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Abstract—In multiagent reinforcement learning, policy evalu-
ation is a central problem. To solve this problem, decentralized
temporal-difference (TD) learning is one of the most popular
methods, which has been investigated in recent years. However,
existing decentralized variants of TD learning often suffer from
slow convergence due to the sensitive selection of learning rates.
Inspired by the great success of adaptive gradient methods in
the training of deep neural networks, this article proposes a
decentralized adaptive TD(λ) learning algorithm for general λ
with linear function approximation, referred to as D-AMSTD(λ),
which can mitigate the selective sensitivity of learning rates.
Furthermore, we establish the finite-time performance bounds
of D-AMSTD(λ) under the Markovian observation model. The
theoretical results show that D-AMSTD(λ) can linearly converge
to an arbitrarily small size of neighborhood of the optimal weight.
Finally, we verify the efficacy of D-AMSTD(λ) through a variety
of experiments. The results show that D-AMSTD(λ) outperforms
existing decentralized TD learning methods.

Index Terms—Finite-time bounds, multiagent reinforcement
learning (MARL), policy evaluation, temporal-difference (TD)
learning.

I. INTRODUCTION

IN MODERN machine learning, one of the most popular
paradigms is reinforcement learning (RL), which learns
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an optimal policy via maximizing a cumulative reward [1].
Therefore, how to estimate the cumulative reward is a central
problem in RL. To solve this problem, temporal-difference
(TD) learning is one of the most dominant methods in RL [2],
which estimates the cumulative reward through an iteration
process under a given policy. The classical TD uses a tabular to
represent the cumulative reward, where the estimates of entry-
wise cumulative reward are stored state-by-state. Nevertheless,
the “curse of dimensionality” can be caused by the tabular
TD with large state spaces. To address this issue, various
approximators can be used to approximate the cumulative
reward [1], [3]. In general, approximators are divided into
linear and nonlinear approximations. In particular, deep RL has
been successfully applied in many domains [4], where deep
neural networks are regarded as nonlinear approximators. For
example, AlphaGo [5], AlphaGo Zero [6], games [7], etc.

Despite the success of RL with nonlinear approximators,
however, the convergence of TD learning cannot be guaranteed
through nonlinear methods [8]. To ensure the convergence of
TD learning, linear function approximation methods are used
in general. Furthermore, linear approximators are efficiently
implemented on both computation and data in practice com-
pared to nonlinear approximators [1]. For this reason, this
article focuses on the design and analysis of TD learning,
where the value function is parameterized by linearly com-
bining the preselected bias functions. According to the update
rule of the vanilla TD learning, the weight parameters can be
estimated by an iteration process. Albeit the iteration process
is simple, the rigorous analysis of convergence performance
remains a challenging task [8]. Toward this direction, the
asymptotic performance of TD learning with a linear approxi-
mation is established in [8], [9], [10], and [11]. Nevertheless,
the nonasymptotic performance analysis has recently received
increasing interest because massive data examples need to
be handled in artificial intelligence, signal processing, and
control tasks. Moreover, the statistical efficiency of algo-
rithms can be better understood in terms of nonasymptotic
analysis. Compared to the asymptotic analysis of TD learn-
ing, its nonasymptotic analysis faces more challenges in
particular [12]. For example, the bias and correlation are
introduced in the update of TD, which cannot correspond
to stochastic gradient ascent. Despite these challenges, the
nonasymptotic analysis of TD learning was also developed in
recent years [13], [14], [15], [16], [17], [18].
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Albeit the nonasymptotic analysis of TD learning has made
great progress, the aforementioned works were made for the
centralized setting. When dealing with some tasks in the
multiagent paradigm, however, this setting suffers from some
limitations, including the communication bottleneck problem
in wireless networks, the privacy and secrecy problem in
sensitive applications, and the robust problem [19]. Moreover,
the central coordinator may not even exist in many practical
applications. For these reasons, decentralized TD learning
methods were proposed recently in multiagent RL (MARL)
environments [12], [20], [21], [22], [23], [24], [25], which
suppose that each agent only knows its own local information
and can communicate with its neighbors over a multiagent
network. Moreover, the optimal weight parameter is sought
in a cooperative manner without any central coordinator.
Specifically, Mathkar and Borkar [20] analyzed the asymptotic
performance of decentralized TD(0) learning by using the
ordinary differential equation (ODE) approach. Under the
independently and identically distributed (i.i.d.) assumption,
Doan et al. [21] rigorously analyzed the nonasymptotic (i.e.,
finite-time) performance of decentralized TD(0) learning.
Nevertheless, it is hard to satisfy the i.i.d. assumption in
practice [14]. For this reason, the nonasymptotic analysis of
decentralized TD(0) learning was established in [12] and [22]
under the Markovian model, which is a more realistic scenario
than i.i.d. Although TD(0) learning has a faster convergence
rate, its approximation capability is weaker. Moreover, the
more general TD learning, referred to as TD(λ) with λ ∈
[0, 1], may learn more efficiently [1]. For this reason, the
finite-time performance of TD(λ) learning was also established
under the Markovian model in [24] and [25].

However, the above-mentioned decentralized TD learning
may suffer from slow convergence because their convergence
rates are sensitive to the selection of learning rates [16], [26].
In these decentralized TD learning with linear function
approximation, the update rules are similar to stochas-
tic gradient optimization, which leads to poor convergence
performance because the gradient is scaled uniformly in all
updated directions. To address this issue in SGD, various
ADAM-type methods were recently proposed in stochastic
optimization [27], [28], where the gradient is adaptively scaled
by adjusting dynamically the learning rate. Due to their supe-
rior performance, ADAM-type methods have been usually used
empirically in RL [29]. Motivated by the empirical success,
TD learning incorporated ADAM-type updates and its conver-
gence guarantee has been recently developed in [16] and [17].
Despite these theoretical efforts, the aforementioned ADAM-
type TD learning algorithms were suitable for single-agent
RL. Very recently, Zhu et al. [30] proposed a distributed
adaptive TD(0) learning algorithm and proved its nonasymp-
totic performance. However, decentralized adaptive variants of
TD(λ) learning with linear function approximation have rarely
been investigated for MARL to our knowledge. Thereby, there
still exists an open question:

Can provable decentralized adaptive TD(λ) methods for a
general λ be developed to accelerate the decentralized vanilla
TD(λ) learning as AMSGRAD in [28]?

