
Engineering Applications of Artiϧcial Intelligence 139 (2025) 109557 

0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Research paper

An effective multi-agent-based graph reinforcement learning method for
solving flexible job shop scheduling problem
Lanjun Wan a,∗, Long Fu a, Changyun Li a, Keqin Li b

a School of Computer Science, Hunan University of Technology, Zhuzhou 412007, China
b Department of Computer Science, State University of New York, New Paltz, NY, 12561, USA

A R T I C L E I N F O

Keywords:
Flexible job shop scheduling problem
Graph attention network
Graph reinforcement learning
Multi-agent

A B S T R A C T

Flexible job shop scheduling problem (FJSP) is a complex optimization problem in intelligent manufacturing
and plays a key role in improving productivity, which is characterized by that each operation can be processed
by multiple machines. Most current research into FJSP focuses on finding a higher-quality scheduling scheme
in a shorter time. However, existing studies are hard to optimize the operation sequencing and machine
assignment strategies simultaneously, which is critical for making the optimal scheduling decision. Therefore,
a multi-agent-based graph reinforcement learning (MAGRL) method is proposed to effectively solve FJSP.
Firstly, the FJSP is modeled into two Markov decision processes (MDPs), where the operation and machine
agents are adopted to control the operation sequencing and machine assignment respectively. Secondly, to
effectively predict the operation sequencing and machine assignment strategies, an encoder-double-decoder
architecture is designed, including an improved graph attention network (IGAT)-based encoder, an operation
strategy network-based decoder, and a machine strategy network-based decoder. Thirdly, an automatic entropy
adjustment multi-agent proximal policy optimization (AEA-MAPPO) algorithm is proposed for effectively
training the operation and machine strategy networks to optimize the operation sequencing and machine
assignment strategies simultaneously. Finally, the effectiveness of MAGRL is verified through experimental
comparisons with the classical scheduling rules and state-of-the-art methods to solve FJSP. The results achieved
on the randomly generated FJSP instances and two common benchmarks indicate that MAGRL can consume
less solution time to achieve higher solution quality in solving different-sized FJSP instances, and the overall
performance of MAGRL is superior to that of the comparison methods.
1. Introduction

Nowadays, the industrial field is going through a revolutionary
changes. The wide applications of the digital technology and automa-
tion systems are changing the face of the manufacturing industry. The
traditional manufacturing is difficult to adapt to the personalized and
customized market demands (Jiang et al., 2023). As the key to achieve
efficient and flexible productions under the intelligent manufacturing
environment, modern manufacturing is shifting its research focus into
flexible job shop scheduling (Zhang et al., 2023). FJSP is a variant
of the job shop scheduling problem (JSSP), and both of them belong
to the non-deterministic polynomial hard combinatorial optimization
problems (Dauzère-Pérès et al., 2024). FJSP considers the diversity and
flexibility of the production equipment. Each operation in a job can be
assigned to different compatible machines for processing, significantly
increasing the complexities of combination and decision-making.

The traditional methods for solving FJSP mainly involve the exact
algorithms, the scheduling rules, and the meta-heuristic algorithms
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(MHAs) (Li et al., 2022). The exact algorithms (Fekih et al., 2023;
Müller et al., 2022) are the earliest methods used to solve FJSP, which
seeks the optimal solution of FJSP by mathematically modeling it.
Fekih et al. (2023) proposed the mixed-integer linear programming
model and constrained programming model for FJSP and verified their
ability to accurately solve FJSP of different sizes in a reasonable time.
Müller et al. (2022) studied five different constraint programming
solvers for small and medium-sized FJSP instances, aiming to obtain
minimum makespan. Wan et al. (2023) designed a self-triggered finite-
time controller to minimize resource consumption. Song et al. (2023)
proposed a self-triggered control solution to optimize the performance
of resource-constrained systems. Tao et al. (2024) studied the quantized
iterative learning control for improving the system performance under
limited resources. The scheduling rules (Teymourifar et al., 2020; Jun
et al., 2019) can quickly generate the feasible scheduling schemes
by designing the heuristic rules according to experience and prob-
lem characteristics. In addition, Teymourifar et al. (2020) presented
https://doi.org/10.1016/j.engappai.2024.109557
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a new heuristic scheduling rule extraction method, and the extracted
scheduling rules can effectively cope with dynamic flexible job shop
scheduling problem (DFJSP) with random job arrivals and machine
breakdowns. Jun et al. (2019) proposed a new scheduling rule gener-
ation method that uses a random forest algorithm to generate the best
scheduling rule to solve FJSP and can quickly obtain better makespan.
The MHAs Li et al. (2023a), Liu et al. (2024) and Fan et al. (2024)
an generate a variety of solutions by combining multiple heuristic
ules to improve the ability of FJSP in finding the optimal solution
pace. Li et al. (2023a) used an artificial bee colony algorithm com-

bined with reinforcement learning (RL) to train the optimal scheduling
strategy and the optimal scheduling scheme of sublots through dif-
ferent stages, which improves the solution quality of FJSP with lot
streaming. Liu et al. (2024) proposed a multi-objective adaptive large
eighborhood search approach to solve the multi-objective DFJSP with
ransportation resources, significantly enhancing the exploration ability

of multi-objective solutions of DFJSP. Fan et al. (2024) introduced an
improved tuna swarm optimization algorithm for DFJSP with machine
breakdowns, which effectively reduces the makespan of DFJSP. The
existing studies indicated that the exact algorithms and MHAs can
achieve high solution quality while the scheduling rules can consume
less computing time when solving FJSP instances. However, when the
size of FJSP instances increases, the computational complexities of
these algorithms also increase significantly, posing a huge challenge to
the solution efficiency and the requirement for computing resources. In
addition, the solution quality is not high and it is difficult to effectively
deal with FJSP in different scenarios when using the scheduling rules.

Due to the traditional methods to solve FJSP have some limitations,
recently the deep reinforcement learning (DRL) has brought a new
aradigm for solving FJSP (Li et al., 2023b). DRL utilizes the perceptual
bility of deep learning (Gheisari et al., 2023) to extract multiple

scheduling states related to FJSP and treat them as the actions of the
agent, in which the agent continuously learns and improves scheduling
strategies to find the optimal scheduling scheme by exploiting the
decision-making ability of RL (Wang et al., 2021). Luo (2020) proposed
 DRL method based on deep Q-networks for DFJSP with new job
nserts, in which the extracted scheduling state information is designed
s a universal scheduling rule for the agent to train, minimizing the
otal delay of DFJSP. Yuan et al. (2024) developed a new DRL frame-

work based on the multi-layer perceptron (MLP), effectively extracting
the scheduling state information of FJSP for the agent to train the
cheduling strategy and thereby improving the solution quality of
JSP. Zhao et al. (2024) designed a new proximal policy optimiza-
ion (PPO) algorithm to train the real-time scheduling strategy, and a
trategy network based on the attention mechanism is used to improve

the training efficiency of the scheduling strategy, effectively solving
FJSP with random job arrivals. The aforementioned DRL methods

o solve FJSP typically model the FJSP as a Markov decision process
MDP), the corresponding states, actions, and rewards are designed
o train the agent by extracting the scheduling state information of
JSP, and the agent continuously learns and optimizes the scheduling
trategy, enabling the trained scheduling strategy can effectively solve
JSP instances of different sizes. However, the quality of the trained
cheduling strategy largely depends on whether the scheduling state
nformation of FJSP can be effectively extracted. Therefore, it is a key
roblem how to effectively extract the scheduling state information of
ifferent FJSP instances.

Recently, the graph reinforcement learning (GRL) has attracted
the attention of researchers in production scheduling, and it solves
the difficult of extracting the key scheduling state information of dif-
ferent FJSP instances by combining DRL with graph neural network
(GNN) (Munikoti et al., 2024). For instance, Lei et al. (2022) pro-
posed a new GRL method, which uses the graph to represent the local
scheduling states of FJSP, the graph isomorphic network to extract
the node features of the graph, and the DRL algorithm to train the
scheduling strategy to effectively solve FJSP. In addition, Song et al.
2 
(2022) developed a heterogeneous GNN framework. In this framework,
heterogeneous graph is used for the state representation of MDP, the
raph attention network (GAT) is used to process the structure infor-
ation of heterogeneous graph, and the PPO algorithm is employed

or training the strategy network, which improves the solution quality
f FJSP. Generally, for the existing research solving FJSP using GRL,
irst, the graph-based model is utilized to represent FJSP. Second, GNN

is used to encode the scheduling state information contained in the
peration and machine nodes of the graph. Third, a corresponding
trategy network is designed to decode the encoded information from
NN. Finally, a DRL method is adopted to train the scheduling strategy
enerated after decoding the strategy network. The scheduling models
rained by these GRL methods significantly improve the quality and
peed of solving different FJSP instances.

Overall, compared with the other methods to solve FJSP, the GRL
methods have exhibited better performance. However, to further in-
crease the solution quality and solution efficiency of FJSP, the following
issues need to be addressed. (1) Operation sequencing and machine
assignment are two core problems that need to be addressed for solving
FJSP. Most existing GRL methods use a single agent to control the
action training of the operation-machine pairs, which is not conducive
to finding the optimal operation sequencing and machine assignment
strategies. (2) The design of GNN should consider the feature ex-
tractions of operation and machine nodes, which will affect whether
more important information related to the scheduling strategy can be
extracted. (3) The design of the DRL algorithm is also crucial because
it directly affects the quality of the trained scheduling strategy.

