts and work

are focused on minimizing the schedule length of parallel applications that meet the energy

consumption constraints currently. In prior studies, a pre-allocation method based on dynamic

voltage and frequency scaling (DVFS) technology allocates unassigned tasks with minimal
energy consumption. However, this approach does not necessarily result in minimal scheduling

length. In this paper, we propose an enhanced scheduling algorithm, which allocates the same

energy consumption for each task by selecting a relatively intermediate value among the

unequal allocations. Based on the two real-world applications (Fast Fourier transform and
Gaussian elimination) and the randomly generated parallel application, experiments show that

the proposed algorithm not only achieves better scheduling length while meeting the energy

consumption constraints, but also has better performance than the existing parallel algorithms.

Keywords: Heterogeneous distributed systems; energy consumption; DVFS; directed acyclic

graph; parallel application; schedule length.

*This paper was recommended by Regional Editor Tongquan Wei.
||Corresponding author.

Journal of Circuits, Systems, and Computers
Vol. 28, No. 11 (2019) 1950190 (23 pages)

#.c World Scienti¯c Publishing Company

DOI: 10.1142/S0218126619501901

1950190-1

http://dx.doi.org/10.1142/S0218126619501901

1. Introduction

1.1. Background

Compared to the response speed of the task and system resource utilization during

the execution of parallel application, the energy consumption is also an indicator that

is worthy of attention in system design. With the rapid development of hardware

technology, the scale and performance of chip integration continue to increase, and

modern chips have already reached the level of a few hundred watts. Intel's

Itanium2, for example, consumes about 130 watts, and it also requires expensive

packaging, heat sinks, and cooling environments, all of which increase energy con-

sumption.1 According to Moore's Law, chip integration will double every 18 months,

but it takes a full 5 years to achieve the corresponding power technology. It reveals

that energy consumption has become a problem that must be considered in system

development.

In terms of low-power technology, minimizing system energy consumption has

always been a goal pursued by researchers.2 Di®erent technologies are used to

achieve this goal. At present, most major chip vendors have implemented these

technologies (DPM and DVS/DVFS technology) in their own chips. The basic idea

of DPM technology is to save energy consumption by placing the current idle system

components in a low-power state when the system is running. And the DVS/DVFS

technology is to increase energy e±ciency ratio by changing the operating voltage/

frequency of the processor.3

In terms of task scheduling, how applications can make full use of processors in

computer systems for high-performance computing has become a valuable research

area. According to a certain scheduling policy, the task scheduling allocates the pre-

partitioned sub-tasks to processors in the computer system, so that each sub-task

gets the fastest response, thereby shortening the total execution time of the entire

task set, and balance system load and optimize system operation e±ciency.4,5

In general, parallel application scheduling problems are NP-hard.6 Applications

are represented by directed acyclic graph (DAG) and are widely used for static

scheduling problems, similar to the work of Braun,7 where nodes represent appli-

cation tasks and edges denote data dependencies between tasks. Therefore, we also

use the DAG model to represent parallel applications.

1.2. Motivation

With the increasing use of multiprocessors in high-performance embedded systems, a

series of applications, such as image recognition, human body interaction and so on,

are occuring. In Ref. 8, a fast functional safety veri¯cation(FFSV) method is pro-

vided for the early design phase of distributed automotive applications. Xie et al.9

proposed a dynamic scheduling algorithm based on fairness (FDS MIMF) and an

adaptive dynamic scheduling algorithm (ADS MIMF), which can automatically

J. Li et al.

1950190-2

meet the challenges of heterogeneity, dynamics and parallelism of automotive cyber-

physical systems (ACPS).10 Since embedded systems are cost-sensitive, hardware

costs and system resource consumption costs are reduced as much as possible when

functional security requirements are met. The above works ignore the e®ect of the

elevated operating temperature in the system.

In Ref. 11, Zhou et al. studied algorithms for optimizing the completion time

under the constraints of reliability and temperature. Due to the increase of chip

temperature, energy-saving task scheduling with thermal considerations has also

become a research topic for many researchers. In Ref. 12, the proposed random

thermal sensing task scheduling algorithm takes into account the uncertainty of the

instantaneous fault occurrences. In Ref. 13, a two-stage energy-e±cient temperature-

aware task scheduling scheme for heterogeneous real-time MPSoC systems is

designed. Wei et al.14 used approximate calculations to intelligently handle the un-

certainty of energy availability with limited energy.

Therefore, we need to ¯nd a balance between energy consumption and completion

time. The MSLECC algorithm proposed in Ref. 15 solves the minimum scheduling

problem of parallel application under energy constraints. Since the algorithm is not

very satisfactory, a more e±cient scheduling algorithm is needed.

1.3. Our contributions

In this paper, an enhanced scheduling algorithm (EECC) is proposed for parallel

applications in heterogeneous distributed computing systems. Our goal is to

minimize the schedule length while the energy consumption constraints of parallel

applications is satis¯ed. The experimental results also show that the algorithm

can achieve better schedule length while satisfying the energy consumption con-

straints.

The main contributions of this paper can be summarized as follows:

. We propose a new task scheduling algorithm to schedule parallel applications,

which can obtain a better scheduling length while still meeting energy consump-

tion constraints, and achieve higher performance with lower time complexity.

. We use two real-world applications and the randomly generated parallel appli-

cation to verify the e®ectiveness of the proposed EECC algorithm. The results

show that under di®erent conditions, the algorithm can obtain better schedule

length compared to other parallel algorithms.

The rest of the paper is organized as follows. We compare our work with related

research works in Sec. 2. Section 3 describes the application, energy models and

preliminaries used in this paper. Section 4 presents the detail of the problem and our

scheduling algorithm EECC. Results from experimental evaluation are reported in

Sec. 5. We conclude this paper in Sec. 6.

Enhanced Energy Consumption Constrained Scheduling Algorithm

1950190-3

2. Related Works

In recent years, many scheduling strategies11,16–18 have focused on saving energy on a

single processor, or on a homogeneous multiprocessor system or in heterogeneous

resources. Currently, many e®ective technologies have been studied to reduce energy

consumption, such as the DVFS19,20 mentioned in Sec. 1. Based on this, a large

number of task scheduling works have been proposed, and slack time reclamation

technique has also been used in many recent studies. Kim et al.17 provided a power-

aware scheduling algorithm with deadline-constrained bag-of-tasks applications on

DVS-enabled cluster systems. In Ref. 21, by using non-DVFS and global DVFS

energy e±ciency scheduling algorithms, the problem of minimizing energy con-

sumption while satisfying deadline constraints in real-time parallel applications on

heterogeneous distributed systems is solved. In Ref. 22, two novel scheduling algo-

rithms for a limited number of heterogeneous processors are proposed, the goal of

which is to simultaneously satisfy high performance and fast scheduling time.