To answer this question, we propose a decentralized
adaptive TD(λ) learning algorithm by incorporating the adap-
tive gradient method into the decentralized TD(λ) learning.
Nevertheless, the design and analysis of decentralized adaptive
TD(λ) learning algorithm is highly nontrivial due to the
following reasons: 1) the updates of TD(λ) learning do not
follow the gradient ascent direction of stochastic optimization;
2) the Markovian model naturally gives rise to the biased
“gradient” in the update process; 3) adaptive methods include
complex update rules; and 4) the effort of the communication
protocol and the adaptive learning rates is interactional in
the update process. Despite these challenges, we also rigor-
ously analyze the nonasymptotic performance of the proposed
algorithm under the Markovian model. To obtain the finite-
time convergence performance, we also choose a multistep
Lyapunov function [18], [22], [31] to deal with the biased
gradient introduced by the Markovian model. To the best
of our knowledge, the proposed algorithm in this article is
the first decentralized adaptive TD(λ) learning. In short, our
contributions are summarized as follows.

1) We develop a decentralized adaptive TD learning algo-
rithm with a general λ, referred to as D-AMSTD(λ),
where AMSGRAD is incorporated into the decentralized
variant of TD(λ) learning.

2) We also establish the finite-time performance bound
of D-AMSTD(λ) under the Markovian model, which
is more real scenario than the i.i.d. model, i.e.,
D-AMSTD(λ) converges to a neighborhood of the
optimal weight at a linear rate.

3) We verify the efficacy of D-AMSTD(λ) by a variety
of experiments. The results show that the convergence
performance of D-AMSTD(λ) outperforms existing
decentralized TD learning algorithms with nonasymp-
totic convergence guarantees.

Organization: Section II briefly reviews some related works
with respect to TD learning. Some requisite backgrounds
are provided in Section III. In Section IV, we develop a
decentralized adaptive variant of TD(λ) learning. Moreover,
some standard assumptions are also made in Section IV for
the performance analysis. In Section V, we present the main
results of this article under the Markovian observation model.
We provide the finite-time analysis of the proposed algorithm
in Section VI. Meanwhile, we evaluate the effectiveness of
the proposed algorithm by various experiments in Section VII.
Finally, Section VIII concludes this article.

Notation: In this article, all vectors are column vectors. The
d-dimensional real space is denoted by Rd. The real matrix
with size m×n is denoted by Rm×n. We use 1m to denote the
m-dimensional vector with all ones. The transpose of a vector
or matrix is represented by (·)�. The �2-norm and �∞-norm
of vectors are denoted by ‖ · ‖ and ‖ · ‖∞, respectively. The
notation ‖M‖1,1 := ∑n

i,j=1 |mij| with a matrix M = [mij] ∈
Rn×n. The element-wise product and division are designated
as x�y and x/y for any vectors x and y, respectively. Besides,
the element-wise square root of a vector x is represented by√

x. For any two vectors, we use min(·, ·) and max(·, ·) to
represent the minimum and maximum, respectively.
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II. RELATED WORK

TD learning, which is a recursive method for estimating
the value function, was originally proposed in [2]. Albeit
the implementation of vanilla TD learning is simple and
efficient, its performance analysis still requires sophisticated
tools. Toward the theoretical direction, some performance
analysis results of TD learning have been presented recently.
Specifically, Jaakkola et al. [32] utilized stochastic approxi-
mation methods to establish the first convergence result of TD
learning, which employs a tabular representation for the value
function. When the state space is large or infinite, however,
the tabular-based TD learning becomes intractable due to
the problem of the curse of dimensionality. For this reason,
Tsitsiklis and Roy [8] rigorously analyzed the asymptotic
convergence of TD learning with linear function approxi-
mation. Although the asymptotic performance is revealed,
the nonasymptotic performance, which is very important in
practice, is barely known. Toward this direction, the first
result is offered by [33]. Nonetheless, Lakshminarayanan and
Szepesvári [34] pointed out that there are several serious
errors in the theoretical analysis. Thereafter, Dalal et al. [14]
established the nonasymptotic (i.e., finite-time) performance of
TD learning, where they assumed that the observation model is
i.i.d. However, this assumption cannot be satisfied in practice.
In order to mitigate this assumption, Bhandari et al. [13]
offered the finite-time convergence rate of TD learning under
the Markovian observation model, in which the projection step
is also introduced in this work. In practice, however, it is
hard to implement the projection step. To eschew the pro-
jection step, the finite-time convergence rate was established
by leveraging the Lyapunov theory in [15], [18], and [31].
Nonetheless, the original TD update, which is very sensitive
to the selection of step-sizes, is used in the above-mentioned
works. For this reason, Sun et al. [16] investigated the
adaptive TD learning algorithms and established their finite-
time performance, where ADAGRAD [35] is incorporated into
the original TD learning. Incorporating AMSGRAD [28] into
the vanilla TD learning was investigated in [17]. Moreover, the
finite-time performance was also established for the different
choices of step-sizes. However, all the aforementioned works
were made for single-agent RL.

The multiagent paradigm, which includes multiple agents,
is also widely applied within engineering, whereas single-
agent RL may be unfit for solving MARL problems. For
this reason, MARL has received significant interest in recent
years. Specifically, Mathkar and Borkar [20] offered the
first asymptotic analysis of the distributed TD(0) learning
with gossip, in which the ODE-based method is utilized
in their analysis. Thereafter, the finite-time convergence
rate of distributed TD(0) learning was also established
by [21] with i.i.d. observation models. To alleviate this
strong assumption, Sun et al. [22] investigated the finite-
time performance of decentralized TD(0) learning with the
Markovian observation model, where a multistep Lyapunov
method is used to control the bias of the gradient. Furthermore,
Wang et al. [12] presented a decentralized TD(0) tracker to
improve the nonasymptotic performance. Meanwhile, Lin and
Ling [23] presented decentralized TD(0) learning methods

by leveraging the gradient tracking technique, which is often
used to accelerate the rate of convergence in distributed
optimization [36], [37], [38]. This work does not establish the
corresponding finite-time error bounds. Besides, Zhu et al. [30]
designed and analyzed the adaptive variant of decentralized
TD(0) learning. The aforementioned efforts are made for
decentralized TD(0) learning, however, the more general
TD(λ) learning may learn more efficiently in practice [1]. For
this reason, Doan et al. [24] studied the decentralized variant
of TD(λ) learning. Moreover, its finite-time convergence
performance was also established for constant and diminishing
step-sizes, respectively. Besides, a Byzantine-resilient decen-
tralized TD(λ) learning and its finite-time performance were
also investigated in [25]. The above-mentioned works utilize
the original TD(λ) update, however, how to design and analyze
the decentralized adaptive variants of TD(λ) learning remains
an open problem. Indeed, the decentralized adaptive gradient
algorithms have been recently proposed for the training of
distributed machine learning models. More recently, decentral-
ized optimization algorithms were proposed in [39] and [40].
Furthermore, the convergence performance was also analyzed
rigorously for convex and submodular objective functions. For
nonconvex objective functions, Chen et al. [41] first pointed
out the convergence issue of DADAM [42] for nonconvex
optimization. To address this issue, a general decentralized
adaptive algorithmic framework was offered in this work.
Moreover, the rate of convergence was also established rigor-
ously. However, the decentralized adaptive variants of TD(λ)

learning have barely been studied to the best of our knowledge.
For this reason, we attempt to bridge this gap between ADAM-
type updates and decentralized TD(λ) learning in MARL.

