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A B S T R A C T

In practical industrial applications, it is crucial to train a robust fault diagnosis (FD) model that can quickly
adapt to new working conditions or fault modes using a few labeled fault samples. Therefore, a novel
convolutional multi-head self-attention network-based meta-transfer learning approach (CMS-MTL) for few-
shot fault diagnosis (FSFD) is proposed. Firstly, a convolutional multi-head self-attention network (CMHSAN)
is designed, which ingeniously combines the multi-head self-attention (MHSA) blocks and convolution blocks.
The local and global feature information of the input time–frequency images are fully considered through
the mutual cooperation of MHSA and convolution, so as to fully extract the discriminative features among
various fault classes. Secondly, a three-stage CMHSAN-based meta-transfer learning (MTL) scheme is proposed,
which provides a good initialization state for the meta-training of the CMHSAN model through the pre-training
stage, updates the pre-trained model with the scaling and shifting parameters in the meta-training stage, and
fine-tunes the updated model in the meta-testing stage, so as to quickly adapt to new FSFD tasks from the
target domain. Thirdly, aiming at the fault classes that are difficult to be diagnosed during meta-training, a
meta-task re-training (MTRT) strategy is designed to learn more valuable transferable knowledge in the meta-
training stage, thereby improving the adaptability of the CMHSAN model to hard FSFD tasks. Finally, extensive
experiments are conducted under different FSFD scenarios to verify the effectiveness of the proposed approach.
The results prove that the approach can quickly adapt to new FSFD tasks through the learned meta-knowledge
and achieve high diagnosis accuracies.
1. Introduction

Rolling bearings and gearboxes are the most common components
of rotating machinery. Their health conditions directly impact the
performance and safe operation of the machines [1]. Therefore, it is of
great significance to monitor the running states of rotating machinery
and perform fault diagnosis. In past years, the deep learning-based fault
diagnosis methods [2] have made significant progress. For example,
Ruan et al. [3] designed a convolutional neural network for rotating
machinery fault diagnosis (RMFD), where the input sample length
and convolution kernel size are determined by the physics-guided
rules, which can achieve higher accuracy. Hou et al. [4] proposed a
Transformer-based fault diagnosis model to significantly improve the
diagnosis accuracy of bearings. Tong et al. [5] effectively realized
RMFD under noisy working conditions through the improved deep
residual shrinkage network. Han et al. [6] studied a semi-supervised
RMFD method using adversarial learning, which achieves superior fault
diagnosis performance under limited labeled training samples. Chen

∗ Corresponding author.
E-mail address: wanlanjun@hut.edu.cn (L. Wan).

et al. [7] successfully realized the fault detection of gearboxes by
using the physics knowledge on the fault signature to determine the
hyper-parameters of the long-short term memory neural network. Yao
et al. [8] proposed a Bayesian deep learning-based intelligent fault
diagnosis approach, which not only has higher diagnosis accuracy but
also effectively increases the trustworthiness and reliability of diagnosis
results. The above research has conducted in-depth and successful ex-
ploration of deep learning-based fault diagnosis from different aspects,
greatly promoting the development of the fault diagnosis field.

The deep learning-based RMFD methods can automatically extract
fault features from the vibration data of rotating machinery and identify
different fault modes to achieve efficient and accurate FD, but most
of them usually need numerous labeled fault samples and expensive
computing resources as support. In industrial production, the cost of
acquiring numerous labeled fault samples is extremely high due to
the complicated working conditions. Especially for new fault types,
the available fault data are extremely limited. In the case of a few
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labeled fault samples, the RMFD models based on deep learning are
difficult to learn and generalize to new faults. In recent years, many
researchers have adopted data augmentation, transfer learning, meta-
learning, and MTL to cope with the problem of few-shot in FD. Data
augmentation technology usually uses oversampling methods and gen-
erative adversarial network (GAN) to increase the diversity and scale
of training data [9]. The oversampling methods enlarge minority class
samples by generating synthetic samples. Wei et al. [10] combined
the majority weighted minority oversampling method and the cluster
algorithm to deal with the within-class imbalances that exist in bearing
datasets under complex working conditions. Li et al. [11] studied an
improved synthetic minority oversampling method, where the natural
neighbors are introduced to generate high-quality synthetic samples.
These oversampling methods lack consideration of the distribution of
the original data and are prone to produce noise samples. GAN can
be adopted for generating samples with a similar distribution to the
original data. Zhou et al. [12] designed a GAN with global optimiza-
tion, where a generator is adopted for generating fault features and
a discriminator is adopted for filtering low-quality fault samples. Liu
et al. [13] utilized an improved GAN to address the issue of imbalanced
fault classes in the bearing dataset. The sample space can be effectively
expanded through GAN. However, when the original training data are
seriously insufficient, the high-quality fault sample generation ability
of GAN will be limited to a certain extent, which may lead to mode
collapse and instability during training.

In order to reduce the demand for model training on the labeled
fault samples from the target domain, the transfer learning performs the
FD tasks through the knowledge learned from the source domains [14].
Li et al. [15] offered an improved domain adaptation approach to
fully extract domain invariant features, thereby effectively realizing
RMFD under cross-working condition scenarios. Tan et al. [16] de-
signed a joint distributed adaptation network, which can minimize the
distribution discrepancies of features learned from different domains.
Li et al. [17] exploited a weighted adversarial transfer network to
effectively realize cross-domain knowledge transfer. Wan et al. [18]
extracted domain invariant features more effectively by reducing joint
distribution discrepancies. Chen et al. [19] adopted an effective transfer
learning method to perform cross-domain FD, where the parameters
of the pre-trained model are used as the initial weights of the target
domain FD model, and the limited training data from the target domain
are used for fine-tuning the model. Transfer learning can apply the
knowledge learned from one source task to solve another related but
different target task, whereas less attention is paid to how to effectively
select and adjust the transfer strategies to adapt to the changing transfer
learning scenarios.

Meta-learning can learn a general strategy that can transfer knowl-
edge between different tasks through learning from multiple FSFD
tasks, which enables the model to quickly adapt to the changes and
challenges in the face of new FSFD tasks. Therefore, recently some
researchers have begun to apply meta-learning to FSFD [20]. Zhang
et al. [21] studied a model-agnostic meta-learning (MAML)-based FSFD
approach that can well adapt to unknown working conditions, which
can effectively enhance the performance of FSFD. Yang et al. [22] put
forward an improved MAML method, which enhances the generaliza-
tion of the FSFD model. Feng et al. [23] explored a meta-learning
method that employs the unlabeled samples to optimize the original
prototypes generated by using the labeled samples from the support
set, which can more accurately reflect the class features. Ma et al. [24]
used distance measurement to help the meta-learning model obtain
the similarity between samples, which effectively improves the ability
of FSFD. Lin et al. [25] presented a generalized MAML method that
can increase the performance of heterogeneous signal-driven FSFD.
Meta-learning can enhance the ability of the FD model to quickly
adapt to new target tasks by exploiting the meta-knowledge learned
from several few-shot tasks, whereas the knowledge transfer between
2

different domains is less concerned.
MTL [26] can effectively exploit the meta-knowledge learned from
multiple meta-tasks to promote knowledge transfer between different
domains, thereby significantly enhancing the adaptability of the model
on new tasks and effectively alleviating the limitations of traditional
transfer learning and meta-learning methods in dealing with the prob-
lem of few-shot classification. Recently, MTL contributes another idea
for FSFD. Li et al. [27] presented a MTL approach for RMFD, which
effectively realizes fine-grained FSFD through cross-domain knowledge
transfer. Ma et al. [28] studied a digital twin-assisted MTL approach,
where the distribution discrepancies between simulated and real data
are effectively reduced through domain adaptation. Lei et al. [29]
developed a prior knowledge-embedded MTL framework, where the
prior knowledge is embedded into the meta-learning based on metric,
which enhances the model generalization in different FSFD tasks. The
existing research shows that MTL has a promising potential in FSFD.
However, the collected rotating machinery fault data are complex and
limited in actual industrial scenarios, and it is usually hard to extract
the discriminative features among different fault classes, which poses
a challenge to the design of the pre-training model in MTL. Moreover,
when there are large domain discrepancies between the new FSFD tasks
and the meta-training tasks, the model used in MTL may not learn
enough knowledge for accurate FD. Therefore, a novel CMHSAN-based
MTL approach for FSFD is explored.

Compared with the FSFD methods described above, the proposed
CMS-MTL approach holds the following advantages. Firstly, the CMH-
SAN designed in the proposed CMS-MTL approach meticulously com-
bines the MHSA blocks and convolution blocks, which not only can
better capture the fault features with higher correlation with fault
classes, but also can better enhance the extraction and fusion of the
local and global fault features. Secondly, the three-stage CMHSAN-
based MTL scheme adopted in the proposed CMS-MTL approach com-
bines the advantages of transfer learning and meta-learning, where the
pre-trained CMHSAN model is updated through scaling and shifting
parameters and the updated model is fine-tuned, which can train
a robust CMHSAN model that can rapidly adapt to the new FSFD
tasks. Finally, the proposed CMS-MTL approach provides a meta-task
re-training strategy, which can help the CMHSAN model learn more
generalized and transferable fault diagnosis knowledge to better adapt
to various hard FSFD tasks.

