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Abstract—Unsupervised multi-view bipartite graph clustering
(MVBGC) is a fast-growing research, due to promising scalability
in large-scale tasks. Although many variants are proposed by vari-
ous strategies, a common design is to construct the bipartite graph
directly from the input data, i.e., only consider the unidirectional
“encoding” process. However, “encoding-decoding” mechanism is
a popular design for deep learning, the most representative one
is auto-encoder (AE). Enlightened by this, this paper rethinks ex-
isting MVBGC paradigms and transfers the “encoding-decoding”
design into graph machine learning, and proposes a novel frame-
work termed auto-encoding multi-view bipartite graph clustering
(BGAE), which integrates encoding, bipartite graph construction,
and decoding modules in a self-supervised learning manner. The
encoding module extracts a latent joint representation from the in-
put data, the bipartite graph construction module learns a bipartite
graph with connectivity constraint in latent semantic space, and the
decoding module recreates the input data via the bipartite graph.
Therefore, our novel BGAE combines representation learning, bi-
partite graph learning, reconstruction learning, and label inference
into a unified framework. All the modules are seamlessly integrated
and mutually reinforcing for clustering-friendly purposes. Exten-
sive experiments verify the superiority of our novel design and the
significance of “decoding” process. To the best of our knowledge,
this is the first attempt to explore “encoding-decoding” design in
traditional MVBGC.
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I. INTRODUCTION

W ITH the rapid growth of data in the real world, human
annotations induce expensive costs, developing unsu-

pervised or self-supervised learning is a trend to explore hidden
patterns without human intervention [1]. Clustering is a central
topic in unsupervised learning to find intrinsic data groupings
and latent structures [2]. Owing to the flexibility and powerful
capacity of graph to represent complex data structures [3], [4],
graph clustering is a fast-growing research [5], [6]. To process
multi-view or multimodal data (e.g., image features can be
characterized by LBP, PHOG, and GIST) [7], [8], [9], multi-view
clustering (MVC) has gained extensive research and achieved
superior embeddings or partitions than single-view clustering
by fusing consistency and complementarity [10], [11]. Multi-
view graph clustering (MVGC) [12], [13] is an active branch,
widely applied in data mining, natural language processing, and
computer vision [14], [15].

Since traditional MVGC paradigms require building fully
connected graphs with cubic time complexity and quadratic
space complexity respecting sample number [16], [17], greatly
limiting scalability in large-scale applications, multi-view bi-
partite graph clustering (MVBGC) [18], [19] is developed by
building correlations of representative anchors/landmarks and
all instances, i.e., bipartite graph. In this way, complexity can be
reduced to linear magnitude, greatly expanding scalability.

Many MVBGC models have been proposed by various strate-
gies to construct a “nice” bipartite graph, such as using sam-
pling [20], [21] or optimizing manners [22], [23] to select repre-
sentative anchors, introducing different regularizations [24] or
constraints [25] to refine intrinsic structures, or concatenating
multi-scale bipartite graphs [26], [27] across multiple views to
achieve ensemble clustering.

By carefully reviewing existing BGC models in graph ma-
chine learning, we find that a common design is construct-
ing the bipartite graph directly from the input data, i.e., only
focusing on an unidirectional “encoding” process. However,
“encoding-decoding” is a prevalent design in deep learning. The
most representative model is auto-encoder [28], Fig. 1 shows the
sketch. AE is composed of an encoder and a decoder. Encoder
plays the role of information extractor to extract discriminative
embeddings by multilayer neural networks. The decoder acts as
a data reconstructor to recreate the input data from the learned
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Fig. 1. Sketch of auto-encoder.

Fig. 2. Visualization of “benefits” from the decoding module on a synthetic
dataset. “Decoding” learning provides feedback on optimization, enabling the
learned representation not far from input data, thereby retaining the initial
manifold. Detailed experimental settings are available in Table V.

intermediate representation. AE has gained great success, and
many popular models are derived, such as denoising AE [29],
VAE [30], GAE [31], MAE [32], widely applied in dimensional-
ity reduction, image processing, and information retrieval [33].
It has also been extended to multi-view learning and shows
promising performance, e.g., it integrates with generative mod-
els to fuse consistency and complementarity, serving to predict
missing instances. [34].