III. PRELIMINARIES

This section provides some background for the Markov
decision process (MDP). Thereafter, we review the policy
evaluation problem. To solve the problem, we also review
centralized TD learning, which is one of the most dominant
algorithms for policy evaluation.

A. Markov Decision Process and Policy Evaluation

An MDP is characterized as a tuple (S,U ,P,R, γ ), where
S is a state space, U is an action space, P denotes a matrix
of transition probability, and γ denotes a discount fact with
0 < γ < 1. Thus, the probability of transitioning to state
s′ ∈ S under the state s ∈ S and the action u ∈ U is described
by P(s′, s, u) = Pr(s′|s, u). Moreover,

∑
s′∈S Pr(s′|s, u) = 1.

Meanwhile, R(s, u, s′) stands for the transition reward. In this
MDP, the value function (accumulative reward) Jω : S 
→ R

under a policy ω : S 
→ U is defined as

Jω(s) := E

[ ∞∑

t=0

γ tR(st, ut, s′
t

)∣
∣s0 = s

]

(1)

where s0 denotes the initial state. Furthermore, the value
function can be rewritten as [1]

Jω(s) =
∑

u∈U
ω(u|s)

∑

s′∈S
Pr
(
s′|s, u

)[R(s, u, s′)+ γ Jω

(
s′)]. (2)
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When

R(s) :=
∑

s′∈S

∑

u∈U
ω(u|s) Pr

(
s′|s, u

)R(s, u, s′)

and

P(s, s′) :=
∑

u∈U
ω(u|s) Pr

(
s′|s, u

)

were known, the value function Jω can be obtained by
solving (2). For brevity, the subscript ω is neglected henceforth
in the notations because it is fixed in this article.

B. Centralized Temporal-Difference Learning

The state space S is too large to compute the value function
directly by solving (2) in practice. To mitigate the issue,
the value function J is approximated by a low-dimensional
function J̃. In particular, we consider linear function approxi-
mation, i.e.,

J(s) ≈ J̃(s, θ) :=
d∑

p=1

θpφp(s) (3)

where d  |S| and φp(s) ∈ R denotes a feature value and
θp ∈ R denotes a weight. For ease of exposition, define

� :=
⎛

⎝
| |

φ1 · · · φd

| |

⎞

⎠ =
⎛

⎜
⎝

— φ(1)� —
...

...
...

— φ(|S|)� —

⎞

⎟
⎠ ∈ R|S|×d

where φ(s) = (φ1(s), . . . , φd(s))�. Moreover, let

J̃(θ) := (J̃(1, θ) . . . , J̃(|S|, θ)
)�

with θ := (θ1, . . . , θd)
�, then (3) can be written as

J̃(θ) = �θ. (4)

To find the optimal approximation J̃ of J, it has necessitated
the design of TD learning algorithms that can find effectively
the optimal weight θ∗. In the centralized TD learning, the
weight θt is updated as follows:

θt+1 = θt + αtdt∇θ J̃(st, θt) (5)

where αt > 0 is the learning rate, dt denotes the TD at iteration
t and is defined as

dt := rt + γ J̃(st+1, θt) − J̃(st, θt). (6)

Here, rt = R(st+1, ut, st). The gradient ∇θ J̃(st, θt) can be
computed by

∇θ J̃(st, θt) = zt :=
t∑

τ=0

(γ λ)t−τ φ(sτ ) (7)

where λ ∈ [0, 1] is a constant. For brevity, define

g(θt, ζt) := dt∇θ J̃(st, θt)

= zt(γ φ(st+1) − φ(st))
�θt + rtzt (8)

where ζt denotes the randomness of the tuple (st, rt, st+1).
Using (5) yields

θt+1 = θt + αtg(θt, ζt). (9)

For ease of exposition, let Qt := zt(γ φ(st+1) − φ(st))
� and

bt := rtzt, then (8) can be rewritten as

g(θt, ζt) = Qtθt + bt. (10)

Let π ∈ R|S| denote the unique stationary distribution
of the Markov chain if it is ergodic. Moreover, let D :=
diag(π(1), . . . , π(|S|)) and r′(s) = ∑

s′∈S P(s, s′)R(s, s′),
where R(s, s′) = ∑

u∈U ω(u|s) Pr(s′|s, u)R(s′, u, s), then the
following relation:

Q̄ := lim
t→∞E[Qt] = ��D(U − I)� (11)

and

b̄ := lim
t→∞E[bt] = ��D

∞∑

t=0

(γ λP)tr′ (12)

hold, where P stands for the transition matrix, r′ :=
(r′(1), . . . , r′(|S|))�, and

U = (1 − λ)

∞∑

t=0

λt(γ P)t+1.

Thus, we obtain

ḡ(θ) := Q̄θ + b̄. (13)

Further, Tsitsiklis and Roy [8] showed that ḡ(θ∗) = 0.

IV. MULTIAGENT REINFORCEMENT LEARNING,
DECENTRALIZED ADAPTIVE TD(λ) LEARNING,

AND ASSUMPTIONS

This section first introduces the policy evaluation problem
in MARL. To solve this problem, we propose a decen-
tralized adaptive TD(λ) learning algorithm over networks.
Furthermore, we also make some standard assumptions for
analyzing the nonasymptotic performance of the proposed
algorithm.

A. Multiagent Reinforcement Learning

In this article, a network with N agents is denoted by G :=
(V, E), where V := {1, . . . , N} is the set of agents and E is
the set of edges. The set of neighbors of agent i is denoted
by Ni := {j ∈ V|(i, j) ∈ E}. Furthermore, MARL can be
modeled by a multiagent MDP, which is characterized by a
tuple (S, {Ui}N

i=1,P, {Ri}N
i=1, γ,G). In the multiagent MDP,

all agents can observe the state space S , each agent i ∈ V only
utilizes its own action space Ui and observes its own reward
function Ri, respectively.

Under a given policy ωi of agent i ∈ V , the action ui,t ∈ Ui

is selected by agent i, then the state st transits to st+1 at time
t. Meanwhile, agent i can reveal a reward ri,t := Ri(st, st+1).
The value function JD(s) can be defined as

JD(s) := E

[
1

N

N∑

i=1

∞∑

t=0

γ tRi
(
st, ui,t, st+1

)
∣
∣
∣
∣s0 = s

]

. (14)
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Furthermore, the value function JD(s) is also the solution of
the multiagent Bellman equation, i.e.,

JD(s) = 1

N

N∑

i=1

∑

ui∈Ui

ω(ui|s)

×
∑

s′∈S
Pr
(
s′|s, ui

)[Ri
(
s, ui, s′)+ γ JG

(
s′)]. (15)

Similar to the centralized RL, when S is very large, which
leads to the problem of curse of dimensionality, we need to
seek the approximation J̃D(s) of the value function JD(s).
Toward this end, this article considers the case that linear
approximation is used to approximate the value function
J̃D(s), i.e., this approximation is presented in (3) or (4). Define

b̄i := ��D
∞∑

t=0

(γ λP)tr′
i

where r′
i := (r′

i(1), . . . , r′
i(|S|))� with r′

i(s) =∑
s′∈S P(s, s′)Ri(s, s′). Then, the optimal weight θ∗ also

satisfies the following equality [21]:

Q̄θ∗ + b̄D = 0 (16)

where the matrix Q̄ is negative definite and

b̄D := 1

N

N∑

i=1

b̄i.