The main contributions of this study are as follows.

(1) A convolutional multi-head self-attention network which inge-
niously combines the MHSA blocks and convolution blocks is
designed. The local and global feature information of the input
time–frequency images are fully considered through the mutual
cooperation of MHSA and convolution, which can fully extract
the discriminative features among various fault classes.

(2) A three-stage CMHSAN-based MTL scheme is proposed, which
provides a good initialization state for the meta-training of the
CMHSAN model through the pre-training stage, updates the
pre-trained model with scaling and shifting parameters in the
meta-training stage, and fine-tunes the model in the meta-testing
stage, which can quickly adapt to new FSFD tasks from the target
domain.

(3) A meta-task re-training strategy is designed to learn more valu-
able transferable knowledge for the fault classes that are difficult
to be diagnosed in the meta-training stage, thereby improving
the adaptability of the CMHSAN model to hard FSFD tasks.

The remainder of this study is organized as follows. Section 2
introduces the basic theory. Section 3 describes the proposed CMS-
MTL approach. Section 4 presents the experimental results and analysis.

Finally, Section 5 provides the conclusions.
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Fig. 1. Three different MHSA mechanisms.

2. Basic theory

2.1. MHSA mechanism

The MHSA mechanism [30] is a kind of attention mechanism in the
Transformer model, which helps the model focus on the information of
input sequences in different representation subspaces at the same time,
so as to capture the important features and long-distance dependencies
in the sequences. In the process of self-attention calculation, firstly, the
input sequence 𝑋 is linearly transformed to obtain the query matrix 𝒬,
ey matrix 𝒦 , and value matrix 𝒱 , which can be described as

𝒬 = 𝑋𝑊 𝒬 , (1)

𝒦 = 𝑋𝑊 𝒦 , (2)

and

𝒱 = 𝑋𝑊 𝒱 , (3)

where 𝑊 𝒬 , 𝑊 𝒦 , and 𝑊 𝒱 are the linear transformation parameter ma-
trices. Secondly, the self-attention weight matrix 𝐴 can be obtained by
calculating the similarity through the dot-product operation between 𝒬
nd 𝒦 and normalizing the similarity through the softmax function as
ollows:

= Softmax
(

𝒬𝒦 𝑇
√

𝑑𝑘

)

, (4)

here 𝑑𝑘 is the dimensionality of 𝒦 . Finally, the output representation
f self-attention can be obtained by

ttention (𝒬, 𝒦 , 𝒱 ) = 𝐴𝒱 . (5)

The output of MHSA is the concatenation of ℎ self-attention outputs,
hich is defined as

HSA (𝑋) = Concat
(

𝑆𝐴1, 𝑆𝐴2, … , 𝑆𝐴ℎ
)

𝑊 𝑂 , (6)

where

𝑆𝐴𝑖 = Attention
(

𝑋𝑊 𝒬
𝑖 , 𝑋𝑊 𝒦

𝑖 , 𝑋𝑊 𝒱
𝑖
)

. (7)

In Eq. (7), 𝑊 𝒬
𝑖 , 𝑊 𝒦

𝑖 , and 𝑊 𝒱
𝑖 represent three different linear transfor-

ation matrices of the 𝑖th self-attention head respectively, and 𝑊 𝑂 is
parameter matrix.

Fig. 1 shows three different MHSA mechanisms. Fig. 1(a) shows the
riginal MHSA mechanism [30], which has high computational com-
lexity. Fig. 1(b) shows the space-reduction attention mechanism [31],
hich reduces the computational complexity of the self-attention layer
y reducing the spatial scales of 𝒦 and 𝒱 before performing the
elf-attention operation. However, the computational complexity of
3

he space-reduction attention layer is still high when processing high-
esolution images. Fig. 1(c) shows the linear space-reduction attention
echanism [31], which uses the avg-pooling operation to reduce the

patial dimension of the input of the self-attention layer, making the
pace-reduction attention layer have linear complexity and further
educing the computational cost of the self-attention layer. The linear
pace-reduction attention can be expressed as

SRA (𝑋) = Attention
(

𝑋𝑊 𝒬 , 𝑃𝑠
(

𝑋𝑊 𝒦 )

, 𝑃𝑠
(

𝑋𝑊 𝒱 ))

, (8)

where 𝑃𝑠 is the avg-pooling operation with the stride of 𝑠.

2.2. Meta-learning

The goal of meta-learning [20] is to enable the model to learn gen-
eral meta-knowledge from multiple related tasks to achieve rapid adap-
tation to new tasks. The four main concepts in meta-learning are meta-
knowledge, meta-task, support set, and query set. Meta-knowledge is
a general strategy obtained by the model in the learning process of
several tasks, which is employed to guide the model in adapting to new
tasks. Meta-task 𝑇 is often called an ‘‘𝑁-class 𝐾-shot’’ task, and each
meta-task is composed of a support set 𝑇 𝑠 and a query set 𝑇 𝑞 , where
𝑁 denotes the number of classes and 𝐾 denotes the number of samples
per class in 𝑇 𝑠. The support set 𝑇 𝑠 =

{(

𝑥𝑠𝑖 , 𝑦
𝑠
𝑖
)}𝑁×𝐾

𝑖=1 is used for helping
the model adapt to the specific task, where 𝑥𝑠𝑖 and 𝑦𝑠𝑖 represent the 𝑖th
training sample and corresponding class label, respectively. The query
set 𝑇 𝑞 =

{(

𝑥𝑞𝑖 , 𝑦
𝑞
𝑖
)}𝑁×𝑄

𝑖=1 is adopted for testing the performance of the
model on a specific task, where 𝑄 denotes the number of samples per
class in 𝑇 𝑞 .

Meta-learning acquires meta-knowledge through the inner-level
learning and outer-level learning. MAML is a common optimization-
based meta-learning method, which aims to find the good initialization
of model parameters suitable for all FSFD tasks. Specifically, in the
inner-level learning stage of MAML, the parameterized model of a
specific task is obtained by gradient updating on 𝑇 𝑠. In the outer-level
learning stage of MAML, the global shared meta-learner is obtained by
optimizing the parameters of the meta-learner on 𝑇 𝑞 of multiple meta-
tasks. This bi-level learning mechanism enables the model can quickly
converge on new FSFD tasks through fine-tuning with a few samples,
thus performing well in FSFD.

3. Proposed method

3.1. Overall process of FSFD

The overall process of FSFD using the proposed CMS-MTL method
is depicted in Fig. 2, including the following three main steps.

Step 1: Data acquisition. The rotating machinery vibration signals
are collected by the accelerometers. According to different FSFD tasks,
the collected rotating machinery vibration signals are split into the
source and target domains.

Step 2: Data preprocessing. To better analyze the fault features in
vibration signals, the short-time Fourier transform (STFT) is adopted
to transform the rotating machinery vibration signals from the source
and target domains into two-dimensional time–frequency images. Fig. 3
shows the examples of the raw vibration signals and corresponding
time–frequency images of the inner-race faults of the drive-end bearing
under different rotating speeds in the Case Western Reserve University
(CWRU) dataset [32]. As seen in Fig. 3, the waveforms of the raw
vibration signals have certain similarity under different rotating speeds,
whereas the time–frequency images generated by STFT demonstrate
the differences of fault features under different rotating speeds, which
is helpful for the model to extract more discriminative fault features.
Therefore, the time–frequency images generated by STFT are used as
the input of CMHSAN to provide more accurate information for FSFD
using the CMHSAN model.
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Fig. 2. Overall process of FSFD using the proposed CMS-MTL method.
Fig. 3. Examples of the raw vibration signals and corresponding time–frequency images of the inner-race faults of the drive-end bearing under different rotating speeds in CWRU
dataset.
Step 3: Meta-transfer learning. The process of MTL based on CMH-
SAN includes three stages: pre-training, meta-training, and meta-
testing. Firstly, during the pre-training stage, the CMHSAN model
is pre-trained by using the time–frequency images from the source
domain to learn the general fault feature representations. Secondly,
during the meta-training stage, the pre-trained CMHSAN model is
updated by using the scaling and shifting parameters for each FSFD
task, and the meta-task re-training strategy is used to re-train the
fault classes that are difficult to identify in each meta-task. Finally,
during the meta-testing stage, the trained CMHSAN model is fine-tuned
through the time–frequency images in the support sets from the target
domain, and the fine-tuned model is tested on the query sets from the
target domain to validate the adaptability of the model on the new
FSFD tasks.

3.2. Design of CMHSAN

The traditional convolutional networks have the problems of the
low computing efficiency and limited global feature representation
4

capabilities. In contrast, Transformer [30] has a strong global feature
capture capability due to the design of its MHSA mechanism, but has
some deficiencies in local perception capability. To overcome these
limitations, the convolution blocks are combined with the MHSA blocks
in Transformer. Fig. 4 depicts the overall design of the proposed
CMHSAN, which is mainly composed of residual (Res) blocks and
Transformer (Trans) blocks. Its unique modular hierarchical structure
can fully extract local and global features of time–frequency images, so
as to realize efficient and accurate FSFD.