By fully considering the above issues, a novel multi-agent-based
graph reinforcement learning method is proposed to effectively solve
FJSP. First, a heterogeneous graph is adopted to represent the global
scheduling states of FJSP, and the FJSP is modeled into two MDPs, in
which the operation and machine agents are used to effectively control
the operation sequencing and machine assignment, respectively. Next,
the encoder-double-decoder architecture is constructed to handle the
complex scheduling information of FJSP. The IGAT is designed as an
encoder to effectively extract the features of operation and machine
nodes, and the operation strategy and machine strategy networks are
designed as double decoders for to effectively predict the operation
sequencing and machine assignment strategies. In addition, the AEA-
MAPPO algorithm is proposed for effectively training the operation
and machine strategy networks, aiming to learn the optimal opera-
tion sequencing and machine assignment strategies for the scheduling
decision in a shorter time. The effectiveness of the proposed MAGRL
method is verified through experimental comparisons with the classi-
cal scheduling rules and state-of-the-art methods to solve FJSP. The
results achieved on the dataset consisting of randomly generated FJSP
instances and two common benchmarks show that MAGRL outperforms
the comparison methods in solving FJSP instances of different sizes.

The main contributions of this paper are as follows.

• Cooperation of dual-agent. The FJSP is modeled as two Markov
decision processes, in which the operation agent and the ma-
chine agent are responsible for controlling the selection of the
operations and the assignment of the machines, respectively. The
operation sequencing and machine assignment can be done simul-
taneously through the cooperation of the operation and machine
agents, which is conducive to making the optimal scheduling
decision.

• Construction of encoder-double-decoder architecture. To effec-
tively predicting the operation sequencing and machine assign-
ment strategies, the global scheduling states of FJSP are repre-
sented through a heterogeneous graph, and the encoder-double-
decoder architecture is constructed to handle the complex
scheduling information contained in the operation and machine
nodes of the heterogeneous graph. The improved graph attention
network is designed as an encoder to encode the node features
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Nomenclature
FJSP Flexible job shop scheduling problem
MAGRL Multi-agent-based graph reinforcement learning
MDPs Markov decision processes
IGAT Improved graph attention network
AEA-MAPPO Automatic entropy adjustment multi-agent

proximal policy optimization
JSSP Job shop scheduling problem
DFJSP Dynamic flexible job shop scheduling problem
DRL Deep reinforcement learning
RL Reinforcement learning
PPO Proximal policy optimization
MLP Multi-layer perceptron
MDP Markov decision process
GRL Graph reinforcement learning
GNN Graph neural network
GAT Graph attention network
MHAs Meta-heuristic algorithms
FIFO First in first out
SPT Shortest processing time
MOPNR Most operations remaining
MWKR Most work remaining
MPPO Multi-proximal policy optimization
IPSO Improved particle swarm optimization
SLGA Self-learning genetic algorithm
SLABC Self-learning artificial bee colony
GNN-DRL Graph neural network and deep reinforcement

learning
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of the heterogeneous graph. The operation strategy network-
based decoder and machine strategy network-based decoder are
designed to transform the output of the encoder into the probabil-
ities of the operation sequencing and machine assignment actions,
respectively.

• Integration of multi-agent and GRL. Different from the traditional
RL methods using a single agent to control the action training of
the operation-machine pairs, multi-agent and GRL are integrated
in MAGRL, and the automatic entropy adjustment multi-agent
proximal policy optimization algorithm is proposed. In this al-
gorithm, the operation strategy and machine strategy networks
are constructed to learn the operation sequencing and machine
assignment actions, respectively. The entropy objective function
is introduced to balance the randomness of strategies and actions,
improving the ability to find the optimal operation sequencing
and machine assignment strategies.

The remainder of the paper is organized as follows. The prelimi-
aries are introduced in Section 2. The proposed method is described

in Section 3. The experimental results and analysis are provided in
ection 4. Conclusions are given in Section 5.

2. Preliminaries

2.1. Definition of FJSP

The description of a FJSP instance is as follows. A 𝑛×𝑚 FJSP instance
contains 𝑛 jobs and 𝑚 machines. 𝐽 =

{

𝐽1, 𝐽2, … , 𝐽𝑛
}

is the set of all 𝑛
obs, and 𝑀 =

{

𝑀1, 𝑀2, … , 𝑀𝑚
}

is the set of all 𝑚 machines. The job
𝑖 contains 𝑛𝑖 operations 𝑂𝑖 with the sequence constraints, where 𝑂𝑖 =

{

𝑂𝑖1, 𝑂𝑖2, … , 𝑂𝑖𝑛𝑖
}

. For the job 𝐽𝑖, the next operation 𝑂𝑖𝑗+1 can only
be started after the current operation 𝑂𝑖𝑗 has been completed. For the
operation 𝑂𝑖𝑗 , there is a set of available machines 𝑀𝑖𝑗 . The operation
𝑂 can be processed on any available machine in 𝑀 , and let 𝑃 be
𝑖𝑗 𝑖𝑗 𝑖𝑗 𝑘

3 
Table 1
A 3 × 3 FJSP instance.

Job Operation 𝑀1 𝑀2 𝑀3

𝐽1
𝑂11 13 15 –
𝑂12 – 24 –
𝑂13 – – 16

𝐽2
𝑂21 21 18 –
𝑂22 15 15 –

𝐽3
𝑂31 8 – 8
𝑂32 18 – 18
𝑂33 – – 25

the processing time of the operation 𝑂𝑖𝑗 on the available machine 𝑀𝑘.
ote that one machine can only be used for processing one operation at

he same timestep. In addition, once the operation has been assigned to
 machine for processing, it cannot be interrupted until this operation is
ompleted. For an instance of FJSP, the ultimate goal is to consume the
inimum makespan to process all operations. Therefore, the objective

function to solve FJSP is set to 𝐶max = max
{

𝐶𝑖𝑛𝑖
}

, where 𝐶𝑖𝑛𝑖 is the

ompletion time of the job 𝐽𝑖. For a better understanding, a 3 × 3 FJSP
nstance is taken as an example, as shown in Table 1.

2.2. Heterogeneous graph representation of FJSP

The JSSP is usually represented using the disjunctive graph (Su
et al., 2023), however it lacks representation for machine nodes, there
are some limitations in the representation of FJSP. In order to better
represent the operations and machines in FJSP and the relationship be-
ween operations and machines in the form of graph, a heterogeneous
raph (Lei et al., 2022) is used to represent FJSP. The heteroge-

neous graph used to represent FJSP is defined as a four tuple 𝐻 𝐺 =
(

𝒪 , ℳ, 𝒞 , 𝐸𝑡
)

. 𝒪 =
{

𝒪𝑖𝑗
|

|

|

∀𝑖, 𝑗
}

∪ {Start, End} denotes all operation

nodes, where
{

𝒪 |

| ∀𝑖, 𝑗
}

represents all real operation nodes and Start
𝑖𝑗
|
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Fig. 1. Heterogeneous graph representation of a 3 × 3 FJSP instance.
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and End indicate that the start and end of each job respectively. ℳ
denotes all machine nodes. 𝒞 is the set of directed connecting arcs,
where the path that connects from Start to End with a solid line
represents the execution sequence constraints between all operations of
a job. 𝐸𝑡 is the set of the undirected O-M arcs connecting operation and
machine nodes. Fig. 1 presents the heterogeneous graph representation
f a FJSP instance containing three machines and three jobs.

3. Proposed method

Fig. 2 presents the overall process of solving FJSP with MAGRL.
Firstly, the global scheduling states of a FJSP instance are repre-
ented through a heterogeneous graph, and the FJSP is modeled as
wo MDPs, in which the operation agent is responsible for the selection
f the operations and the machine agent is responsible for controlling
he assignment of the machines. Secondly, an encoder-double-decoder
rchitecture is used to encode the structure information of the hetero-
eneous graph, an IGAT-based encoder is used for encoding the features
f the machine and operation nodes of the heterogeneous graph. A
ecoder based on the operation strategy network and a decoder based
n the machine strategy network transform the features of encoded
peration and machine nodes into the probabilities of operation se-
uencing and machine assignment actions, respectively. Finally, the
peration strategy and machine strategy networks are trained using the
EA-MAPPO algorithm to obtain the optimal operation sequencing and
achine assignment strategies.

3.1. MDP formulation

The task to solve FJSP can be seen as the following two steps. The
irst step is to choose an eligible operation that has not been processed
n a job. The second step is to assign an available machine to process the

selected operation in the first step. Repeating the above two steps until
he processing of all operations of all jobs is completed. To better solve
he FJSP task, two agents are used to control the process of solving the
JSP task. The operation agent is responsible for selecting an operation,
nd the machine agent is responsible for assigning an available machine
or the selected operation. The MDPs of the operation and machine
gents are as follows.

