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Abstract
The cost-performance tradeoff is a fundamental issue in a data center for cloud
computing, which is closely related to two key metrics that both cloud con-
sumers and service providers care the most, that is, quality of service and cost
of service. While there are different definitions of quality of service, the aver-
age response time is a common choice of performance metric. While there
are various considerations in cost of service, the average power consump-
tion is a common choice of cost metric. Hence, the cost-performance tradeoff
becomes the power-performance tradeoff. In this article, we deal with the
power-performance tradeoff at the data center level. We study cost-performance
ratio optimization by using the techniques of workload management and server
speed setting. In particular, we make the following tangible contributions.
We solve three optimization problems, that is, (1) the workload management
problem—to find a workload distribution, such that the cost-performance ratio
is minimized; (2) the server speed setting problem—to find a server speed setting,
such that the cost-performance ratio is minimized; (3) the workload manage-
ment and server speed setting problem—to find a workload distribution and a
server speed setting, such that the cost-performance ratio is minimized. All the
three optimization problems are analytically defined as multivariable optimiza-
tion problems based on M/M/m queueing systems for multiple heterogeneous
multiserver systems, together with two power consumption models, that is, the
idle-speed model and the constant-speed model. Our approach makes it pos-
sible to quantitatively evaluate and optimize the cost-performance ratio of a
data center within a rigorously developed framework. Each multivariable opti-
mization problem is transformed to a nonlinear system of equations. Due to the
sophistication of these equations, they are solved algorithmically by a numeri-
cal procedure. Furthermore, we provide approximate, accurate, and analytical
solutions to the first two problems. Performance data are demonstrated for each
problem, and the accuracy of our approximate solutions are also discussed. To
the best of the author’s knowledge, this is the first paper which analytically
and algorithmically minimizes the cost-performance ratio of a data center with

Abbreviations: CPR, cost-performance ratio; QoS, quality of service; SLA, service level agreement.
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multiple heterogeneous multiserver systems using the techniques of workload
management and server speed setting.
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1 INTRODUCTION

1.1 Background

The cost-performance tradeoff is a fundamental issue in a data center for cloud computing, which is closely related to
two key metrics that both cloud consumers and service providers care the most. The first metric is quality of service.1,2

A cloud consumer expects the highest quality of service, while a service provider attracts more customers by providing
higher quality of service. The second metric is cost of service.3,4 A cloud consumer expects the lowest cost/charge of
service, while a service provider makes more profit by reducing the cost of service. However, attempting to simultaneously
achieve the highest quality of service and the lowest cost of service yields two conflicting requirements. Therefore, it is a
challenge to deal with the cost-performance tradeoff in cloud computing. While there are different definitions of quality of
service,5 the average response time is a common choice of performance metric. While there are various considerations in
cost of service,6 the average power consumption is a common choice of cost metric. Hence, the cost-performance tradeoff
becomes the power-performance tradeoff.

The power-performance tradeoff can be dealt with at three different levels. (1) Application level—This is essen-
tially power-aware and energy-efficient task scheduling, where an application is represented by a directed acyclic
graph for tasks and their precedence constraints, which are scheduled on homogeneous or heterogeneous pro-
cessors. The goal is to minimize the total execution time by consuming a given energy budget, or to minimize
the total energy consumption by completing the tasks within a given performance bound.7 (2) Multiserver sys-
tem level—This is to consider a multiserver system with a stream of service requests. A multiserver system can
be an inelastic multiserver system with fixed server size and speed, or a vertically/horizontally elastic and scal-
able multiserver system. A multiserver system is treated as a queueing model, typically an M/M/m model or its
extensions and variations.8 (3) Data center level—This is to consider multiple heterogeneous inelastic multiserver
systems, and multiple heterogeneous vertically/horizontally elastic and scalable multiserver systems. A multiserver
system can be treated as an M/M/m queueing model, and a single-server system can be treated as an M/M/1,
an M/G/1, and a G/G/1 queueing model, where the queueing models can be extended to deal with elasticity and
scalability.

The power-performance tradeoff can be studied from three different perspectives. (1) Power constrained perfor-
mance optimization—This is to minimize the average response time, so that the average power consumption does not
exceed certain power and cost constraint. (2) Performance constrained power optimization—This is to minimize the
average power consumption, so that the average response time does not exceed certain performance and quality con-
straint. (3) Cost-performance ratio optimization—This is to minimize the cost-performance ratio, that is, the power-time
product.

The power-performance tradeoff can be manipulated by using two effective techniques. (1) Workload man-
agement—Since the workload directly affects the average response time and the average power consumption, the
power-performance tradeoff can be manipulated by distributing the workload in the optimal way. This is essentially
load distribution and load balancing very effectively used in distributed computing, cluster computing, grid comput-
ing, cloud computing, and mobile edge computing. (2) Server speed setting—Since the server speed directly affects the
average response time and the average power consumption, the power-performance tradeoff can be manipulated by set-
ting the server speeds in an optimal way. This is essentially dynamic processor speed setting very widely employed in
energy-efficient computing.
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1.2 New contributions

In this article, we deal with the power-performance tradeoff at the data center level. We study cost-performance ratio
optimization by using the techniques of workload management and server speed setting. In particular, we make the
following tangible contributions.

• We solve three optimization problems, that is, (1) the workload management problem—to find a workload distribution,
such that the cost-performance ratio is minimized; (2) the server speed setting problem—to find a server speed setting,
such that the cost-performance ratio is minimized; (3) the workload management and server speed setting problem—to
find a workload distribution and a server speed setting, such that the cost-performance ratio is minimized.

• All the three optimization problems are analytically defined as multivariable optimization problems based on M/M/m
queueing systems for multiple heterogeneous multiserver systems, together with two power consumption models, that
is, the idle-speed model and the constant-speed model. Our approach makes it possible to quantitatively evaluate and
optimize the cost-performance ratio of a data center within a rigorously developed framework.

• Each multivariable optimization problem is transformed to a nonlinear system of equations. Due to the sophistication
of these equations, they are solved algorithmically by a numerical procedure. Furthermore, we provide approximate,
accurate, and analytical solutions to the first two problems. Performance data are demonstrated for each problem, and
the accuracy of our approximate solutions are also discussed.

To the best of the author’s knowledge, this is the first paper which analytically and algorithmically minimizes the
cost-performance ratio of a data center with multiple heterogeneous multiserver systems using the techniques of workload
management and server speed setting.

Our problem formulation and solution based on queueing models are consistent with many existing studies of cost
and performance optimization in cloud computing and edge computing (see Section 2). However, our cost-performance
ratio optimization is novel and different from cost constrained performance optimization and performance constrained
cost optimization in existing studies.

We would like to emphasize that the focus of the present study is to model, analyze, and optimize the cost-performance
ratio of a data center using a theoretic approach. The methods and algorithms developed in this article are readily applica-
ble to any data center as soon as all the parameters in our queueing system and power consumption models are available
from the data center. The quality of our results depend only on the accuracy of the parameters from a real application envi-
ronment. Note that such cost-performance ratio optimization is performed offline. It should be done when an application
environment is changed, for example, when multiserver systems are added/removed or workload is increased/decreased.

We would like to mention two recent related research published on SPE. The first one is Reference 9, where the
investigation in Reference 10 was extended to multiple classes of applications for power constrained performance opti-
mization by using an optimal load distribution and an optimal server speed setting, the same techniques used in this
article. However, performance constrained power optimization was not studied. The second one is Reference 11, which
dealt with the cost-performance tradeoff (i.e., cost constrained performance optimization and performance constrained
cost optimization) in mobile edge/cloud computing by server configuration optimization, where the M/M/m queueing
model is used to characterize multiple heterogeneous edge servers. Note that the technique adopted is different from
this article.

The rest of the article is organized as follows. In Section 2, we review related research. In Section 3, we present our
multiserver model, power consumption models, and performance and cost measures. We also give several examples to
motivate our investigation. In Sections 4–6, we address the three multivariable optimization problems respectively. We
formally define each problem, develop a numerical algorithm to solve the problem, and demonstrate performance data.
In Section 7, we conclude the article.

2 RELATED RESEARCH

In this section, we review related research in analytical modeling and optimal handling of cost-performance tradeoff in
two categories, that is, single multiserver system and multiple multiserver systems. We mainly focus on queueing model
based approaches within the framework described in Section 1. Table 1 summarizes the related literature.
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T A B L E 1 Summary of related research

Reference Environment Model Strategy Cost-performance tradeoff

Single multiserver system

12 Server farm M/M/m Server management Minimizing energy-response time product

13 Cloud computing M/M/m Optimal server configuration Minimizing response time with power
consumption constraint; Minimizing power
consumption with response time constraint

14 Cloud computing Vertically elastic
M/M/m

Workload dependent dynamic
power management

Minimizing average response time with
average power consumption constraint;
Minimizing average power consumption
with average response time constraint

15 Cloud computing M/M/m Optimal speed scheme Minimizing cost-performance ratio

16 Cloud computing M/G/1 Task type dependent server
speed management

Power constrained performance optimization;
Performance constrained power
minimization

17 Cloud computing Continuous-time
Markov chain

Variable server size Optimizing cost-performance ratio

Multiple Multiserver Systems

10 Cloud computing M/M/m Optimal load distribution and
optimal server speed setting

Power constrained performance optimization;
Performance constrained power
optimization

11 Mobile edge/cloud
computing

M/M/m Optimal server configuration Cost constrained performance optimization;
Performance constrained cost optimization

18 Mobile edge/cloud
computing

M/M/m Optimal server configuration
and placement

Performance constrained cost minimization

19 Heterogeneous
computing

M/G/1 Optimal load distribution and
optimal server speed setting

Performance constrained power minimization
(with dedicated tasks and general tasks)

20,21 Heterogeneous
computing

M/M/1 with
prioritization,
preemption

Optimal load balancing and
power allocation

Power constrained performance optimization;
Performance constrained power
optimization (with dedicated tasks and
general tasks)

22 Data center M/G/1 Optimal power allocation Minimizing average task response time

23 Cloud computing Vertically elastic
M/M/m

Optimal task dispatching Minimizing average response time;
Minimizing average power consumption;
Minimizing average cost-performance ratio

9 Cloud computing M/M/m Optimal load distribution and
optimal server speed setting

Power constrained performance optimization
(for multiple classes of applications)

24 Data center G/G/1 Optimal server speed setting Power constrained performance optimization;
Performance constrained power
optimization

25 Cloud computing M/G/1 Optimal load distribution and
optimal server speed
scaling

Minimizing weighted sum of average response
time and average power consumption

26 Data center M/M/1 Resource provisioning
adjustment and task
allocation determination

Maximizing profit and optimizing average
response time

27 Green computing M/G/1 Power allocation Performance constrained power minimization

This article Cloud computing M/M/m Optimal workload
management and optimal
server speed setting

Minimizing cost-performance ratio
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We would like to mention that the issue of cost-performance tradeoff has also been studied in various other related
systems and environments with different techniques from diversified perspectives. Deng et al. investigated the tradeoff
between power consumption and transmission delay in a fog-cloud computing system by finding an optimal workload
allocation between fog and cloud to minimize power consumption with a service delay constraint.28 Ding et al. proposed
a Q-learning based task scheduling framework for optimizing average response time, server utilization, and energy con-
sumption in cloud computing using the M/M/m queueing model.29 Zhou et al. reduced the energy consumption of a
data center while ensuring high quality of service (QoS) and minimizing service level agreement (SLA) violation rate.30,31

The cost-performance tradeoff has also been considered by many researchers in the form of energy-latency tradeoff and
energy-delay tradeoff for mobile edge computing.32-36

2.1 Single multiserver system

Kong et al. observed that performance can improve as cost (i.e., the number of virtual machines, equivalent to the size of
a multiserver system) increases; however, when the cost increases beyond certain level, the performance improves very
slowly while the cost increases as usual, because the performance reaches its saturation point.37 Such a phenomenon
clearly implies that there is an optimal (i.e., minimum) value of the cost-performance ratio.