The CMHSAN model uses four 3 × 3 convolution (Conv) layers
to extract shallow general features. Firstly, the input time–frequency
images pass through a 3 × 3 Conv layer with an output channel of 64
and a stride of 2, which can reduce the size of the feature maps and
the calculation amount of the model. Secondly, two 3 × 3 Conv layers
with stride 1 are adopted to help the model better extract local features.
Finally, a 3 × 3 Conv layer with stride 2 is adopted to further reduce
the size of the feature maps. In addition, the ReLU activation function
is introduced for improving the nonlinear fitting ability of the model
and make it better adapt to the FSFD tasks.
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Fig. 4. Overall design of the proposed CMHSAN.
Each sample from the rotating machinery vibration signals is trans-
formed into a two-dimensional time–frequency image, which is input
into CMHSAN. The output 𝑧𝑙+1 after passing through the 𝑙th Conv layer
is

𝑧𝑙+1 = ReLU
( 𝐶
∑

𝑘=1
𝑤𝑘 ∗ 𝑧𝑙 + 𝑏𝑙

)

, (9)

where 𝑧𝑙 represents the input of the 𝑙th Conv layer, ∗ represents the
convolution operation, 𝐶 denotes the number of Conv kernels in the
𝑙th Conv layer, 𝑤𝑘 indicates the weight of the 𝑘th Conv kernel in the
𝑙th Conv layer, and 𝑏𝑙 denotes the bias of the 𝑙th Conv layer.

After the four Conv layers, three components are followed. Each
component includes a patch embedding layer, multiple Res blocks, and
Trans blocks. The patch embedding layer is used to divide the feature
maps outputted by its previous Conv layer into patches to reduce the
feature dimension and further extract the local features. The split-
transform-merge strategy of the Inception module in GoogLeNet [33]
is adopted in the Res blocks. Each Res block includes two 1 × 1 Conv
layers, a 3 × 3 group Conv layer, a batch normalization (BN) layer, and
the ReLU activation function, where the BN layer is employed to speed
up the convergence of the CMHSAN model. The nonlinear mapping
𝐹 ∶ 𝜌 → 𝐹 (𝜌) is constructed through a Res block. The output 𝜌𝑟+1
after the 𝑟th Res block is

𝜌𝑟+1 = 𝜌𝑟 + 𝐹
(

𝜌𝑟
)

, (10)

where 𝜌𝑟 represents the input of the 𝑟th Res block and 1 ≤ 𝑟 ≤ 𝑅.
𝑅 denotes the number of Res blocks in each component, and 𝑅 in the
three components are 2, 3, and 5, respectively. Although the Res blocks
can fully extract the local features of the time–frequency images, the
extraction of global features of the time–frequency images is equally
very important in FSFD. To comprehensively consider the local and
global features, two Trans blocks are introduced after the Res blocks
in each component to capture the global features. In each Trans block,
firstly, the output of its previous Res block enters the 1 × 1 Conv layer,
and the input channel dimensions are reduced to reduce the amount of
calculation of the MHSA layer in the Trans block, thereby accelerating
the training and reasoning process of the CMHSAN model. The output
p after the output 𝜌 of the Res block passes through a 1 × 1 Conv layer
is

p = Proj 𝜌 , (11)
5

( )
where Proj (·) denotes the 1 × 1 convolution operation. Secondly, the
output p enters the MHSA layer. Inspired by the linear space-reduction
attention shown in Fig. 1(c), the input p of the MHSA layer is avg-
pooled and its spatial dimension is reduced according to Eq. (8) before
calculating MHSA. The output 𝑧MHSA of the MHSA layer is denoted as

𝑧MHSA = Concat
(

LSRA1 (p) , LSRA2 (p) , … ,

LSRAℎ (p)
)

𝑊 𝑂 + p, (12)

where ℎ denotes the number of self-attention heads in the MHSA layer
and ℎ is set to 32 in the CMHSAN model. To capture the fine-grained
fault features of rotating machinery, a Res block is introduced into each
Trans block to cooperate with MHSA, making the CMHSAN model more
expressive, thereby enhancing the FSFD ability of the CMHSAN model.
Before entering the Res block, the output ℋ after reducing the channel
dimensions of 𝑧MHSA through the 1 × 1 convolution operation is

ℋ = Proj
(

𝑧MHSA
)

. (13)

The output 𝒫 after ℋ is passed through the Res block within the Trans
block is

𝒫 = ℋ + 𝐹 (ℋ ) . (14)

Thirdly, the output of the MHSA layer is concatenated with the output
of the Res block to mix the high- and low-frequency fault feature
information captured by the model, which is represented as

ℳ = Concat
(

𝑧MHSA,𝒫
)

. (15)

Finally, the multi-layer perceptron (MLP) layer is adopted for enhanc-
ing the extraction of the discriminative features of the time–frequency
images of different fault classes. The MLP layer includes a BN layer,
two 1 × 1 Conv layers, and the ReLU activation function. The output
𝒵 of the MLP layer is

𝒵 = MLP (ℳ) +ℳ. (16)

Through the above series of operations, the features of different
granularity of the time–frequency images can be fully extracted and
the final feature maps can be obtained. The global avg-pooling is per-
formed on the feature maps to obtain one-dimensional feature vectors,
which are mapped to the label space of fault classes through the fully
connected (FC) layer to achieve fault classification.
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Fig. 5. Process of MTL based on CMHSAN.
.3. Meta-transfer learning based on CMHSAN

Fig. 5 depicts the process of MTL based on CMHSAN. In Fig. 5, dif-
erent colors represent different stages of MTL, that is, yellow, orange,
nd green represent the pre-training, meta-training, and meta-testing
tages of MTL, respectively.

.3.1. Pre-training stage
In the pre-training stage, firstly, the feature extractor 𝐺𝑓 and classi-

ier 𝐺𝑐 in the CMHSAN model shown in Fig. 4 are initialized randomly,
here 𝐺𝑓 is composed of the rest of the CMHSAN model except for the
C layer, and 𝐺𝑐 is composed of the FC layer. Secondly, the pre-training
f the CMHSAN model is performed on the source domain 𝐷src, and
he pre-training process is described in Algorithm 1. In the pre-training
rocess of the CMHSAN model, stochastic gradient descent is utilized
or updating 𝐺𝑓 and 𝐺𝑐 , which can be expressed as
[

𝐺𝑓 ;𝐺𝑐
]

=
[

𝐺𝑓 ;𝐺𝑐
]

− 𝛼∇𝐿CE
([

𝐺𝑓 ;𝐺𝑐
])

, (17)

where 𝛼 is the learning rate of the pre-training stage, which is used
to control the step size of the parameter update. 𝐿CE

([

𝐺𝑓 ;𝐺𝑐
])

is
the cross-entropy (CE) loss on the source domain 𝐷src, which can be
calculated by

𝐿CE
([

𝐺𝑓 ;𝐺𝑐
])

= 1
|𝐷src|

∑

(𝑥𝑖 , 𝑦𝑖)∈𝐷src

𝒥
(

ℱ[

𝐺𝑓 ; 𝐺𝑐
]

(

𝑥𝑖
)

, 𝑦𝑖
)

, (18)

here ℱ[

𝐺𝑓 ; 𝐺𝑐
]

(

𝑥𝑖
)

and 𝑦𝑖 denote the predicted label and true la-
el of sample 𝑥𝑖 respectively, |𝐷src| denotes the number of sam-
les from 𝐷src, and 𝒥 (·) represents the CE loss function with label
moothing used to solve the issue of overfitting to the source domain.
(

ℱ[

𝐺𝑓 ; 𝐺𝑐
]

(

𝑥𝑖
)

, 𝑦𝑖
)

is used to measure the difference between the

redicted and true labels of sample 𝑥𝑖, which can be calculated as

(

ℱ[

𝐺𝑓 ;𝐺𝑐
]

(

𝑥𝑖
)

, 𝑦𝑖
)

= −log
⎛

⎜

⎜

⎜

⎝

(1 − 𝜖)
exp

(

z𝑦𝑖

)

∑N
𝑗=1 exp

(

z𝑗|𝑥𝑖

) + 𝜖
N

⎞

⎟

⎟

⎟

⎠

, (19)

here 𝜖 is the label smoothing factor and 0 < 𝜖 < 1, N is the number
f fault classes, and z𝑦𝑖 and z𝑗|𝑥𝑖 are the unnormalized log-probabilities
f the CMHSAN model for sample 𝑥𝑖 belonging to the true label 𝑦𝑖 and
he 𝑗th class, respectively.
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Algorithm 1 The pre-training process of the proposed CMS-MTL
method
Input: The source domain 𝐷src, the learning rate 𝛼, the batch size 𝐵, the

number of iterations 𝐼 , and the number of epochs 𝐸.
Output: The pre-trained 𝐺𝑓 and 𝐺𝑐 .
1: Randomly initialize 𝐺𝑓 and 𝐺𝑐 ;
2: for 𝑖 = 1 to 𝐸 do
3: for 𝑗 = 1 to 𝐼 do
4: Randomly choose a batch of samples

{

𝑥𝑘, 𝑦𝑘
}𝐵
𝑘=1 from 𝐷src;

5: Calculate 𝐿CE
([

𝐺𝑓 ;𝐺𝑐
])

by Eq. (18);
6: Update 𝐺𝑓 and 𝐺𝑐 by Eq. (17);
7: end for
8: end for

3.3.2. Meta-training stage
Due to the classification objectives of each meta-task in the meta-

training stage are different from those in the pre-training stage, a
new CMHSAN model is initialized randomly for each meta-task in
the meta-training stage, and the network structure of the model is
exactly the same as that of the CMHSAN model obtained in the pre-
training stage. During the meta-training process of the CMHSAN model,
firstly, a meta-training set consisting of 𝑛 ‘‘𝑁-class 𝐾-shot’’ meta-tasks
is formed by random sampling from 𝐷src. Secondly, the weight and bias
parameters of 𝐺𝑓 in the pre-trained CMHSAN model are transferred to
the CMHSAN model corresponding to the first meta-task to obtain the
base-learner 𝐺𝜃 , which provides a good initialization state for the meta-
training of the CMHSAN model, so as to reduce the risk of overfitting
when using a few samples for meta-training. Finally, the base-learner
and meta-learner are updated on the support set 𝑇 𝑠

trn and query set 𝑇 𝑞
trn

of each meta-task through gradient descent, respectively. Specifically,
the meta-training process of the CMHSAN model on each meta-task
includes the following steps.