In this article, we assume that each agent can communicate
with its neighbors. Thus, the objective is to find the optimal
weight θ∗ in a cooperative way without any central agent.

B. Decentralized Adaptive TD(λ) Learning

In order to find cooperatively the optimal weight θ∗
over the network G, we propose a decentralized adap-
tive TD(λ) learning algorithm by integrating decentralized
optimization algorithm and AMSGRAD into TD(λ) learning,
which is called D-AMSTD(λ). The details are summarized in
Algorithm 1. More specifically, each agent i ∈ V computes
local gradient gi by observing (st, rt, st+1), i.e.,

gi
(
θi,t, ζt

) = zt(γ φ(st+1) − φ(st))
�θi,t + ri,tzt. (17)

The first and second moments are updated as follows:

mi,t = β1mi,t−1 + (1 − β1)gi
(
θi,t, ζt

)
(18)

and

vi,t = β2vi,t−1 + (1 − β2)gi
(
θi,t, ζt

)� gi
(
θi,t, ζt

)
(19)

where β1, β2 ∈ [0, 1) are constants. To ensure the conver-
gence, we also define

ṽi,t := max
(
ṽi,t−1, vi,t

)
. (20)

Moreover, each agent i ∈ V performs a consensus step, where
each agent exchanges its local estimate with its neighbors, i.e.,

θi,t+ 1
2

=
∑

j∈Ni

aijθj,t (21)

Algorithm 1 Decentralized Adaptive TD(λ) Learning Over
Networks (D-AMSTD(λ))
Input: The number of agents N; doubly stochastic matrix A =[

aij
] ∈ RN×N ; feature matrix �; learning rate αt.

Output: {θi,t} for i ∈ V and t ≥ 1.
1: Initialize: θi,0 = θc, mi,0 = 0,wi, 1

2
= vi,0 = ṽi,0 = ε1d

for all i ∈ V .
2: for t = 1, 2, . . . do
3: for i = 1, . . . , N do
4: gi(θi,t, ζt) = zt(γ φ(st+1) − φ(st))

�θi,t + ri,tzt;
5: mi,t = β1mi,t−1 + (1 − β1)gi(θi,t, ζt);
6: vi,t = β2vi,t−1 + (1 − β2)gi(θi,t, ζt) � gi(θi,t, ζt);
7: ṽi,t = max

(
ṽi,t−1, vi,t

)
;

8: θi,t+ 1
2

=∑j∈Ni
aijθj,t;

9: ŵi,t =∑j∈Ni
aijŵi,t− 1

2
;

10: wi,t = max
(
ŵi,t, ε

)
;

11: θi,t+1 = θi,t+ 1
2

+ αt
mi,t√
wi,t

;
12: zt+1 = γ λzt + φ(st+1);
13: ŵi,t+ 1

2
= min(ŵi,t + ṽi,t − ṽi,t−1, G2∞).

14: end for
15: end for

where aij ≥ 0 denotes a weight. Then, each agent i ∈ V
updates ŵi,t by performing a consensus step, i.e.,

ŵi,t =
∑

j∈Ni

aijŵi,t− 1
2
. (22)

Similar to vanilla ADAM for numerical stability, we also define

wi,t := max
(
ŵi,t, ε

)

where ε is a positive constant. Finally, the parameter θi,t is
given by

θi,t+1 = θi,t+ 1
2

+ αt
mi,t√
wi,t

. (23)

Besides, the estimate of the second moment is updated as

ŵi,t+ 1
2

= min
(

ŵi,t + ṽi,t − ṽi,t−1, G2∞
)

(24)

where G∞ is a constant. In this article, we assume that ε ≤
G2∞ since ε > 0 can be arbitrarily small. For convenience, we
also introduce the following matrices:

�t :=

⎡

⎢
⎢
⎢
⎣

θ�
1,t

θ�
2,t
...

θ�
N,t

⎤

⎥
⎥
⎥
⎦

∈ RN×d, Mt :=

⎡

⎢
⎢
⎢
⎣

m�
1,t

m�
2,t
...

m�
N,t

⎤

⎥
⎥
⎥
⎦

∈ RN×d

�(�t, ζt) :=

⎡

⎢
⎢
⎢
⎢
⎣

g1
(
θ1,t, ζt

)�

g2
(
θ2,t, ζt

)�
...

gN
(
θN,t, ζt

)�

⎤

⎥
⎥
⎥
⎥
⎦

∈ RN×d

Vt :=

⎡

⎢
⎢
⎢
⎣

v�
1,t

v�
2,t
...

v�
N,t

⎤

⎥
⎥
⎥
⎦

∈ RN×d, Ṽt :=

⎡

⎢
⎢
⎢
⎣

ṽ�
1,t

ṽ�
2,t
...

ṽ�
N,t

⎤

⎥
⎥
⎥
⎦

∈ RN×d

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on July 20,2024 at 02:17:34 UTC from IEEE Xplore.  Restrictions apply. 



ZHU et al.: DECENTRALIZED ADAPTIVE TD(λ) LEARNING WITH LINEAR FUNCTION APPROXIMATION 4635

Wt :=

⎡

⎢
⎢
⎢
⎣

w�
1,t

w�
2,t
...

w�
N,t

⎤

⎥
⎥
⎥
⎦

∈ RN×d, and Ŵt :=

⎡

⎢
⎢
⎢
⎣

ŵ�
1,t

ŵ�
2,t
...

ŵ�
N,t

⎤

⎥
⎥
⎥
⎦

∈ RN×d.

Then, using (21) and (23) yields

�t+1 = A�t + αt
Mt√
Wt

(25)

where A := [aij] ∈ RN×N . In addition, we also define some
average variables as follows:

θ t := 1

N

N∑

i=1

θi,t, wt := 1

N

N∑

i=1

wi,t, and ŵt := 1

N

N∑

i=1

ŵi,t.

By the definition of �t, we have

θ t = 1

N
��

t 1N . (26)

C. Some Standard Assumptions

In order to ensure that D-AMSTD(λ) is convergent, we also
make some standard assumptions, which can be found in the
literature of optimization algorithms and TD learning. First, we
present the following assumption that the domain is bounded,
which is also made in [17], [27], and [28].