Enlightened by AE, we transfer the “encoding-decoding” de-
sign into traditional graph machine learning and propose a novel
“auto-encoding” MVBGC framework, called BGAE. Fig. 3
plots the framework. First, we design an “encoding” module.
Considering directly constructing the bipartite graph from input

data may be unreliable, as real-world data may involve noise,
outliers, or redundancy. Analogously to the encoder, we extract
a consistent latent representation across multiple views, and
set it to the input of the bipartite graph construction module.
Then, we use the graph manifold learning paradigm to learn
a bipartite graph, and further enforce it to hold connectivity
constraint to output discrete labels directly. Finally, we introduce
a “decoding” module. Instead of almost perfectly duplicating
the input data from the intermediate representation, we recreate
the input data via the bipartite graph. Such a setting not only
provides feedback on the learning process, enabling the learned
representation not far from the input data to retain the initial
manifold, but also accords with the idea of undercomplete AE
that avoids “close to perfect” duplication [28]. Fig. 2 visualizes
the “benefits” of decoding learning. Compared to the baselines
that mistaken partitions with poor performance (NMI: 28.82%
and 45.48%), our proposed BGAE well captures the initial
manifold with promising performance (NMI: 95.96%).

As a result, our end-to-end “auto-encoding” BGAE integrates
representation learning, bipartite graph learning, reconstruction
learning, and label inference into a unified framework. The
contributions are outlined as follows:

1) Enlightened by the popular AE, we rethinking the tra-
ditional MVBGC paradigms in graph machine learning,
and find that existing models adopt a common design
that constructs the bipartite graph directly from the input
data, that is, only consider an unidirectional “encoding”
process, but lack the corresponding “decoding” learning.

2) We take the first step towards transferring the “encoding-
decoding” design into graph machine learning and propose
a novel “auto-encoding” MVBGC model, termed BGAE,
integrating representation learning, bipartite graph learn-
ing, reconstruction learning, and label inference into a
unified framework. All modules are mutually promoted
and seamlessly integrated.

3) We design an efficient ADMM solver with linear com-
plexity respecting instances, making it can scale to large-
scale tasks. Extensive experiments empirically verify the
superiority of our novel design and the significance of the
“decoding” process.

II. RELATED WORK

This section briefly reviews related work. Table I collects the
main notations.

A. Non-Negative Matrix Factorization

Given the input dataX ∈ Rd̃×n drawn from k clusters, matrix
factorization methods [35], [36] can decompose it into a base
matrix U and a coefficient matrix V. The most representative
method is non-negative matrix factorization (NMF) [37] that
holds both U and V to be non-negative, i.e.,

min
U,V

L̃(X,UV), s.t. U ≥ 0,V ≥ 0, (1)

where L̃(·) is the loss function commonly formulated in
Frobenius-norm or Kullback-Leibler divergence.
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Fig. 3. Framework of BGAE. For simplicity, consider a two-view image dataset (RGB and Depth). The input data {Xp}vp=1 are first encoded into a unified
latent space by G(·). Then, we construct a bipartite graph Z in the latent semantic space V. Finally, the bipartite graph is decoded by F(·) to recreate the input
data. Therefore, our BGAE integrates “encoding”, “bipartite graph construction”, and “decoding” modules, i.e., jointly minimize representation learning loss L1,
bipartite graph learning loss L2, and reconstruction learning loss L3, into a unified framework in graph machine learning settings.

TABLE I
BASIC NOTATIONS

Many variants [38], [39] have been derived based on the NMF
backbone, widely used for extracting low-rank representation.
Ding et al. [40] proposed semi-NMF by removing the constraint
on base matrix U, tackling the data with mixed-signs, i.e.,

min
U,V

‖X−UV‖2F = min
U,V

n∑
i=1

‖xi −Uvi‖22 , s.t. V ≥ 0.

(2)

Furthermore, Ding et al. [41] proposed a one-sided V-
orthogonal version to enlarge the diversity of the representation
and hold the uniqueness of the solution, i.e.,

min
U,V

‖X−UV‖2F , s.t. U ≥ 0,V ≥ 0,VV� = Id, (3)

where d denotes the feature dimension of V.