Step 1: 𝐺𝜃 is iteratively updated on 𝑇 𝑠
trn of the current meta-task

through gradient descent, which can be described as

𝐺′
𝜃 = 𝐺𝜃 − 𝛽∇𝐺𝜃

𝐿𝑇 𝑠
trn

(

𝐺𝜃 , 𝑆
𝜔, 𝑆𝜏) , (20)

where 𝛽 is the base-learning rate and 𝐺′
𝜃 is the updated base-learner.

𝐿𝑇 𝑠
trn

(

𝐺𝜃 , 𝑆𝜔, 𝑆𝜏) denotes the CE loss on 𝑇 𝑠
trn of the current meta-task,

which can be calculated by

𝐿𝑇 𝑠
trn

(

𝐺𝜃 , 𝑆
𝜔, 𝑆𝜏) = 1

𝑁 ×𝐾
∑

𝑠
𝒥

(

ℱ(𝐺𝜃 , 𝑆𝜔 , 𝑆𝜏 )
(

𝑥𝑖
)

, 𝑦𝑖
)

, (21)

(𝑥𝑖 , 𝑦𝑖)∈ 𝑇trn
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Fig. 6. Proposed meta-task re-training strategy.
where 𝑆𝜔 and 𝑆𝜏 represent the scaling and shifting parameters and are
initialized to ones and zeros, respectively.

Step 2: 𝑆𝜔 and 𝑆𝜏 are iteratively updated on 𝑇 𝑞
trn of the current

meta-task through gradient descent, which can be described as

𝑆𝜔 = 𝑆𝜔 − 𝛾∇𝑆𝜔𝐿𝑇 𝑞
trn

(

𝐺′
𝜃 , 𝑆𝜔, 𝑆𝜏) (22)

and

𝑆𝜏 = 𝑆𝜏 − 𝛾∇𝑆𝜏𝐿𝑇 𝑞
trn

(

𝐺′
𝜃 , 𝑆𝜔, 𝑆𝜏) , (23)

where 𝛾 is the meta-learning rate. 𝐿𝑇 𝑞
trn

(

𝐺′
𝜃 , 𝑆

𝜔, 𝑆𝜏) denotes the CE
loss on 𝑇 𝑞

trn of the current meta-task, which can be calculated by

𝐿𝑇 𝑞
trn

(

𝐺′
𝜃 , 𝑆

𝜔, 𝑆𝜏) = 1
𝑁 ×𝑄

∑

(𝑥𝑖 , 𝑦𝑖)∈ 𝑇 𝑞
trn

𝒥
(

ℱ(

𝐺′
𝜃 , 𝑆

𝜔 , 𝑆𝜏
)

(

𝑥𝑖
)

, 𝑦𝑖

)

.

(24)

Step 3: The updated scaling and shifting parameters are introduced
to adaptively adjust the weight parameters 𝜙 and bias parameters 𝜁
of 𝐺𝑓 in the CMHSAN model corresponding to the current meta-task,
enabling the CMHSAN model to rapidly adapt to the new FSFD tasks,
which can be expressed as

𝐺𝑓 (𝜙, 𝜁 ) = 𝜙 ⊙ 𝑆𝜔 + 𝜁 + 𝑆𝜏 , (25)

where ⊙ represents the element-wise multiplication.
Step 4: 𝐺′

𝜃 is iteratively updated on 𝑇 𝑞
trn of the current meta-task

through gradient descent to obtain the meta-learner 𝐺𝜗, which can be
described as

𝐺𝜗 = 𝐺′
𝜃 − 𝛾∇𝐺′

𝜃
𝐿𝑇 𝑞

trn

(

𝐺′
𝜃 , 𝑆

𝜔, 𝑆𝜏) . (26)

Repeating steps 1–4 to complete the model training on each meta-
task of the meta-training set in turn, and the meta-learner 𝐺𝜗 obtained
on the current meta-task provides a good initialization state for the
base-learner 𝐺𝜃 corresponding to the next meta-task. The ℰ epochs of
training are performed repeatedly on the meta-training set, and the 𝐺𝜗
obtained from the last epoch of training provides a good initialization
state for the base-learner 𝐺∗

𝜃 used in the meta-testing stage to learn new
7

FSFD tasks.
3.3.3. Meta-testing stage
The meta-testing stage aims to evaluate the rapid adaptability of

the meta-learner obtained in the meta-training stage when facing new
FSFD tasks from the target domain. In the meta-testing stage, a meta-
testing set consisting of 𝑣 ‘‘𝑁-class 𝐾-shot’’ meta-tasks is formed by
random sampling from the target domain 𝐷tar, and each meta-task is
composed of a labeled support set 𝑇 𝑠

tst and an unlabeled query set 𝑇 𝑞
tst.

For each meta-task, at first the base-learner 𝐺∗
𝜃 is fine-tuned on 𝑇 𝑠

tst of
the meta-task through gradient descent to obtain the optimized meta-
learner 𝐺∗

𝜗, and then the 𝐺∗
𝜗 is tested on 𝑇 𝑞

tst of the meta-task to gain
the FSFD accuracy. After obtaining the FSFD accuracies of 𝐺∗

𝜗 on all
meta-tasks of the meta-testing set, the average accuracy is calculated
and employed for evaluating the generalization performance of the
meta-learner obtained through meta-training on new FSFD tasks.

3.4. Meta-task re-training strategy

In the traditional meta-learning methods, the generalization abil-
ity is improved by learning multiple meta-tasks formed by random
sampling in the meta-training stage. Due to the randomness of sam-
pling, the fault classes contained in different meta-tasks also have
randomness, which may lead to differences in the difficulty of differ-
ent meta-tasks used for model training. The traditional meta-learning
methods usually treat all meta-tasks equally in the meta-training stage,
that is, the meta-tasks with high classification difficulty during the
meta-training process are not paid enough attention, which may affect
the FSFD performance to a certain extent. Therefore, a meta-task re-
training strategy is proposed, as depicted in Fig. 6. The 𝜇 ‘‘𝑁-class
𝐾-shot’’ meta-tasks are formed by random re-sampling from the source
domain according to the fault classes that are difficult to be diagnosed,
and the CMHSAN model is re-trained on these meta-tasks to help
the model learn more valuable and more general transferable fault
diagnosis knowledge, enabling the model to faster adapt to different
FSFD tasks. The meta-training process of the CMHSAN model with
the MTRT strategy is described in Algorithm 2, mainly including the
following steps.

Step 1: Firstly, the base-learner 𝐺𝜃𝑘 is updated on the support
𝑠 ′
set 𝑇trn𝑘

of the 𝑘th meta-task in the meta-training set to obtain 𝐺𝜃𝑘
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Algorithm 2 The meta-training process of the proposed CMHSAN
model with the MTRT strategy
Input: The source domain 𝐷src, the meta-training set including 𝑛 meta-tasks,

the pre-trained 𝐺𝑓 , the base-learning rate 𝛽, the meta-learning rate 𝛾, the
meta-batch size 𝑚, the number of epochs ℰ , and the empty set 𝒞 .