Assumption 1: There exists a positive constant D∞ such
that ‖θi,t − θj,t‖ ≤ D∞ for i, j ∈ V and t ≥ 0.

We also need to make some assumptions with respect to
the reward function Ri(s, s′) and the feature matrix �, respec-
tively. These assumptions can be also found in [13] and [16].

Assumption 2: For all i ∈ V , suppose that |Ri(s, s′)| ≤ rmax
with rmax > 0 for all s, s′ ∈ S .

For simplicity, the uniform boundedness is adopted in
this article. We can use nonuniform boundedness to replace
Assumption 2, which was also made in [21].

Assumption 3: Suppose that � is full column rank. For all
s ∈ S , ‖φ(s)‖ ≤ 1.

Assumption 3 means that the vectors {φ(s)} are linearly
independent and normalized. Furthermore, because d  |S|,
we can also ensure that Assumption 3 holds. Furthermore,
following Assumptions 2 and 3, we have:

‖Qt‖ =
∥
∥
∥zt(γ φ(st+1) − φ(st))

�
∥
∥
∥

≤ (1 + γ )

t∑

τ=0

(γ λ)t−τ

≤ 1 + γ

1 − γ λ
(27)

and
∥
∥bi,t

∥
∥ = ∥

∥ztri,t
∥
∥

≤ rmax

t∑

τ=0

(γ λ)t−τ

≤ rmax

1 − γ λ
. (28)

Thus, by the definitions of Q̄ and b̄D, we can obtain ‖Q̄‖ ≤
(1 + γ )/(1 − γ λ) and ‖b̄D‖ ≤ rmax/(1 − γ λ), respectively.

Next, we make the standard assumption on the Markov
chain, which is also provided in TD learning [8], [12], [22].

Assumption 4: Assume that the Markov chain with P is
irreducible and aperiodic.

For two probability measures χ1 and χ2, we use dTV(χ1, χ2)

to denote the total-variation norm, which is defined as

dTV(χ1, χ2) := 1

2

∑

s∈S
|χ1(s) − χ2(s)|. (29)

Then, using Assumption 4 yields [43]

sup
s∈S

dTV(Pr(st ∈ ·|s0 = s), π) ≤ �0κ
t (30)

where �0 > 0 and 0 < κ < 1 are constants, and st ∈ · means
that st is an element of the state space S or its subset.

Finally, we also present some standard assumptions on
graphs, which are made in [44] and [45].

Assumption 5: The graph G is connected and undirected.
Assumption 5 ensures that the information can be

exchanged among agents directly or indirectly.
Assumption 6: The matrix A is doubly stochastic.

Moreover, if (i, j) ∈ E , then aij > 0; otherwise aij = 0.
Assumption 6 implies that

∑N
i=1 aij = ∑N

j=1 aij =
1. Besides, the ith largest eigenvalue is denoted by σi.
Furthermore, this article also defines σ := max(|σ2|, |σN |).

V. MAIN RESULTS

This section establishes the convergence behaviors of
D-AMSTD(λ) when αt = α under the Markovian model, which
is a more realistic case than the i.i.d. model. Albeit we focus on
constant learning rates, the nonasymptotic analytical methods
can be also extended to diminishing learning rates. To obtain
the nonasymptotic bounds, we first estimate the mean-squared
error between the average weight θ t and the optimal weight
θ∗. For this reason, we define some variables as

�1(α, T) := 8T4α3(1 + γ )4(1 − β1)
4

ε3(1 − γ λ)4 (1 + υ)2T−4

+ 32T2 α(1 + γ )2(1 − β1)
2

(1 − γ λ)2

+ 2T2α(1 + γ )2(1 − β1)
2

ε3/2(1 − γ λ)2 (1 + υ)T−2

+ 4T(1 − β1)�(T; t)

�2(α, T) := T2α(1 + γ )2(1 − β1)
2

2ε3/2(1 − γ λ)2 (1 + υ)T−2 · ∥∥θ∗∥∥2

+ 8T4α3(1 + γ )4(1 − β1)
4

ε3(1 − γ λ)4 (1 + υ)2T−4 · ∥∥θ∗∥∥2

+ 32T2 α(1 + γ )2(1 − β1)
2

(1 − γ λ)2
· ∥∥θ∗∥∥2 + β2

1 T2G2∞
μ′ε

+ T2α(1 + γ )2(1 − β1)
2

2ε3/2(1 − γ λ)2 (1 + υ)T−2

× 1

(1 + γ )2

(
(1 − γ λ)G∞

1 − β1
+ rmax

)2

+ (1 − β1)
2TG2∞

2η′ε2
√

N

σ

1 − σ

t+T−2∑

k=0

∥
∥Ṽk − Ṽk−1

∥
∥

1,1
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+ 1

2
T(1 − β1)�(T; t) + 16T2 αr2

max(1 − β1)
2

(1 − γ λ)2

+ 4T4α3(1 + γ )2(1 − β1)
4r2

max

ε3(1 − γ λ)4 (1 + υ)2T−4

+ 2dTα
√

NG4∞(1 − β1)
2

ε2

σ

1 − σ
+ 2αT2β2

1 G2∞
ε

and

� ′
2(α, T) := T2α(1 + γ )2(1 − β1)

2

2ε3/2(1 − γ λ)2 (1 + υ)T−2 · ∥∥θ∗∥∥2

+ 8T4α3(1 + γ )4(1 − β1)
4

ε3(1 − γ λ)4 (1 + υ)2T−4 · ∥∥θ∗∥∥2

+ 32T2 α(1 + γ )2(1 − β1)
2

(1 − γ λ)2
· ∥∥θ∗∥∥2 + β2

1 T2G2∞
μ′ε

+ T2α(1 + γ )2(1 − β1)
2

2ε3/2(1 − γ λ)2 (1 + υ)T−2

× 1

(1 + γ )2

(
(1 − γ λ)G∞

1 − β1
+ rmax

)2

+ (1 − β1)
2TG2∞

2η′ε2
√

N

σ

1 − σ

t+T−2∑

k=0

∥
∥Ṽk − Ṽk−1

∥
∥

1,1

+ 1

2
T(1 − β1)α�(T) + 16T2 αr2

max(1 − β1)
2

(1 − γ λ)2

+ 4T4α3(1 + γ )2(1 − β1)
4r2

max

ε3(1 − γ λ)4 (1 + υ)2T−4

+ 2dTα
√

NG4∞(1 − β1)
2

ε2

σ

1 − σ
+ 2αT2β2

1 G2∞
ε

where

υ := α(1 + γ )(1 − β1)

ε(1 − γ λ)

�(T; t) := 2�0κ
t(1 + γ )

T(1 − γ λ)(1 − κ)
· max{2∥∥θ∗∥∥+ rmax, 1}

and

�(T) := 2�0(1 + γ )

T(1 − γ λ)(1 − κ)
· max{2∥∥θ∗∥∥+ rmax, 1}.