Two energy-conscious scheduling heuristic algorithms were proposed by Lee

et al.,23 they are considering the makespan of parallel tasks in heterogeneous dis-

tributed computing systems while also considering the energy consumption. In

Ref. 18, Xie et al. not only maximized the number of work°ows completed within the

deadline, but also minimized the energy consumption of work°ows completed during

the deadline. In Ref. 24, Huang et al. presented an enhanced energy-e±cient

scheduling (EES) algorithm that globally analyzes and utilizes idle space to minimize

energy consumption while still meeting the deadline of heterogeneous computing

systems. However, this strategy only minimizes energy consumption through the

upward approach, while in Ref. 25, the downward and upward approaches solved the

same problem. The above works are to minimize the tasks' energy consumption while

meeting the service level agreement (SLA) based on performance.

Nevertheless, in addition to the above works, most other studies only focused on

shortening the makespan or reducing energy consumption, or reducing the dispatch

length rather than the energy consumption. Di®erent from the above studies, Xiao

et al.15 proposed an algorithm (MSLECC), which solves the problem of minimizing

the parallel applications' dispatch length with limited energy consumption in het-

erogeneous distributed systems based on DVFS technology. Although the algorithm

achieved a minimum scheduling length while meeting the constrained energy con-

sumption, the result is not ideal. In this study, we propose an enhanced scheduling

algorithm to solve the same problem.

3. Models and Preliminaries

3.1. Application model

In this study, we use U ¼ fu1;u2; . . . ;ujU jg to denote a set of heterogeneous

processors, where jU j indicates the size of set U . Generally, parallel applications can

J. Li et al.

1950190-4

be represented by a directed acyclic graph (DAG) G ¼ ðN ;M ;W ;CÞ8,22,26 as shown
in Fig. 1. N indicates a set of nodes in G, and each node denotes a task performed on

di®erent processors with di®erent execution times. M is an edge set describing the

data dependencies between tasks in the execution of the parallel application, and

each edge mi;j 2 M is connected to two nodes ni and nj. W is a jNj � jU j matrix

where wi;k indicates the time required for task ni to execute on processor uk with

maximum frequency. Accordingly, ci;j 2 C represents the communication time of

mi;j while ni and nj are not assigned to the same processor. However, if the task ni

and nj are both on the same processor, the communication cost cni;nj
will be assumed

to be zero. In DAG diagram, the set of the immediate predecessor tasks of ni is

represented by predðniÞ, and the set of its immediate successor tasks is represented

by succðniÞ. If a task has no predecessor task, we call it an entry task nentry; and a

task without any successor task is called an exit task nexit.

As shown in Fig. 1, a DAG-based parallel application consists of ten tasks which

performed on three processors fu1;u2;u3g. In this DAG, when n1 and n3 are not

assigned to the same processor, the weight 12 of the edge between n1 and n3 indicates

the communication time, which is represented by c1;3. And as shown in Table 1, the

execution time of task n1 on processor u1 is 14 with the maximum frequency. Due to

the heterogeneity of the processors, we can see from Table 1 that the same task is

executed on di®erent processors with di®erent times.

Fig. 1. Standard example of a DAG-based parallel application.

Table 1. Execution time values of tasks on di®erent processors
with the maximum frequencies of the application in Fig. 1.

Task n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

u1 14 13 11 13 12 13 7 5 18 21

u2 16 19 13 8 13 16 15 11 12 7
u3 9 18 19 17 10 9 11 14 20 16

Enhanced Energy Consumption Constrained Scheduling Algorithm

1950190-5

3.2. Energy model

Due to the almost linear relationship between supply voltage and operating frequency,

DVFS saves power/energy by reducing the supply voltage and clock frequency. In this

work, we adopt the system-level power model originally proposed in Refs. 27–29. There-

fore, the power consumption P ðfÞ of a computing system with frequency f is given by

P ðfÞ ¼ Ps þ hðPind þ PdÞ ¼ Ps þ hðPind þ Ceff
mÞ : ð1Þ

Above Ps represents static power, which is usually used to maintain the basic

circuits and keep the clock running. It can only be eliminated by turning o® the entire

system. Pind is a constant that represents the frequency-independent dynamic power

and corresponds to the power independent of the CPU processing speed. Pd denotes

the frequency-dependent dynamic power, including the power primarily consumed by

the CPU and any power that depends on the system processing frequency f. h repre-

sents the system states, speci¯cally, when the computation is in progress, the system is

active, h ¼ 1; otherwise, h ¼ 0, indicating that the system is in a power-saving sleep

mode or o®. Cef denotes the e®ective switching capacitance, andm denotes the dynamic

power index (generally not less than 2), which are all system-dependent constants.

Considering the excessive time and energy overhead associated with turning on/o® the

system, we will ignore the static power due to the unmanageability of Ps and concentrate

our analysis on Pind and Pd in this paper. Although DVFS can reduce energy con-

sumption, application require more time to complete at low frequencies. Therefore, given

the system-level power, lower frequencies may not always be optimal for energy savings.

Thus, the minimum energy-e±cient frequency fee exists,
27–29 and it is expressed as

fee ¼
ffi

Pind

ðm� 1ÞCef

m

s
: ð2Þ

Assuming that the frequency of the processor can be changed continuously between

fmin, the minimum available frequency, and fmax, the maximum frequency. Conse-

quently, for energy e±ciency, the actual e®ective frequency f should be limited to the

range ½flow; fmax� where flow ¼ maxðfmin; feeÞ. Each processor should has separate

parameters, due to the heterogeneous of processors. So we de¯ne the frequency-

independent dynamic power set fP1;ind;P2;ind; . . . ;PjU j;indg, the frequency-dependent

dynamic power set fP1;d;P2;d; . . . ;PjU j;dg, the e®ective switching capacitance set

fC1;ef ;C2;ef ; . . . ;CjU j;efg, the dynamic power exponent set fm1;m2; . . . ;mjU jg, the

minimum energy-e±cient frequency set ff1;ee; f2;ee; . . . ; fjU j;eeg, and the actual e®ec-

tive frequency set

ff1;low; f1;�; f1;�; . . . ; f1;maxg;
ff2;low; f2;�; f2;�; . . . ; f2;maxg;

. . . ;

ffjU j;low; fjU j;�; fjU j;�; . . . ; fjU j;maxg;

8>>><
>>>:

9>>>=
>>>;
:

J. Li et al.

1950190-6

Then the energy consumption Eðni;uk; fk;hÞ of the task ni on the processor uk

with frequency fk;h, calculated as

Eðni;uk; fk;hÞ ¼ ðPind þ Ck;ef � ðfk;hÞmkÞ � wi;k �
fk;max

fk;h
: ð3Þ

3.3. Preliminaries

(1) Earliest start time (EST), earliest ¯nish time (EFT)

ESTðni;uk; fk;hÞ refers to the earliest start time of the task ni with the frequency fk;h
on the processor uk, and EFT refers to the earliest ¯nish time. EFT is considered the

standard for task assignment, so each task chooses the minimum EFT to achieve the

applications current shortest scheduling length.