3.1.1. MDP of the operation agent
State: The local state 𝑠𝑜𝑡 indicates the scheduling state of the oper-

ation 𝑂𝑖𝑗 at timestep 𝑡. The operation node 𝒪𝑖𝑗 contains four features,
which are SSF

(

𝑂
)

, 𝑃 𝑇 (

𝑂
)

, |𝑁 𝑀 (

𝒪
)

|, and |𝑅𝑂 𝑁 (

𝐽
)

|. SSF
(

𝑂
)

𝑖𝑗 𝑖𝑗 |

|

𝑡 𝑖𝑗 |

|

|

|

𝑡 𝑛 |

|

𝑖𝑗

4 
indicates the state flag of the operation 𝑂𝑖𝑗 . If 𝑂𝑖𝑗 is not scheduled,
he value of SSF

(

𝑂𝑖𝑗
)

is 0; otherwise, the value of SSF
(

𝑂𝑖𝑗
)

is 1.
 𝑇 (

𝑂𝑖𝑗
)

indicates the processing time of 𝑂𝑖𝑗 . If 𝑂𝑖𝑗 has been sched-
led, 𝑃 𝑇 (

𝑂𝑖𝑗
)

= 𝑃𝑖𝑗 𝑘; otherwise, 𝑃 𝑇 (

𝑂𝑖𝑗
)

= 𝑃 𝑇 (

𝑂𝑖𝑗−1
)

+ min
(

𝑃𝑖𝑗 𝑙
)

,
where 𝑀𝑙 ∈ 𝑀𝑖𝑗 .

|

|

|

𝑁 𝑀 𝑡
(

𝒪𝑖𝑗
)

|

|

|

indicates the number of the neighbor
machine nodes of 𝒪𝑖𝑗 at timestep 𝑡. ||

|

𝑅𝑂 𝑁 𝑡
(

𝐽𝑛
)

|

|

|

indicates the number
of operations in the job 𝐽𝑛 that have not been scheduled at timestep 𝑡.

Action: 𝐴𝑜𝑡 represents the eligible operation sequencing action space.
At each timestep, the operation agent controls the operation sequencing
y executing the action 𝑎𝑜𝑡 ∈ 𝐴𝑜𝑡 .

Transition: At timestep 𝑡, and the operation agent executes the
action 𝑎𝑜𝑡 , the operation state will be transformed from 𝑠𝑜𝑡 to 𝑠𝑜𝑡+1,
indicating that the operation agent selects an operation for processing.

Reward: Because the whole FJSP task requires the cooperation of
operation and machine agents, the two agents use the same joint
reward function to calculate the reward. The joint reward function is
efined as 𝑟𝑡

(

𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1
)

= 𝐶max
(

𝑠𝑡
)

− 𝐶max
(

𝑠𝑡+1
)

.
Strategy: The operation sequencing action 𝑎𝑜𝑡 is trained with the

peration sequencing strategy 𝜋𝜙𝑜
(

𝑎𝑜𝑡
|

|

|

𝑠𝑜𝑡
)

.

3.1.2. MDP of the machine agent
State: The local state 𝑠𝑚𝑡 indicates the scheduling state of machine

𝑀𝑘 at timestep 𝑡. The machine node ℳ𝑘 contains three features, which
are |

|

|

𝑁 𝑂𝑡
(

𝑀𝑘
)

|

|

|

, 𝐶 𝑇 𝑡
(

𝑀𝑘
)

, and 𝑃𝑖𝑗 𝑘. ||
|

𝑁 𝑂𝑡
(

𝑀𝑘
)

|

|

|

indicates the number
of neighbor operation nodes of ℳ𝑘 at timestep 𝑡. 𝐶 𝑇 𝑡

(

𝑀𝑘
)

indicates
the completion time of 𝑀𝑘 at timestep 𝑡, that is, the time when 𝑀𝑘
has finished processing all the operations assigned to it and started the
next new operation. If the operation 𝑂𝑖𝑗 can be processed on 𝑀𝑘 ∈𝑀𝑖𝑗 ,
𝑃𝑖𝑗 𝑘 represents the actual processing time of 𝑂𝑖𝑗 , that is, 𝑃𝑖𝑗 𝑘 = 𝑃𝑖𝑗 𝑘;
otherwise, 𝑃𝑖𝑗 𝑘 is the estimated processing time of 𝑂𝑖𝑗 , that is, 𝑃𝑖𝑗 𝑘 =

1
|

|

|

𝑀𝑖𝑗
|

|

|

∑

𝑀𝑙∈𝑀𝑖𝑗
𝑃𝑖𝑗 𝑙.

Action: 𝐴𝑚𝑡 represents the available machine assignment action
pace. At each timestep, the machine agent controls the machine as-
ignment by executing the actions 𝑎𝑚𝑡 ∈ 𝐴𝑚𝑡 .

Transition: At timestep 𝑡, the machine agent executes the action 𝑎𝑚𝑡 ,
and the machine state will be transformed from 𝑠𝑚𝑡 to 𝑠𝑚𝑡+1, indicating
that the machine agent has assigned the available machine to process
he operation selected through the operation agent.

Reward: The joint reward function 𝑟𝑡
(

𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1
)

= 𝐶max
(

𝑠𝑡
)

−
𝐶max

(

𝑠𝑡+1
)

is used to calculate the reward.
Strategy: The machine assignment action 𝑎𝑚𝑡 is trained with the

achine assignment strategy 𝜋
(

𝑎𝑚||𝑠𝑚
)

.
𝜙𝑚 𝑡
|

𝑡
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Fig. 2. Overall process of solving FJSP with MAGRL.
o

f

3.2. Encoder-double-decoder architecture to solve FJSP

To better solve the FJSP task, an encoder-double-decoder architec-
ture is designed, as shown in Fig. 3. The operation and machine nodes
are encoded using the IGAT-based encoder. The operation strategy
network-based decoder and machine strategy network-based decoder
transform the output of the encoder into the probabilities of the opera-
tion sequencing and machine assignment actions respectively, predict-
ng the operation sequencing and machine assignment strategies.

3.3. IGAT-based encoder

GAT (Veličković et al., 2017) is a powerful GNN model that can
handle the complex graph structure data. By introducing the atten-
tion mechanism, it improves the ability to extract the node features.
However, for FJSP, there are many different types of relationships
between operation nodes and between machine and operation nodes.
The conventional GAT is not suitable to model the complex relationship
between nodes. Therefore, an IGAT is proposed to better balance the
modeling of different nodes and extract more key features. The features
between operation nodes and those of between machine and operation
nodes are extracted using IGAT, which is convenient for the subsequent
optimal operation sequencing and machine assignment.
5 
3.3.1. Operation nodes encoding based on IGAT
In the heterogeneous graph, the target operation node 𝒪𝑖𝑗 , its direct

predecessor 𝒪𝑖𝑗−1, and its direct successor 𝒪𝑖𝑗+1 are connected by a
directed arc to represent the sequence constraint of the operation
processing. The features of 𝒪𝑖𝑗 are closely related to those of 𝒪𝑖𝑗−1
and 𝒪𝑖𝑗+1. Therefore, the original features of 𝒪𝑖𝑗 , 𝒪𝑖𝑗−1, and 𝒪𝑖𝑗+1 are
processed by IGAT to complete the embedding of the features of 𝒪𝑖𝑗 .
The process of embedding 𝒪𝑖𝑗 into the heterogeneous graph is as
follows.

Step 1: By processing the original features of ℳ𝑘 and its neighbor
operation node 𝒪𝑖𝑗 ∈ 𝑁 𝑂𝑡

(

ℳ𝑘
)

to obtain the attention coefficient 𝑒𝑖𝑗 𝑘
of 𝒪𝑖𝑗 to ℳ𝑘:

𝑒𝑖𝑗 𝑢 = LeakyReLU
(

𝑎𝑇
[

𝑊m𝐹ℳ𝑢
|

|

|

|

|

|

𝑊o𝐹𝒪𝑖𝑗
])

, (1)

where 𝑎𝑇 is the transposition of the attention vector 𝑎, 𝑊m and 𝑊o are
two learnable linear transformation matrices, and 𝐹ℳ𝑢

and 𝐹𝒪𝑖𝑗 are the
riginal feature vectors of ℳ𝑢 and 𝒪𝑖𝑗 respectively.

Step 2: Normalize the attention coefficient 𝑒𝑖𝑗 𝑢 using the softmax
unction:

𝛼𝑖𝑗 𝑢 = softmax𝑢
(

𝑒𝑖𝑗 𝑢
)

. (2)

Step 3: By processing the original features of 𝒪𝑖𝑗 , 𝒪𝑖𝑗−1, and 𝒪𝑖𝑗+1 to
obtain the attention coefficient 𝑒𝑖𝑗 of 𝒪𝑖𝑗 :

(

𝑇
[

|| ||

])
𝑒𝑖𝑗 = LeakyReLU 𝑎 𝑊o𝐹𝒪𝑖𝑗 |
|

|

|

𝑊o𝐹𝒪𝑖𝑗−1 |
|

|

|

𝑊o𝐹𝒪𝑖𝑗+1 , (3)
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Fig. 3. Design of the encoder-double-decoder architecture to solve FJSP.
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where 𝐹𝒪𝑖𝑗−1 and 𝐹𝒪𝑖𝑗+1 are the original feature vectors of 𝒪𝑖𝑗−1 and
𝑖𝑗+1, respectively.