B. Bipartite Graph Construction

A bipartite graph describes the correlation between two sep-
arate sets of vertices, i.e., anchors/landmarks and instances.
Given an instance set X = {x1,x2, . . . ,xn} and an anchor set
A = {a1,a2, . . . ,am}, we can construct an undirected bipartite

graph Z = (X ,A, E ,Z) by building their edges E , Z is the
affinity matrix weighing the connections inZ . Typically, anchors
are selected in the original space with the intention of recovering
the complete point cloud.

Based on this, various BGC methods are proposed [23],
[25]. Particularly, the locality-preserving paradigm is popular
with researchers, supposing that the original high-dimensional
feature space actually lies in a low-dimensional manifold [42].
For the ith sample, jth anchor is connected as a neighbor with
probability zij . Intuitively, the anchor-node pair with a shorter
distance ‖xi − aj‖22 corresponds to a larger probability zij ,
which is expressed by

min
Z

n∑
i=1

m∑
j=1

‖xi − aj‖22 zij + ζz2ij ,

s.t. Z1m = 1n, Z ≥ 0, (4)

where ζ is a penalized parameter that can be tuned by grid search
or pre-determined following the technique [43]. Typically, an-
chors A are selected by k-means [26] or heuristic sampling
methods [21], [25].

Along this framework, Li et al. [25] proposed a structural
bipartite graph fusion model coupled with Laplacian rank con-
straint. Nie et al. [44], and Chen et al. [24] introduced feature
selection and re-weighting mechanisms to select valuable fea-
tures. Lu et al. [45] designed a fusion scheme to refine the
representation. Yan et al. [46] incorporated feature learning and
pseudo-labels generated by the fused bipartite graph to seek
project direction and refined the graph by manifold regulariza-
tion.

III. METHODOLOGY

A. Motivation

Although various graph machine learning based MVBGC
models are proposed to pursue a “nice” bipartite graph, they
adopt a common design that constructs the bipartite graph di-
rectly from the input data via (4), which means that optimization
merely involves an unidirectional “encoding” process. However,
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“encoding-decoding” is a popular manner in unsupervised deep
learning, and the most typical one is AE [28]. Enlightened by
this, this section carefully transfers the insight from AE into
graph machine learning, and presents a novel “auto-encoding”
BGAE framework.

B. The Proposed BGAE Framework

First, we build an “encoding” module. In AE, the encoder
plays a role in extracting discriminative embedding G(·) by neu-
tral networks [28], i.e., mapping the original high-dimensional
data X into a low-dimensional semantic space G(X). Analo-
gously, our encoding module is designed in a similar manner.
Recall that NMF is widely applied for dimensionality reduction,
which can be used to learn new representations [37]. However, an
apparent deficiency of the standard NMF with F -norm is that it
is sensitive to outliers. Concretely, the residual of each sample is
measured in the squared form ‖xi −Uvi‖22. Therefore, several
outliers with huge errors will easily prevail the objective [38].
Instead, we utilize �2,1-norm [47] based on the orthogonal
backbone. It is verified that �2,1-norm is robust to noise or
outliers, and can hold the row rotation invariance property [47].
Moreover, to maximally explore and fuse the discriminative
information across multiple views, we learn the latent joint
representation. Therefore, our encoding module (representation
learning loss L1) is formulated as

min L1 : min
α,Up,V

v∑
p=1

α2
p‖Xp −UpV‖2,1,

= min
α,Up,V

v∑
p=1

n∑
i=1

α2
p

∥∥xi
p −Upvi

∥∥
2
,

s.t.

{
α�1 = 1, αp ≥ 0,
VV� = Id.

(5)

where V is the latent consistent representation, Up is the
view-specific base matrix, and αp measures the contribution
of different views. Actually, (5) is to impose �2-norm within
a sample and �1-norm among all instances across multiple
views. Compared to F -norm, �2,1-norm measures residuals by
non-squared ‖xi

p −Upvi‖2, reducing the impact of outliers.
Note that we relax the non-negative constraints, which enlarge
the feasible region to fully explore the intrinsic structures of
input data with mixed-signs.