For an entry task, its earliest start time (EST) on any processor is zero. For other

tasks in the DAG diagram, the EST and EFT attribute values are obtained by

iterative calculating from the entry task. The above calculation methods are:

ESTðni;uk; fk;hÞ ¼ max
nx2predðniÞ

favail½k�;maxfAFT ðnxÞ þ c 0x;igg ; ð4Þ

EFTðni;uk; fk;hÞ ¼ ESTðni;uk; fk;hÞ þ wi;k �
fk;max

fk;h
: ð5Þ

avail½k� is the earliest time that the processor uk can execute the task ni; AFT ðnxÞ
indicates the actual ¯nish time of task nx; and c 0x;i indicates the actual communi-

cation time between tasks nx and ni.

(2) Schedule length (SL)

After all the tasks in the DAG map have been scheduled, the scheduling length of the

algorithm is also determined, and the value is equal to the actual ¯nish time of the

exit task, that is:

SLðGÞ ¼ AFT ðnexitÞ :
(3) Upward rank value

Since the rank is calculated by traversing the entire application from the exit task, it

is called an \upward rank". Similar to most literature, we will use the upward rank

value ðrankuÞ20–22 of the task given in Eq. (6) to sort all tasks in descending order.

rankuðniÞ ¼ wi þ max
nj2succðniÞ

fci;j þ rankuðnjÞg ; ð6Þ

where wi indicates the average execution time of task ni, and it can be calculated as

wi ¼ ðP jU j
k¼1 wi;kÞ=jU j. Table 2 shows the upward rank values of all the tasks in Fig. 1.

(4) Energy consumption constraint

Since the available frequency on each processor and the execution time of each task

are known, the minimum and maximum energy consumption of each task on a

Enhanced Energy Consumption Constrained Scheduling Algorithm

1950190-7

certain processor can be obtained, expressed as EminðniÞ and EmaxðniÞ respectively.
Its equations are denoted by

EminðniÞ ¼ min
uk2U

Eðni;uk; fk;lowÞ ; ð7Þ

EmaxðniÞ ¼ max
uk2U

Eðni;uk; fk;maxÞ ; ð8Þ

respectively.

Thus, the minimum and maximum energy consumption of the application G can

be obtained. The calculation equations are

EminðGÞ ¼
XjN j

i¼1

EminðniÞ ; ð9Þ

EmaxðGÞ ¼
XjN j

i¼1

EmaxðniÞ : ð10Þ

In this paper, we de¯ne EgivenðGÞ as the given energy consumption constraint

the application must be satis¯ed, and it is limited to the range ½EminðGÞ;EmaxðGÞ�.
If EgivenðGÞ < EminðGÞ, EgivenðGÞ is always not satis¯ed; if EgivenðGÞ > EmaxðGÞ,
EgivenðGÞ is always satis¯ed, this will make no sense.

4. Enhanced Energy Consumption Constrained Scheduling

4.1. Problem de¯nition

In this study, the problem to be solved is to allocate available processors with the

appropriate frequency for all tasks to minimize the application's schedule length,

while ensuring that the application's energy consumption does not exceed it's energy

constraints. The objective is expressed in expression as

EðGÞ ¼
XjN j

i¼1

Eðni;uprðiÞ; fprðiÞ;hzðiÞÞ � EgivenðGÞ ; ð11Þ

where uprðiÞ and fprðiÞ;hzðiÞ indicate the allocated processor and frequency of ni,

respectively, and fprðiÞ;low � fprðiÞ;hzðiÞ � fprðiÞ;max, for 8i : 1 � i � jN j;uprðiÞ 2 U .

4.2. Satisfying energy consumption constraint

We schedule the tasks based on the upward rank values. Suppose that the task

currently to be allocated is nordðjÞ, then the task set where the tasks have been

Table 2. Upward rank values for tasks of the motivating parallel application in Fig. 1.

Task n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

rankuðniÞ 108 77 80 80 69 63.33 42.67 35.67 44.33 14.67

J. Li et al.

1950190-8

allocated is fnordð1Þ;nordð2Þ; . . . ;nordðj�1Þg, and the task set where the tasks have not

be allocated is fnordðjþ1Þ;nordðjþ2Þ; . . . ;nordðjN jÞg. Previous studies have assumed that

each task in fnordðjþ1Þ;nordðjþ2Þ; . . . ;nordðjN jÞg is allocated to the processor and

frequency with minimal energy consumption to ensure that each task assignment

met the energy consumption constraints of the application with a minimum sum of

energy consumption. Although this approach satis¯ed energy consumption con-

straints, it is too passive. Therefore, in this paper we propose an enhanced algorithm,

by selecting a relatively intermediate value in the unequal allocation to reduce the

schedule length. First of all, we explain the uneven distribution.

We suppose that the ¯rst task to be assigned is allocated to the processor with the

energy consumption of Eminðnordð1ÞÞ þ �, the second task to be allocated is

Eminðnordð2ÞÞ þ 2�, and so on with di®erent value of �. Then the nth task to be

distributed is allocated with the energy consumption of EminðnordðnÞÞ þ n�,

� ¼ 2

jNj2 þ jN j ðEgivenðGÞ � EminðGÞÞ : ð12Þ

Therefore, the average assignable energy value for each task we select can be

calculated as

E�ðniÞ ¼ EminðniÞ þ � � jN j
2

: ð13Þ

Correspondingly, the pre-allocated energy of the unassigned task ni can be

expressed as

EpreðniÞ ¼ minfE�ðniÞ;EmaxðniÞg : ð14Þ

Thoerem 1. When assigning the task nordðjÞ, the application's energy consumption

should satisfy:

EordðjÞðGÞ ¼
Xj�1

x¼1

EðnordðxÞ;uprðordðxÞÞ; fprðordðxÞÞ;hzðordðxÞÞÞ

þ EðnordðjÞ;uk; fk;hÞ þ
XjN j

x¼jþ1

EpreðnordðxÞÞ � EgivenðGÞ : ð15Þ

Proof. The restriction condition expressed by Eq. (15) is proved by mathematical

induction. Firstly, when j ¼ 1 (i.e., for entry task nordð1Þ), the application should

meet the following constraint:

Eordð1ÞðGÞ ¼ Eðnordð1Þ;uk; fk;hÞ þ
XjN j

x¼2

EpreðnordðxÞÞ � EgivenðGÞ : ð16Þ

Enhanced Energy Consumption Constrained Scheduling Algorithm

1950190-9

According to Eqs. (12)–(14), there is

Eordð1ÞðGÞ ¼ Eðnordð1Þ;uk; fk;hÞ þ
XjN j

x¼2

EpreðnordðxÞÞ

� Eðnordð1Þ;uk; fk;hÞ þ
XjN j

x¼2

E�ðnordðxÞÞ

¼ Eðnordð1Þ;uk; fk;hÞ þ
XjN j

x¼1

E�ðnordðxÞÞ � E�ðnordð1ÞÞ

¼ Eðnordð1Þ;uk; fk;hÞ þ EgivenðGÞ � ðEminðnordð1ÞÞ þ n�Þ : ð17Þ
Obviously, Eminðnordð1ÞÞ þ n� is greater than or equal to Eminðnordð1ÞÞ, so the

processor with the lowest energy consumption can be allocated to nordð1Þ at least.
Therefore, nordð1Þ can ¯nd an allocated processor and frequency to satisfy:

Eordð1ÞðGÞ ¼ Eðnordð1Þ;uk; fk;hÞ þ EgivenðGÞ � ðEminðnordð1ÞÞ þ n�Þ
� EgivenðGÞ: ð18Þ

Secondly, suppose that the jth task nordðjÞ can search an allocated processor and

frequency to meet the constraint, and there have

EordðjÞðGÞ ¼
Xj�1

x¼1

EðnordðxÞ;uprðordðxÞÞ; fprðordðxÞÞ;hzðordðxÞÞÞ

þ EðnordðjÞ;uprðordðjÞÞ; fprðordðjÞÞ;hzðordðjÞÞÞ

þ
XjNj

x¼jþ1

EpreðnordðxÞÞ � EgivenðGÞ : ð19Þ

Therefore, for the ðjþ 1Þth task nordðjþ1Þ, the energy consumption of the appli-

cation G is

Eordðjþ1ÞðGÞ ¼
Xj

x¼1

EðnordðxÞ;uprðordðxÞÞ; fprðordðxÞÞ;hzðordðxÞÞÞ

þ Eðnordðjþ1Þ;uk; fk;hÞ þ
XjNj

x¼jþ2

EpreðnordðiÞÞ : ð20Þ

According to Eqs. (19) and (20), there is

Eordðjþ1ÞðGÞ ¼
Xj�1

x¼1

EðnordðxÞ;uprðordðxÞÞ; fprðordðxÞÞ;hzðordðxÞÞÞ

þ EðnordðjÞ;uprðordðjÞÞ; fprðordðjÞÞ;hzðordðjÞÞÞ

þ Eðnordðjþ1Þ;uk; fk;hÞ þ
XjNj

x¼jþ2

EpreðnordðxÞÞ

J. Li et al.

1950190-10

� EgivenðGÞ �
XjN j

x¼jþ1

EpreðnordðxÞÞ

þ Eðnordðjþ1Þ;uk; fk;hÞ þ
XjN j

x¼jþ2

EpreðnordðxÞÞ :

Then,

Eordðjþ1ÞðGÞ � EgivenðGÞ þ Eðnordðjþ1Þ;uk; fk;hÞ � Epreðnordðjþ1ÞÞ:

Since the value of Epreðnordðjþ1ÞÞ is larger than or equal to Eminðnordðjþ1ÞÞ, we can

get Eordðjþ1ÞðGÞ � EgivenðGÞ similar to the case of j ¼ 1.

This shows that nordðGÞ also satis¯es the energy consumption constraint. From the

above, we can see that each task can ¯nd separate allocated processors and fre-

quencies to meet the energy consumption constraint.

4.3. EECC algorithm design

Before explaining the details in this section, we ¯rstly give the energy consumption

constraint for each task. According to Eq. (15), there have

Eordðjþ1ÞðGÞ � EgivenðGÞ �
Xj�1

x¼1

EðnordðxÞ;uprðordðxÞÞ; fprðordðxÞÞ;hzðordðxÞÞÞ

�
XjN j

x¼jþ1

EpreðnordðxÞÞ:

Hence, let the energy consumption constraint of the task be

EgivenðnordðjÞÞ ¼ EgivenðGÞ �
Xj�1

x¼1

EðnordðxÞ;uprðordðxÞÞ; fprðordðxÞÞ;hzðordðxÞÞÞ

�
XjN j

x¼jþ1

EpreðnordðxÞÞ: ð21Þ

So, when assigning a single task, we only need to consider the energy consumption

constraint of the task without considering the application's energy consumption

constraint. The main idea of the operation is to convert the application's energy

consumption constraint to that of each task. Since the maximum energy consump-

tion constraint of the task nordðjÞ is EmaxðnordðjÞÞ, EgivenðnordðjÞÞ should satisfy the

following constraint:

EðnordðjÞ;uk; fk;hÞ � minfEgivenðnordðjÞÞ;EmaxðnordðjÞÞg:

Enhanced Energy Consumption Constrained Scheduling Algorithm

1950190-11

Therefore, a enhanced energy consumption constraint algorithm (EECC) is

proposed in Algorithm 1. In EECC, only processor and frequency with the minimum

EFT is selected for each task in the case of energy consumption constraints. EECC uses

the insertion-based scheduling strategy to decrease the schedule length while meeting

the energy consumption constraints. Each phase is explained in detail as follows.

(1) In Line 6, the pre-allocated energy of each task is calculated.

(2) In Lines 8–22, By traversing all processors and frequencies, each task selects the

processor with the minimum EFT when the energy consumption constraint is

satis¯ed. The time complexity is OðjNj � jU j � jF jÞ, where jF j denotes the

maximum number of discrete frequencies from the lowest to the largest actual

e®ective frequencies.

(3) In Lines 24 and 25, we calculate the actual energy consumption EðGÞ and the

schedule length SLðGÞ.
Through the above analysis, we can see that EECC algorithm can achieve low time

complexity OðjNj2 � jU j � jF jÞ for parallel applications which have the energy

consumption constraints.

Algorithm 1. The EECC Algorithm
Input: G: A DAG graph; U: A set of DVFS-enabled processors.
Output: SL(G): the schedule length of the application; E(G): the actual energy consumption of

the application.
1: Sort the tasks in a list downtask list by descending order of ranku values.
2: while (tasks in downtask list) do
3: ni = downtask list.out();
4: Calculate Emin(ni) and Emax(ni) using Eqs. (7), and (8), respectively;
5: Calculate Emin(G) and Emax(G) using Eqs. (9), and (10), respectively;
6: Calculate Epre(ni) using Eqs. (12), (13) and (14);
7: Calculate Egiven(ni) using Eq. (??);
8: for (∀k, Uk ∈ U) do
9: for (∀h, fk,h ∈ [fk,low, fk,max]) do

10: Calculate E(ni, uk, fk,h) using Eq. (3);
11: if (E(ni, uk, fk,h) ≤ min{Egiven(ni), Emax(ni)}) then
12: fk,hz(i) ← fk,h;
13: end if
14: end for
15: Calculate EFT (ni, uk, fk,h) using Eq. (5);
16: if (EFT (ni, uk, fk,h) < AFT (ni)) then
17: pr(i) ← k;
18: fpr(i),hz(i) ← fk,hz(i);
19: E(ni, upr(i), fpr(i),hz(i)) ← E(ni, uk, fk,hz(i));
20: AFT (ni) ← EFT (ni, uk, fk,hz(i));
21: end if
22: end for
23: end while
24: Calculate E(G) using Eq. (11);
25: Calculate SL(G) = AFT (nexit).