Then, the formal statement of the convergence result about the
average weight θ t is presented as follows.

Theorem 1: Under Assumptions 1–6, the sequences {θi,t},
{gi(θi,t, ζt)}, {mi,t}, {vi,t}, {ṽi,t}, and {wi,t} are generated by
Algorithm 1. Let

T̂ := min
T

⎧
⎨

⎩
T

∣
∣
∣
∣�(T) < − (1 − β1)κ

Q̄
max + (η′+μ′)G∞

T

4G∞(1 − β1)

⎫
⎬

⎭

and

α̂ := min

{

α0,
1 + η′ + μ′

2T̂(1 − β1)κ
Q̄
max

}

where α0 > 0 is a constant. Moreover, define tα := max{t ≥
1|κt ≥ α}. Then, for t ≥ 1, we have

E
[∥
∥θ t − θ∗∥∥2

]
≤ �2�

t
4

∥
∥θ0 − θ∗∥∥2 − 2�2�

′
5G∞

T̂(1 − β1)κ
Q̄
max

+ min{�t−tα
4 , 1} ·

(

�3α
2 − 2�2�

′
5G∞

T̂(1 − β1)κ
Q̄
max

)

(31)

where μ′ and η′ are some positive constants

�2 :=
(

3 + 12α2(1−β1)
2(1+γ )2

ε(1−γ λ)2

)T̂ − 1

2 + 12α2(1−β1)
2(1+γ )2

ε(1−γ λ)2

�3 :=
[

24(1 − β1)
2

ε(1 − γ λ)2

(
(1 + γ )2

∥
∥θ∗∥∥2 + r2

max

)
+ 3α2β2

1
G2∞
ε

+ 3d
√

N(1 − β1)
2G4∞σ

ε2(1 − σ)

]

×
⎡

⎣ 1 − T̂

2 + υ ′ +
(
3 + υ ′)

(
(3 + υ ′)T̂−1 − 1

)

(2 + υ ′)2

⎤

⎦

with

υ ′ := 12α2(1 − β1)
2(1 + γ )2

ε(1 − γ λ)2

�4 := 1 + α̂T̂(1 − β1)κ
Q̄
max

2�2G∞
∈ (0, 1)

�5 := �2
(
α̂, T̂

)

− �3α
2

�2

[

η′ + μ′ + 2T̂(1 − β1)κ
Q̄
max

G∞
+ �1

(
α̂, T̂

)
]

> 0

and

�′
5 := � ′

2

(
α̂, T̂

)

− �3α
2

�2

[

η′ + μ′ + 2T̂(1 − β1)κ
Q̄
max

G∞
+ �1

(
α̂, T̂

)
]

.

The detailed proof of Theorem 1 can be found in Section VI.
Under the Markovian model, the average weight θ t can linearly
converge to the neighborhood of the optimal weight θ∗.
Further, following from Lemma 2 and Theorem 1, we prove
that (1/N)

∑N
i=1 E[‖θi,t − θ∗‖2] is also linearly convergent

under the Markovian model.
Proposition 1: Under Assumptions 1–6, the sequences

{θi,t}, {gi(θi,t, ζt)}, {mi,t}, {vi,t}, {ṽi,t}, and {wi,t} are generated
by Algorithm 1. Then, for t ≥ 1, we have

1

N

N∑

i=1

E
[∥
∥θi,t − θ∗∥∥2

]
≤ 2�2�

t
4

∥
∥θ0 − θ∗∥∥2 + 2α2

1 − σ 2

G2∞
ε

+ 2 min{�t−tα
4 , 1} ·

(

�3α
2 − 2�2�

′
5G∞

T̂(1 − β1)κ
Q̄
max

)

− 4�2�
′
5G∞

T̂(1 − β1)κ
Q̄
max

. (32)

The detailed proof of Proposition 1 can be found in
Section VI. Furthermore, we also make the following remarks.

Remark 1: Proposition 1 implies that the proposed algo-
rithm achieves the same convergence rate as the centralized TD
learning [13], where a projection step is employed. However,
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it is hard to implement the projection step in practice since
it requires some prior knowledge with respect to the weight
θ . Hence, the proposed algorithm has removed the projection
step. In addition, the convergence rate of D-AMSTD(λ) also
matches the centralized TD learning [15], where the projection
step is removed. Nevertheless, only after a mixing-time,
the bounds in [15] become available. However, the bounds
obtained in this article are available for any t ≥ 1.

Remark 2: D-AMSTD(λ) also achieves the same conver-
gence rate as the distributed TD(λ) [24], where constant and
diminishing learning rates are adopted. Similar to [15], these
bounds in [24] can be applicable only after a mixing-time
(t ≥ tα), which denotes the second phase in our analysis.
For any t ≥ 1, however, our bounds in this article can be
available. Further, the proposed algorithm combines the TD
learning and the ADAM-type optimization algorithm, which
has superior performance for training the models of deep
learning. Furthermore, the proposed algorithm can mitigate
the sensitive selection of learning rate because the adaptive
learning rate is used in D-AMSTD(λ).

VI. NONASYMPTOTIC ANALYSIS OF D-AMSTD(λ)

This section presents the proofs of the main results in
detail. Toward this end, we present some lemmas, which are
very important in our analysis. First, we bound uniformly the
variables gi(θi,t, ζt), mi,t, vi,t, ṽi,t, and wi,t below.

Lemma 1: Under Assumptions 1–3, the sequences {θi,t},
{gi(θi,t, ζt)}, {mi,t}, {vi,t}, {ṽi,t}, and {wi,t} are generated by
Algorithm 1. Then, for all i ∈ V and any t ≥ 0, we have

∥
∥gi
(
θi,t, ζt

)∥
∥∞ ≤ ∥∥gi

(
θi,t, ζt

)∥
∥ ≤ (1 + γ )D∞ + rmax

1 − γ λ
. (33)

Moreover, we also have ‖mi,t‖∞ ≤ ‖mi,t‖ ≤ G∞, ‖vi,t‖∞ ≤
G2∞, ‖ṽi,t‖∞ ≤ G2∞, and ‖wi,t‖∞ ≤ G2∞ for any t ≥ 0 and all
i ∈ V , where G∞ := ([(1 + γ )D∞ + rmax]/[1 − γ λ]).

Proof: See Appendix A in the supplementary material.
Next, we bound the consensus error (1/N)

∑N
i=1 ‖θi,t−θ t‖2,

which plays a pivotal role in our proofs. The formal statement
is described as follows.