Step 4: Normalize the attention coefficient 𝑒𝑖𝑗 using the softmax
unction:

𝛼𝑖𝑗 = softmax𝑗
(

𝑒𝑖𝑗
)

. (4)

Step 5: Firstly, the weighted linear sums of the original feature
ectors 𝐹𝒪𝑖𝑗 , 𝐹𝒪𝑖𝑗−1 , and 𝐹𝒪𝑖𝑗+1 of 𝒪𝑖𝑗 , 𝒪𝑖𝑗−1, and 𝒪𝑖𝑗+1 are calculated. Sec-

ndly, the weighted linear sum of the original feature vector 𝐹ℳ𝑢
of ℳ𝑢

s calculated. Thirdly, the sum of the results obtained in the previous
wo steps is sent to a nonlinear activation function 𝜎(∙) for processing.
inally, the embedding feature vector ℎ𝒪𝑖𝑗 of 𝒪𝑖𝑗 is calculated using the
ulti-head attention mechanism:

ℎ𝒪𝑖𝑗 =
𝒦
∑

k=1
𝜎
⎛

⎜

⎜

⎝

𝑗+1
∑

𝑦=𝑗−1
𝛼k𝑖𝑗𝑊

k
o
𝐹𝒪𝑖𝑦 +

∑

ℳ𝑢∈𝑁 𝑀 𝑡(𝒪𝑖𝑗 )
𝛼k𝑖𝑗 𝑢𝑊 k

m
𝐹ℳ𝑢

⎞

⎟

⎟

⎠

, (5)

where 𝒦 denotes the number of attention heads.

3.3.2. Machine nodes encoding based on IGAT
In the heterogeneous graph, the undirected O-M arc is used to

onnect the machine node ℳ𝑘 with its multiple neighbor operation
nodes, indicating that the operations corresponding to these operation
nodes can be processed on the machine 𝑀𝑘 corresponding to ℳ𝑘.
Therefore, when IGAT is used to encode the features of ℳ𝑘, the original
features of ℳ𝑘 and its neighbor operation nodes should be considered.
The process of embedding ℳ𝑘 into the heterogeneous graph is as
follows.

Step 1: By processing the original features of ℳ𝑘 and its neighbor
operation node 𝒪𝑖𝑗 ∈ 𝑁 𝑂𝑡

(

ℳ𝑘
)

to obtain the attention coefficient 𝑒𝑖𝑗 𝑘
of 𝒪𝑖𝑗 to ℳ𝑘:

(

𝑇
[

||

])
𝑒𝑖𝑗 𝑘 = LeakyReLU 𝑏 𝑊m𝐹ℳ𝑘
|

|

|

|

𝑊o𝐹𝒪𝑖𝑗 , (6)

6 
where 𝑏𝑇 is the transposition of the attention vector 𝑏 and 𝐹ℳ𝑘
is the

riginal feature vector of ℳ𝑘.
Step 2: Normalize the attention coefficient 𝑒𝑖𝑗 𝑘 using the softmax

unction:

𝛼𝑖𝑗 𝑘 = softmax𝑘
(

𝑒𝑖𝑗 𝑘
)

. (7)

Step 3: By processing the original features of ℳ𝑘 to obtain the
attention coefficient 𝑒𝑘𝑘 of ℳ𝑘:

𝑒𝑘𝑘 = LeakyReLU
(

𝑏𝑇
[

𝑊m𝐹ℳ𝑘
∥ 𝑊m𝐹ℳ𝑘

])

. (8)

Step 4: Normalize the attention coefficient 𝑒𝑘𝑘 using the softmax
unction:

𝛼𝑘𝑘 = softmax𝑘
(

𝑒𝑘𝑘
)

. (9)

Step 5: Firstly, the weighted linear sum of the original feature
vector 𝐹𝒪𝑖𝑗 of the neighbor operation node 𝒪𝑖𝑗 of ℳ𝑘 is calculated.
Secondly, the weighted linear transformation of the original feature
vector 𝐹ℳ𝑘

of ℳ𝑘 is calculated. Thirdly, the sum of the results obtained
n the previous two steps is sent to a nonlinear activation function
or processing. Finally, the embedding feature vector ℎℳ𝑘

of ℳ𝑘 is
alculated using the multi-head attention mechanism:

ℎℳ𝑘
=

𝒦
∑

k=1
𝜎
⎛

⎜

⎜

⎝

∑

𝒪𝑖𝑗∈𝑁 𝑂𝑡(ℳ𝑘)
𝛼k𝑖𝑗 𝑘𝑊 k

o
𝐹𝒪𝑖𝑗 + 𝛼

k
𝑘𝑘𝑊

k
m
𝐹ℳ𝑘

⎞

⎟

⎟

⎠

. (10)

3.3.3. Mean pooling
ℎ𝒪𝑖𝑗 and ℎℳ𝑘

are the feature vectors obtained from the embedding
of 𝒪𝑖𝑗 and ℳ𝑘 on a single IGAT layer, respectively. To boost the ability
to extract features from different nodes, the mean pooling of the feature
vector sets ℎ(𝐿) of operation nodes and the feature vector sets ℎ(𝐿)
𝒪𝑖𝑗 ℳ𝑘
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Fig. 4. Process of training the scheduling model using the proposed AEA-MAPPO algorithm.
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of machine nodes obtained from embedding on 𝐿 IGAT layers are
performed to obtain the pooling vectors

−
ℎ𝒪𝑖𝑗 and

−
ℎℳ𝑘

, respectively:
−
ℎ𝒪𝑖𝑗 =

1
|𝒪|

∑

𝒪𝑖𝑗∈𝒪
ℎ(𝐿)𝒪𝑖𝑗

(11)

and
−
ℎℳ𝑘

= 1
|ℳ|

∑

ℳ𝑘∈ℳ
ℎ(𝐿)ℳ𝑘

. (12)

3.4. Decoding of the operation strategy and machine strategy networks

The operation strategy network MLP𝜙𝑜 and the machine strategy
network MLP𝜙𝑚 map the operation sequencing action 𝑎𝑜𝑡 under the local
state 𝑠𝑜𝑡 and the machine assignment action 𝑎𝑚𝑡 under the local state
𝑠𝑚𝑡 into the two probability distributions. In addition, the operation
agent and machine agent select the operation sequencing action 𝑎𝑜𝑡
and machine assignment action 𝑎𝑚𝑡 according to these two different
probability distributions, respectively. The prediction process of the
operation sequencing action 𝑎𝑜𝑡 and machine assignment action 𝑎𝑚𝑡
mainly includes the following two steps.

Step 1: Calculate the probability distributions 𝑝𝑜
(

𝑎𝑜𝑡 , 𝑠𝑜𝑡
)

and 𝑝𝑚
(

𝑎𝑚𝑡 , 𝑠𝑚𝑡
)

for the operation sequencing action 𝑎𝑜𝑡 and machine assign-
ment action 𝑎𝑚𝑡 , respectively:

𝑝𝑜
(

𝑎𝑜𝑡 , 𝑠𝑜𝑡
)

= MLP𝜙𝑜

(

ℎ𝒪𝑖𝑗
|

|

|

|

|

|

−
ℎ𝒪𝑖𝑗

|

|

|

|

|

|

−
ℎℳ𝑘

)

(13)

and

𝑝𝑚
(

𝑎𝑚𝑡 , 𝑠𝑚𝑡
)

= MLP𝜙𝑚

(

ℎℳ𝑘
|

|

|

|

|

|

−
ℎ𝒪𝑖𝑗

|

|

|

|

|

|

−
ℎℳ𝑘

)

. (14)

Step 2: Use the softmax function to normalize the probability distri-
utions 𝑝𝑜

(

𝑎𝑜𝑡 , 𝑠𝑜𝑡
)

and 𝑝𝑚
(

𝑎𝑚𝑡 , 𝑠𝑚𝑡
)

to obtain the operation sequencing
strategy 𝜋𝜙𝑜

(

𝑎𝑜𝑡
|

|

|

𝑠𝑜𝑡
)

and machine assignment strategy 𝜋𝜙𝑚
(

𝑎𝑚𝑡
|

|

|

𝑠𝑚𝑡
)

,
respectively:

𝜋𝜙𝑜
(

𝑎𝑜𝑡
|

|

|

𝑠𝑜𝑡
)

=
exp

(

𝑝𝑜
(

𝑎𝑜𝑡 , 𝑠𝑜𝑡
))

∑

𝑎𝑜′𝑡 ∈𝐴𝑜𝑡
exp

(

𝑝𝑜
(

𝑎𝑜′𝑡 , 𝑠𝑜𝑡
))

(15)

and

𝜋𝜙𝑚
(

𝑎𝑚𝑡
|

|

|

𝑠𝑚𝑡
)

=
exp

(

𝑝𝑚
(

𝑎𝑚𝑡 , 𝑠𝑚𝑡
))

∑

𝑎𝑚′𝑡 ∈𝐴𝑚𝑡
exp

(

𝑝𝑚
(

𝑎𝑚′
𝑡 , 𝑠𝑚𝑡

))
. (16)
7 
3.5. Training the scheduling model using the AEA-MAPPO algorithm

To better train and optimize the scheduling model, and improve
the efficiency of collaboratively solving FJSP by the operation and

achine agents, an AEA-MAPPO algorithm is proposed. The PPO algo-
ithm (Schulman et al., 2017) has gone through the following improve-

ments. Firstly, the operation strategy and machine strategy networks
are constructed to learn the operation sequencing and machine assign-
ment actions, respectively. Secondly, the entropy objective function
is introduced to balance the randomness of strategies and actions,
improving the ability to find better strategies. Finally, to improve the
stability of training and accelerate the convergence of the model, the
ntropy objective update function is introduced, which can dynamically
djust the exploration degree of actions and strategies to better adapt to
he changes of the scheduling environment. Fig. 4 presents the train-

ing process of the scheduling model using the proposed AEA-MAPPO
algorithm.