J. Li et al.

1950190-12

4.4. Motivational example

Using Fig. 1 as an example, Table 3 lists all the processors parameters, such as the

frequency-independent dynamic power Pk;ind, the e®ective switching capacitance

Ck;ef and the dynamic power exponent mk. Each processor's maximum frequency

fk;max is 1.0 and its frequency precision is 0.01. In this example, the minimum energy-

e±cient frequency fk;ee derived from Eq. (2) is considered as fk;low.

Therefore, the minimum and maximum energy consumption of application can

be calculated as EminðGÞ ¼ 20:31 and EmaxðGÞ ¼ 161:99 according to Eqs. (9)

and (10), respectively. We set the energy constraint of application G as

EgivenðGÞ ¼ 0:5� EmaxðGÞ. Then the task assignment for the parallel application in

Fig. 1 are shown in Table 4. Each row represents a task allocation and its relevant

values. The actual energy consumption of the application is 76.2109, which is less

than EgivenðGÞ. And the schedule length is 80.0323.

Table 3. Processors' power and frequency parameters.

uk Pk;ind Ck;ef mk fk;lowðfk;eeÞ fk;max

u1 0.03 0.8 2.9 0.26 1.0
u2 0.04 0.8 2.5 0.26 1.0

u3 0.07 1.0 2.5 0.29 1.0

Table 4. Task assignment for the application generated by EECC in Fig. 1.

ni EgivenðniÞ uðniÞ fðniÞ AST ðniÞ AFT ðniÞ EðniÞ
n1 13.5149 u3 1.0 0 9 9.63

n3 11.3514 u1 1.0 21 32 9.13

n4 9.8173 u2 1.0 18 26 6.72
n2 10.9183 u3 0.62 9 38.0323 10.8197

n5 7.7425 u2 0.77 26 42.8831 7.7023

n6 7.8612 u1 0.83 32 47.6627 7.7692

n9 8.7275 u2 0.89 54.0323 67.5154 8.5997
n7 6.8852 u1 1.0 47.6627 54.6627 5.81

n8 7.4782 u1 1.0 57.0323 62.0323 4.15

n10 10.6641 u2 1.0 73.0323 80.0323 5.88
EðGÞ ¼ 76:2109;SLðGÞ ¼ 80:0323

Fig. 2. Scheduling of the application in Fig. 1 using the EECC.

Enhanced Energy Consumption Constrained Scheduling Algorithm

1950190-13

Figure 2 shows a scheduling diagram of the parallel application G in Fig. 1 using

the EECC. The arrows in Fig. 2 indicate the communication information generated

between tasks.

5. Experiments

In this section, we use two algorithms, HEFT (a well-known algorithm that does not

consider energy costs, but performs well in task scheduling23) and minimum schedule

length with energy consumption constraint algorithm (MSLECC), which are the

same as the goal of this paper and propose a comparative evaluation of our algorithm

(EECC) to evaluate the performance of our proposed method. We implement a Java

simulation platform to validate our algorithm.

The experiment comparisons of the algorithm are based on the following two

performance metrics: the actual energy consumption E(G) and the ¯nal schedule

length SL(G).

The parameters of the processors and applications as follows: 10ms � wi;k

� 100ms, 10ms � ci;j � 100ms, 0:03 � Pk;ind � 0:07, 0:8 � Ck;ef � 1:2, 2:5 � mk

� 3:0, and fk;max ¼ 1GHz. All frequencies are discrete, and the precision is 0.01GHz.

We chose three DAG models to evaluate our algorithm: two real-world applica-

tions (Fast Fourier transform and Gaussian elimination) and randomly generated

applications.22

5.1. Fast Fourier transform application

We ¯rst consider the fast Fourier transform (FFT), Fig. 3 shows an example of the

FFT parallel application with � ¼ 4. We denote � as the application's matrix di-

mension. The total number of tasks in a fast Fourier transform graph is equal to

ð2� �� 1Þ þ �� log2 �, where � ¼ 2y for a certain integer y. Note that there are �

exit tasks exist in a FFT application with the size of �. To adapt this research

Fig. 3. Example of FFT parallel application with � ¼ 4.

J. Li et al.

1950190-14

application model, we introduce a virtual exit task to connect these tasks, that is, the

last � tasks are set as the immediate predecessor tasks of the virtual task. Note that

the virtual exit task has zero time overhead.

Experiment 1. In order to observe the performance on di®erent energy con-

sumption constraints, an experiment is carried out to compare the actual energy

consumption and the ¯nal schedule length values of the FFT application for varying

energy consumption constraints. We limit the matrix dimension as � ¼ 64 (i.e.,

jNj ¼ 511), and the energy consumption constraints is changed from EHEFTðGÞ � 0:5

to EHEFTðGÞ � 0:9. The EHEFTðGÞ represents the energy consumption generated

by HEFT.

Table 5 shows the details of the ¯nal schedule lengths and energy consumption

values of fast Fourier transform application with � ¼ 64 for varying EgivenðGÞ
by using all the algorithms, and a more intuitive feeling can be performed through

Fig. 4(a). In the three algorithms, although the MSLECC and EECC algorithms can

meet the energy consumption constraints in all cases, the EECC algorithm is more

e®ective than the MSLECC in the schedule length. The schedule length basically

decreased from 24% to 50%. For example, when EgivenðGÞ ¼ 5308:12, the schedule

length using EECC is 1016.64 while the schedule length using MSLECC is 2305.56.

Table 5. Results of FFT parallel applications with � ¼ 64 for varying EgivenðGÞ.

HEFT MSLECC EECC

EgivenðGÞ EðGÞ SLðGÞ EðGÞ SLðGÞ EðGÞ SLðGÞ
5308.12 10616.24 886 5308.12 2305.56 5308.06 1016.64

6369.74 10616.24 886 6369.74 2038.23 6369.59 997.32

7431.37 10616.24 886 7431.37 1795.70 7431.12 976.83
8492.99 10616.24 886 8492.99 1337.65 8471.93 976.00

9554.62 10616.24 886 9554.62 1200.83 9424.86 906.23

(a) Varying EgivenðGÞ (b) Varying number of tasks

Fig. 4. Final schedule length of FFT application.