Lemma 2: Under Assumptions 1–6, the sequences {θi,t},
{gi(θi,t, ζt)}, {mi,t}, {vi,t}, {ṽi,t}, and {wi,t} are generated by
Algorithm 1. Then, for any t ≥ 0, we have

1

N

N∑

i=1

∥
∥θi,t − θ t

∥
∥2 ≤ α2

1 − σ 2

dG2∞
ε

. (34)

Proof: See Appendix B in the supplementary material.
Next, we provide a nonasymptotic analysis of D-AMSTD(λ)

under the Markovian model, where the observed data is
collected from the trajectory of a single multiagent MDP.
Compared to the i.i.d. model, the Markovian model will incur
a biased estimate of gi(θi,t, ζt), which becomes a challenge
in performance analysis. To address this issue, we first bound
this bias by using Assumption 4. Moreover, this result is stated
formally in the following lemma.

Lemma 3: Under Assumptions 1–6, the sequences {θi,t},
{gi(θi,t, ζt)}, {mi,t}, {vi,t}, {ṽi,t}, and {wi,t} are generated by
Algorithm 1. Then, we have

∥
∥
∥
∥
∥

1

TN

t+T−1∑

τ=t

E
[
��(�, ζτ )1N |Ht

]
− ḡ
(
θ
)
∥
∥
∥
∥
∥

≤ �(T; t)
(∥
∥θ − θ∗∥∥+ 1

)
(35)

for τ ≥ 1 and � ∈ RN×d, where

�(T; t) := 2�0κ
t(1 + γ )

T(1 − γ λ)(1 − κ)
· max{2∥∥θ∗∥∥+ rmax, 1}

and T is a positive integer.
Proof: See Appendix C in the supplementary material.
In the Markovian model, we cannot bound directly the

mean-squared error since there exists a bias. To address this
issue, we use Lemma 3 and a multistep Lyapunov function,
which is also introduced in [18], [22], and [31]. Namely,
define

L(t) :=
t+T−1∑

τ=t

∥
∥θτ − θ∗∥∥2

. (36)

To prove Theorem 1, we first bound the difference between
L(t + 1) and L(t). This result is stated formally as follows.

Lemma 4: Under Assumptions 1–6, the sequences {θi,t},
{gi(θi,t, ζt)}, {mi,t}, {vi,t}, {ṽi,t}, and {wi,t} are generated by
Algorithm 1. Moreover, there exist α and T such that

1 + α

(

η′ + μ′ + 2T(1 − β1)κ
Q̄
max

G∞

)

+ α�1(α, T) ∈ (0, 1).

Then, for t ≥ 0, we have

E[L(t + 1) − L(t)|Ht] ≤ α�2
(
α̂, T̂

)

+ α

[

η′ + μ′ + 2T̂(1 − β1)κ
Q̄
max

G∞
+ �1

(
α̂, T̂

)
]
∥
∥θ t − θ∗∥∥2

(37)

where μ′ and η′ are positive constants

T̂ = min
T

⎧
⎨

⎩
T

∣
∣
∣
∣�(T) < − (1 − β1)κ

Q̄
max + (η′+μ′)G∞

T

4G∞(1 − β1)

⎫
⎬

⎭

and

α̂ := min

{

α0,
1 + η′ + μ′

2T̂(1 − β1)κ
Q̄
max

}

.

Proof: See Appendix D in the supplementary material.
Further, the multistep Lyapunov function L(t) is also upper

bounded by the following result.
Lemma 5: Under Assumptions 1–6, the sequences {θi,t},

{gi(θi,t, ζt)}, {mi,t}, {vi,t}, {ṽi,t}, and {wi,t} are generated by
Algorithm 1. Then, for t ≥ 0, we have

L(t) ≤ �2
∥
∥θ t − θ∗∥∥2 + �3α

2 (38)

where

�2 :=
(

3 + 12α2(1−β1)
2(1+γ )2

ε(1−γ λ)2

)T̂ − 1

2 + 12α2(1−β1)
2(1+γ )2

ε(1−γ λ)2
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and

�3 :=
[

24(1 − β1)
2

ε(1 − γ λ)2

(
(1 + γ )2

∥
∥θ∗∥∥2 + r2

max

)
+ 3α2β2

1
G2∞
ε

+ 3d
√

N(1 − β1)
2G4∞σ

ε2(1 − σ)

]

×
⎡

⎣ 1 − T̂

2 + υ ′ +
(
3 + υ ′)

(
(3 + υ ′)T̂−1 − 1

)

(2 + υ ′)2

⎤

⎦

with

υ ′ := 12α2(1 − β1)
2(1 + γ )2

ε(1 − γ λ)2
.

Proof: See Appendix E in the supplementary material.
Due to space limitation, we only provide the proof roadmap

of Theorem 1 as follows. The detailed proof can be found in
Appendix F in the supplemental material.

Proof Roadmap of Theorem 1: The time t is divided into
two phases: 1) t ≤ tα and 2) t > tα , where tα := max{t ≥
1|κt ≥ α}.

1) The First Phase. By using Lemmas 4 and 5, we have

E[L(t + 1)|Ht] ≤
[

1 + α̂T̂(1 − β1)κ
Q̄
max

2�2G∞

]

E[L(t)|Ht]

− �3α
3

�2

[

η′ + μ′ + 2T̂(1 − β1)κ
Q̄
max

G∞
+ �1

(
α̂, T̂

)
]

+ α�2
(
α̂, T̂

)

= �4E[L(t)|Ht] + �5α.

Using some algebraic manipulations yields

E[L(t)] ≤ �t
4L(0) + �5α

�t
4 − 1

�4 − 1

≤ �2�
t
4

∥
∥θ0 − θ∗∥∥2 + �3α

2�t
4 + �5α

�t
4 − 1

�4 − 1

≤ �2�
t
4

∥
∥θ0 − θ∗∥∥2 + �3α

2 + �5α

1 − �4

≤ �2�
t
4

∥
∥θ0 − θ∗∥∥2 + �3α

2 − 2�2�5G∞
T̂(1 − β1)κ

Q̄
max

.

Following the definition of L(t), we obtain:

E
[∥
∥θ t − θ∗∥∥2

]
≤ E[L(t)]

≤ �2�
t
4

∥
∥θ0 − θ∗∥∥2 + �3α

2

− 2�2�5G∞
T̂(1 − β1)κ

Q̄
max

.

2) The Second Phase: For t > tα , we first have

E[L(t + 1)|Ht] ≤ �4E[L(t)|Ht] + �′
5α.

Then, we have

E[L(t)] ≤ �2�
t
4

∥
∥θ0 − θ∗∥∥2 + �3α

2�
t−tα
4

−
(
�

t−tα
4 + 1

) 2�2�
′
5G∞

T̂(1 − β1)κ
Q̄
max

.

Using some algebraic manipulations, we can obtain

E
[∥
∥θ t − θ∗∥∥2

]
≤ �2�

t
4

∥
∥θ0 − θ∗∥∥2 − 2�2�

′
5G∞

T̂(1 − β1)κ
Q̄
max

+ min
{
�

t−tα
4 , 1

}
·
(

�3α
2 − 2�2�

′
5G∞

T̂(1 − β1)κ
Q̄
max

)

.