3.5.1. Entropy objective function and entropy objective update
In the proposed AEA-MAPPO algorithm, the calculation of the en-

tropy objective function is as follows:

𝐻
((

𝑎𝐼𝑡
|

|

|

𝑠𝐼𝑡
))

= −𝛼log
(

𝜋𝜙𝐼
(

𝑎𝐼𝑡
|

|

|

𝑠𝐼𝑡
))

, (17)

where 𝐻
((

𝑎𝐼𝑡
|

|

|

𝑠𝐼𝑡
))

denotes the entropy of the strategy 𝜋𝜙𝐼
(

𝑎𝐼𝑡
|

|

|

𝑠𝐼𝑡
)

, 𝛼
denotes the entropy weight parameter, and 𝐼 ∈ {𝑜, 𝑚}.

The entropy objective update function 𝐽 (𝛼) is minimized to update
𝛼. 𝐽 (𝛼) is calculated by

𝐽 (𝛼) = E𝑡
[

−𝛼log
(

𝜋𝜙𝐼
(

𝑎𝐼𝑡
|

|

|

𝑠𝐼𝑡
))

− 𝛼
−
ℋ

]

, (18)

where
−
ℋ is a threshold of the minimum strategy entropy.

3.5.2. Strategy networks
The operation strategy and machine strategy networks are adopted

o learn the operation sequencing and machine assignment strategies,
espectively. The operation sequencing and machine assignment strate-
ies are trained toward the direction of maximizing the joint reward at
imestep 𝑡. The strategy network loss 𝐿𝐼CLIP

(

𝜙𝐼
)

is minimized to train
hese two strategy networks, and 𝐿𝐼CLIP

(

𝜙𝐼
)

is calculated by

𝐿𝐼CLIP
(

𝜙𝐼
)

= E𝑡
[

min
(

𝑅𝐼𝑡
(

𝜙𝐼
)

−
𝒜 𝑡, clip

(

𝑅𝐼𝑡
(

𝜙𝐼
)

, 1 − 𝜀, 1 + 𝜀)
−
𝒜 𝑡

)

((

𝐼 | 𝐼
))]
+𝐻 𝑎𝑡 |
|

𝑠𝑡 . (19)
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In Eq. (19), 𝑅𝐼𝑡
(

𝜙𝐼
)

=
𝜋𝜙𝐼

(

𝑎𝐼𝑡
|

|

|

𝑠𝐼𝑡

)

𝜋𝜙old
𝐼

(

𝑎𝐼𝑡
|

|

|

𝑠𝐼𝑡

) is the ratio between the probability

f actions obtained with the current strategy 𝜋𝜙𝐼
(

𝑎𝐼𝑡
|

|

|

𝑠𝐼𝑡
)

and that

obtained with the old strategy 𝜋𝜙old
𝐼

(

𝑎𝐼𝑡
|

|

|

𝑠𝐼𝑡
)

, which is used to measure
the difference between the current and old strategies (i.e., the extent
of strategy update). Clip(∙) is an operation that controls the clip range,
while 𝜀 denotes the hyperparameter that controls the clip range.

−
𝒜 𝑡

represents the advantage of taking an action relative to the average
expected reward, which is calculated by
−
𝒜 𝑡 = −𝑉𝜓

(

𝑠𝑜𝑡 , 𝑠𝑚𝑡
)

+𝑟𝑡+𝛾 𝑟𝑡+1+⋯+𝛾𝑇−𝑡+1𝑟𝑇−1+𝛾𝑇−𝑡𝑉𝜓
(

𝑠𝑜𝑡+1, 𝑠𝑚𝑡+1
)

, (20)

where 𝑉𝜓
(

𝑠𝑜𝑡 , 𝑠𝑚𝑡
)

is the estimated state value function, 𝑇 is the number
f timesteps, and 𝛾 denotes the discount factor.

3.5.3. Critic network
The critic network guides the strategy networks to perform strategy

training by evaluating the quality of actions selected by the strategy
networks in the training process. The critic network loss 𝐿MSE

𝑡 (𝜓) is
inimized to update the critic network. 𝐿MSE

𝑡 (𝜓) is calculated by

𝐿MSE
𝑡 (𝜓) = E𝑡

[

(

𝑉𝜓
(

𝑠𝑜𝑡 , 𝑠𝑚𝑡
)

−
−
𝑉 𝜓

(

𝑠𝑜𝑡 , 𝑠𝑚𝑡
)

)2
]

, (21)

where
−
𝑉 𝜓

(

𝑠𝑜𝑡 , 𝑠𝑚𝑡
)

represents the objective state value function and is
calculated by
−
𝑉 𝜓

(

𝑠𝑜𝑡 , 𝑠𝑚𝑡
)

= 𝑟𝑡 + 𝛾 𝑉𝜓
(

𝑠𝑜𝑡+1, 𝑠𝑚𝑡+1
)

. (22)

Algorithm 1 Training procedure of the scheduling model with
EA-MAPPO algorithm
Input: The maximum number of iterations 𝒥 , and the entropy weight param-

eter 𝛼, the discount factor 𝛾, the clip coefficient 𝜀, and the update epoch
𝐸.

Output: Two trained strategy networks.
1: Initialize the strategy network parameter 𝜙𝐼 , the behaviour strategy

network parameter 𝜙old
𝐼 = 𝜙𝐼 , and the critic network parameter 𝜓 ;

2: for 𝒿 = 1 to 𝒥 do
3: Get 𝒳 random FJSP instances;
4: for 𝓍 = 1 to 𝒳 do
5: while 𝑠𝑡 is not terminal do
6: Get 𝑎𝐼𝑡 according to 𝜋𝜙𝐼

(

𝑎𝐼𝑡 ||𝑠𝑡
)

, where 𝐼 ∈ {𝑜, 𝑚};
7: Get the joint reward 𝑟𝑡 and next state 𝑠𝑡+1;
8: Calculate

−
𝒜 𝑡 by Eq. (20);

9: Calculate 𝑅𝐼𝑡
(

𝜙𝐼
)

= 𝜋𝜙𝐼 (𝑎𝐼𝑡 |𝑠𝐼𝑡 )
𝜋𝜙old

𝐼
(𝑎𝐼𝑡 |𝑠𝐼𝑡 )

;

10: 𝑠𝑡 ← 𝑠𝑡+1;
11: end while
12: Calculate the entropy term function 𝐻

((

𝑎𝐼𝑡 ||𝑠
𝐼
𝑡

))

by Eq. (17);
13: Calculate the strategy network loss 𝐿𝐼CLIP

(

𝜙𝐼
)

by Eq. (19);
14: Calculate the critic network loss 𝐿MSE

𝑡 (𝜓) by Eq. (21);
15: end for
16: for 𝑒 = 1 to 𝐸 do
17: Update 𝜙𝐼 and 𝜓 by Adam optimizer to calculate the gradients of

𝐿𝐼CLIP
(

𝜙𝐼
)

and 𝐿MSE
𝑡 (𝜓), respectively;

18: Update 𝛼 by Eq. (18);
19: end for
20: 𝜙old

𝐼 ← 𝜙𝐼 ;
21: end for

Algorithm 1 presents the procedure of training the scheduling model
using the proposed AEA-MAPPO algorithm. During each iteration of
raining, the 𝒳 randomly generated FJSP instances are utilized for
raining the two strategy networks. Firstly, at timestep 𝑡, the two
ehavioral strategy networks respectively execute the operation se-

quencing and machine assignment actions to obtain the joint reward
 p

8 
Table 2
Settings of the core parameters for the proposed MAGRL method.

Parameter Value

Number of IGAT layers (𝐿) 2
Number of multi-attention heads (𝒦 ) 3
Optimizer Adam
Clip coefficient (𝜀) 0.2
Entropy weight parameter (𝛼) 0.01
Discount factor (𝛾) 1
Update epoch (𝐸) 4
Learning rate 0.0001
Number of iterations (𝒥 ) 1000

𝑟𝑡 and next state 𝑠𝑡+1. Secondly, at timestep 𝑡, the advantage function
−
𝒜 𝑡 and the ratio 𝑅𝐼𝑡

(

𝜙𝐼
)

between the probability of actions obtained
with the current strategy and that obtained with the old strategy are
alculated to update the two behavioral strategy networks. These two
rocesses are repeated until all operations are assigned to the avail-
ble machines for processing. Thirdly, the entropy objective function
((

𝑎𝐼𝑡
|

|

|

𝑠𝐼𝑡
))

, the strategy network loss 𝐿𝐼CLIP
(

𝜙𝐼
)

, and the critic net-
ork loss 𝐿MSE

𝑡 (𝜓) are calculated. Fourthly, at each update step 𝐸, the
radient of 𝐿𝐼CLIP

(

𝜙𝐼
)

is calculated to update the two strategy networks,
the gradient of 𝐿MSE

𝑡 (𝜓) is calculated to update the critic network, and
he entropy objective update function 𝐽 (𝛼) is minimized to update the
ntropy weight parameter 𝛼. Finally, the strategy network parameter 𝜙𝐼
s assigned to the behavior strategy network parameter 𝜙old

𝐼 to update
he parameter weight. After the iterative training is completed, the two
rained strategy networks are finally obtained.