Output: The final meta-learner 𝐺𝜗.
1: Transfer the parameters of 𝐺𝑓 and randomly initialize the classifier 𝐺𝑐 to

obtain 𝐺𝜃1 ;
2: for 𝑖 = 1 to ℰ do
3: for 𝑗 = 1 to 𝑛∕𝑚 do
4: Randomly choose a batch of meta-tasks

{

𝑇trn(𝑗−1)𝑚+1
, … , 𝑇 trn(𝑗−1)𝑚+𝑚

}

from the meta-training set;
5: for 𝑇trn𝑘

in
{

𝑇trn(𝑗−1)𝑚+1
, … , 𝑇 trn(𝑗−1)𝑚+𝑚

}

do
6: Initialize 𝑆𝜔

𝑘 and 𝑆𝜏
𝑘 by ones and zeros, respectively;

7: Update 𝐺𝜃𝑘 to obtain 𝐺′
𝜃𝑘

by Eq. (20) on 𝑇 𝑠
trn𝑘

;
8: Update 𝑆𝜔

𝑘 and 𝑆𝜏
𝑘 by Eqs. (22) and (23) on 𝑇 𝑞

trn𝑘
, respectively;

9: Adjust the parameters of 𝐺𝑓 corresponding to 𝑇trn𝑘
by Eq. (25);

10: Update 𝐺′
𝜃𝑘

to obtain 𝐺𝜗𝑘 by Eq. (26) on 𝑇 𝑞
trn𝑘

;
11: Classify the samples corresponding to 𝑁 fault classes in 𝑇 𝑞

trn𝑘
by

𝐺𝜗𝑘 ;
12: Select the fault class with the lowest accuracy as 𝐻𝐶𝑘 and add it

to the set 𝒞 ;
13: 𝐺𝜃𝑘+1 ← 𝐺𝜗𝑘 ;
14: end for
15: end for
16: Form 𝜇 meta-tasks by random re-sampling from 𝐷src according to the

hard classes in 𝒞 ;
17: 𝐺𝜃1 ← 𝐺𝜗𝑛 ;
18: for 𝑗 = 1 to 𝜇∕𝑚 do
19: Randomly choose a batch of hard meta-tasks

{

𝐻𝑇 (𝑗−1)𝑚+1, … , 𝐻𝑇(𝑗−1)𝑚+𝑚
}

;
20: for 𝐻𝑇𝑘 in

{

𝐻𝑇 (𝑗−1)𝑚+1, … , 𝐻𝑇(𝑗−1)𝑚+𝑚
}

do
21: Initialize 𝑆𝜔

𝑘 and 𝑆𝜏
𝑘 by ones and zeros, respectively;

22: Update 𝐺𝜃𝑘 to obtain 𝐺′
𝜃𝑘

by Eq. (20) on 𝐻𝑇 𝑠
𝑘;

23: Update 𝑆𝜔
𝑘 and 𝑆𝜏

𝑘 by Eqs. (22) and (23) on 𝐻𝑇 𝑞
𝑘, respectively;

24: Adjust the parameters of 𝐺𝑓 corresponding to 𝐻𝑇𝑘 by Eq. (25);
25: Update 𝐺′

𝜃𝑘
to obtain 𝐺𝜗𝑘 by Eq. (26) on 𝐻𝑇 𝑞

𝑘;
26: 𝐺𝜃𝑘+1 ← 𝐺𝜗𝑘 ;
27: end for
28: end for
29: 𝐺𝜃1 ← 𝐺𝜗𝜇 ;
30: end for

according to Eq. (20). Secondly, the scaling and shifting parameters
are updated on the query set 𝑇 𝑞

trn𝑘
of the 𝑘th meta-task according to

Eqs. (22) and (23) respectively, and the parameters of 𝐺𝑓 correspond-
ing to the meta-task are adjusted by Eq. (25). Finally, the base-learner
𝐺′
𝜃𝑘

is updated on 𝑇 𝑞
trn𝑘

to obtain the meta-learner 𝐺𝜗𝑘 according to
Eq. (26).

Step 2: All the samples corresponding to 𝑁 fault classes in the query
set 𝑇 𝑞

trn𝑘
are classified by the meta-learner 𝐺𝜗𝑘 corresponding to the 𝑘th

meta-task to obtain the diagnosis accuracies
{

𝐴𝑐𝑐1, 𝐴𝑐𝑐2, … , 𝐴𝑐𝑐𝑁
}

.
The fault class with the lowest diagnosis accuracy is called the hard
class 𝐻𝐶𝑘 of the 𝑘th meta-task.

Step 3: Repeat steps 1 and 2 until the hard class corresponding to
each meta-task in the meta-training set is obtained, and the 𝜇 new ‘‘𝑁-
class 𝐾-shot’’ meta-tasks are formed by random re-sampling from the
source domain 𝐷src according to these hard classes, where each task is
called a hard meta-task.

Step 4: The CMHSAN model is re-trained on the 𝜇 hard meta-tasks.

4. Experimental results and analysis

4.1. Experimental setup

Fig. 7 presents the bearing test bench of CWRU. The detailed
description of CWRU dataset is given in [32]. The bearing vibration
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Fig. 7. Bearing test bench of CWRU [32].

Fig. 8. Bearing test bench of PU [34].

data of the drive-end collected under the following four different
working conditions at 12 kHz sampling frequency are selected: 1797,
1772, 1750, and 1730 rpm, including normal (N), inner-race fault (IF),
outer-race fault (OF), and ball fault (BF) data. For CWRU dataset,
a cross-working condition FSFD scenario is designed. The selected
vibration data and the corresponding task assignments are shown in
Table 1, where 36 kinds of vibration data are formed the source domain
for pre-training and meta-training, and 12 kinds of vibration data are
formed the target domain for meta-testing. The four different types of
FSFD tasks of 5-class 1-shot, 5-class 5-shot, 10-class 1-shot, and 10-
class 5-shot are performed under this scenario, where the 1-shot and
5-shot respectively denote that there are 1 and 5 training samples under
each fault class within the support set of each FSFD task. The source
and target domains contain 3960 and 1320 samples, respectively. For
different types of FSFD tasks, a few samples are randomly chosen from
the source and target domains to form 100 and 110 meta-tasks for
meta-training and meta-testing, respectively. In addition, during the
pre-training stage, all samples from the source domain are used.

Fig. 8 presents the bearing test bench of Paderborn University
(PU). The detailed description of PU dataset is given in [34]. The
bearing vibration data collected under the following four different
working conditions at 64 kHz sampling frequency are selected: W1
(0.7 N m/1500 rpm/1000 N), W2 (0.7 N m/900 rpm/1000 N), W3
(0.1 N m/1500 rpm/1000 N), and W4 (0.7 N m/1500 rpm/400 N). The
nine kinds of vibration data given in Table 2 are selected under each
working condition. For PU dataset, the four cross-working condition
FSFD scenarios are designed, as described in Table 3. For example,
under scenario 1, the vibration data under W2 and W3 are formed the
source domain for pre-training and meta-training, and the vibration
data under W1 are formed the target domain for meta-testing. The
two different types of FSFD tasks of 9-class 1-shot and 9-class 5-shot
are performed under these four different scenarios, respectively. The
source and target domains under each scenario include 2250 and 1125
samples, respectively. For different types of FSFD tasks, a few samples
are randomly chosen from the source and target domains to form 100
and 110 meta-tasks for meta-training and meta-testing, respectively.
In addition, during the pre-training stage, all samples from the source
domain are adopted.

Fig. 9 presents the schematic and overview of the gearbox used in
PHM 2009 data challenge competition. The detailed description of PHM
dataset is given in [35]. In this experiment, five different health status
data of the input terminal under low load collected in 50 Hz rotating
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Table 1
Selected CWRU vibration data and the corresponding task assignments.
Rotating speed (rpm) Fault diameter (mils) Health status Number of fault classes Task

1797/1772/1750 0 N 3
Pre-training/Meta-training1797/1772/1750 7/14/21 IF/OF/BF 27

1797/1772/1750 28 IF/BF 6
1730 0 N 1

Meta-testing1730 7/14/21 IF/OF/BF 9
1730 28 IF/BF 2
Table 2
Description of PU dataset.

Bearing code Health status Damage level

K004 N –
KI21 IF1 1
KI18 IF2 2
KI16 IF3 3
KA04 OF1 1
KA16 OF2 2
KB27 IF1+OF1 1
KB23 IF2+OF2 2
KB24 IF3+OF3 3

Table 3
Four different cross-working condition scenarios of PU dataset.

Scenario Transfer task

Scenario 1 W2, W3 → W1
Scenario 2 W1, W4 → W2
Scenario 3 W1, W4 → W3
Scenario 4 W2, W3 → W4

speed are selected and labeled as C1, C2, C3, C4, and C5, respectively,
as shown in Table 4.

In this experiment, the proposed CMS-MTL method is compared
with the following six methods: transferable convolutional neural net-
work (TCNN) [19], deep convolution multi-adversarial domain adap-
tation (DCMADA) [18], prototypical network (ProtoNet) [20], semi-
supervised meta-learning network (SSMN) [23], model-agnostic meta-
learning-based few-shot classification (MAML-FSC) [21], and an im-
proved variant of the MAML framework (MAML++) [36]. For a fair
comparison, all the comparison methods and CMS-MTL perform the
same data preprocessing as follows: STFT is used to transform each
sample consisting of 1024, 1024, and 2048 consecutive sampling points
in the raw vibration signals of CWRU, PU, and PHM datasets into a
84 × 84 time–frequency image respectively, and 110, 125, and 130
time–frequency images of each fault class in CWRU, PU, and PHM
datasets are obtained respectively. Moreover, the other six comparison
methods all adopt the same feature extractor (i.e., backbone network)
as the proposed CMS-MTL, the other components in their respective
models (such as fault classifiers) remain unchanged, and the model
training strategies of the other six comparison methods also remain
unchanged. For TCNN, DCMADA, and the pre-training stage of CMS-
MTL, the batch size 𝐵 is 64, the learning rate 𝛼 is initially set to 0.1
and decayed every 30 epochs by a factor of 0.2, the maximum training
epoch is 100, the dropout ratio is 0.1, the label smoothing factor 𝜖
is 0.1, and the stochastic gradient descent optimizer is adopted. For
ProtoNet, SSMN, MAML-FSC, MAML++, and the meta-training stage of
CMS-MTL, each fault class in the query set of each meta-task contains
15 samples, the base-learning rate 𝛽 is 0.01, the meta-learning rate 𝛾
is 0.001, the meta-batch size 𝑚 is 2, the number of training epoch ℰ is
100, and Adam optimizer is adopted.