Thus, we obtain the result of Theorem 1.
Finally, we prove Proposition 1 by using Lemma 2 and

Theorem 1. The more detailed proof is presented as follows.
Proof of Proposition 1: Following from the inequality ‖x+

y‖2 ≤ 2‖x‖2 + 2‖y‖2, we obtain that:

1

N

N∑

i=1

E
[∥
∥θi,t − θ∗∥∥2

]
= 1

N

N∑

i=1

E
[∥
∥θi,t − θ t + θ t − θ∗∥∥2

]

≤ 2

N

N∑

i=1

E
[∥
∥θi,t − θ t

∥
∥2
]

+ 2E
[∥
∥θ t − θ∗∥∥2

]

≤ 2α2

1 − σ 2

G2∞
ε

+ 2�2�
t
4

∥
∥θ0 − θ∗∥∥2

− 4�2�
′
5G∞

T̂(1 − β1)κ
Q̄
max

+ 2 min
{
�

t−tα
4 , 1

}

·
(

�3α
2 − 2�2�

′
5G∞

T̂(1 − β1)κ
Q̄
max

)

(39)

where (39) is derived from Lemma 2 and Theorem 1. Then,
we prove completely the result in Proposition 1.

VII. EXPERIMENTS

In this section, we conduct a variety of experiments to
validate the theoretical analysis and evaluate the performance
of D-AMSTD(λ). To this end, we implement D-AMSTD(λ)

to solve the cooperative navigation task [46], where all
landmarks are occupied by agents in a cooperative manner.

To evaluate the performance of the proposed algorithm, the
mean consensus error is used to measure the performance
of D-AMSTD(λ). In addition, we compare D-AMSTD(λ) with
popular decentralized TD learning algorithms, including dis-
tributed TD(0) [22], distributed TD(0)+GT [23], distributed
TD(0)+GC [23], MS-ADTD [30], and distributed TD(λ) [24].
For a fair comparison, we also implement the above-mentioned
methods to solve the cooperative navigation task.

A. Experimental Settings

In our experiments, we set hyperparameters β1 = 0.9, β2 =
0.999, and γ = 0.9. Moreover, the learning rate αt is selected
as αt = α0/

√
t + 1, where α0 is a positive constant.

B. Experimental Results

First, we compare D-AMSTD(λ) with other decentralized
TD learning algorithms with different numbers of agents under
the cycle graph and star graph, respectively. In this experiment,
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(a) (b) (c)

Fig. 1. Comparison of mean consensus error among distributed TD(0), distributed TD(0)+GT, distributed TD(0)+GC, MS-ADTD, and D-AMSTD(λ) on a
cycle graph with different sizes. (a) 7 Agents. (b) 12 Agents. (c) 18 Agents.

  

(a) (b) (c)

Fig. 2. Comparison of mean consensus error among distributed TD(0), distributed TD(0)+GT, distributed TD(0)+GC, MS-ADTD, and D-AMSTD(λ) on a
star graph with different sizes. (a) 7 Agents. (b) 12 Agents. (c) 18 Agents.

  

(a) (b) (c)

Fig. 3. Comparison of mean consensus error among distributed TD(0), distributed TD(0)+GT, distributed TD(0)+GC, MS-ADTD, and D-AMSTD(λ) on a
cycle graph with fixed 12 agents and different α0. (a) α0 = 0.001. (b) α0 = 0.005. (c) α0 = 0.009.

we set λ = 0.9. The experimental results are shown in
Figs. 1 and 2, respectively. We can see that our algorithm
D-AMSTD(λ) is overall faster than other decentralized TD
learning methods for different numbers of agents under the
cycle graph and star graph, respectively. Furthermore, the
fluctuation of our algorithm is also smaller than other methods
under different graphs with varying numbers of agents. In
other words, D-AMSTD(λ) can more stably converge to the
optimal point than other decentralized TD learning methods.

In the second experiment, we study how the learning rate
affects the mean consensus error under the cycle graph with
12 agents. The results are shown in Fig. 3. More specifically,

Fig. 3 shows that the proposed algorithm D-AMSTD(λ) is
more robust to the selection of the hyperparameter α0, which
affects the learning rate αt. In other words, D-AMSTD(λ) is
less sensitive to the selection of learning rates compared with
other distributed TD(0) learning methods.

In the third experiment, we test the mean consensus errors
of D-AMSTD(λ) under the cycle graph with 12 agents,
where α0 = 0.5. As shown in Fig. 4, we can observe that
D-AMSTD(λ) outperforms distributed TD(λ) [24] when α0 is
larger. Furthermore, distributed TD(λ) is unstable with larger
α0 for different λ. In comparison, our algorithm D-AMSTD(λ)

is still stable with larger α0. According to Fig. 5, we also see
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(a) (b) (c)

Fig. 4. Comparison of mean consensus error between distributed TD(λ) and D-AMSTD(λ) on a cycle graph with larger α0 = 0.5 and different λ. (a) λ = 0.1.
(b) λ = 0.5. (c) λ = 0.9.

(a) (b) (c)

Fig. 5. Comparison of mean consensus error between distributed TD(λ) and D-AMSTD(λ) on a cycle graph with smaller α0 = 0.001 and different λ.
(a) λ = 0.1. (b) λ = 0.5. (c) λ = 0.9.

(a) (b)

Fig. 6. (a) Comparison of D-AMSTD(λ) on graphs with different topology
and (b) comparison of D-AMSTD(λ) on a cycle graph with different sizes.

that our algorithm D-AMSTD(λ) is more stable than distributed
TD(λ) with different λ when α0 = 0.001. Moreover, when α0
is smaller, distributed TD(λ) is still less stable under different
λ. Thus, D-AMSTD(λ) is more robust to the selection of α0
and λ. Moreover, we are easier to tune D-AMSTD(λ) compared
to distributed TD(λ) in practice.

Finally, we investigate how the mean consensus error of
D-AMSTD(λ) is affected by different graphs and the num-
ber of agents, where λ = 0.9. As shown in Fig. 6(a),
the mean consensus error decreases more slowly on graphs
with worse connectivity than on graphs with better con-
nectivity. Meanwhile, Fig. 6(b) shows that D-AMSTD(λ) on
smaller graphs is slightly faster than on larger graphs.
Thereby, theoretical predictions are agreed with empirical
results.

VIII. CONCLUSION

This article has proposed a decentralized adaptive TD(λ)

learning algorithm termed as D-AMSTD(λ) for the decen-
tralized policy evaluation problem. Moreover, we have
also analyzed rigorously the finite-time performance of
D-AMSTD(λ) under the Markovian model, i.e., D-AMSTD(λ)

linearly converges to an arbitrarily small size of neigh-
borhood of the optimal weight by appropriately choosing
learning rates. Furthermore, the convergence rate can match
the centralized variants of TD learning. Finally, we have
conducted various experiments to verify the efficacy of
D-AMSTD(λ).
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