Enhanced Energy Consumption Constrained Scheduling Algorithm

1950190-15

These results indicate that the proper allocation of energy consumption can achieve a

better schedule length.

Experiment 2. In order to observe the algorithm performance under di®erent

number of tasks, an experiment is carried out to compare the actual energy con-

sumption and the ¯nal schedule length values of the FFT application for varying

number of tasks. The matrix dimension � is changed from 16 to 256, that is, the scale

of tasks is changed from 95 to 2559. EgivenðGÞ is set to EHEFTðGÞ � 0:5.

Table 6 shows the results of fast Fourier transform applications for di®erent

number of tasks by using the three algorithms. It can be seen from the table and

Fig. 4(b) that, as the application increases, although the MSLECC and EECC can

always meet the energy consumption constraints, the MSLECC is more pessimistic

than the EECC-generated schedule length. The actual energy consumption using

HEFT applications still cannot meet the energy constraints in di®erent scales. The

schedule length basically decreased from 21% to 80%. For example, when � ¼ 128

(i.e., jN j ¼ 1151), the scheduling length using MSLECC is 4924.77 while EECC

is 1269.53. And the actual energy consumption using HEFT is 23154.78,

which obviously does not meet the given energy consumption constraints 11577.39.

These results show that the proposed EECC algorithm has better performance than

MSLECC.

Table 6. Results of FFT parallel applications for varying number of tasks.

HEFT MSLECC EECC

� jNj EgivenðGÞ EðGÞ SLðGÞ EðGÞ SLðGÞ EðGÞ SLðGÞ
16 95 1077.01 2154.01 537 1077.01 819.59 1076.84 646.44

32 223 2354.95 4709.90 692 2354.95 1536.02 2354.90 807.96
64 511 5225.56 10451.11 890 5225.55 2491.77 5225.52 1049.85

128 1151 11577.39 23154.78 1134 11577.39 4924.77 11577.21 1269.53

256 2559 21192.23 42384.46 1540 21192.23 9972.54 21192.22 1980.66

Fig. 5. Example of GE parallel application with � ¼ 5.

J. Li et al.

1950190-16

5.2. Gaussian elimination application

Similarly, in Gaussian elimination (GE) application, we de¯ne � as the dimension of

the application, and the total number of tasks can be calculated by jNj ¼ ð� 2þ��2Þ
2 .

Since the FFT has higher parallelism than GE, it can be seen that the FFT can

produce shorter scheduling length than GE (Fig. 5).

Experiment 3. This experiment compares the actual energy consumption and

the ¯nal schedule length values of GE application for varying energy consumption

constraints. We limit the matrix dimension as � ¼ 32 (i.e., jN j ¼ 527), and the

energy consumption constraints is changed from EHEFTðGÞ � 0:5 to EHEFTðGÞ � 0:9.

Table 7 and Fig. 6(a) show the details of the ¯nal schedule lengths and energy

consumption values of GE application with � ¼ 32 for varying EgivenðGÞ by using all

the algorithms. Compared to MSLECC, the EECC's scheduling length is reduced by

16.9% to 33.2%. Similar to Experiment 1, the results still show that EECC performs

better than MSLECC.

Experiment 4. This experiment compares the actual energy consumption and

the ¯nal schedule length of the GE applications for varying number of tasks. The

matrix dimension set is f13; 21; 31; 47; 71g, the corresponding number of tasks is

f90,230,495,1127,2555g. EgivenðGÞ is set to EHEFTðGÞ � 0:5.

Table 7. Results of GE application with � ¼ 32 for varying EgivenðGÞ.

HEFT MSLECC EECC

EgivenðGÞ EðGÞ SLðGÞ EðGÞ SLðGÞ EðGÞ SLðGÞ
6140.20 12280.4 3137 6140.20 5868.63 6139.98 3917.47

7368.24 12280.4 3137 7368.24 5453.65 7368.04 3981.73

8596.28 12280.4 3137 8596.28 5003.22 8594.20 3668.03
9824.32 12280.4 3137 9824.32 4624.76 9805.49 3501.16

11052.36 12280.4 3137 11052.36 4266.21 10856.98 3544.09

(a) Varying EgivenðGÞ (b) Varying number of tasks

Fig. 6. Final schedule length of GE application.

Enhanced Energy Consumption Constrained Scheduling Algorithm

1950190-17

Table 8 and Fig. 6(b) show the results of Gaussian elimination applications for

di®erent number of tasks by using the three algorithms. Among these three algo-

rithms, the MSLECC and EECC algorithms can meet the energy consumption

constraints in any case, and as the scale increases, the EECC algorithm still has a

better e®ect on the scheduling length than the MSLECC. The performance basically

increased from 23.4% to 40.2%.

Through experiments on two real-world applications, fast Fourier transforms and

Gaussian elimination, the results show that EECC algorithms can apply to di®erent

scale and parallel applications.

5.3. Randomly generated parallel application

For randomly generated graphs, we typically use a random DAG generator to ran-

domly generate parallel applications. In this study, a parallel application is randomly

generated based on the following parameters: communication to computation ratio

(CCR) is 1, average computation time is 50 h, and shape parameter is 1. The value of

the heterogeneity factor is in the range (0,1], where 0 and 1 indicate the lowest and

highest heterogeneity factors, respectively.

Experiment 5. We conducted this experiment to compare the actual energy

consumption and the ¯nal schedule length of low-heterogeneity (with the hetero-

geneity factor 0.1) and high-heterogeneity (with the heterogeneity factor 1.0) ran-

domly generated parallel applications for varying energy consumption constraints,

respectively. The number of tasks is set to jN j ¼ 511, and the energy consumption

constraints is changed from EHEFTðGÞ � 0:5 to EHEFTðGÞ � 0:9.

Tables 9 and 10, respectively, show the details of the ¯nal schedule lengths and

energy consumption values of low-heterogeneity and high-heterogeneity randomly

generated parallel applications with di®erent energy consumption constraints by

using three di®erent algorithms. Because the objective computing platform is com-

posed of heterogeneous processors, the heterogeneity may also a®ect the performance

of the application. Figure 7 intuitively shows that with the increase of the hetero-

geneity factor, the performance of each scheduling algorithm has been improved to

varying degrees. Similar to Experiment 1, these results show that EECC still per-

forms better than MSLECC.

Table 8. Results of GE applications for varying number of tasks.