4. Experiments

4.1. Experimental settings

In this experiment, the training set is composed of 400 randomly
generated FJSP instances. It includes 100 instances of 10 × 5, 100
instances of 10 × 10, 100 instances of 20 × 10, and 100 instances of
30 × 10, which are used to train the scheduling models of 10 × 5,
10 × 10, 20 × 10, and 30 × 10, respectively. The test set includes
600 randomly generated FJSP instances (i.e., 100 instances of 10 × 5,
100 instances of 10 × 10, 100 instances of 20 × 10, 100 instances of
30 × 10, 100 instances of 50 × 20, and 100 instances of 100 × 20)
along with some FJSP instances from Hurink (Hurink et al., 1994)
and Brandimarte (Brandimarte, 1993) datasets. To better verify the
ffectiveness of the proposed MAGRL method, a series of comparative
xperiments are carried out on the Hurink and Brandimarte datasets.
urink dataset contains 40 instances, which are divided into eight
roups according to different scales. Each group contains five different
JSP instances of the same scale. The scale of each group of instances

is 10 × 5, 10 × 10, 15 × 5, 15 × 10, 15 × 15, 20 × 5, 20 × 10, and
30 × 10 in order. Brandimarte dataset contains 10 instances. The scale
of each instance is 10 × 6, 10 × 6, 15 × 8, 15 × 8, 15 × 4, 10 × 10,
20 × 5, 20 × 10, 20 × 10, and 20 × 15 in order. The settings of the core
parameters for the proposed MAGRL method are shown in Table 2.

The software configurations of the experimental platform are Py-
Torch 1.6 and Python 3.9. The hardware configurations of the exper-
imental platform are an RTX 2070 Super GPU with 2560 CUDA cores
and 8 GB device memory, an eight-core Intel i7-9700K CPU, and 64 GB
ost memory.

4.2. Baseline methods

To validate the efficiency and robustness of the proposed MAGRL
method to solve different-sized FJSP instances, the proposed MAGRL

ethod is compared with the four scheduling rules, the improved
article swarm optimization (IPSO) algorithm (Ding and Gu, 2020),
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Table 3
The comparison of the experimental results obtained adopting FIFO, SPT, MOPNR, MWKR, MAGRL, and OR-Tools on the randomly generated
FJSP instances of different sizes.
Size FIFO SPT MOPNR MWKR MAGRL OR-Tools

𝐶max 286.18 251.42 281.27 274.66 181.69 163.75
10 × 5 Time (s) 0.05 0.05 0.05 0.05 0.47 3.93

Ave. gap 74.96% 53.71% 71.96% 67.92% 11.08% 0.00%
𝐶max 356.73 272.12 359.11 355.23 235.43 169.73

10 × 10 Time (s) 0.10 0.10 0.10 0.10 1.29 17.73
Ave. gap 110.17% 60.33% 111.58% 109.29% 38.71% 0.00%
𝐶max 554.91 435.25 540.23 533.57 297.75 244.83

20 × 10 Time (s) 0.21 0.21 0.21 0.20 3.71 594.49
Ave. gap 126.65% 77.78% 120.66% 117.93% 21.61% 0.00%
𝐶max 798.70 564.07 792.04 786.19 396.60 363.09

30 × 10 Time (s) 0.33 0.32 0.33 0.33 6.90 600.00
Ave. gap 119.97% 55.35% 118.14% 116.53% 9.23% 0.00%
𝐶max 1328.68 787.97 1306.87 1298.64 517.35 –

50 × 20 Time (s) 1.63 1.63 1.67 1.63 10.48 –
Ave. gap 156.82% 52.31% 152.61% 151.02% 0.00% –
𝐶max 2580.95 1320.66 2577.86 2572.16 895.63 –

100 × 20 Time (s) 4.57 4.48 4.55 4.52 42.96 –
Ave. gap 188.17% 47.46% 187.83% 187.19% 0.00% –
c

o
o

the self-learning genetic algorithm (SLGA) (Chen et al., 2020), the self-
learning artificial bee colony (SLABC) method (Long et al., 2022), the
multi-proximal policy optimization (MPPO) method (Lei et al., 2022),
and the graph neural network and deep reinforcement learning (GNN-
DRL) method (Song et al., 2022). The four scheduling rules include
first in first out (FIFO), shortest processing time (SPT), most operations
remaining (MOPNR), and most work remaining (MWKR). IPSO is the
state-of-the-art MHA to solve FJSP. SLGA and SLABC are the two state-
of-the-art methods combining MHA with RL for solving FJSP. MPPO
nd GNN-DRL are the two state-of-the-art GRL methods for solving
JSP. It should be noted that the parameters of all methods are set to
heir respective optimal parameter values to ensure the fairness and
ffectiveness of the comparison experiments.

In this experiment, the percentage deviation namely gap and the
advantage rate are used as the performance metrics to evaluate the
different methods to solve FJSP instances. The gap is calculated by

Gap =
𝐶max − UB

UB × 100%, (23)

where UB (Behnke and Geiger, 2012) represents the optimal known
olution and 𝐶max is the makespan of a FJSP instance solved by differ-
nt methods, including the scheduling rules, MPPO, GNN-DRL, IPSO,
LGA, SLABC, and MAGRL. It should be noted that since each randomly
enerated FJSP instance does not have the optimal known solution,
he minimum value of 𝐶max obtained using different methods to solve
he randomly generated FJSP instance will be taken as UB in this

experiment.
Compared with the optimal solution UB, the advantage rate of the

scheduling rules, MPPO, GNN-DRL, IPSO, SLGA, SLABC and MAGRL for
solving a FJSP instance is calculated by

𝑂rate = UB
𝐶max

× 100%. (24)

4.3. Parameter sensitivity analysis

In the training process of the scheduling model, sensitivity analyses
re conducted on the four most key parameters, namely, the number of

IGAT layers, the number of multi-attention heads, the entropy weight
arameter, and the learning rate, as shown in Fig. 5. The results show

that when the number of IGAT layers, the number of multi-attention
heads, the entropy weight parameter, and the learning rate are set to
2, 3, 0.01, and 0.0001 respectively, the scheduling model can converge
faster and achieve the optimal makespan.

Moreover, to better control the extent of updating the scheduling
trategy through 𝑅𝐼𝑡

(

𝜙𝐼
)

in Eq. (19), the clip coefficient 𝜀 is set to 0.2,
thereby maintaining the stability of the model training. To approach
9 
the optimal solution more quickly in the model training, the update
epoch 𝐸 is set to 4, thereby accelerating the training process. To better
alculate the joint reward function, the discount factor 𝛾 is set to 1.

4.4. Comparison results on randomly generated FJSP instances

In this experiment, the test set includes the following randomly
generated different-sized FJSP: 100 instances of 10 × 5, 100 instances
of 10 × 10, 100 instances of 20 × 10, 100 instances of 30 × 10, 100
instances of 50 × 20, and 100 instances of 100 × 20. The proposed
MAGRL method is compared with FIFO, SPT, MOPNR, MWKR, and OR-
Tools.1 Note that OR-Tools is a solver developed by Google to solve
combinatorial optimization problems, which can obtain the optimal
makespan to solve FJSP instances. The upper limit of the solution time
of OR-Tools is set to 600 s, which means to stop the calculation if it
exceeds 600 s. The scheduling models of 10 × 5, 10 × 10, 20 × 10, and
30 × 10 trained by MAGRL are used to solve the corresponding same-
sized FJSP instances, respectively. In addition, the scheduling model of
30 × 10 is used to solve the large-sized FJSP instances of 50 × 20 and
100 × 20. For different methods, the average makespan and the average
solution time obtained from solving the 100 same-sized FJSP instances
are taken as the experimental results of solving the FJSP instances of
this size. Table 3 shows the comparison of the experimental results
btained adopting FIFO, SPT, MOPNR, MWKR, MAGRL, and OR-Tools
n the randomly generated FJSP instances of different sizes.

As shown in Table 3, when solving FJSP instances of different sizes,
the four scheduling rules have certain advantages compared with MA-
GRL in solution time, but their solution quality (i.e., 𝐶max) is not ideal.
Obviously, the solution quality of MAGRL is far better than that of these
four scheduling rules on different-sized FJSP instances. This is because
the scheduling rules are usually designed according to the specific FJSP
scenarios and solution requirements. Although the scheduling rules
have shorter solution time when solving FJSP instances of different
sizes, they may not achieve good solution quality, that is, there may
be a large difference in the solution quality of the scheduling rules for
FJSP instances. When solving the small and medium-sized (e.g., 10 × 5,
10 × 10, 20 × 10, and 30 × 10) FJSP instances, OR-Tools achieves
better solution quality than MAGRL. However, with the increase of the
size of FJSP instances, the gap value between MAGRL and OR-Tools is
gradually decreased, and the solution time of OR-Tools is much longer
than that of MAGRL. When solving the large-sized (such as 50 × 20
and 100 × 20) FJSP instances, OR-Tools has failed to solve these FJSP
instances in the reasonable time, but the solution quality achieved with

1 [Online]. Available: https://developers.google.com/optimization.

https://developers.google.com/optimization
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Fig. 5. Sensitivity analyses of the four most key parameters.
r

a

M
G

MAGRL is getting better and better. It is not difficult to see that with
he increase of the size of FJSP instances, OR-Tools as a solver based on
he exact algorithm, its solution time has become a significant limiting
actor, whereas MAGRL has considerable obvious advantages compared
ith OR-Tools. The above results show that MAGRL can efficiently

olve different-sized FJSP instances. Moreover, its advantages are more
ignificant especially when solving large-sized FJSP instances.