Then, we build a bipartite graph construction module. Consid-
ering that the latent representation integrates the discriminative
information of the input data, we construct a bipartite graph with
locality-preserving property in the latent semantic space instead
of the original space as existing methods do. Such a module
(bipartite graph construction loss L2) is formulated as

min L2 : min
A,Z

n∑
i=1

m∑
j=1

‖vi − aj‖22 zij ,

s.t. Z1m = 1n, Z ≥ 0, (6)

where Z is the bipartite graph and A is the anchors learned by
constraint-free optimization.

Finally, we elaborate on how to build the “decoding” module.
In AE, the decoder recreates the input data from the encoded
representation via neural networks, i.e., F(G(X)). However,
in traditional settings, the first core question is which variable
should be used to recreate the input data, the latent repre-
sentation V or the bipartite graph Z? The former choice is
likely to be a “close to perfect” duplication of X, since V is
just extracted from X in (5), duplication is meaningless for
bipartite graph optimization. In deep learning, standard AE also
notices this problem and derives undercomplete AE for message
compression and dimensionality reduction [28]. Enlightened
by this, we should design an undercomplete “auto-encoding”
framework instead of perfectly recreating the input data, so that
the latter choice is more reasonable and practical. Furthermore,
the second core question is how to recreate the input data by
the bipartite graph? The inconsistent sizes of Z and {Xp}vp=1

make it difficult to build their correlation. For simplicity, we
introduce orthogonal projection to hold their consistent feature
dimension, thus the “decoding” module (reconstruction lossL3)
is formulated as

min L3 : min
γ,Z,Wp

v∑
p=1

γ2
p

∥∥WpZ
� −Xp

∥∥2
F
,

s.t.

⎧⎨⎩
γ�1 = 1, γp ≥ 0,
Z1m = 1n, Z ≥ 0,
W�

pWp = Im,
(7)

where Wp is the projection matrices, γp measures the capacity
of bipartite graph Z to recreate input data.

So far, we have carefully presented our motivation and tech-
nical route. Note that loss of AE is to measure the discrepancy
between the input data and the reconstructed representation via
neural networks, i.e., L(X,F(G(X))). However, in traditional
machine learning scenarios, it is difficult to exactly follow such
a setting. For simplicity, we directly combine the three losses
L = L1 + L2 + L3. In addition, we introduce Laplacian rank
constraint to enforce the bipartite graph holds clear k-connected
components, so that it can naturally infer discrete labels with-
out any post-processing. Our novel end-to-end “auto-encoding”
BGAE framework is as follows,

min L1 + L2 + L3 :

min
α,γ,Up,V,
A,Z,Wp

v∑
p=1

α2
p‖Xp−UpV‖2,1︸ ︷︷ ︸
Encoding

+

n∑
i=1

m∑
j=1

‖vi−aj‖22 zij︸ ︷︷ ︸
Bipartite Graph Construction

+

v∑
p=1

γ2
p

∥∥WpZ
� −Xp

∥∥2
F︸ ︷︷ ︸

Decoding

,
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s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α�1 = 1, αp ≥ 0,
γ�1 = 1, γp ≥ 0,
VV� = Id,
Z1m = 1n, Z ≥ 0,
W�

pWp = Im,

rank(L̃) = n+m− k,

(8)

where L̃ = I−D− 1
2SD− 1

2 denotes the normalized Laplacian
matrix ofS ∈ R(n+m)×(n+m),S andD are the augmented graph
and diagonal matrix of Z defined by

S =

[
0 Z

Z� 0

]
, D =

[
Dn 0

0 Dm

]
, (9)

whereDn = diag(Z1) = In andDm = diag(Z�1) ∈ Rm×m.
As noted in [25], Lemma 1 and Remark 1 illustrate that such a
connectivity constraint can guarantee clear k-connected compo-
nents of S and Z, and each component naturally corresponds to
a disjoint cluster.

Lemma 1: The multiplicity of eigenvalue zeros of the nor-
malized Laplacian matrix L̃ equals the number of connected
components in the graph associated with S.

Remark 1: The augmented graph S consists of a bipartite
graph matrix Z and its transposed form Z�. S and Z share the
same number of connected components.