Gandhi et al. investigated management policies which minimize the energy-response time product (i.e., the
power-time 2 product) for a server farm (i.e., a multiserver system), where each server can be in the state of on, idle, sleep,
off , by using the M/M/m queueing model.12 They found the optimal policy for a single-server system and a near-optimal
policy for a multiserver system.

In Reference 13, the author considered the problem of power and performance management for a multicore server
processor (treated as an M/M/m queueing system) in a cloud computing environment by optimal server configuration. It
was shown that (1) for a given power consumption constraint, there is an optimal selection of server size and core speed,
such that the minimum average response time can be achieved; (2) for a given task response time constraint, there is an
optimal selection of server size and core speed, such that the minimum power consumption can be achieved.

In Reference 14, the author proposed the technique of using workload dependent dynamic power management (i.e.,
variable power and speed of a server according to the current workload) to improve system performance and to reduce
energy consumption. This technique essentially creates a vertically elastic and scalable multiserver system with variable
speed, which can be characterized by a variation of the standard M/M/m queueing model. It was shown that given cer-
tain average power consumption, there is an optimal speed scheme that minimizes the average response time, and that
given certain average response time, there is an optimal speed scheme that minimizes the average power consumption.
These are actually average response time optimization subject to power constraint and average power consumption opti-
mization subject to performance constraint. In Reference 15, the author further found optimal single-speed schemes and
double-speed schemes which minimize the cost-performance ratio. Actually, our effort in this article is to extend the study
in Reference 15 from a single multiserver system to multiple multiserver systems.

In Reference 16, the author explored the technique of variable and task type dependent server speed management
to optimize the server performance and to minimize the power consumption of a server with mixed applications. By
establishing an M/G/1 queueing model for a server with variable and task type dependent speed, the problems of power
constrained performance optimization and performance constrained power minimization were formulated and solved.

In Reference 17, the author developed a continuous-time Markov chain model (an extension of the M/M/m queueing
model) for a horizontally elastic and scalable multiserver system with variable size, so that various performance and cost
metrics can be obtained analytically and numerically, and the cost-performance ratio can be optimized. Using the results
developed, a cloud service provider can predict its performance and cost guarantee and optimize its elastic scaling scheme
to deliver the best cost-performance ratio, and a cloud consumer can compare cloud service providers and choose the best
one.

2.2 Multiple multiserver systems

In Reference 10, Cao et al. considered multiple heterogeneous inelastic multiserver systems (modeled as M/M/m queue-
ing systems) across clouds and data centers, and solved the problems of power constrained performance optimization
and performance constrained power optimization by using optimal power allocation (i.e., server speed setting) and load
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distribution. Our research in this article essentially is to minimize the cost-performance ratio within the same framework
of Reference 10.

He et al. minimized operational expenditures while maintaining system performance at a predetermined level by
optimal server configuration and suboptimal server placement in mobile edge computing, where edge servers were treated
as M/G/m queueing systems.18

Huang et al. solved the problem of optimal distribution of general tasks among heterogeneous servers and optimal
speed setting for the servers (treated as M/G/1 queueing systems), where each server has its own preloaded dedicated tasks
and the servers have different queueing disciplines in scheduling dedicated tasks and general tasks, such that the average
power consumption is minimized and that the average response time of general tasks does not exceed a given bound (i.e.,
performance constrained power minimization).19 Huang et al. also minimized the average response time of generic tasks
on heterogeneous embedded processors with dedicated tasks by optimal power allocation and load balancing, where the
M/M/1 queueing model with prioritization and preemption was employed.20,21

In Reference 22, the author addressed power constrained performance optimization in a data center with multiple
heterogeneous inelastic servers treated as M/G/1 queueing systems by optimal power allocation among multiple hetero-
geneous servers to minimize the average task response time. In Reference 23, a data center with multiple heterogeneous
vertically elastic and scalable multiserver systems was considered. The author minimized the average task response time,
the average power consumption, and the average cost-performance ratio by optimal task dispatching. In Reference 24, the
author studied the problems of power constrained performance optimization and performance constrained power opti-
mization in a data center with multiple heterogeneous and arbitrary servers treated as G/G/1 queueing systems through
optimal server speed setting.

Tian et al. minimized a weighted sum of the average task response time and the average power consumption (i.e.,
the power-time sum), by optimal load distribution among multiple heterogeneous servers (treated as M/G/1 queueing
systems) and optimal continuous and discrete service speed scaling.25 Yang et al. employed a Stackelberg game, where
a system monitor, who plays the role of the leader, can maximize profit by adjusting resource provisioning, whereas
scheduler agents, who act as followers, can determine task allocation to obtain optimal average response time, and each
server is modeled as an M/M/1 queuing system.26 Zheng and Cai considered power allocation among servers in a server
cluster with multiple classes of service requests to achieve satisfied service performance while still preserving energy
efficiency, where each server is treated as an M/G/1 queueing system.27

3 PRELIMINARY INFORMATION

In this section, we present our performance and cost measures. We also give several examples to motivate our study.

3.1 Performance and cost measures

Our multiserver model and power consumption models are from Reference 10, where the reader can find detailed
description. Table 2 provides a list of symbols and their definitions used in this article.

A cloud computing environment or data center serves users’ service requests by using multiple heterogeneous
multiserver systems. A data center maintains a pool of n heterogeneous multiserver systems S1, S2, … , Sn with
different sizes, speeds, power consumption models, workload, performance, and costs. A multiserver system Si
has mi identical servers and is treated as an M/M/m queueing system. The average task response time of Si is
Reference 38

Ti = xi

(
1 +

pi,mi

mi(1 − 𝜌i)2

)
. (1)

(Note: We use y to represent the expectation of a random variable y.)
Two categories of server speed and power consumption models are considered in this article. In the idle-speed model,

we have

Pi = mi(𝜌i𝜉is
𝛼i
i + P∗i ) = 𝜆ir𝜉is

𝛼i−1
i +miP∗i . (2)
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T A B L E 2 Symbols and definitions

Symbol Definition

n The number of heterogeneous multiserver systems

Si A multiserver system

mi The number of identical servers (i.e., the size) of Si

𝜆i The arrival rate of the Poisson stream of service requests to Si

𝜆 = 𝜆1 + 𝜆2 + · · · + 𝜆n

r Task execution requirement, an exponential random variable with mean r

si The identical execution speed of the servers of Si

xi = r∕si, task execution time on the servers of Si, with mean xi = r∕si

𝜇i = 1∕xi = si∕r, the average service rate of a server of Si

𝜌i = 𝜆i∕mi𝜇i = 𝜆ixi∕mi = 𝜆ir∕misi, the server utilization of Si

pi,k The probability that there are k service requests in Si

Ti The average task response time of Si

T The overall average task response time of a data center

Pi = 𝜉is
𝛼i
i , dynamic power consumption of a server of Si

P∗i Static power consumption of a server of Si

P The overall power consumption of a data center

R = PT, cost-performance ratio

In the constant-speed model, we have

Pi = mi(𝜉is
𝛼i
i + P∗i ). (3)

The overall average task response time of a data center with n heterogeneous multiserver systems S1, S2, … , Sn is

T =
n∑

i=1

𝜆i

𝜆

Ti. (4)

T is related to our performance measure. The overall power consumption of a data center with n heterogeneous
multiserver systems S1, S2, … , Sn is

P =
n∑

i=1
Pi, (5)

which is

P =
n∑

i=1
(𝜆ir𝜉is

𝛼i−1
i +miP∗i ), (6)

for the idle-speed model, and

P =
n∑

i=1
(mi(𝜉is

𝛼i
i + P∗i )), (7)

for the constant-speed model. P is related to our cost measure.
Our performance measure is 1∕T, which is inversely proportional to the average task response time T, the higher, the

better. The cost of cloud computing is determined by many different factors. Since the number n of multiserver systems
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and the sizes m1,m2, … ,mn of these multiserver systems are fixed in scale-up and scale-down auto-scaling schemes,15

our cost measure is essentially the cost of power consumption P, the lower, the better. It is clear that the cost-performance
ratio (CPR) refers to a data center’s ability to deliver performance for certain cost. Generally speaking, data centers with
lower CPR are more desirable, excluding other factors. In this article, we define CPR as cost/performance, that is, R = PT,
that is, the power-time product.

3.2 Motivational examples

We provide a few illustrative examples to motivate our investigation.

Example 1. First, we given an example to illustrate optimal workload distribution. Consider two M/M/1 servers S1 and
S2 with m1 = m2 = 1 and the constant-speed model. Then, we have

Ti = 1∕(𝜇i − 𝜆i), (8)

for i = 1, 2. Since Pi is independent of 𝜆i, minimizing R = PT is equivalent to minimizing T, which is

T = 1
𝜆

(
𝜆1

𝜇1 − 𝜆1
+ 𝜆2

𝜇2 − 𝜆2

)
. (9)

Given certain workload 𝜆, there is an optimal workload distribution (𝜆1, 𝜆2)which minimizes T. Since 𝜆2 = 𝜆 − 𝜆1, we get

T = 1
𝜆

(
𝜆1

𝜇1 − 𝜆1
+ 𝜆 − 𝜆1

(𝜇2 − 𝜆) + 𝜆1

)
, (10)

which is viewed as a function of 𝜆1. To minimize T, we need

𝜕T
𝜕𝜆1

= 1
𝜆

(
𝜇1

(𝜇1 − 𝜆1)2
− 𝜇2

((𝜇2 − 𝜆) + 𝜆1)2

)
= 0, (11)

which gives rise to

𝜆1 =
√
𝜇1𝜆 +

√
𝜇1𝜇2(

√
𝜇1 −

√
𝜇2)√

𝜇1 +
√
𝜇2

, (12)

and

𝜆1 =
√
𝜇2𝜆 +

√
𝜇1𝜇2(

√
𝜇2 −

√
𝜇1)√

𝜇1 +
√
𝜇2

. (13)

Example 2. Next, we given an example to illustrate optimal server speed setting. Consider an M/M/1 server Si with
mi = 1 and the idle-speed model. Then, we have

Ti = 1∕(𝜇i − 𝜆i) = 1∕(si∕r − 𝜆i), (14)

and

Pi = 𝜆ir𝜉is
𝛼i−1
i + P∗i . (15)

Thus, we get

Ri = PiTi =
r(𝜆ir𝜉is

𝛼i−1
i + P∗i )

si − 𝜆ir
. (16)
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It is observed that Ti is a decreasing function of si, while Pi is an increasing function of si. Hence, there is an optimal si
which minimizes Ri. If we view Ri as a function of si, then we need to have

𝜕Ri

𝜕si
=

r(𝜆ir𝜉i(𝛼i − 2)s𝛼i−1
i − (𝜆ir)2𝜉i(𝛼i − 1)s𝛼i−2

i − P∗i )
(si − 𝜆ir)2

= 0. (17)

When 𝛼i = 3, the above equation becomes

𝜆ir𝜉is2
i − 2(𝜆ir)2𝜉isi − P∗i = 0, (18)

which yields

si =
(𝜆ir)2𝜉i +

√
(𝜆ir)4𝜉2

i + 𝜆ir𝜉iP∗i
𝜆ir𝜉i

= 𝜆ir +

√
(𝜆ir)2 +

P∗i
𝜆ir𝜉i

. (19)

Since si > 2𝜆ir, we get 𝜌i = 𝜆ir∕si < 0.5, which means that to minimize Ri, si should be large enough, so that server
utilization is not high.