All the methods are implemented using PyTorch 1.9.0 and Python
3.8, and all the experiments are performed on the NVIDIA RTX 2070
GPU.
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Fig. 9. Schematic and overview of the gearbox [35].

4.2. Comparison with other fault diagnosis methods

4.2.1. Cross-working condition FSFD on CWRU dataset
Table 5 gives the FSFD accuracies obtained with different methods

under the cross-working condition scenario of CWRU dataset. The accu-
racies obtained with seven different methods on the 5-class 5-shot and
10-class 5-shot tasks are higher than those on the 5-class 1-shot and 10-
class 1-shot tasks, respectively. This is because the number of training
samples for each fault class has increased, which is helpful for these
methods to learn more general fault knowledge. Compared with the 5-
class FSFD tasks, the accuracies obtained with seven different methods
on the 10-class FSFD tasks have decreased. This is because the fault
diagnosis models are required to have better feature representation
ability and generalization to capture the differences between different
fault classes more accurately as the number of fault classes increases.

As seen in Table 5, the average diagnosis accuracies of TCNN,
DCMADA, ProtoNet, SSMN, MAML-FSC, MAML++, and CMS-MTL are
91.63%, 94.25%, 95.79%, 97.61%, 96.63%, 96.91%, and 99.21%,
respectively, indicating that CMS-MTL is superior to the other methods.
Compared with TCNN and DCMADA, the average diagnosis accuracy
of CMS-MTL is increased by 7.58% and 4.96%, respectively. This
is mainly because CMS-MTL can learn more general learning strate-
gies from different FSFD tasks through meta-learning and can more
effectively share knowledge among different meta-tasks, hence the
CMHSAN model can more flexibly be adjusted to rapidly adapt to
new FSFD tasks. Compared with ProtoNet, SSMN, MAML-FSC, and
MAML++, the average diagnosis accuracy of CMS-MTL is improved
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Table 4
Description of PHM dataset.

Class label Gear Bearing Shaft

32 T 48 T 80 T 96 T IS:IS ID:IS OS:IS IS:OS ID:OS OS:OS Input Output

C1 N N N N N BF OF N N N IM N
C2 N N N N IF N N N N N N KS
C3 N EC N N N N N N N N N N
C4 CH EC N N N N N N N N N N
C5 N N N N N N N N N N N N

CH = Chipped; EC = Eccentric; KS = Keyway sheared; IM = Imbalance; IS = Input shaft; :IS = Input side; ID = Idler shaft; OS = Output shaft; :OS = Output side.
Table 5
FSFD accuracies (%) obtained with different methods under the cross-working condition scenario of CWRU dataset.
Method 1797, 1772, 1750 rpm → 1730 rpm Average

5-class
1-shot

5-class
5-shot

10-class
1-shot

10-class
5-shot

TCNN [19] 93.53 ± 1.16 95.31 ± 0.70 87.00 ± 1.97 90.67 ± 1.77 91.63
DCMADA [18] 95.79 ± 0.38 96.35 ± 0.28 91.56 ± 2.51 93.30 ± 1.64 94.25
ProtoNet [20] 96.10 ± 1.95 97.28 ± 0.98 94.10 ± 1.70 95.69 ± 0.60 95.79
SSMN [23] 97.41 ± 0.48 98.86 ± 0.10 96.45 ± 0.47 97.73 ± 0.21 97.61
MAML-FSC [21] 96.45 ± 0.65 97.81 ± 0.16 95.33 ± 0.40 96.93 ± 0.15 96.63
MAML++ [36] 96.93 ± 0.55 98.26 ± 0.46 95.40 ± 0.69 97.06 ± 0.26 96.91
CMS-MTL 99.47 ± 0.33 99.85 ± 0.05 98.67 ± 0.11 98.86 ± 0.11 99.21
Fig. 10. Confusion matrices obtained with three different methods on the 10-class 1-shot FSFD tasks of CWRU dataset.
by 3.42%, 1.60%, 2.58%, and 2.30%, respectively. The main reasons
are as follows. Firstly, CMS-MTL combines the advantages of meta-
learning and transfer learning. CMS-MTL can learn the general fault
feature representations through the pre-training of the CMHSAN model,
which provides a good initialization state for the meta-training of the
model, thereby enabling the model to adapt to the new FSFD tasks
more quickly. Secondly, CMS-MTL introduces the scaling and shifting
parameters to fine-tune the pre-trained CMHSAN model in the case of
a few samples, enabling the model to better adapt to the differences
between different FSFD tasks. Thirdly, CMS-MTL can focus on the fault
classes that are difficult to be diagnosed during the process of meta-
training through the MTRT strategy, which enables the CMHSAN model
to learn more general knowledge, thereby improving the FSFD ability
of the model.

Fig. 10 shows the confusion matrices obtained with three different
methods on the 10-class 1-shot FSFD tasks of CWRU dataset. As de-
picted in Fig. 10, TCNN, MAML-FSC, and CMS-MTL accurately identify
the five fault classes of IF7, IF28, BF21, OF7, and OF21, but they
all have classification errors on IF21. As shown in Fig. 10(a), TCNN
misclassifies 30%, 13%, 7%, and 7% of samples belonging to IF21
as OF7, OF21, IF28, and OF14, respectively. As seen in Fig. 10(b),
MAML-FSC misclassifies 20% and 7% of samples belonging to IF21 as
IF28 and BF28, respectively. Compared with TCNN and MAML-FSC,
the diagnosis accuracy obtained with CMS-MTL on IF21 is increased
by 44% and 14%, respectively, as shown in Fig. 10(c), suggesting that
CMS-MTL can more effectively extract the discriminative features of
each fault class with a few training samples.
10
To further analyze the fault classification effect of the proposed
CMS-MTL, the t-distributed stochastic neighbor embedding method is
adopted to visualize the diagnosis results of CMS-MTL on different FSFD
tasks under the cross-working condition scenario of CWRU dataset.
Fig. 11 displays the feature visualization of diagnosis results obtained
with CMS-MTL on different FSFD tasks of CWRU dataset. As depicted
in Figs. 11(a) and 11(b), the features of five different classes of fault
samples extracted with CMS-MTL are closely clustered, which indicates
that CMS-MTL can accurately distinguish different fault classes on the
5-class 1-shot and 5-class 5-shot tasks. As seen in Figs. 11(c) and
11(d), CMS-MTL has slight misclassifications on the 10-class 1-shot and
10-class 5-shot tasks, but it can still relatively accurately distinguish
different fault classes on the whole. The above results further confirm
that CMS-MTL can effectively extract and exploit the discriminative
features in fault samples on different FSFD tasks, thereby achieving
accurate fault classification.

4.2.2. Cross-working condition FSFD on PU dataset
Table 6 gives the FSFD accuracies obtained with seven methods

under the four cross-working condition scenarios of PU dataset. The
average accuracy obtained with CMS-MTL is 20.17%, 7.28%, 6.60%,
2.70%, 5.63%, and 3.23% higher than that obtained with TCNN, DC-
MADA, ProtoNet, SSMN, MAML-FSC, and MAML++ under scenarios 1
to 4, respectively. The results indicate that CMS-MTL still performs best
on the more complex PU dataset, which is due to its stronger generaliza-
tion ability. As shown in Table 6, the average accuracies obtained with
seven different methods on different FSFD tasks under scenario 2 are
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Fig. 11. Feature visualization of diagnosis results obtained with CMS-MTL on different FSFD tasks of CWRU dataset.
Table 6
FSFD accuracies (%) obtained with seven different methods under the four different cross-working condition scenarios of PU dataset.