HEFT MSLECC EECC

� jNj EgivenðGÞ EðGÞ SLðGÞ EðGÞ SLðGÞ EðGÞ SLðGÞ
13 90 1057.03 2114.06 1340 1057.03 2021.97 1055.08 1528.11

21 230 2338.99 4677.98 2160 2338.99 3278.90 2338.97 2510.46
31 495 5610.79 11221.58 3086 5610.79 5098.89 5610.62 3517.95

47 1127 14601.34 29202.67 4738 14601.34 8723.79 14597.87 5802.84

71 2555 34310.89 68621.77 7396 34310.89 13954.94 34310.73 8339.82

J. Li et al.

1950190-18

Experiment 6. We carried out this experiment to compare the actual energy

consumption and the ¯nal schedule length of low-heterogeneity (with the hetero-

geneity factor 0.1) and high-heterogeneity (with the heterogeneity factor 1.0) ran-

domly generated parallel applications for di®erent number of tasks, respectively

(Fig. 8). The number of tasks is changed from 93 to 2560. EgivenðGÞ is set to

EHEFTðGÞ � 0:5.

Tables 11 and 12 show the results of low-heterogeneity and high-heterogeneity

randomly generated parallel applications with di®erent number of tasks by using three

Table 9. Results of low-heterogeneity randomly generated parallel application

with jNj ¼ 511 for varying EgivenðGÞ.

HEFT MSLECC EECC

EgivenðGÞ EðGÞ SLðGÞ EðGÞ SLðGÞ EðGÞ SLðGÞ
12971.17 25942.34 775 12971.16 26742.22 12970.99 1227.63

15565.40 25942.34 775 15565.40 20619.04 15564.87 1083.73

18159.64 25942.34 775 18159.63 15722.35 18159.42 978.24
20753.87 25942.34 775 20753.87 10778.17 20753.25 900.10

23348.11 25942.34 775 23348.10 5397.70 23342.03 827

Table 10. Results of high-heterogeneity randomly generated parallel

application with jN j ¼ 511 for varying EgivenðGÞ.

HEFT MSLECC EECC

EgivenðGÞ EðGÞ SLðGÞ EðGÞ SLðGÞ EðGÞ SLðGÞ
1297.47 2594.93 80 1297.47 339.64 1296.77 114.06

1556.96 2594.93 80 1556.96 336.46 1555.23 103.53
1816.45 2594.93 80 1816.45 246.60 1793.36 91.54

2075.94 2594.93 80 2075.94 176.74 2012.64 86.47

2335.44 2594.93 80 2335.44 149.91 2215.98 85.62

(a) Low-heterogeneity application (b) High-heterogeneity application

Fig. 7. Final schedule length for varying EgivenðGÞ.

Enhanced Energy Consumption Constrained Scheduling Algorithm

1950190-19

di®erent algorithms. The results still show that the proposed EECC algorithm can not

only be applied to small-scale applications, but also can be applied to large-scale

applications, and has extensively prove the performance advantages of the proposed

algorithm. Among them, the main di®erence between low-heterogeneity and

high-heterogeneity applications is that low-heterogeneity application generates about

10 times more energy consumption and schedule length than high-heterogeneity

application. In other words, application with a high degree of heterogeneity may have

higher energy savings and the potential to reduce the schedule length.

(a) Low-heterogeneity application (b) High-heterogeneity application

Fig. 8. Final schedule length for varying number of tasks.

Table 11. Results of low-heterogeneity randomly generated parallel application for

varying number of tasks.

HEFT MSLECC EECC

jNj EgivenðGÞ EðGÞ SLðGÞ EðGÞ SLðGÞ EðGÞ SLðGÞ
93 2299.47 4598.93 142 2299.47 3736.10 2299.16 262.54

225 5609.54 11219.07 369 5609.53 9177.00 5609.41 576.43
520 13078.86 26157.72 793 13078.86 23636.42 13078.71 1270.51

1175 29833.63 59667.26 1775 29833.63 47573.33 29833.31 2812.26

2560 65194.25 130388.49 3846 65194.24 113973.50 65193.81 6088.99

Table 12. Results of high-heterogeneity randomly generated parallel application
for varying number of tasks.

HEFT MSLECC EECC

jNj EgivenðGÞ EðGÞ SLðGÞ EðGÞ SLðGÞ EðGÞ SLðGÞ
93 217.02 434.03 21 217.02 86 216.99 51.58

225 569.12 1138.23 40 569.12 270 569.08 90.91

520 1305.55 2611.10 83 1305.55 573 1304.03 135.24

1175 2765.15 5530.29 173 2765.15 818 2765.10 255.27
2560 6242.70 12485.39 386 6242.70 1859.52 6242.67 574.59

J. Li et al.

1950190-20

6. Conclusion

This paper has presented an enhanced algorithm called EECC designed to minimize

the schedule length of energy constrained parallel applications in heterogeneous

distributed systems. First, the mathematical proof and experiments verify that the

proposed algorithm can always satisfy the energy consumption constraints. Second,

the algorithm can e±ciently reduce the schedule length of the application with low

time complexity. The EECC algorithm e®ectively improves the partial energy-aware

design of parallel applications in heterogeneous distributed systems.

Acknowledgment

This work was supported in part by the National Key R&D Program of China under

Grant 2017YFB0202901, Grant 2017YFB0202905, the National Natural Science

Foundation of China under Grant 61702172, Grant 61672217, the Natural Science

Foundation of Hunan Province under Grant 2018JJ3076, the Open Research Project

of the State Key Laboratory of Synthetical Automation for Process Industries (SAPI),

Northeastern University, China under Grant PAL-N201803, and the Fundamental

Research Funds for the Central Universities.

References

1. A. Jaiantilal, Y. Jiang and S. Mishra, Modeling cpu energy consumption for energy
e±cient scheduling, in The Workshop on Green Computing (2010), pp. 10–15.

2. Y.-C. Hung, S.-H. Shieh and C.-K. Tung, A survey of low-voltage low-power techniques
and challenges for cmos digital circuits, J. Circuits Syst. Comput. 20(1) (2011) 89–105.

3. M. E. Salehi, M. Samadi, M. Najibi, A. Afzali-Kusha, M. Pedram and S. M. Fakhraie,
Dynamic voltage and frequency scheduling for embedded processors considering power/
performance tradeo®s, IEEE Trans. Very Large Scale Integr. Syst. 19(10) (2011) 1931–
1935.

4. C. Kahraman and O. Engin, Multiprocessor task scheduling in multistage hybrid °ow-
shops: A parallel greedy algorithm approach, Appl. Soft Comput. 10(4) (2010) 1293–1300.

5. B. Keshanchi and N. J. Navimipour, Priority-based task scheduling in the cloud systems
using a memetic algorithm, J. Circuits Syst. Comput. 25(10) (2016), p. 1650119.