Example 3. Finally, we given an example to illustrate optimal workload distribution and server speed setting. Again,
consider the two M/M/1 servers S1 and S2 with m1 = m2 = 1 and the constant-speed model. Since𝜇1 = s1∕r and𝜇2 = s2∕r,
from Example 1, we obtain

𝜆1 =
√

s1𝜆 +
√

s1s2∕r(
√

s1 −
√

s2)√
s1 +

√
s2

, (20)

and

𝜆2 =
√

s2𝜆 +
√

s1s2∕r(
√

s2 −
√

s1)√
s1 +

√
s2

. (21)

Therefore, T is viewed as a function of s1 and s2:

T = 1
𝜆

( √
s1𝜆 +

√
s1s2∕r(

√
s1 −

√
s2)

(
√

s1 +
√

s2)s1∕r − (
√

s1𝜆 +
√

s1s2∕r(
√

s1 −
√

s2))
+

√
s2𝜆 +

√
s1s2∕r(

√
s2 −

√
s1)

(
√

s1 +
√

s2)s2∕r − (
√

s2𝜆 +
√

s1s2∕r(
√

s2 −
√

s1))

)
. (22)

Furthermore,

P = P1 + P2 = 𝜉1s𝛼1
1 + P∗1 + 𝜉2s𝛼2

2 + P∗2 (23)

is also a function of s1 and s2. To minimize R = PT, we need to consider 𝜕R∕𝜕s1 = 0 and 𝜕R∕𝜕s2 = 0. Unfortunately, the
closed form solution is not available. However, such an optimal solution does exist, and there is an optimal workload
distribution and server speed setting.

4 WORKLOAD MANAGEMENT

In this section, we address the workload management problem.

4.1 Problem formulation

Our optimization problem can be analytically defined as follows. Given certain workload specified by 𝜆 and r, and n
heterogeneous multiserver systems S1, S2, … , Sn, where Si is specified by mi, si, 𝜉i, 𝛼i, P∗i , for all 1 ≤ i ≤ n, find a workload
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distribution (𝜆1, 𝜆2, … , 𝜆n), such that the cost-performance ratio R is minimized, subject to the constraint that 𝜆1 + 𝜆2 +
· · · + 𝜆n = 𝜆.

In the following (i.e., Equations (24)–(37)), we transform the above multivariable optimization problem to a non-
linear system of equations. We view R(𝜆1, 𝜆2, … , 𝜆n) as a function of 𝜆1, 𝜆2, … , 𝜆n. We can minimize R(𝜆1, 𝜆2, … , 𝜆n)
subject to the constraint C(𝜆1, 𝜆2, … , 𝜆n) = 𝜆1 + 𝜆2 + · · · + 𝜆n = 𝜆 by using the following Lagrange multiplier
system,

∇R(𝜆1, 𝜆2, … , 𝜆n) = 𝜙C(𝜆1, 𝜆2, … , 𝜆n), (24)

that is,

𝜕R(𝜆1, 𝜆2, … , 𝜆n)
𝜕𝜆i

= 𝜙

𝜕C(𝜆1, 𝜆2, … , 𝜆n)
𝜕𝜆i

= 𝜙, (25)

for all 1 ≤ i ≤ n, where 𝜙 is a Lagrange multiplier.
For the constant-speed model, P is independent of 𝜆1, 𝜆2, … , 𝜆n. Therefore, we obtain

𝜕R(𝜆1, 𝜆2, … , 𝜆n)
𝜕𝜆i

= 1
𝜆

P
(

Ti + 𝜆i
𝜕Ti

𝜕𝜆i

)
, (26)

for all 1 ≤ i ≤ n.
For the idle-speed model, both P and T are dependent on 𝜆1, 𝜆2, … , 𝜆n. Let us rewrite R = PT as

R = 1
𝜆

(
𝜆iPiTi +

(∑
j≠i

Pj

)
𝜆iTi + Pi

(∑
j≠i

𝜆jTj

)
+

(∑
j≠i

Pj

)(∑
j≠i

𝜆jTj

))
, (27)

for all 1 ≤ i ≤ n. Therefore, we obtain

𝜕R(𝜆1, 𝜆2, … , 𝜆n)
𝜕𝜆i

= 1
𝜆

(
PiTi + 𝜆ir𝜉is

𝛼i−1
i Ti + 𝜆iPi

𝜕Ti

𝜕𝜆i
+

(∑
j≠i

Pj)(Ti + 𝜆i
𝜕Ti

𝜕𝜆i

)
+ r𝜉is

𝛼i−1
i

(∑
j≠i

𝜆jTj

))

= 1
𝜆

(( n∑
j=1

Pj

)(
Ti + 𝜆i

𝜕Ti

𝜕𝜆i

)
+ r𝜉is

𝛼i−1
i

( n∑
j=1

𝜆jTj

))

= 1
𝜆

P
(

Ti + 𝜆i
𝜕Ti

𝜕𝜆i

)
+ r𝜉is

𝛼i−1
i T, (28)

for all 1 ≤ i ≤ n.
Now, we derive 𝜕Ti∕𝜕𝜆i. Recall that

Ti =
r
si

(
1 +

pi,mi

mi(1 − 𝜌i)2

)
. (29)

It is clear that

𝜕Ti

𝜕𝜆i
= r

misi

( 2pi,mi

(1 − 𝜌i)3
⋅

r
misi

+ 1
(1 − 𝜌i)2

⋅
𝜕pi,mi

𝜕𝜆i

)
, (30)

where we notice that 𝜕𝜌i∕𝜕𝜆i = r∕misi, for all 1 ≤ i ≤ n. To further calculate 𝜕Ti∕𝜕𝜆i, we need to examine 𝜕pi,mi∕𝜕𝜆i.
Recall that

pi,mi =
mmi

i

mi!
𝜌

mi
i pi,0. (31)
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Hence, we get

𝜕pi,mi

𝜕𝜆i
=

mmi
i

mi!

(
mi𝜌

mi−1
i

r
misi

pi,0 + 𝜌

mi
i
𝜕pi,0

𝜕𝜆i

)
=

mmi
i

mi!
𝜌

mi−1
i

(
r
si

pi,0 + 𝜌i
𝜕pi,0

𝜕𝜆i

)
, (32)

for all 1 ≤ i ≤ n. To further calculate 𝜕pi,mi∕𝜕𝜆i, we need to examine 𝜕pi,0∕𝜕𝜆i. Recall that

pi,0 =

(mi−1∑
k=0

mk
i

k!
𝜌

k
i +

mmi
i

mi!
⋅

𝜌

mi
i

1 − 𝜌i

)−1

. (33)

Thus, we have

𝜕pi,0

𝜕𝜆i
= −p2

i,0

(mi−1∑
k=1

mk−1
i

(k − 1)!
𝜌

k−1
i +

mmi−1
i

mi!
⋅

mi𝜌
mi−1
i − (mi − 1)𝜌mi

i

(1 − 𝜌i)2

)
r
si
, (34)

for all 1 ≤ i ≤ n.
An effective and efficient method is required to find 𝜆1, 𝜆2, … , 𝜆n and 𝜙, which satisfy the equation

𝜕R(𝜆1, 𝜆2, … , 𝜆n)∕𝜕𝜆i = 𝜙, for all 1 ≤ i ≤ n, and C(𝜆1, 𝜆2, … , 𝜆n) = 𝜆.
Therefore, we need to solve the following equation, that is,

1
𝜆

P(Ti + 𝜆i
𝜕Ti

𝜕𝜆i
) + (idle)r𝜉is

𝛼i−1
i T = 𝜙, (35)

where idle = 1 for the idle-speed model, and idle = 0 for the constant-speed model, or equivalently,

Fi =
1
𝜆

P(Ti + 𝜆i
𝜕Ti

𝜕𝜆i
) + (idle)r𝜉is

𝛼i−1
i T − 𝜙 = 0, (36)

for all 1 ≤ i ≤ n. The above equations, together with

F0 = 𝜆1 + 𝜆2 + · · · + 𝜆n − 𝜆 = 0, (37)

constitute a nonlinear system of n + 1 equations with n + 1 unknowns, that is, 𝜆1, 𝜆2, … , 𝜆n, and 𝜙.
An analytical solution to the above equations is infeasible. We take an algorithmic and numerical approach.

4.2 A numerical algorithm

The following nonlinear system of equations needs to be solved:

⎧⎪⎪⎨⎪⎪⎩

F0(𝜙, 𝜆1, … , 𝜆n) = 0,
F1(𝜙, 𝜆1, … , 𝜆n) = 0,

⋮

Fn(𝜙, 𝜆1, … , 𝜆n) = 0.

(38)

We represent the variables 𝜙, 𝜆1, … , 𝜆n using vector notation:

y = (y0, y1, … , yn) = (𝜙, 𝜆1, … , 𝜆n), (39)

and Fi(𝜙, 𝜆1, … , 𝜆n) = Fi(y0, y1, … , yn) = Fi(y), where Fi ∶ Rn+1 → R maps (n + 1)-dimensional space Rn+1 into the real
line R. By defining a function F ∶ Rn+1 → Rn+1 which maps Rn+1 into Rn+1,

F(y) = (F0(y0, y1, … , yn),F1(y0, y1, … , yn), … ,Fn(y0, y1, … , yn)), (40)
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namely,

F(y) = (F0(y),F1(y), … ,Fn(y)), (41)

our nonlinear system of equations becomes

F(y) = 0, (42)

where 0 = (0, 0, … , 0).
It is well known that we can solve the above nonlinear system of equations by using the standard Newton’s method.

For this purpose, we use the Jacobian matrix J(y) defined as

J(y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕F0(y)
𝜕y0

𝜕F0(y)
𝜕y1

· · ·
𝜕F0(y)
𝜕yn

𝜕F1(y)
𝜕y0

𝜕F1(y)
𝜕y1

· · ·
𝜕F1(y)
𝜕yn

⋮ ⋮ ⋱ ⋮
𝜕Fn(y)
𝜕y0

𝜕Fn(y)
𝜕y1

· · ·
𝜕Fn(y)
𝜕yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (43)

whose components are given in Equations (44)–(55). (These detailed derivations can be skipped without loss of
continuity.)