4.5. Comparison results on benchmark instances

4.5.1. Comparison results on Hurink’s instances
In this experiment, the 40 FJSP instances in the sub-dataset Rdata of

urink dataset are selected as the test set. These 40 FJSP instances are
divided into eight groups according to different sizes, and each group
ontains five FJSP instances of the same size. The scheduling model
f 10 × 10 trained by MAGRL is compared with FIFO, SPT, MOPNR,
WKR, MPPO (Lei et al., 2022), and GNN-DRL (Song et al., 2022),

where MPPO and GNN-DRL are the two state-of-the-art GRL methods
or solving FJSP. For different methods, the average makespan and the
verage solution time obtained from solving the five same-sized FJSP
nstances are taken as the experimental results of solving the FJSP
nstances of this size. As shown in Tables 4 and 5, the comparisons

of the solution quality and solution time achieved with FIFO, SPT,
MOPNR, MWKR, MPPO, GNN-DRL, and MAGRL on Hurink’s instances,
respectively. Meanwhile, as shown in Fig. 6, the comparisons of the
verall performance achieved with FIFO, SPT, MOPNR, MWKR, MPPO,
NN-DRL, and MAGRL on Hurink’s instances.

As shown in Tables 4 and 5, although the solution speed of MAGRL
s slower than those of the four scheduling rules of FIFO, SPT, MOPNR,
10 
and MWKR, the maximum difference does not exceed 4.65 s. Moreover,
MAGRL achieves significantly better solution quality than FIFO, SPT,
MOPNR, and MWKR on the FJSP instances of different sizes. Com-
pared with MPPO, on the different-sized FJSP instances, the maximum
difference between the solution time of MAGRL and that of MPPO
does not exceed 3.49 s, but MAGRL achieves significant better solution
quality. Compared with GNN-DRL, MAGRL gets better solution quality
and consumes less solution time on most different-sized FJSP instances.
As depicted in Fig. 6, the average gap value of MAGRL is significantly
better than those of FIFO, SPT, MOPNR, MWKR, and MPPO and better
than that of GNN-DRL. Compared with the optimal solution UB, the
advantage rates of the scheduling rules, MPPO, GNN-DRL, and MAGRL
are shown in Fig. 7. As depicted in Fig. 7, MAGRL consistently achieves
the highest advantage rate on each Hurink’s instances and its advantage
ate exceeds 90%. In contrast, the lowest advantage rate of the other

methods is only 75%. Taken together, the results indicate that MAGRL
is superior to these comparison methods in solving FJSP instances of
different sizes, which confirms the effectiveness of MAGRL.

4.5.2. Comparison results on Brandimarte’s instances
In this experiment, the top 10 FJSP instances in Brandimarte dataset

re selected as the test set, and the scheduling model of 20 × 10 trained
by MAGRL is used to solve these 10 FJSP instances. The proposed

AGRL method is compared with MOPNR, MPPO (Lei et al., 2022),
NN-DRL (Song et al., 2022), IPSO (Ding and Gu, 2020), SLGA (Chen

et al., 2020), and SLABC (Long et al., 2022). MOPNR is the best-
performing scheduling rule among FIFO, SPT, MOPNR, and MWKR on
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Table 4
The comparisons of the solution quality achieved with FIFO, SPT, MOPNR, MWKR, MPPO, GNN-DRL, and MAGRL on Hurink’s instances.

Size FIFO SPT MOPNR MWKR MPPO (Lei
et al., 2022)

GNN-DRL (Song
et al., 2022)

MAGRL UB

𝐶max Gap 𝐶max Gap 𝐶max Gap 𝐶max Gap 𝐶max Gap 𝐶max Gap 𝐶max Gap

10 × 5 589.48 16.13% 672.96 32.58% 574.48 13.18% 593.64 16.95% 557.80 9.89% 523.40 3.11% 𝟓𝟐𝟏.𝟖𝟎 𝟐.𝟖𝟎% 507.60
10 × 10 852.56 22.32% 877.80 25.94% 858.40 23.16% 823.40 18.13% 835.80 19.91% 𝟕𝟓𝟕.𝟒𝟎 𝟖.𝟔𝟕% 758.00 8.75% 697.00
15 × 5 855.96 7.78% 994.20 25.18% 847.84 6.75% 843.36 6.19% 856.80 7.88% 808.80 1.84% 𝟖𝟎𝟒.𝟒𝟎 𝟏.𝟐𝟖% 794.20
15 × 10 998.80 23.74% 1104.80 36.87% 983.40 21.83% 980.00 21.41% 992.60 22.97% 896.40 11.05% 𝟖𝟖𝟔.𝟎𝟎 𝟗.𝟕𝟔% 807.20
15 × 15 1246.44 23.09% 1299.92 28.37% 1245.80 23.03% 1237.36 22.20% 1216.00 20.09% 1127.20 11.32% 𝟏𝟏𝟐𝟎.𝟎𝟎 𝟏𝟎.𝟔𝟏% 1012.60
20 × 5 1125.64 8.13% 1203.92 15.65% 1130.72 8.62% 1093.68 5.06% 1093.00 5.00% 1051.20 0.98% 𝟏𝟎𝟒𝟔.𝟖𝟎 𝟎.𝟓𝟔% 1041.00
20 × 10 1254.36 18.16% 1441.56 35.79% 1219.16 14.84% 1196.84 12.74% 1192.40 12.32% 1135.00 6.91% 𝟏𝟏𝟐𝟗.𝟒𝟎 𝟔.𝟑𝟗% 1061.60
30 × 10 1684.04 8.44% 1881.00 21.12% 1669.00 7.47% 1650.24 6.26% 1669.60 7.51% 1599.80 3.01% 𝟏𝟓𝟕𝟖.𝟐𝟎 𝟏.𝟔𝟐% 1553.00
able 5
he comparisons of the solution time achieved with FIFO, SPT, MOPNR, MWKR, MPPO, GNN-DRL, and MAGRL on Hurink’s instances.
Size FIFO SPT MOPNR MWKR MPPO (Lei et al., 2022) GNN-DRL (Song et al., 2022) MAGRL

Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)
10 × 5 0.05 0.05 0.05 0.05 0.22 0.76 0.51
10 × 10 0.10 0.10 0.10 0.10 0.42 1.19 1.33
15 × 5 0.07 0.07 0.08 0.08 0.33 1.68 0.83
15 × 10 0.16 0.16 0.16 0.16 0.66 1.85 2.38
15 × 15 0.25 0.24 0.25 0.25 1.04 3.24 4.19
20 × 5 0.10 0.09 0.10 0.10 0.44 5.03 1.19
20 × 10 0.21 0.21 0.21 0.21 0.86 10.14 3.71
30 × 10 0.33 0.33 0.34 0.34 1.49 6.58 4.98
Fig. 6. The comparisons of the overall performance achieved with FIFO, SPT, MOPNR, MWKR, MPPO, GNN-DRL, and MAGRL on Hurink’s instances.
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he Brandimarte dataset. The comparisons of the solution quality and
olution time achieved with MOPNR, MPPO, GNN-DRL, IPSO, SLGA,
LABC, and MAGRL on Brandimarte’s instances are shown in Tables 6
nd 7, respectively. Fig. 8 presents the comparisons of the overall
erformance achieved with MOPNR, MPPO, GNN-DRL, IPSO, SLGA,
LABC, and MAGRL on Brandimarte’s instances.

As shown in Tables 6 and 7, the solution time of MOPNR is slightly
etter than that of MAGRL, but the solution quality of MAGRL is
uch better than that of MOPNR on all FJSP instances. Compared
ith MPPO and GNN-DRL, the solution time of MAGRL, MPPO, and
NN-DRL are relatively similar on different FJSP instances, but the

olution quality of MAGRL outperforms that of MPPO and GNN-DRL on
ost FJSP instances. Compared with IPSO, SLGA, and SLABC, MAGRL

chieves better solution quality on most FJSP instances, and there is
ittle difference between the solution quality achieved with MAGRL and
hat achieved with SLGA on all FJSP instances. However, as the size of
JSP increases, these solution methods based on the MHAs including
 B

11 
PSO, SLGA, and SLABC need a long iteration time to get better solution
uality, which leads to a significant increase in the solution time of
PSO, SLGA, and SLABC. As shown in Tables 6 and 7, MAGRL has
 very short solution time on all FJSP instances, but achieves better
olution quality, which shows the advantages of MAGRL over IPSO,
LGA, and SLABC. As depicted in Fig. 8, the average gap value of
AGRL is significantly better than those of MOPNR, MPPO, GNN-DRL,

nd SLABC, and the maximum differences between the gap values of
OPNR, MPPO, GNN-DRL, and SLABC and that of MAGRL are 53.45%,

5.39%, 32.76%, and 29.94% on the same FJSP instance, respectively.
n addition, the average gap value of MAGRL is similar to those of
PSO and SLGA. Compared with the optimal solution UB, the advantage
ates of MOPNR, MPPO, GNN-DRL, IPSO, SLGA, SLABC, and MAGRL to
olve Brandimarte’s instances are shown in Fig. 9. As seen in Fig. 9,
n all Brandimarte’s instances, the advantage rates of MAGRL are
ignificantly higher than those of the scheduling rule MOPNR. On most
randimarte’s instances, the advantage rates of MAGRL are superior to
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Fig. 7. The advantage rates of different methods to solve Hurink’s instances.
Table 6
The comparisons of the solution quality achieved with MOPNR, MPPO, GNN-DRL, IPSO, SLGA, SLABC, and MAGRL on Brandimarte’s instances.