6. J. D. Ullman, Np-complete scheduling problems, J. Comput. Syst. Sci. 10(3) (1975)
384–393.

7. T. D. Braun, H. J. Siegel, N. Beck, L. L. B€ol€oni, M. Maheswaran, A. I. Reuther, J. P.
Robertson, M. D. Theys, B. Yao and D. Hensgen, A comparison of eleven static heuristics
for mapping a class of independent tasks onto heterogeneous distributed computing
systems, J. Parallel Distributed Comput. 61(6) (2001) 810–837.

8. G. Xie, G. Zeng, Y. Liu, J. Zhou, R. Li and K. Li, Fast functional safety veri¯cation for
distributed automotive applications during early design phase, IEEE Trans. Industr.
Electron. 65 (2018) 4378–4391.

9. G. Xie, G. Zeng, Z. Li, R. Li and K. Li, Adaptive dynamic scheduling on multifunctional
mixed-criticality automotive cyber-physical systems, IEEE Trans. Vehicular Technol.
66(8) (2017) 6676–6692.

Enhanced Energy Consumption Constrained Scheduling Algorithm

1950190-21

10. G. Xie, H. Peng, Z. Li, J. Song, Y. Xie, R. Li and K. Li, Reliability enhancement towards
functional safety goal assurance in energy-aware automotive cyber-physical systems,
IEEE Trans. Industr. Inform. PP(2018) 1–14.

11. J. Zhou, K. Cao, P. Cong, T. Wei, M. Chen, G. Zhang, J. Yan and Y. Ma, Reliability and
temperature constrained task scheduling for makespan minimization on heterogeneous
multi-core platforms, J. Syst. Softw. 133 (2017) 1–16.

12. J. Zhou and T. Wei, Stochastic thermal-aware real-time task scheduling with con-
siderations of soft errors, J. Syst. Softw. 102 (2015) 123–133.

13. J. Zhou, T. Wei, M. Chen, J. Yan, X. S. Hu and Y. Ma, Thermal-aware task scheduling
for energy minimization in heterogeneous real-time mpsoc systems, IEEE Trans. Com-
put.-Aided Design Integr. Circuits Syst. 35(8) (2016) 1269–1282.

14. T. Wei, J. Zhou, K. Cao, P. Cong, M. Chen, G. Zhang, X. S. Hu and J. Yan, Cost-
constrained qos optimization for approximate computation real-time tasks in heteroge-
neous mpsocs, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. PP(99) (2017)
1–1.

15. X. Xiao, G. Xie, R. Li and K. Li, Minimizing schedule length of energy consumption
constrained parallel applications on heterogeneous distributed systems, Proc. 14th
IEEE Int. Symp. Parallel and Distributed Processing with Applications (IEEE, 2016),
pp. 1471–1476.

16. X. Zhong and C. Z. Xu, Energy-aware modeling and scheduling for dynamic voltage
scaling with statistical real-time guarantee, IEEE Trans. Comput. 56(3) (2007) 358–372.

17. K. H. Kim, R. Buyya and J. Kim, Power aware scheduling of bag-of-tasks applications
with deadline constraints on dvs-enabled clusters, in IEEE Int. Symp. CLUSTER Com-
puting and the Grid (2007), pp. 541–548.

18. G. Xie, G. Zeng, J. Jiang, C. Fan, R. Li and K. Li, Energy management for multiple real-
time work°ows on cyber–physical cloud systems, Future Generation Computer Systems
(May, 2017).

19. Y. Chen, G. Xie and R. Li, Reducing energy consumption with cost budget using avail-
able budget preassignment in heterogeneous cloud computing systems, IEEE Access
6 (2018) 20572–20583.

20. G. Xie, X. Xiao, R. Li and K. Li, Schedule length minimization of parallel applications
with energy consumption constraints using heuristics on heterogeneous distributed sys-
tems, Concurr. Comput. Practice Exp. 29 (2017), p. e4024.

21. G. Xie, G. Zeng, X. Xiao, R. Li and K. Li, Energy-e±cient scheduling algorithms for real-
time parallel applications on heterogeneous distributed embedded systems, IEEE Trans.
Parallel Distributed Syst. 28(12) (2017) 3426–3442.

22. H. Topcuoglu, S. Hariri and M. Y. Wu, Performance-e®ective and low-complexity task
scheduling for heterogeneous computing, IEEE Trans. Parallel Distributed Syst. 13(3)
(2002) 260–274.

23. Y. C. Lee and A. Y. Zomaya, Energy conscious scheduling for distributed computing
systems under di®erent operating conditions, IEEE Transactions on Parallel and Dis-
tributed Systems 22(8) (2011) 1374–1381.

24. Q. Huang, S. Su, J. Li, P. Xu, K. Shuang and X. Huang, Enhanced energy-e±cient
scheduling for parallel applications in cloud, in IEEE/ACM Int. Symp. Cluster, Cloud and
Grid Computing (2012), pp. 781–786.

25. G. Xie, J. Jiang, Y. Liu, R. Li and K. Li, Minimizing energy consumption of real-time
parallel applications using downward and upward approaches on heterogeneous systems,
IEEE Trans. Industr. Informat. 13 (2017) 1068–1078.

J. Li et al.

1950190-22

26. G. Xie, G. Zeng, R. Li and K. Li, Quantitative fault-tolerance for reliable work°ows
on heterogeneous iaas clouds, IEEE Trans. Cloud Comput. (2017), pp. 1–14, doi: 10.1109/
TCC.2017.2780098.

27. D. Zhu, R. Melhem and D. Mosse, The e®ects of energy management on reliability in real-
time embedded systems, in IEEE/ACM Int. Conf. Computer Aided Design (2004),
pp. 35–40.

28. B. Zhao, H. Aydin and D. Zhu, On maximizing reliability of real-time embedded appli-
cations under hard energy constraint, IEEE Trans. Industr. Inform. 6(3) (2010) 316–328.

29. B. Zhao, H. Aydin and D. Zhu, Shared recovery for energy e±ciency and reliability
enhancements in real-time applications with precedence constraints, ACM Trans. Design
Autom. Electron. Syst. 18(2) (2013) 1–21.

Enhanced Energy Consumption Constrained Scheduling Algorithm

1950190-23

	Enhanced Parallel Application Scheduling Algorithm with Energy Consumption Constraint in Heterogeneous Distributed Systems∗
	1. Introduction
	1.1. Background
	1.2. Motivation
	1.3. Our contributions

	2. Related Works
	3. Models and Preliminaries
	3.1. Application model
	3.2. Energy model
	3.3. Preliminaries

	4. Enhanced Energy Consumption Constrained Scheduling
	4.1. Problem definition
	4.2. Satisfying energy consumption constraint
	4.3. EECC algorithm design
	4.4. Motivational example

	5. Experiments
	5.1. Fast Fourier transform application
	5.2. Gaussian elimination application
	5.3. Randomly generated parallel application

	6. Conclusion
	Acknowledgment
	References