For F0, we have

𝜕F0(y)
𝜕y0

=
𝜕F0(y)
𝜕𝜙

= 0, (44)

and

𝜕F0(y)
𝜕yj

=
𝜕F0(y)
𝜕𝜆j

= 1, (45)

for all 1 ≤ j ≤ n. For Fi, where 1 ≤ i ≤ n, we have

𝜕Fi(y)
𝜕y0

=
𝜕Fi(y)
𝜕𝜙

= −1. (46)

Now, we examine 𝜕Fi(y)∕𝜕yi = 𝜕Fi(y)∕𝜕𝜆i, for all 1 ≤ i ≤ n. For the idle-speed model,

Fi =
1
𝜆

P
(

Ti + 𝜆i
𝜕Ti

𝜕𝜆i

)
+ r𝜉is

𝛼i−1
i T − 𝜙 = 0, (47)

where P is dependent on 𝜆1, 𝜆2, … , 𝜆n. Hence, we get

𝜕Fi(y)
𝜕𝜆i

= 1
𝜆

(
r𝜉is

𝛼i−1
i

(
Ti + 𝜆i

𝜕Ti

𝜕𝜆i

)
+ P

(
2𝜕Ti

𝜕𝜆i
+ 𝜆i

𝜕

2Ti

𝜕𝜆

2
i

))
+ 1

𝜆

r𝜉is
𝛼i−1
i

(
Ti + 𝜆i

𝜕Ti

𝜕𝜆i

)

= 1
𝜆

(
2r𝜉is

𝛼i−1
i

(
Ti + 𝜆i

𝜕Ti

𝜕𝜆i

)
+ P

(
2𝜕Ti

𝜕𝜆i
+ 𝜆i

𝜕

2Ti

𝜕𝜆

2
i

))
, (48)

where

𝜕

2Ti

𝜕𝜆

2
i

= r
misi

(
6pi,mi

(1 − 𝜌i)4

(
r

misi

)2

+ 4
(1 − 𝜌i)3

⋅
r

misi
⋅
𝜕pi,mi

𝜕𝜆i
+ 1
(1 − 𝜌i)2

⋅
𝜕

2pi,mi

𝜕𝜆

2
i

)
, (49)
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and

𝜕

2pi,mi

𝜕𝜆

2
i

=
mmi

i

mi!

(
mi − 1

mi

(
r
si

)2

𝜌

mi−2
i pi,0 + 2 r

si
𝜌

mi−1
i

𝜕pi,0

𝜕𝜆i
+ 𝜌

mi
i
𝜕

2pi,0

𝜕𝜆

2
i

)
, (50)

and

𝜕

2pi,0

𝜕𝜆

2
i

= −2pi,0
𝜕pi,0

𝜕𝜆i

(mi−1∑
k=1

mk−1
i

(k − 1)!
𝜌

k−1
i +

mmi−1
i

mi!
⋅

mi𝜌
mi−1
i − (mi − 1)𝜌mi

i

(1 − 𝜌i)2

)
r
si

− p2
i,0

(mi−1∑
k=2

mk−1
i

(k − 2)!
𝜌

k−2
i +

mmi−1
i

mi!
⋅

mi(mi − 1)𝜌mi−2
i − 2mi(mi − 2)𝜌mi−1

i + (mi − 2)(mi − 1)𝜌mi
i

(1 − 𝜌i)3

)(
r
si

)2 1
mi

. (51)

For the constant-speed model,

Fi =
1
𝜆

P
(

Ti + 𝜆i
𝜕Ti

𝜕𝜆i

)
− 𝜙 = 0, (52)

where P is independent of 𝜆1, 𝜆2, … , 𝜆n. Hence, we get

𝜕Fi(y)
𝜕𝜆i

= 1
𝜆

P

(
2𝜕Ti

𝜕𝜆i
+ 𝜆i

𝜕

2Ti

𝜕𝜆

2
i

)
. (53)

Finally, we examine 𝜕Fi(y)∕𝜕yj = 𝜕Fi(y)∕𝜕𝜆j, for all 1 ≤ i ≤ n and 1 ≤ j ≠ i ≤ n. For the idle-speed model, we get

𝜕Fi(y)
𝜕𝜆j

= 1
𝜆

(
r𝜉js

𝛼j−1
j

(
Ti + 𝜆i

𝜕Ti

𝜕𝜆i

)
+ r𝜉is

𝛼i−1
i

(
Tj + 𝜆j

𝜕Tj

𝜕𝜆j

))
. (54)

For the constant-speed model, we get

𝜕Fi(y)
𝜕𝜆j

= 0. (55)

Algorithm 1 gives our numerical algorithm for finding an optimal workload distribution (𝜆1, 𝜆2, … , 𝜆n) and the
Lagrange multiplier 𝜙, that is, the vector y = (𝜙, 𝜆1, … , 𝜆n) which satisfies the nonlinear system of equations F(y) = 0.
Essentially, this is the standard Newton’s iterative method39(p. 451). Let

𝜆

∗ =
n∑

i=1

misi

r
, (56)

which is the maximum workload that the n multiserver systems can handle collectively. A reasonable estimation of the
𝜆i’s is that they are set in such a way that 𝜌1 = 𝜌2 = · · · = 𝜌n = 𝜌 = 𝜆∕𝜆∗, that is,

𝜆i = 𝜌

misi

r
= 𝜆

𝜆
∗ ⋅

misi

r
=

(
misi

r

/ n∑
i=1

misi

r

)
𝜆, (57)

for all 1 ≤ i ≤ n. Our initial approximation of y is 𝜙 = 1 and 𝜆i = (𝜆∕𝜆∗)(misi∕r) for all 1 ≤ i ≤ n (line (1)). The value of y
is repeatedly updated as y + z (line (6)), where z is the solution to the linear system of equations J(y)z = −F(y) (line (5)).
Such update is iterated until ||z|| ≤ 𝜀 (line (7)), where

||z|| =√
z2

0 + z2
1 + · · · + z2

n, (58)

and 𝜀 is a sufficiently small constant, say, 10−10.
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Algorithm 1. Optimal workload management

Input:Parameters 𝜆, r̄,mi, si, 𝜉i, 𝛼i, P∗i ,for all 1 ≤ i ≤ n.
Output:An optimal workload distribution and 𝜙, that is,y = (𝜙, 𝜆1,… , 𝜆n),which satisfies F(y) = 0.

y ← (1, (𝜆∕𝜆∗)(m1s1∕r̄),… , (𝜆∕𝜆∗)(mnsn∕r̄)); (1)
repeat (2)

Calculate J(y),where J(y)i,j = 𝜕Fi(y)∕𝜕yjfor 0 ≤ i, j ≤ n; (3)
Calculate F(y) = (F0(y),F1(y),… ,Fn(y)); (4)
Solve the linear system of equations J(y)z = −F(y); (5)
y ← y + z; (6)

until ‖z‖ ≤ 𝜀. (7)

Since a matrix J(y) is involved, the space complexity of Algorithm 1 is O(n2). During each repetition of the loop in
lines (2)–(7), line (5) is the most time-consuming, which requires O(n2) time. The overall time complexity of Algorithm 1
is O(Kn2), where K is the number of repetitions and is determined by the required numerical accuracy 𝜀.

For the idle-speed model, the solution to the linear system of equations in line (5) can be obtained by using the tra-
ditional algorithm of Gaussian elimination with backward substitution39(pp. 268–269). For the constant-speed model, the
Jacobian matrix J(y) looks like

J(y) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 · · · 1

− 1
𝜕F1(y)
𝜕y1

· · · 0

⋮ ⋮ ⋱ ⋮

− 1 0 · · ·
𝜕Fn(y)
𝜕yn

⎤⎥⎥⎥⎥⎥⎥⎦

. (59)

Therefore, we get −z0 + zj𝜕Fj(y)∕𝜕yj = −Fj, which implies that

zj =
z0 − Fj

𝜕Fj(y)∕𝜕yj
, (60)

for all 1 ≤ j ≤ n. Since z1 + z2 + · · · + zn = −F0, we get

z0 =

( n∑
j=1

Fj

𝜕Fj(y)∕𝜕yj
− F0

)/( n∑
j=1

1
𝜕Fj(y)∕𝜕yj

)
. (61)

4.3 Performance data

Consider n = 3 heterogeneous multiserver systems S1, S2, S3, where the parameters of Si are mi = 3 + i, si = 1.1 + 0.1i,
𝜉i = 3.2 + 0.2i, 𝛼i = 3.4 − 0.1i, and P∗i = 4.5 + 0.5i, for all 1 ≤ i ≤ n.

Let us assume that 𝜆 = 18, and the workload distribution has 𝜆1 = 6 − d, 𝜆2 = 6, 𝜆3 = 6 + d. In Figure 1, we display
the cost-performance ratio R for d = 1.3, 1.4, ..., 2.3. It is clear that there is an optimal value of d which minimizes R. For
the above set of d values, R is minimized as 438.349 and 462.436 for the idle-speed model and the constant-speed model
respectively, when d = 1.7. However, this is certainly not the real minimum R.

In Tables 3 and 4, we show the optimal workload distribution (𝜆1, 𝜆2, 𝜆3), the corresponding server utilization
(𝜌1, 𝜌2, 𝜌3), and the minimized cost-performance ratio R, for 𝜆 = 15, 16, 17, 18, 19. For instance, when 𝜆 = 18, R is
minimized as 435.331 and 459.134 for the idle-speed model and the constant-speed model respectively.

As an approximate solution, we set 𝜆i = (𝜆∕𝜆∗)(misi∕r), for all 1 ≤ i ≤ n, such that all servers have the same utilization
𝜌i = 𝜆∕𝜆∗. In Tables 3 and 4, we also show such workload distribution (𝜆1, 𝜆2, 𝜆3), the corresponding server utilization
(𝜌1, 𝜌2, 𝜌3), the obtained cost-performance ratio R′ and its relative error defined asΔ = (R′ − R)∕R, for𝜆 = 15, 16, 17, 18, 19.
It is observed that the approximate solution is very close to the optimal solution.
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F I G U R E 1 Cost-performance ratio R versus d

T A B L E 3 Numerical data for optimal workload management (idle-speed model)

𝝀

Optimal Approximate

𝚫𝝀1, 𝝆1 𝝀2, 𝝆2 𝝀3, 𝝆3 R 𝝀1, 𝝆1 𝝀2, 𝝆2 𝝀3, 𝝆3 R′

15 3.46799 4.93204 6.59997 194.957 3.65482 4.94924 6.39594 196.367 0.72318%

0.72250 0.75878 0.78571 0.76142 0.76142 0.76142

16 3.74781 5.26551 6.98668 232.140 3.89848 5.27919 6.82234 234.051 0.82320%

0.78079 0.81008 0.83175 0.81218 0.81218 0.81218

17 4.02980 5.59905 7.37114 296.327 4.14213 5.60914 7.24873 299.089 0.93208%

0.83954 0.86139 0.87752 0.86294 0.86294 0.86294

18 4.31380 5.93268 7.75352 435.331 4.38579 5.93909 7.67513 439.909 1.05151%

0.89871 0.91272 0.92304 0.91371 0.91371 0.91371

19 4.59941 6.26638 8.13421 970.118 4.62944 6.26904 8.10152 981.605 1.18401%

0.95821 0.96406 0.96836 0.96447 0.96447 0.96447

5 SERVER SPEED SETTING

In this section, we address the server speed setting problem.

5.1 Problem formulation

Our optimization problem can be analytically defined as follows. Given certain workload specified by 𝜆 and r, and n
heterogeneous multiserver systems S1, S2, … , Sn, where Si is specified by 𝜆i, mi, 𝜉i, 𝛼i, P∗i , for all 1 ≤ i ≤ n, find a server
speed setting (s1, s2, … , sn), such that the cost-performance ratio R is minimized.