Size MOPNR MPPO (Lei
et al., 2022)

GNN-DRL (Song
et al., 2022)

IPSO (Ding
and Gu, 2020)

SLGA (Chen
et al., 2020)

SLABC (Long
et al., 2022)

MAGRL UB

𝐶max Gap 𝐶max Gap 𝐶max Gap 𝐶max Gap 𝐶max Gap 𝐶max Gap 𝐶max Gap

10 × 6 45 15.38% 44 12.85% 42 7.69% 𝟒𝟎 𝟐.𝟓𝟔% 𝟒𝟎 𝟐.𝟓𝟔% 42 7.69% 42 7.69% 39
10 × 6 37 42.31% 32 23.08% 35 34.62% 29 11.54% 𝟐𝟕 𝟑.𝟖𝟓% 29 11.54% 28 7.69% 26
15 × 8 220 7.84% 𝟐𝟎𝟒 𝟎.𝟎𝟎% 𝟐𝟎𝟒 𝟎.𝟎𝟎% 𝟐𝟎𝟒 𝟎.𝟎𝟎% 𝟐𝟎𝟒 𝟎.𝟎𝟎% 𝟐𝟎𝟒 𝟎.𝟎𝟎% 𝟐𝟎𝟒 𝟎.𝟎𝟎% 204
15 × 8 75 25.00% 70 16.67% 72 20.00% 66 10.00% 𝟔𝟎 𝟎.𝟎𝟎% 69 15.00% 67 11.67% 60
15 × 4 187 8.72% 182 5.81% 181 5.23% 175 1.74% 𝟏𝟕𝟐 𝟎.𝟎𝟎% 175 1.74% 175 1.74% 172
10 × 10 102 75.86% 78 34.48% 90 55.17% 77 32.76% 𝟔𝟗 𝟏𝟖.𝟗𝟕% 80 37.93% 71 22.41% 58
20 × 5 214 53.96% 157 12.95% 194 39.57% 145 4.32% 𝟏𝟒𝟒 𝟑.𝟔𝟎% 155 11.51% 146 5.04% 139
20 × 10 531 1.53% 531 1.53% 𝟓𝟐𝟑 𝟎.𝟎𝟎% 𝟓𝟐𝟑 𝟎.𝟎𝟎% 𝟓𝟐𝟑 𝟎.𝟎𝟎% 𝟓𝟐𝟑 𝟎.𝟎𝟎% 𝟓𝟐𝟑 𝟎.𝟎𝟎% 523
20 × 10 311 1.30% 331 7.82% 317 3.26% 320 4.23% 320 4.23% 368 19.87% 𝟑𝟏𝟐 𝟏.𝟔𝟑% 307
20 × 15 269 36.55% 247 25.38% 252 27.92% 239 21.32% 254 28.93% 283 43.65% 𝟐𝟐𝟒 𝟏𝟑.𝟕𝟏% 197
Table 7
The comparisons of the solution time achieved with MOPNR, MPPO, GNN-DRL, IPSO, SLGA, SLABC, and MAGRL on Brandimarte’s instances.

Instance Size MOPNR MPPO (Lei
et al., 2022)

GNN-DRL (Song
et al., 2022)

IPSO (Ding
and Gu, 2020)

SLGA (Chen
et al., 2020)

SLABC (Long
et al., 2022)

MAGRL

Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)
MK1 10 × 6 0.05 0.23 0.86 34.70 27.63 29.65 0.68
MK2 10 × 6 0.06 0.24 0.86 50.00 29.11 73.97 0.58
MK3 15 × 8 0.15 0.65 3.13 562.50 112.60 117.20 2.21
MK4 15 × 8 0.09 0.42 1.55 135.00 63.21 55.67 1.10
MK5 15 × 4 0.11 0.45 1.89 131.50 60.35 165.40 1.22
MK6 10 × 10 0.16 0.43 3.17 797.80 72.80 170.10 2.33
MK7 20 × 5 0.10 0.43 1.66 160.60 57.77 1189.70 1.20
MK8 20 × 10 0.26 1.09 6.32 944.80 521.70 366.30 4.39
MK9 20 × 10 0.26 1.25 7.00 1762.00 552.50 410.60 4.81
MK10 20 × 15 0.27 1.16 7.20 2675.00 1335.00 332.70 5.96
those of MPPO, GNN-DRL, and SLABC. Taken together, MAGRL is far
uperior to MOPNR, MPPO, GNN-DRL, and SLABC, and slightly better
han IPSO and SLGA.

According to the experimental results achieved on the randomly
enerated FJSP instances and two common benchmarks, the perfor-
ance of MAGRL is considerably stable on different test sets, and the

verall performance of MAGRL is better than that of various advanced
omparison methods to solve FJSP, indicating that MAGRL has good
fficiency and robustness.
12 
4.6. Computational complexity analysis

To explore the computational complexity of the proposed MAGRL
method, an experimental analysis is carried out on the changes in the
scale of FJSP, focusing on the impacts of the number of machines
and the number of jobs on the solution efficiency. Specifically, this
experiment is conducted on Hurink’s instances and divided into the
following two groups: (1) the number of machines is fixed to 10,
while the number of jobs is gradually increased from 10 to 30; (2)
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Fig. 8. The comparisons of the overall performance achieved with MOPNR, MPPO, GNN-DRL, IPSO, SLGA, SLABC, and MAGRL on Brandimarte’s instances.
Fig. 9. The advantage rates of different methods to solve Brandimarte’s instances.
the number of jobs is fixed to 15, while the number of machines is
gradually increased from 5 to 15. Figs. 10 and 11 clearly show the trend
of computational complexity with the number of jobs and machines.
As seen in Fig. 10, when the number of machines is kept at 10, the
computation time of MAGRL gradually increases with the increase of
the number of jobs, but the growth trend is relatively gentle. It indicates
that MAGRL increases the computation time when processing more
jobs, but does not show a sharp increase, showing good scalability. As
seen in Fig. 11, when the number of jobs is kept at 15, the computation
13 
time of MAGRL increases significantly with the increase of the number
of machines, but it is basically a linear increase.

To sum up, the experimental results show that MAGRL has good
scalability when dealing with different-scale FJSP instances. Especially,
when the number of jobs changes, it shows a relatively slow increase
in computation time. Whereas when the number of machines increases,
the linear increase in computation time is also expected. This is because
the proposed MAGRL method requires the observation of the states of
the FJSP environment and the use of the operation and machine agents
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Fig. 10. Keep the number of machines 𝑚 = 10.

Fig. 11. Keep the number of jobs 𝑛 = 15.

to make scheduling decisions, and its computational complexity closes
to 𝑂(𝑛𝑚).

5. Conclusions

A novel MAGRL method is studied to effectively solve FJSP. The
global scheduling states of FJSP are represented by a heterogeneous
raph. The operation agent is responsible for controlling the selection
f the operations and the machine agent is responsible for control-
ing the assignment of the machines, and FJSP is modeled into two
DPs. The encoder-double-decoder architecture is constructed for han-

ling the structural information of this heterogeneous graph. In this
ncoder-double-decoder architecture, IGAT is adopted as an encoder to
ffectively extract the features of operation and machine nodes, and
he operation strategy and machine strategy networks are designed as

double decoders to effectively predict the operation sequencing and
achine assignment strategies. The AEA-MAPPO algorithm is designed

o train these two strategy networks, which can efficiently learn the
ptimal operation sequencing and machine assignment strategies. A
arge number of experiments have been conducted on the randomly
enerated FJSP instances and two common benchmarks. Compared
ith various state-of-the-art methods to solve FJSP, these results show

hat MAGRL can efficiently and stably solve FJSP instances of different
izes.

Although the proposed MAGRL method performs well in solving
tatic FJSP, it is still unable to make an optimal decision in real-time
cheduling when dealing with diversified dynamic events in actual
roductions, such as the insertion of new jobs, machine failures, and
14 
random arrival of jobs. Furthermore, due to MAGRL is based on a multi-
agent framework, the solution quality may be limited by the model
complexity and computing resources as the problem size increases.
Therefore, the focus of future research will be to further optimize

AGRL to improve its adaptability and solution efficiency in dealing
with more complex DFJSPs, especially its real-time decision-making
ability in dynamic environments.
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