Method Scenario 1 Scenario 2 Scenario 3 Scenario 4 Average

9-class
1-shot

9-class
5-shot

9-class
1-shot

9-class
5-shot

9-class
1-shot

9-class
5-shot

9-class
1-shot

9-class
5-shot

TCNN [19] 81.67 ± 1.53 87.60 ± 0.75 63.24 ± 1.58 67.55 ± 1.13 73.50 ± 1.87 81.54 ± 1.13 71.14 ± 1.67 73.67 ± 0.87 74.99
DCMADA [18] 91.73 ± 0.76 94.10 ± 0.46 78.45 ± 1.20 84.95 ± 0.95 89.07 ± 0.64 93.39 ± 0.41 83.21 ± 1.23 88.15 ± 0.59 87.88
ProtoNet [20] 91.89 ± 1.82 95.89 ± 1.48 79.65 ± 3.04 86.64 ± 2.47 88.68 ± 3.24 93.10 ± 1.85 83.37 ± 3.59 89.29 ± 1.60 88.56
SSMN [23] 93.40 ± 0.82 96.59 ± 0.48 85.78 ± 2.04 91.06 ± 1.47 92.31 ± 1.24 95.56 ± 0.85 90.72 ± 1.59 94.22 ± 0.60 92.46
MAML-FSC [21] 92.70 ± 1.02 95.93 ± 0.64 80.08 ± 3.12 86.59 ± 2.04 89.60 ± 1.44 93.03 ± 1.03 87.22 ± 2.20 91.06 ± 1.60 89.53
MAML++ [36] 93.20 ± 0.64 96.20 ± 0.36 83.84 ± 2.99 90.59 ± 1.35 91.40 ± 0.88 95.93 ± 0.85 90.48 ± 1.98 93.83 ± 1.36 91.93
CMS-MTL 97.03 ± 0.33 98.05 ± 0.18 91.85 ± 0.62 93.70 ± 0.38 94.78 ± 0.40 97.54 ± 0.15 92.44 ± 0.55 95.89 ± 0.34 95.16
the lowest among the four different cross-working condition scenarios.
This is because the distribution discrepancies between the source and
target domains under scenario 2 are more significant than those under
scenarios 1, 3, and 4, which leads to the FSFD performance of these
methods under scenario 2 being limited to a certain extent.

Fig. 12 gives the average accuracies gained using seven different
methods on different FSFD tasks under the four cross-working condition
scenarios of PU dataset. As depicted in Fig. 12, the average accuracies
of these seven different methods obtained on the 9-class 1-shot tasks are
lower than those obtained on the 9-class 5-shot tasks. This is because
there is only one training sample for each class in each 9-class 1-
shot task, and it is more difficult to learn the feature representations
with strong generalization from fewer training samples. However, the
proposed CMS-MTL still achieves an average diagnosis accuracy of
94.03% on the 9-class 1-shot tasks, meaning that it has better FSFD
ability than the other six methods.

Fig. 13 shows the confusion matrices obtained with CMS-MTL on
the 9-class 1-shot tasks under the four different cross-working condition
scenarios of PU dataset. As shown in Fig. 13, CMS-MTL can relatively
accurately identify the samples of different fault classes under different
cross-working condition scenarios, but there are also phenomena of
misclassifying the inner/outer-race faults as the compound faults and
misclassifying the compound faults as the inner/outer-race faults. For
instance, the 12% of samples belonging to IF3+OF3 are misclassified as
OF1 under scenario 1, the 15% and 8% of samples belonging to OF1 are
misclassified as IF1+OF1 and IF2+OF2 under scenario 2 respectively,
the 10% and 13% of samples belonging to IF3 are misclassified as
IF1+OF1 and IF3+OF3 under scenario 3 respectively, and the 13%
and 11% of samples belonging to OF1 are misclassified as IF1+OF1
and IF3+OF3 under scenario 4 respectively. This is because the data
distributions between the compound faults and the inner-race faults are
similar, and the data distributions between the compound faults and the
outer-race faults are also similar, which makes it difficult to distinguish
these faults, thus causing some misclassifications.

Fig. 14 presents the receiver operating characteristic (ROC) curves
obtained with CMS-MTL on the 9-class 1-shot tasks under the four
different cross-working condition scenarios of PU dataset. The clas-
sification performance of CMS-MTL on each fault class is evaluated
11
Fig. 12. Average diagnosis accuracies obtained with different methods on different
FSFD tasks under the four cross-working condition scenarios of PU dataset.

by plotting the ROC curve for each fault class and calculating the
corresponding area under the curve (AUC). The higher the AUC value,
the better the performance of CMS-MTL under different classification
thresholds. As depicted in Fig. 14, the macro and micro average values
obtained with CMS-MTL under the four different cross-working con-
dition scenarios are all above 0.99, which proves the effectiveness of
CMS-MTL in FSFD.

4.2.3. FSFD under cross-equipment scenarios
To validate the FSFD ability of CMS-MTL under the cross-equipment

scenarios, some FSFD experiments are performed under the following
three different cross-equipment scenarios.

• The cross-equipment scenario of CWRU → PU: the time–frequency
images of different fault classes under the three different rotating
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Fig. 13. Confusion matrices obtained with CMS-MTL on the 9-class 1-shot tasks under four different cross-working condition scenarios of PU dataset.
speeds of 1772, 1750, and 1730 rpm from CWRU dataset are
formed the source domain, and the time–frequency images of
different fault classes under the working condition of W1 from PU
dataset are formed the target domain. The seven different methods
are used to perform the 9-class 1-shot and 9-class 5-shot FSFD
tasks, respectively.

• The cross-equipment scenario of PU → CWRU: the time–frequency
images of different fault classes under the three different work-
ing conditions of W1, W2, and W3 from PU dataset are formed
the source domain, and the time–frequency images of different
fault classes under the rotating speed of 1730 rpm from CWRU
dataset are formed the target domain. The seven different methods
are adopted to conduct the 5-class 1-shot, 5-class 5-shot, 9-class
1-shot, and 9-class 5-shot FSFD tasks, respectively.

• The cross-equipment scenario of PU → PHM: the time–frequency
images of different fault classes under the three different working
conditions of W1, W2, and W3 from PU dataset are formed the
source domain, and the time–frequency images of different fault
classes from PHM dataset are formed the target domain. The seven
different methods are used to carry out the 5-class 1-shot and
5-class 5-shot FSFD tasks, respectively.

Table 7 provides the FSFD accuracies obtained with seven dif-
ferent methods under three different cross-equipment scenarios. The
average accuracies of TCNN, DCMADA, ProtoNet, SSMN, MAML-FSC,
MAML++, and CMS-MTL are 62.65%, 69.28%, 70.52%, 74.88%,
73.78%, 75.22%, and 80.02%, respectively, which indicates that CMS-
MTL can more accurately identify different fault classes than the
12
other six methods under the cross-equipment scenarios. However, the
accuracies of CMS-MTL obtained on the cross-equipment FSFD tasks
are lower than those obtained on the cross-working condition FSFD
tasks of CWRU and PU datasets, respectively. This is because the distri-
bution discrepancies between the source and target domains are more
significant, and there are unknown fault classes in the target domain
under the three different cross-equipment scenarios. Therefore, the
cross-equipment FSFD between different datasets is more challenging
than the cross-working condition FSFD on the same dataset. As seen
in Table 7, when the number of samples corresponding to each fault
class in the support set of each meta-task increases from 1 to 5, the
more generalized and adaptive features can be learned, making the
performance of these seven methods has been raised to a certain extent.
For example, the FSFD accuracies obtained on the 9-class 5-shot tasks
are 8.93% and 8.24% higher than those obtained on the 9-class 1-
shot tasks using CMS-MTL under CWRU → PU and PU → CWRU,
respectively. The FSFD accuracies obtained on the 5-class 5-shot tasks
are 8.94% and 13.19% higher than those obtained on the 5-class 1-shot
tasks using CMS-MTL under PU → CWRU and PU → PHM, respectively.

Fig. 15 gives the average accuracies obtained with seven different
methods on the 9-class 1-shot and 9-class 5-shot tasks under two
different cross-equipment scenarios. As depicted in Fig. 15, the average
accuracies of the seven methods obtained under PU → CWRU are
higher than those obtained under CWRU → PU. For example, the
average accuracy of CMS-MTL obtained under PU → CWRU is 11.54%
higher than that obtained under CWRU → PU. The results indicate
that the meta-knowledge learned from the meta-tasks on the more
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Fig. 14. ROC curves obtained with CMS-MTL on the 9-class 1-shot tasks under the four different cross-working condition scenarios of PU dataset.
Table 7
FSFD accuracies (%) obtained with different methods under different cross-equipment scenarios.