Notice that for each i, 1 ≤ i ≤ n, there is s∗i which minimizes Ri = PiTi. However, such a speed setting (s∗1, s∗2, … , s∗n)
does not necessarily minimize R.
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T A B L E 4 Numerical data for optimal workload management (constant-speed model)

𝝀

Optimal Approximate

𝚫𝝀1, 𝝆1 𝝀2, 𝝆2 𝝀3, 𝝆3 R 𝝀1, 𝝆1 𝝀2, 𝝆2 𝝀3, 𝝆3 R′

15 3.45074 4.93070 6.61856 227.602 3.65482 4.94924 6.39594 229.883 1.00201%

0.71890 0.75857 0.78792 0.76142 0.76142 0.76142

16 3.73846 5.26479 6.99674 261.679 3.89848 5.27919 6.82234 264.396 1.03831%

0.77885 0.80997 0.83295 0.81218 0.81218 0.81218

17 4.02556 5.59874 7.37570 322.921 4.14213 5.60914 7.24873 326.428 1.08604%

0.83866 0.86134 0.87806 0.86294 0.86294 0.86294

18 4.31242 5.93258 7.75500 459.134 4.38579 5.93909 7.67513 464.398 1.14656%

0.89842 0.91270 0.92321 0.91371 0.91371 0.91371

19 4.59923 6.26636 8.13441 991.275 4.62944 6.26904 8.10152 1003.392 1.22233%

0.95817 0.96406 0.96838 0.96447 0.96447 0.96447

In the following (i.e., Equations (62)–(70)), we transform the above multivariable optimization problem to a non-
linear system of equations. We view R(s1, s2, … , sn) as a function of s1, s2, … , sn. We can minimize R(s1, s2, … , sn) by
considering

𝜕R(s1, s2, … , sn)
𝜕si

= 0, (62)

for all 1 ≤ i ≤ n.
Let us rewrite R = PT as

R = 1
𝜆

(
𝜆iPiTi + 𝜆i

(∑
j≠i

Pj

)
Ti + Pi

(∑
j≠i

𝜆jTj

)
+

(∑
j≠i

Pj

)(∑
j≠i

𝜆jTj

))
, (63)

for all 1 ≤ i ≤ n.
Therefore, we obtain

𝜕R(s1, s2, … , sn)
𝜕si

= 1
𝜆

(
𝜆

2
i r𝜉i(𝛼i − 1)s𝛼i−2

i Ti + 𝜆iPi
𝜕Ti

𝜕si
+ 𝜆i

(∑
j≠i

Pj

)
𝜕Ti

𝜕si
+ 𝜆ir𝜉i(𝛼i − 1)s𝛼i−2

i

(∑
j≠i

𝜆jTj

))

= 1
𝜆

(
𝜆i

( n∑
j=1

Pj

)
𝜕Ti

𝜕si
+ 𝜆ir𝜉i(𝛼i − 1)s𝛼i−2

i

( n∑
j=1

𝜆jTj

))

= 𝜆i

𝜆

P𝜕Ti

𝜕si
+ 𝜆ir𝜉i(𝛼i − 1)s𝛼i−2

i T, (64)

for the idle-speed model, and

𝜕R(s1, s2, … , sn)
𝜕si

= 1
𝜆

(
𝜆imi𝜉i𝛼is

𝛼i−1
i Ti + 𝜆iPi

𝜕Ti

𝜕si
+ 𝜆i

(∑
j≠i

Pj

)
𝜕Ti

𝜕si
+mi𝜉i𝛼is

𝛼i−1
i

(∑
j≠i

𝜆jTj

))

= 1
𝜆

(
𝜆i

( n∑
j=1

Pj

)
𝜕Ti

𝜕si
+mi𝜉i𝛼is

𝛼i−1
i

( n∑
j=1

𝜆jTj

))

= 𝜆i

𝜆

P𝜕Ti

𝜕si
+mi𝜉i𝛼is

𝛼i−1
i T, (65)

for the constant-speed model, for all 1 ≤ i ≤ n. It is clear that

𝜕Ti

𝜕si
= −Ti

si
− r

misi

( 2pi,mi

(1 − 𝜌i)3
⋅
𝜌i

si
− 1
(1 − 𝜌i)2

⋅
𝜕pi,mi

𝜕si

)
, (66)
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where we notice that 𝜕𝜌i∕𝜕si = −𝜆ir∕mis2
i = −𝜌i∕si, for all 1 ≤ i ≤ n. To further calculate 𝜕Ti∕𝜕si, we need to examine

𝜕pi,mi∕𝜕si, which is

𝜕pi,mi

𝜕si
=

mmi
i

mi!
𝜌

mi
i

(
−mi

si
pi,0 +

𝜕pi,0

𝜕si

)
, (67)

for all 1 ≤ i ≤ n. To further calculate 𝜕pi,mi∕𝜕si, we need to examine 𝜕pi,0∕𝜕si, which is

𝜕pi,0

𝜕si
= p2

i,0

(mi−1∑
k=1

mk
i

(k − 1)!
𝜌

k−1
i +

mmi
i

mi!
⋅

mi𝜌
mi−1
i − (mi − 1)𝜌mi

i

(1 − 𝜌i)2

)
𝜌i

si
, (68)

for all 1 ≤ i ≤ n.
Therefore, we need to solve the following nonlinear system of n equations, that is,

Gi =
𝜆i

𝜆

P𝜕Ti

𝜕si
+ 𝜆ir𝜉i(𝛼i − 1)s𝛼i−2

i T = 0, (69)

for the idle-speed model, and

Gi =
𝜆i

𝜆

P𝜕Ti

𝜕si
+mi𝜉i𝛼is

𝛼i−1
i T = 0, (70)

for the constant-speed model, for all 1 ≤ i ≤ n.
An analytical solution to the above equations is infeasible. We take an algorithmic and numerical approach.

5.2 A numerical algorithm

We use the same method of Section 4.2. We have the following nonlinear system of equations, that is,

⎧⎪⎪⎨⎪⎪⎩

G1(s1, s2, … , sn) = 0,
G2(s1, s2, … , sn) = 0,

⋮

Gn(s1, s2, … , sn) = 0.

(71)

We represent the variables s1, s2, … , sn using vector notation:

y = (y1, y2, … , yn) = (s1, s2, … , sn), (72)

and Gi(s1, s2, … , sn) = Gi(y1, y2, … , yn) = Gi(y), where Gi ∶ Rn → R maps n-dimensional space Rn into the real line R.
By defining a function G ∶ Rn → Rn which maps Rn into Rn,

G(y) = (G1(y1, y2, … , yn),G2(y1, y2, … , yn), … ,Gn(y1, y2, … , yn)), (73)

namely,

G(y) = (G1(y),G2(y), … ,Gn(y)), (74)

our nonlinear system of equations becomes

G(y) = 0, (75)

where 0 = (0, 0, … , 0).
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Again, we can solve the above nonlinear system of equations by using Newton’s method. For this purpose, we use the
Jacobian matrix J(y) = (𝜕Gi(y)∕𝜕yj)n×n, where 𝜕Gi(y)∕𝜕yj = 𝜕Gi(y)∕𝜕sj, 1 ≤ i, j ≤ n, is calculated in Equations (76)–(82).
(These detailed derivations can be skipped without loss of continuity.)

For the idle-speed model, we have

𝜕Gi(y)
𝜕si

= 𝜆ir𝜉i(𝛼i − 1)(𝛼i − 2)s𝛼i−3
i T + 2𝜆i

𝜆

𝜆ir𝜉i(𝛼i − 1)s𝛼i−2
i

𝜕Ti

𝜕si
+ 𝜆i

𝜆

P𝜕

2Ti

𝜕s2
i

, (76)

for all 1 ≤ i ≤ n, and

𝜕Gi(y)
𝜕sj

= 𝜆jr𝜉j(𝛼j − 1)s𝛼j−2
j ⋅

𝜆i

𝜆

⋅
𝜕Ti

𝜕si
+ 𝜆ir𝜉i(𝛼i − 1)s𝛼i−2

i ⋅
𝜆j

𝜆

⋅
𝜕Tj

𝜕sj
, (77)

for all 1 ≤ i ≠ j ≤ n.
For the constant-speed model, we have

𝜕Gi(y)
𝜕si

= mi𝜉i𝛼i(𝛼i − 1)s𝛼i−2
i T + 2𝜆i

𝜆

mi𝜉i𝛼is
𝛼i−1
i

𝜕Ti

𝜕si
+ 𝜆i

𝜆

P𝜕

2Ti

𝜕s2
i

, (78)

for all 1 ≤ i ≤ n, and

𝜕Gi(y)
𝜕sj

= mj𝜉j𝛼js
𝛼j−1
j ⋅

𝜆i

𝜆

⋅
𝜕Ti

𝜕si
+mi𝜉i𝛼is

𝛼i−1
i ⋅

𝜆j

𝜆

⋅
𝜕Tj

𝜕sj
, (79)

for all 1 ≤ i ≠ j ≤ n.
Furthermore, we have

𝜕

2Ti

𝜕s2
i

= Ti

s2
i

− 1
si
⋅
𝜕Ti

𝜕si
+ r

mis2
i

( 2pi,mi

(1 − 𝜌i)3
⋅
𝜌i

si
− 1
(1 − 𝜌i)2

⋅
𝜕pi,mi

𝜕si

)

− r
misi

(
−

2pi,mi

(1 − 𝜌i)3
⋅
𝜌i

s2
i

−
2pi,mi

(1 − 𝜌i)3
⋅
𝜌i

s2
i

−
6pi,mi

(1 − 𝜌i)4
⋅
𝜌

2
i

s2
i

+ 2
(1 − 𝜌i)3

⋅
𝜌i

si
⋅
𝜕pi,mi

𝜕si

+ 2
(1 − 𝜌i)3

⋅
𝜌i

si
⋅
𝜕pi,mi

𝜕si
− 1
(1 − 𝜌i)2

⋅
𝜕

2pi,mi

𝜕s2
i

)

= Ti

s2
i

− 1
si
⋅
𝜕Ti

𝜕si
+ r

misi

(
2𝜌i

(1 − 𝜌i)3s2
i

pi,mi −
1

(1 − 𝜌i)2si
⋅
𝜕pi,mi

𝜕si

)

+ r
misi

(
2𝜌i(𝜌i + 2)
(1 − 𝜌i)4s2

i

pi,mi −
4𝜌i

(1 − 𝜌i)3si
⋅
𝜕pi,mi

𝜕si
+ 1
(1 − 𝜌i)2

⋅
𝜕

2pi,mi

𝜕s2
i

)

= Ti

s2
i

− 1
si
⋅
𝜕Ti

𝜕si
+ r

misi

(
6𝜌i

(1 − 𝜌i)4s2
i

pi,mi −
3𝜌i + 1
(1 − 𝜌i)3si

⋅
𝜕pi,mi

𝜕si
+ 1
(1 − 𝜌i)2

⋅
𝜕

2pi,mi

𝜕s2
i

)
, (80)

and

𝜕

2pi,mi

𝜕s2
i

= −
mmi

i

(mi − 1)!
⋅
𝜌

mi
i

si

(
−mi

si
pi,0 +

𝜕pi,0

𝜕si

)
+

mmi
i

mi!
𝜌

mi
i

(
mi

s2
i

pi,0 −
mi

si
⋅
𝜕pi,0

𝜕si
+

𝜕

2pi,0

𝜕s2
i

)

=
mmi

i

mi!
𝜌

mi
i

(
m2

i

s2
i

pi,0 −
mi

si
⋅
𝜕pi,0

𝜕si

)
+

mmi
i

mi!
𝜌

mi
i

(
mi

s2
i

pi,0 −
mi

si
⋅
𝜕pi,0

𝜕si
+

𝜕

2pi,0

𝜕s2
i

)

=
mmi

i

mi!
𝜌

mi
i

(
mi(mi + 1)

s2
i

pi,0 − 2 mi

si
⋅
𝜕pi,0

𝜕si
+

𝜕

2pi,0

𝜕s2
i

)
, (81)
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and

𝜕

2pi,0

𝜕s2
i

= 2pi,0
𝜕pi,0

𝜕si
⋅
𝜌i

si

(mi−1∑
k=1

mk
i

(k − 1)!
𝜌

k−1
i +

mmi
i

mi!
⋅

mi𝜌
mi−1
i − (mi − 1)𝜌mi

i

(1 − 𝜌i)2

)

− 2p2
i,0
𝜌i

s2
i

(mi−1∑
k=1

mk
i

(k − 1)!
𝜌

k−1
i +

mmi
i

mi!
⋅

mi𝜌
mi−1
i − (mi − 1)𝜌mi

i

(1 − 𝜌i)2

)

− p2
i,0

𝜌

2
i

s2
i

(mi−1∑
k=2

mk
i

(k − 2)!
𝜌

k−2
i +

mmi
i

mi!
⋅

mi(mi − 1)𝜌mi−2
i − 2mi(mi − 2)𝜌mi−1

i + (mi − 2)(mi − 1)𝜌mi
i

(1 − 𝜌i)3

)

= 2pi,0
𝜕pi,0

𝜕si
⋅
𝜌i

si

(mi−1∑
k=1

mk
i

(k − 1)!
𝜌

k−1
i +

mmi
i

mi!
⋅

mi𝜌
mi−1
i − (mi − 1)𝜌mi

i

(1 − 𝜌i)2

)

− p2
i,0
𝜌i

s2
i

(mi−1∑
k=1

2mk
i

(k − 1)!
𝜌

k−1
i +

mi−1∑
k=2

mk
i

(k − 2)!
𝜌

k−1
i +

mmi
i

mi!
⋅

mi(mi + 1)𝜌mi−1
i − 2(m2

i − 1)𝜌mi
i +mi(mi − 1)𝜌mi+1

i

(1 − 𝜌i)3

)
,

(82)

for all 1 ≤ i ≤ n.
Algorithm 2 gives our numerical algorithm for finding an optimal server speed setting (s1, s2, … , sn), that is, the

vector y = (y1, y2, … , yn) which satisfies the nonlinear system of equations G(y) = 0. Our initial approximation of y is
yi = si = 𝜆ir∕mi𝜌 for all 1 ≤ i ≤ n (line (1)), where 𝜌 is a reasonably chosen utilization, for example, 0.7. The time and
space complexities of Algorithm 2 are the same as those of Algorithm 1.

5.3 Performance data

Let us consider the same heterogeneous multiserver systems S1, S2, S3 in Section 4.3.
We assume that 𝜆 = 18, and the workload distribution has 𝜆1 = 4.5, 𝜆2 = 6.0, 𝜆3 = 7.5. The server speed setting has

si = 𝜆ir∕mi𝜌 for all 1 ≤ i ≤ n. In Figure 2, we display the cost-performance ratio R for 𝜌 in the range (0,1). It is clear that
there is an optimal value of 𝜌which minimizes R. For 𝜌 = 0.10, 0.15, 0.20, ..., 0.95, R is minimized as 212.087 when 𝜌 = 0.65
for the idle-speed model, and 280.646 when 𝜌 = 0.75 for the constant-speed model respectively. However, this is certainly
not the optimal choice of 𝜌, and not the real minimum R.

To find the optimal 𝜌, we rewrite Ti as

Ti =
mi

𝜆i
𝜌

(
1 +

pi,mi

mi(1 − 𝜌)2

)
, (83)

where

pi,mi = pi,0
(mi𝜌)mi

mi!
, (84)

Algorithm 2. Optimal server speed setting

Input:Parameters 𝜆, r̄,𝜆i, mi, 𝜉i, 𝛼i, P∗i ,for all 1 ≤ i ≤ n.
Output:An optimal server speed setting, that is,y = (s1, s2,… , sn),which satisfies G(y) = 0.

y ← (𝜆1r̄∕m1𝜌, 𝜆2r̄∕m2𝜌,… , 𝜆nr̄∕mn𝜌); (1)
repeat (2)

Calculate J(y),where J(y)i,j = 𝜕Gi(y)∕𝜕yjfor 1 ≤ i, j ≤ n; (3)
Calculate G(y) = (G1(y),G2(y),… ,Gn(y)); (4)
Solve the linear system of equations J(y)z = −G(y); (5)
y ← y + z; (6)

until ‖z‖ ≤ 𝜀. (7)
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F I G U R E 2 Cost-performance ratio R versus 𝜌.

and

pi,0 =

(mi−1∑
k=0

(mi𝜌)k

k!
+ (mi𝜌)mi

mi!
⋅

1
1 − 𝜌

)−1

, (85)

for all 1 ≤ i ≤ n. We can also rewrite Pi as

Pi =
(𝜆ir)𝛼i

𝜉i

m𝛼i−1
i

⋅
1

𝜌
𝛼i−1 +miP∗i , (86)

for the idle-speed model, and

Pi =
(𝜆ir)𝛼i

𝜉i

m𝛼i−1
i

⋅
1
𝜌
𝛼i
+miP∗i , (87)

for the constant-speed model, for all 1 ≤ i ≤ n. The cost-performance ratio R is viewed as a function of 𝜌:

R = PT =

( n∑
i=1

Pi

)( n∑
i=1

𝜆i

𝜆

Ti

)
. (88)

Hence, we need to find 𝜌 such that 𝜕R∕𝜕𝜌 = 0 (which is an increasing function of 𝜌), where

𝜕R
𝜕𝜌

=

( n∑
i=1

𝜕Pi

𝜕𝜌

)
T + P

( n∑
i=1

𝜆i

𝜆

⋅
𝜕Ti

𝜕𝜌

)
. (89)

We have

𝜕Pi

𝜕𝜌

= −(𝛼i − 1)(𝜆ir)𝛼i
𝜉i

m𝛼i−1
i

⋅
1
𝜌
𝛼i
, (90)
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for the idle-speed model, and

𝜕Pi

𝜕𝜌

= −𝛼i(𝜆ir)𝛼i
𝜉i

m𝛼i−1
i

⋅
1

𝜌
𝛼i+1 , (91)

for the constant-speed model, for all 1 ≤ i ≤ n. Furthermore, we have

𝜕Ti

𝜕𝜌

= mi

𝜆i

(
1 +

pi,mi

mi(1 − 𝜌)2
+ 𝜌

mi

( 2pi,mi

(1 − 𝜌)3
+ 1
(1 − 𝜌)2

⋅
𝜕pi,mi

𝜕𝜌

))

= 1
𝜆i

(
mi +

1 + 𝜌

(1 − 𝜌)3
pi,mi +

𝜌

(1 − 𝜌)2
⋅
𝜕pi,mi

𝜕𝜌

)
, (92)

where

𝜕pi,mi

𝜕𝜌

=
mmi

i

mi!

(
mi𝜌

mi−1pi,0 + 𝜌

mi
𝜕pi,0

𝜕𝜌

)
, (93)

and

𝜕pi,0

𝜕𝜌

= −p2
i,0

(mi−1∑
k=1

mk
i

(k − 1)!
𝜌

k−1 +
mmi

i

mi!
⋅

mi𝜌
mi−1 − (mi − 1)𝜌mi

(1 − 𝜌)2

)
, (94)

for all 1 ≤ i ≤ n. It is clear that 𝜌 can be found by using the classic bisection method39(p. 21).
Let 𝜆i = q + 1.5i, for all 1 ≤ i ≤ n. In Tables 5 and 6, we show the optimal server speed setting (s1, s2, s3), the

corresponding server utilization (𝜌1, 𝜌2, 𝜌3), and the minimized cost-performance ratio R, for q = 1, 2, 3, 4, 5 and 𝜆 =
12, 15, 18, 21, 24. For instance, when q = 3 and 𝜆 = 18, R is minimized as 210.640 and 277.722 for the idle-speed
model and the constant-speed model respectively. As we know from Example 2 in Section 3.2, the 𝜌i’s cannot be
too high.

As an approximate solution, we set si = 𝜆ir∕mi𝜌, for all 1 ≤ i ≤ n, such that all servers have the same utiliza-
tion 𝜌. The value of 𝜌 is determined in such a way that R is minimized. In Tables 5 and 6, we also show such
server speed setting (s1, s2, s3), the corresponding server utilization (𝜌1, 𝜌2, 𝜌3), the obtained cost-performance ratio R′
and its relative error defined as Δ = (R′ − R)∕R, for 𝜆 = 12, 15, 18, 21, 24. It is observed that the approximate solu-
tion is very close to the optimal solution. By the way, when q = 3 and 𝜆 = 18, the optimal choice of 𝜌 is 0.63634
and 0.73533, which result in R to be 211.886 and 280.067 for the idle-speed model and the constant-speed model
respectively.

T A B L E 5 Numerical data for optimal server speed setting (idle-speed model)

𝝀

Optimal Approximate

𝚫s1, 𝝆1 s2, 𝝆2 s3, 𝝆3 R s1, 𝝆1 s2, 𝝆2 s3, 𝝆3 R′

12 1.49392 1.54997 1.59551 134.874 1.19836 1.53390 1.75759 139.904 3.72993%

0.41836 0.51614 0.57453 0.52155 0.52155 0.52155

15 1.64006 1.68548 1.71913 167.118 1.47654 1.68747 1.82809 169.728 1.56161%

0.53352 0.59330 0.63017 0.59260 0.59260 0.59260

18 1.86142 1.87957 1.89354 210.640 1.76791 1.88578 1.96435 211.886 0.59189%

0.60438 0.63844 0.66014 0.63634 0.63634 0.63634

21 2.12173 2.10520 2.09631 266.823 2.07328 2.11098 2.13611 267.259 0.16311%

0.64805 0.66502 0.67579 0.66320 0.66320 0.66320

24 2.40403 2.34961 2.31673 336.395 2.38964 2.35288 2.32837 336.439 0.01310%

0.67595 0.68096 0.68343 0.68002 0.68002 0.68002
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T A B L E 6 Numerical data for optimal server speed setting (constant-speed model)

𝝀

Optimal Approximate

𝚫s1, 𝝆1 s2, 𝝆2 s3, 𝝆3 R s1, 𝝆1 s2, 𝝆2 s3, 𝝆3 R′

12 1.10853 1.22475 1.30153 180.102 0.94749 1.21278 1.38965 187.553 4.13713%

0.56381 0.65320 0.70430 0.65964 0.65964 0.65964

15 1.34071 1.41787 1.46826 220.825 1.23888 1.41586 1.53385 225.101 1.93624%

0.65264 0.70528 0.73784 0.70628 0.70628 0.70628

18 1.59547 1.63054 1.65259 277.722 1.52993 1.63193 1.69993 280.067 0.84421%

0.70512 0.73595 0.75639 0.73533 0.73533 0.73533

21 1.86499 1.85622 1.84897 351.837 1.82511 1.85829 1.88041 352.913 0.30573%

0.73727 0.75422 0.76619 0.75338 0.75338 0.75338

24 2.14427 2.09072 2.05377 443.848 2.12480 2.09211 2.07032 444.151 0.06836%

0.75784 0.76529 0.77094 0.76478 0.76478 0.76478

6 WORKLOAD MANAGEMENT AND SERVER SPEED SETTING

In this section, we address the problem of workload management and server speed setting.

6.1 Problem formulation

Our optimization problem can be analytically defined as follows. Given certain workload specified by 𝜆 and r, and n
heterogeneous multiserver systems S1, S2, … , Sn, where Si is specified by mi, 𝜉i, 𝛼i, P∗i , for all 1 ≤ i ≤ n, find a workload
distribution (𝜆1, 𝜆2, … , 𝜆n) and a server speed setting (s1, s2, … , sn), such that the cost-performance ratio R is minimized,
subject to the constraint that 𝜆1 + 𝜆2 + · · · + 𝜆n = 𝜆.