Method CWRU → PU PU → CWRU PU → PHM Average

9-class
1-shot

9-class
5-shot

9-class
1-shot

9-class
5-shot

5-class
1-shot

5-class
5-shot

5-class
1-shot

5-class
5-shot

TCNN [19] 48.12 ± 3.89 59.45 ± 3.34 65.89 ± 2.13 69.56 ± 1.43 66.97 ± 1.76 75.24 ± 1.64 52.45 ± 2.23 63.48 ± 1.59 62.65
DCMADA [18] 55.88 ± 2.16 63.02 ± 1.44 71.36 ± 1.90 77.90 ± 1.13 74.89 ± 1.59 82.39 ± 1.13 60.39 ± 2.05 68.37 ± 1.45 69.28
ProtoNet [20] 56.26 ± 3.54 65.19 ± 2.72 71.48 ± 3.80 78.56 ± 1.47 75.54 ± 2.24 84.83 ± 1.68 61.48 ± 2.15 70.84 ± 1.82 70.52
SSMN [23] 61.05 ± 0.96 73.25 ± 0.41 74.10 ± 0.74 81.21 ± 0.22 78.95 ± 0.85 87.65 ± 0.45 65.56 ± 1.75 77.25 ± 1.13 74.88
MAML-FSC [21] 59.18 ± 3.69 72.33 ± 3.21 73.77 ± 2.51 80.48 ± 1.72 78.67 ± 1.87 86.20 ± 1.04 64.03 ± 1.48 75.56 ± 1.60 73.78
MAML++ [36] 60.89 ± 3.30 73.89 ± 2.51 74.02 ± 2.98 82.61 ± 0.65 79.82 ± 2.14 88.93 ± 1.46 65.24 ± 2.03 76.37 ± 1.36 75.22
CMS-MTL 67.54 ± 0.66 76.47 ± 0.41 77.43 ± 0.66 85.67 ± 0.43 84.92 ± 0.97 93.86 ± 0.32 70.53 ± 1.01 83.72 ± 0.85 80.02
complex PU dataset can be better generalized to the new meta-tasks
of CWRU dataset, thus achieving better FSFD accuracies under PU
→ CWRU. Fig. 16 gives the average accuracies obtained with seven
different methods on the 5-class 1-shot and 5-class 5-shot tasks under
two different cross-equipment scenarios. As depicted in Fig. 16, the
average accuracies of the seven methods obtained under PU → PHM
are lower than those obtained under PU → CWRU. This is because the
PU and CWRU datasets only contain bearing faults, whereas the PHM
dataset contains the combined gear-bearing-shaft faults. Therefore, the
data distribution discrepancies between the PU and PHM datasets are
13
greater than those between the PU and CWRU datasets. The signifi-
cant increase of the distribution discrepancy leads to the performance
degradation of FSFD of the seven different methods under PU → PHM.
However, the average diagnosis accuracy obtained with CMS-MTL is
77.13% under PU → PHM, indicating that the proposed CMS-MTL has
the ability to identify unknown faults with a few training samples.

4.3. Validation of the proposed CMHSAN model

The comparative experiments are performed on CWRU and PU
datasets with the CMHSAN model and its two variants. The first variant
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Fig. 15. Average accuracies obtained with seven different methods on the 9-class 1-shot
and 9-class 5-shot tasks under two different cross-equipment scenarios.

Table 8
FSFD accuracies (%) obtained with three different models under the cross-working
condition scenario of CWRU dataset.

Model 1797, 1772, 1750 rpm → 1730 rpm Avg.

5-class
1-shot

5-class
5-shot

10-class
1-shot

10-class
5-shot

Model 1 70.38 ± 1.20 85.56 ± 0.89 62.00 ± 0.66 71.97 ± 0.52 72.48
Model 2 96.08 ± 0.36 97.52 ± 0.13 93.53 ± 0.31 96.69 ± 0.13 95.96
CMHSAN 99.47 ± 0.33 99.85 ± 0.05 98.67 ± 0.11 98.86 ± 0.11 99.21

is to replace the Res blocks in components 1 to 3 of the CMHSAN
model with Trans blocks, that is, only Trans blocks are used in the three
components, which is called model 1. The second variant is to replace
the Trans blocks in components 1 to 3 of the CMHSAN model with Res
blocks, that is, only Res blocks are used in the three components, which
is called model 2. Table 8 and Fig. 17 present the FSFD accuracies
obtained with three different models under the cross-working condition
scenarios of CWRU and PU datasets, respectively.

As seen in Table 8 and Fig. 17, the accuracies obtained with model
1 on all FSFD tasks are low, mainly because the model has some short-
comings in the local feature extraction in the case of a few samples.
Model 2 performs better than model 1, because the use of multiple
Res blocks greatly enhances the local feature learning ability of the
model in the case of a few samples. However, there is a certain gap
between the FSFD accuracies of model 2 and those of the CMHSAN
model, mainly because model 2 lacks attention to the global feature
extraction. As shown in Table 8, the average FSFD accuracy of the
CMHSAN model is 26.73% and 3.25% higher than that of model 1 and
model 2 under the cross-working condition scenario of CWRU dataset,
respectively. As depicted in Fig. 17, the average FSFD accuracy of the
CMHSAN model is 27.64% and 9.09% higher than that of model 1
and model 2 under the four cross-working condition scenarios of PU
dataset, respectively. This is mainly because the CMHSAN model, which
ingeniously combines Res and Trans blocks, can fully extract the local
and global features of bearing faults in the case of a few samples.

The above results reveal that the global and local features play an
important role in FSFD. The proposed CMHSAN model fully considers
the global and local feature information of the input time–frequency
images. The CMHSAN model can better capture the time-frequency
features with higher correlation with bearing fault classes through
14

MHSA, and reduce the computational complexity through the weight
Fig. 16. Average accuracies obtained with seven different methods on the 5-class 1-shot
and 5-class 5-shot tasks under two different cross-equipment scenarios.

Fig. 17. FSFD accuracies obtained with three different models under the cross-working
condition scenarios of PU dataset.

sharing mechanism of convolution, thus improving the performance of
FSFD.

To further analyze the performance differences of the three different
models in the pre-training and meta-training stages, the pre-training
and meta-training are performed under the cross-working condition
scenario of CWRU dataset, where the meta-training is performed on
the 10-class 1-shot tasks. Fig. 18 gives the pre-training time and meta-
training time of three different models. As seen in Fig. 18, model 1
has the longest total training time, followed by the CMHSAN model,
and model 2 has the shortest total training time. Specifically, the
pre-training time of the CMHSAN model is 37.20% less than that of
model 1 and 22.75% more than that of model 2, and the meta-training
time of the CMHSAN model is 33.82% less than that of model 1 and
12.45% more than that of model 2. This is because the computational
complexities of model 1, model 2, and the CMHSAN model are dif-
ferent, where the total number of parameters of model 1, model 2,
and the CMHSAN model are 14 622 986, 10 147 274, and 11 954 954,
respectively. Figs. 19 and 20 display the FSFD accuracies and losses
obtained with three different models in the pre-training and meta-
training stages, respectively. Compared with model 1 and model 2,
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Fig. 18. Pre-training time and meta-training time of three different models.

Fig. 19. FSFD accuracies and losses obtained with three different models in the
pre-training stage.

the CMHSAN model obtains higher and more stable FSFD accuracies
and has better convergence, which indicates that the CMHSAN model
can learn the fault feature representations more effectively, and has
excellent generalization performance and training efficiency.

4.4. Validation of the meta-task re-training strategy

The comparative experiments between the proposed CMS-MTL
method with the MTRT strategy and that without the MTRT strategy
are conducted on CWRU and PU datasets. Fig. 21(a) provides the
comparison of the accuracies obtained on different FSFD tasks under
the cross-working condition scenario of CWRU dataset, where the
FSFD accuracy obtained with the MTRT strategy is 1.35% higher
than that obtained without the MTRT strategy on the 10-class 1-
shot task. Fig. 21(b) gives the comparison of the accuracies obtained
on the 9-class 1-shot tasks under the four different cross-working
condition scenarios of PU dataset. The FSFD accuracies obtained with
the MTRT strategy are 1.47%, 2.07%, 1.93%, and 2.81% higher than
those obtained without the MTRT strategy under the four different
15

cross-working condition scenarios, respectively. Fig. 21(c) presents the
Fig. 20. FSFD accuracies and losses obtained with three different models in the
meta-training stage.

comparison of the accuracies obtained on the 9-class 5-shot tasks under
the four different cross-working condition scenarios of PU dataset. The
FSFD accuracies obtained with the MTRT strategy are 1.19%, 1.47%,
1.24%, and 1.82% higher than those obtained without the MTRT
strategy under scenarios 1 to 4, respectively. The results demonstrate
that using the MTRT strategy to re-train the CMHSAN model during the
meta-training stage is helpful for increasing the FSFD accuracies.

As depicted in Fig. 21, the improvement of FSFD accuracy brought
by using the MTRT strategy on PU dataset is apparent. This is because
the distribution discrepancies between the source and target domains
are significant under scenarios 1 to 4, which makes it difficult for
some fault classes to be accurately diagnosed. The use of the MTRT
strategy can re-train the CMHSAN model according to the hard classes
during the meta-training stage, thereby enabling the model to more
accurately distinguish the hard classes. Therefore, the FSFD accuracies
obtained using the CMHSAN model on different FSFD tasks of PU
dataset have been effectively improved after adopting the proposed
meta-task re-training strategy.

5. Conclusion

In the present study, a novel CMHSAN-based MTL approach for
FSFD is proposed, which combines meta-learning and transfer learning,
and can use a few labeled training samples to obtain a robust FSFD
model that can quickly adapt to new working conditions or fault
classes. The meticulously designed CMHSAN integrates the convolution
blocks and MHSA blocks, which can effectively enhance the local and
global feature extraction ability of the CMHSAN model. The proposed
approach enables the pre-trained CMHSAN model to quickly adapt
to new FSFD tasks, greatly improving the cross-domain FSFD per-
formance. By using the proposed meta-task re-training strategy, the
CMHSAN model can learn more transferable fault diagnosis knowledge
during the meta-training stage, which significantly improves the gener-
alization of the model. The effectiveness of the proposed approach has
been verified through extensive experiments. This approach achieves
the average diagnosis accuracies of 99.21% and 95.16% on different
FSFD tasks under the cross-working condition scenarios of CWRU and
PU datasets, respectively, which are superior to the other comparison
methods, suggesting that the proposed approach has excellent FSFD
ability.

Future research will focus on improving the interpretability of the
proposed FSFD model to enhance its acceptability and confidence in
practical applications.
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Fig. 21. FSFD accuracies of CMS-MTL method with and without the MTRT strategy.
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