In the following (i.e., Equations (95)–(98)), we transform the above multivariable optimization problem to a nonlinear
system of equations. We view R(𝜆1, 𝜆2, … , 𝜆n, s1, s2, … , sn) as a function of 𝜆1, 𝜆2, … , 𝜆n, s1, s2, … , sn. We can minimize
R(𝜆1, 𝜆2, … , 𝜆n, s1, s2, … , sn) subject to the constraint C(𝜆1, 𝜆2, … , 𝜆n) = 𝜆1 + 𝜆2 + · · · + 𝜆n = 𝜆 by using the following
Lagrange multiplier system,

∇R(𝜆1, 𝜆2, … , 𝜆n, s1, s2, … , sn) = 𝜙C(𝜆1, 𝜆2, … , 𝜆n), (95)

that is,

𝜕R(𝜆1, 𝜆2, … , 𝜆n, s1, s2, … , sn)
𝜕𝜆i

= 𝜙

𝜕C(𝜆1, 𝜆2, … , 𝜆n)
𝜕𝜆i

= 𝜙, (96)

where 𝜙 is a Lagrange multiplier, and

𝜕R(𝜆1, 𝜆2, … , 𝜆n, s1, s2, … , sn)
𝜕si

= 0, (97)

for all 1 ≤ i ≤ n.
Therefore, we need to solve a nonlinear system of 2n + 1 equations,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H0(𝜙, 𝜆1, … , 𝜆n, s1, … , sn) = F0(𝜙, 𝜆1, … , 𝜆n) = 0,
H1(𝜙, 𝜆1, … , 𝜆n, s1, … , sn) = F1(𝜙, 𝜆1, … , 𝜆n) = 0,

⋮

Hn(𝜙, 𝜆1, … , 𝜆n, s1, … , sn) = Fn(𝜙, 𝜆1, … , 𝜆n) = 0,
Hn+1(𝜙, 𝜆1, … , 𝜆n, s1, … , sn) = G1(s1, … , sn) = 0,

⋮

H2n(𝜙, 𝜆1, … , 𝜆n, s1, … , sn) = Gn(s1, … , sn) = 0,

(98)
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with 2n + 1 unknowns, that is, 𝜆1, 𝜆2, … , 𝜆n, s1, … , sn, and 𝜙. It is noticed that Hi = Fi in Section 4.1 for all 0 ≤ i ≤ n,
and Hn+i = Gi in Section 5.1 for all 1 ≤ i ≤ n.

An analytical solution to the above equations is infeasible. We take an algorithmic and numerical approach.

6.2 A numerical algorithm

We represent the variables 𝜙, 𝜆1, … , 𝜆n, s1, … , sn using vector notation:

y = (y0, y1, … , yn, yn+1, … , y2n) = (𝜙, 𝜆1, … , 𝜆n, s1, … , sn), (99)

and Hi(𝜙, 𝜆1, … , 𝜆n, s1, … , sn) = Hi(y0, y1, … , yn, yn+1, … , y2n) = Hi(y), where Hi ∶ R2n+1 → R maps (2n + 1)-
dimensional space R2n+1 into the real line R. By defining a function H ∶ R2n+1 → R2n+1 which maps R2n+1 into R2n+1,

H(y) = (H0(y0, y1, … , y2n),H1(y0, y1, … , y2n), … ,H2n(y0, y1, … , y2n)), (100)

namely,

H(y) = (H0(y),H1(y), … ,H2n(y)), (101)

our nonlinear system of equations becomes

H(y) = 0, (102)

where 0 = (0, 0, … , 0).
Once more, we can solve the above nonlinear system of equations by using Newton’s method. For this purpose, we

use the Jacobian matrix J(y) defined as

J(y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕H0(y)
𝜕y0

𝜕H0(y)
𝜕y1

· · ·
𝜕H0(y)
𝜕yn

𝜕H0(y)
𝜕yn+1

· · ·
𝜕H0(y)
𝜕y2n

𝜕H1(y)
𝜕y0

𝜕H1(y)
𝜕y1

· · ·
𝜕H1(y)
𝜕yn

𝜕H1(y)
𝜕yn+1

· · ·
𝜕H1(y)
𝜕y2n

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝜕Hn(y)
𝜕y0

𝜕Hn(y)
𝜕y1

· · ·
𝜕Hn(y)
𝜕yn

𝜕Hn(y)
𝜕yn+1

· · ·
𝜕Hn(y)
𝜕y2n

𝜕Hn+1(y)
𝜕y0

𝜕Hn+1(y)
𝜕y1

· · ·
𝜕Hn+1(y)

𝜕yn

𝜕Hn+1(y)
𝜕yn+1

· · ·
𝜕Hn+1(y)
𝜕y2n

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝜕H2n(y)
𝜕y0

𝜕H2n(y)
𝜕y1

· · ·
𝜕H2n(y)
𝜕yn

𝜕H2n(y)
𝜕yn+1

· · ·
𝜕H2n(y)
𝜕y2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (103)

which is actually

J(y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 · · · 1 0 · · · 0

− 1
𝜕F1(y)
𝜕𝜆1

· · ·
𝜕F1(y)
𝜕𝜆n

𝜕F1(y)
𝜕s1

· · ·
𝜕F1(y)
𝜕sn

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

− 1
𝜕Fn(y)
𝜕𝜆1

· · ·
𝜕Fn(y)
𝜕𝜆n

𝜕Fn(y)
𝜕s1

· · ·
𝜕Fn(y)
𝜕sn

0
𝜕G1(y)
𝜕𝜆1

· · ·
𝜕G1(y)
𝜕𝜆n

𝜕G1(y)
𝜕s1

· · ·
𝜕G1(y)
𝜕sn

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0
𝜕Gn(y)
𝜕𝜆1

· · ·
𝜕Gn(y)
𝜕𝜆n

𝜕Gn(y)
𝜕s1

· · ·
𝜕Gn(y)
𝜕sn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (104)
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and equivalently,

J(y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 · · · 1 0 · · · 0

− 1 𝜕

2R
𝜕𝜆

2
1

· · · 𝜕R
𝜕𝜆1𝜆n

𝜕R
𝜆1𝜕s1

· · · 𝜕R
𝜆1𝜕sn

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

− 1 𝜕R
𝜕𝜆n𝜕𝜆1

· · · 𝜕

2R
𝜕𝜆

2
n

𝜕R
𝜕𝜆n𝜕s1

· · · 𝜕R
𝜕𝜆n𝜕sn

0 𝜕R
𝜕s1𝜕𝜆1

· · · 𝜕R
𝜕s1𝜕𝜆n

𝜕

2R
𝜕s2

1
· · · 𝜕R

𝜕s1𝜕sn

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 𝜕R
𝜕sn𝜕𝜆1

· · · 𝜕R
𝜕sn𝜕𝜆n

𝜕R
𝜕sn𝜕s1

· · · 𝜕

2R
𝜕s2

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (105)

Notice that 𝜕Hi(y)∕𝜕yj = 𝜕Fi(y)∕𝜕𝜆j, 1 ≤ i, j ≤ n, has been calculated in Section 4.2, and 𝜕Hn+i(y)∕𝜕yn+j = 𝜕Gi(y)∕𝜕sj,
1 ≤ i, j ≤ n, has been calculated in Section 5.2.

In Equations (106)–(119), we derive other components of J(y). (These detailed derivations can be skipped without loss
of continuity.)

Now, we consider 𝜕Hi(y)∕𝜕yn+j = 𝜕Fi(y)∕𝜕sj. For all 1 ≤ i ≤ n, we have

𝜕Fi(y)
𝜕si

= 1
𝜆

(
𝜆ir𝜉i(𝛼i − 1)s𝛼i−2

i

(
Ti + 𝜆i

𝜕Ti

𝜕𝜆i

)
+ P

(
𝜕Ti

𝜕si
+ 𝜆i

𝜕

2Ti

𝜕𝜆i𝜕si

))

+ r𝜉i(𝛼i − 1)s𝛼i−2
i T + r𝜉is

𝛼i−1
i

𝜆i

𝜆

⋅
𝜕Ti

𝜕si
, (106)

for the idle-speed model, and

𝜕Fi(y)
𝜕si

= 1
𝜆

(
mi𝜉i𝛼is

𝛼i−1
i

(
Ti + 𝜆i

𝜕Ti

𝜕𝜆i

)
+ P

(
𝜕Ti

𝜕si
+ 𝜆i

𝜕

2Ti

𝜕𝜆i𝜕si

))
, (107)

for the constant-speed model. For all 1 ≤ i ≠ j ≤ n, we have

𝜕Fi(y)
𝜕sj

= 1
𝜆

𝜆jr𝜉j(𝛼j − 1)s𝛼j−2
j

(
Ti + 𝜆i

𝜕Ti

𝜕𝜆i

)
+ r𝜉is

𝛼i−1
i

𝜆j

𝜆

⋅
𝜕Tj

𝜕sj
, (108)

for the idle-speed model, and

𝜕Fi(y)
𝜕sj

= 1
𝜆

mj𝜉j𝛼js
𝛼j−1
j

(
Ti + 𝜆i

𝜕Ti

𝜕𝜆i

)
, (109)

for the constant-speed model.
Now, we consider 𝜕Hn+i(y)∕𝜕yj = 𝜕Gi(y)∕𝜕𝜆j. For all 1 ≤ i ≤ n, we have

𝜕Gi(y)
𝜕𝜆i

= 1
𝜆

(
P𝜕Ti

𝜕si
+ 𝜆ir𝜉is

𝛼i−1
i

𝜕Ti

𝜕si
+ 𝜆iP

𝜕

2Ti

𝜕si𝜕𝜆i

)
+ r𝜉i(𝛼i − 1)s𝛼i−2

i

(
T + 𝜆i

𝜆i

𝜆

⋅
𝜕Ti

𝜕𝜆i

)
, (110)

for the idle-speed model, and

𝜕Gi(y)
𝜕𝜆i

= P
𝜆

(
𝜕Ti

𝜕si
+ 𝜆i

𝜕

2Ti

𝜕si𝜕𝜆i

)
+mi𝜉i𝛼is

𝛼i−1
i

𝜆i

𝜆

⋅
𝜕Ti

𝜕𝜆i
, (111)

for the constant-speed model. For all 1 ≤ i ≠ j ≤ n, we have

𝜕Gi(y)
𝜕𝜆j

= 𝜆i

𝜆

r𝜉js
𝛼j−1
j

𝜕Ti

𝜕si
+ 𝜆ir𝜉i(𝛼i − 1)s𝛼i−2

i
𝜆j

𝜆

⋅
𝜕Tj

𝜕𝜆j
, (112)
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for the idle-speed model, and

𝜕Gi(y)
𝜕𝜆j

= mi𝜉i𝛼is
𝛼i−1
i

𝜆j

𝜆

⋅
𝜕Tj

𝜕𝜆j
, (113)

for the constant-speed model.
Furthermore, we have

𝜕

2Ti

𝜕𝜆i𝜕si
= − 1

si
⋅
𝜕Ti

𝜕𝜆i
+ r

misi

(
−

6𝜌ipi,mi

(1 − 𝜌i)4
⋅

r
mis2

i

−
2pi,mi

(1 − 𝜌i)3
⋅

r
mis2

i

+ 2
(1 − 𝜌i)3

⋅
r

misi
⋅
𝜕pi,mi

𝜕si

− 2𝜌i

(1 − 𝜌i)3si
⋅
𝜕pi,mi

𝜕𝜆i
+ 1
(1 − 𝜌i)2

⋅
𝜕

2pi,mi

𝜕𝜆i𝜕si

)
, (114)

and

𝜕

2pi,mi

𝜕𝜆i𝜕si
=

mmi
i

mi!

(
−(mi − 1)

𝜌

mi−1
i

si

(
r
si

pi,0 + 𝜌i
𝜕pi,0

𝜕𝜆i

)
+ 𝜌

mi−1
i

(
− r

s2
i

pi,0 +
r
si
⋅
𝜕pi,0

𝜕si
− 𝜌i

si
⋅
𝜕pi,0

𝜕𝜆i
+ 𝜌i

𝜕

2pi,0

𝜕𝜆i𝜕si

))
, (115)

and

𝜕

2pi,0

𝜕𝜆i𝜕si
= − 1

si
⋅
𝜕pi,0

𝜕𝜆i
− 2pi,0

𝜕pi,0

𝜕si

(mi−1∑
k=1

mk−1
i

(k − 1)!
𝜌

k−1
i +

mmi−1
i

mi!
⋅

mi𝜌
mi−1
i − (mi − 1)𝜌mi

i

(1 − 𝜌i)2

)
r
si

+ p2
i,0

(mi−1∑
k=2

mk−1
i

(k − 2)!
𝜌

k−2
i +

mmi−1
i

mi!
⋅

mi(mi − 1)𝜌mi−2
i − 2mi(mi − 2)𝜌mi−1

i + (mi − 2)(mi − 1)𝜌mi
i

(1 − 𝜌i)3

)
r𝜌i

s2
i

, (116)

for all 1 ≤ i ≤ n.
Furthermore, we have

𝜕

2Ti

𝜕si𝜕𝜆i
= − 1

si
⋅
𝜕Ti

𝜕𝜆i
− r

misi

(
2(1 + 2𝜌i)r
(1 − 𝜌i)4mis2

i

pi,mi +
2𝜌i

(1 − 𝜌i)3si
⋅
𝜕pi,mi

𝜕𝜆i
− 2r
(1 − 𝜌i)3misi

⋅
𝜕pi,mi

𝜕si
− 1
(1 − 𝜌i)2

⋅
𝜕

2pi,mi

𝜕si𝜕𝜆i

)
, (117)

and

𝜕

2pi,mi

𝜕si𝜕𝜆i
=

mmi
i

mi!

(
mi𝜌

mi−1
i

r
misi

(
−mi

si
pi,0 +

𝜕pi,0

𝜕si

)
+ 𝜌

mi
i

(
−mi

si
⋅
𝜕pi,0

𝜕𝜆i
+

𝜕

2pi,0

𝜕si𝜕𝜆i

))
, (118)

and

𝜕

2pi,0

𝜕si𝜕𝜆i
= 2pi,0

r
misi

(mi−1∑
k=1

mk
i

(k − 1)!
𝜌

k−1
i +

mmi
i

mi!
⋅

mi𝜌
mi−1
i − (mi − 1)𝜌mi

i

(1 − 𝜌i)2

)
𝜌i

si

+ p2
i,0

(mi−1∑
k=1

mk
i

(k − 1)!
𝜌

k−1
i +

mmi
i

mi!
⋅

mi𝜌
mi−1
i − (mi − 1)𝜌mi

i

(1 − 𝜌i)2

)
r

mis2
i

+ p2
i,0

(mi−1∑
k=2

mk
i

(k − 2)!
𝜌

k−2
i +

mmi
i

mi!
⋅

mi(mi − 1)𝜌mi−2
i − 2mi(mi − 2)𝜌mi−1

i + (mi − 2)(mi − 1)𝜌mi
i

(1 − 𝜌i)3

)
𝜌ir

mis2
i

, (119)

for all 1 ≤ i ≤ n.
Algorithm 3 gives our numerical algorithm for finding an optimal workload distribution (𝜆1, 𝜆2, … , 𝜆n), an optimal

server speed setting (s1, s2, … , sn), and the Lagrange multiplier 𝜙, that is, the vector

y = (𝜙, 𝜆1, … , 𝜆n, s1, … , sn), (120)
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Algorithm 3. Optimal workload management and server speed setting

Input:Parameters 𝜆, r̄,mi, 𝜉i, 𝛼i, P∗i ,for all 1 ≤ i ≤ n.
Output:An optimal workload distribution (𝜆1, 𝜆2,… , 𝜆n),an optimal server speed setting (s1, s2,… , sn),and 𝜙, that is,y =
(𝜙, 𝜆1,… , 𝜆n, s1,… , sn),which satisfies H(y) = 0.

y ← (1, (𝜆∕𝜆∗)(m1s1∕r̄),… , (𝜆∕𝜆∗)(mnsn∕r̄), s1,… , sn); (1)
repeat (2)

Calculate J(y),where J(y)i,j = 𝜕Hi(y)∕𝜕yjfor 0 ≤ i, j ≤ 2n; (3)
Calculate H(y) = (H0(y),H1(y),… ,H2n(y)); (4)
Solve the linear system of equations J(y)z = −H(y); (5)
y ← y + z; (6)

until ‖z‖ ≤ 𝜀. (7)

which satisfies the nonlinear system of equations H(y) = 0. The time and space complexities of Algorithm 3 are the same
as those of Algorithms 1 and 2.

6.3 Performance data

Let us consider the same heterogeneous multiserver systems S1, S2, S3 in Sections 4.3 and 5.3.
In Tables 7 and 8, we show the optimal workload distribution (𝜆1, 𝜆2, 𝜆3), the optimal server speed setting

(s1, s2, s3), the corresponding server utilization (𝜌1, 𝜌2, 𝜌3), and the minimized cost-performance ratio R, for 𝜆 =
13, 14, … , 22. We notice that compared with Tables 5 and 6, the reduction of R is not significant. This means that
optimal server speed setting has more impact than optimal workload distribution. Although the workload distribu-
tion in Tables 5 and 6 is not optimal, the resulted R by optimal server speed setting alone can already generate
close-to-optimal R.

We would like to mention that as an approximate solution, we can set 𝜆i = (misi∕r)𝜌, for all 1 ≤ i ≤ n,
such that all servers have the same utilization 𝜌 = 𝜆∕𝜆∗, where 𝜆

∗ is defined in Section 4.2. This implies
that each 𝜆i is a function of s1, s2, … , sn. Hence, our problem of workload management and server speed set-
ting only has n unknowns, that is, s1, s2, … , sn. However, obtaining such an approximate solution is by no
means straightforward, and is probably not worth of investigation, since there is no accurate and analytical
solution.

T A B L E 7 Numerical data for optimal workload management and server speed setting (idle-speed model)

𝝀

S1 S2 S3

R𝝀1 s1 𝝆1 𝝀2 s2 𝝆2 𝝀3 s3 𝝆3

13 3.10938 1.55960 0.49843 4.30110 1.57669 0.54559 5.58952 1.59901 0.58260 144.202

14 3.36255 1.60383 0.52414 4.63202 1.62410 0.57041 6.00543 1.65005 0.60659 155.036

15 3.61221 1.65505 0.54563 4.96227 1.67902 0.59109 6.42552 1.70922 0.62655 167.042

16 3.85874 1.71175 0.56357 5.29195 1.73986 0.60832 6.84931 1.77484 0.64319 180.276

17 4.10246 1.77277 0.57854 5.62113 1.80540 0.62270 7.27641 1.84563 0.65708 194.781

18 4.34364 1.83726 0.59105 5.94987 1.87476 0.63473 7.70649 1.92066 0.66874 210.587

19 4.58255 1.90456 0.60152 6.27821 1.94724 0.64483 8.13925 1.99920 0.67854 227.716

20 4.81938 1.97416 0.61031 6.60618 2.02230 0.65333 8.57443 2.08067 0.68683 246.185

21 5.05434 2.04565 0.61769 6.93382 2.09952 0.66052 9.01183 2.16463 0.69387 266.007

22 5.28760 2.11871 0.62392 7.26115 2.17854 0.66661 9.45126 2.25070 0.69987 287.192
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T A B L E 8 Numerical data for optimal workload management and server speed setting (constant-speed model)

𝝀

S1 S2 S3

R𝝀1 s1 𝝆1 𝝀2 s2 𝝆2 𝝀3 s3 𝝆3

13 3.14940 1.24554 0.63213 4.31316 1.27982 0.67402 5.53744 1.30901 0.70504 191.458

14 3.40617 1.30862 0.65072 4.64382 1.34482 0.69063 5.95001 1.37679 0.72028 205.215

15 3.65947 1.37333 0.66617 4.97415 1.41212 0.70450 6.36638 1.44747 0.73305 220.688

16 3.90981 1.43945 0.67904 5.30415 1.48139 0.71610 6.78604 1.52063 0.74378 237.902

17 4.15755 1.50680 0.68980 5.63384 1.55237 0.72584 7.20861 1.59595 0.75280 256.877

18 4.40300 1.57520 0.69880 5.96324 1.62481 0.73402 7.63376 1.67314 0.76042 277.631

19 4.64638 1.64449 0.70636 6.29235 1.69853 0.74092 8.06126 1.75199 0.76687 300.176

20 4.88791 1.71454 0.71271 6.62121 1.77334 0.74675 8.49088 1.83228 0.77234 324.523

21 5.12775 1.78524 0.71808 6.94981 1.84910 0.75170 8.92244 1.91384 0.77701 350.680

22 5.36606 1.85648 0.72261 7.27818 1.92569 0.75590 9.35577 1.99653 0.78100 378.654

7 CONCLUDING REMARKS

We have established a framework to study the power-performance tradeoff in a data center for cloud computing, which
consists of three different levels, three different perspectives, and two effective techniques. We have dealt with the
power-performance tradeoff at the data center level by considering multiple heterogeneous multiserver systems, which
are treated as M/M/m queueing systems with two power consumption models. We have studied the important and fun-
damental issue of cost-performance ratio optimization by using the techniques of workload management and server
speed setting. In particular, we have formulated and solved three multivariable optimization problems, that is, the work-
load management problem, the server speed setting problem, and the workload management and server speed setting
problem. Our method to solve these problems is to solve the equivalent nonlinear systems of equations using numerical
algorithms.

We would like to make the following comments regarding the practicability and applicability of our approach. All our
optimization problems are defined with just a few parameters which are easily available in any data center. The kernel
of all our algorithms is to solve linear systems of equations, which can be implemented in O(n2) time and space. Our
experiments reveal that all our algorithms can be implemented very efficiently. For instance, all the date in Tables 3–8 can
be obtained in just seconds. Therefore, we would like to emphasize that the low computational costs of our algorithms
make it easy to integrate and incorporate them into a real-world system. Furthermore, the low time and space complexities
of our numerical procedures make our algorithms scalable to large data centers with many heterogeneous multiserver
systems.

We point out two possible directions for further research. First, it will be interesting and important to con-
sider more general queueing models, for example, M/G/m and G/G/m, for multiserver systems. However, for
these models, there might be only approximate expressions of the average task response time. Therefore, analyti-
cal results of cost-performance ratio optimization should be verified by simulations and experiments. Such inves-
tigation is certainly challenging, but very useful in real applications. Second, since applications can be classified
and categorized into various types, cost-performance ratio optimization can be conducted for each type of appli-
cations. Such optimization requires more sophisticated queueing models and more involved power and perfor-
mance analysis. Fortunately, the framework and methodology developed in this article should still be effective and
applicable.
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