Remark 2: Note that (6) does not adhere to the standard bipar-
tite graph learning paradigm in (4) as we remove the regularizer
ζ
∑n

i=1

∑m
j=1 z

2
ij = ζTr(ZZ�), where ζ is a hyper-parameter

requiring fine-tuning or heuristic method [43]. The reason is that
(7) inherently incorporates γ2

pTr(ZZ
�), which naturally plays a

role of avoiding the sparse trivial solution. Furthermore, γp can
be optimized instead of the time-consuming parameter-tuning
process induced by η.

In summary, this section proposes a novel MVBGC design,
termed “auto-encoding” BGAE. The encoding module extracts
a latent representation across multiple views. The bipartite
graph construction module introduces manifold graph learn-
ing to explore intrinsic geometrical structures. The decoding
module recreates the input data via bipartite graph, which pro-
vides feedback to learning process that allows bipartite graph
not far from the input multi-view data, enforcing it contains
complementary information. Therefore, by jointly minimizing
L = L1 + L2 + L3, the bipartite graph balances consistency
and complementary properties across all views, which is a vital
pursuit in multi-view learning [34], [48]. Compared to most
existing models that only consider encoding input data into
bipartite graphs by (4), our novel design achieves end-to-end
“encoding-decoding” bipartite graph machine learning.

C. Optimization Algorithm

Since we impose �2,1-norm, orthogonal constraint, and Lapla-
cian rank constraint, it is difficult to solve the model directly. This
section designs an ADMM solver.

First, we derive the matrix form of (6), i.e.,
n∑

i=1

m∑
j=1

‖vi − aj‖22 zij

=

n∑
i=1

m∑
j=1

(vi − aj)
� (vi − aj) zij

=

n∑
i=1

v�
i

⎛⎝ m∑
j=1

zij

⎞⎠vi − 2

n∑
i=1

m∑
j=1

v�
i zijaj

+
m∑
j=1

aj
�
(

n∑
i=1

zij

)
aj

= Tr
(
VDnV

� − 2VZA� +ADmA�) (10)

Then, considering that the non-convex Laplacian rank con-
straint is difficult to deal with, we solve it with a relaxed
solution. Denoting σi(L̃) is the ith smallest eigenvalue of L̃.
Note that L̃ satisfies semi-definite property, i.e., σi(L̃) ≥ 0.
Once rank-k smallest σi(L̃) equals zero, the rank constraint
will be achieved, and S will be an ideal graph preserving clear
k-connected components structures. According to Ky Fan’s
Theorem [49], we have

∑k
i=1 σi(L̃) = minF�F=Ik Tr(F

�L̃F),
where F ∈ R(n+m)×k denotes the graph embedding.

Finally, by introducing v auxiliary variables {Ep = Xp −
UpV}vp=1 to separate constraints and hold equivalence during
optimization, our model is transformed into the following Aug-
mented Lagrangian Multiplier (ALM) problem

min
α,γ,Up,V,A,
Z,F,Wp,Ep,Λp

v∑
p=1

α2
p‖Ep‖2,1

+Tr
(
VDnV

� − 2VZA� +ADmA�)
+

v∑
p=1

γ2
p

∥∥WpZ
� −Xp

∥∥2
F
+ μTr

(
F�L̃F

)

+
β

2

v∑
p=1

∥∥∥∥Xp −UpV −Ep +
1

β
Λp

∥∥∥∥2
F

,

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α�1 = 1, αp ≥ 0,
γ�1 = 1, γp ≥ 0,
VV� = Id,
Z1m = 1n, Z ≥ 0,
W�

pWp = Im,
F�F = Ik,

(11)

where{Λp}vp=1 are ALM multipliers to penalize the discrepancy
between the original objective and the introduced auxiliary
variable, μ is a penalized parameter that should be large enough
to hold the rank-k smallest σi(L̃) infinitely close to zero, and β
is the ALM parameter.

We optimize (11) by block-coordinate descent strategy that
alternately updates each variable with others being fixed. Algo-
rithm 1 summarizes the overall workflow.

1) Update Up: With others being fixed, each Up is solved
by

min
Up

β

2

v∑
p=1

∥∥∥∥Xp −UpV −Ep +
1

β
Λp

∥∥∥∥2
F

. (12)
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Since no constraint is imposed on Up and VV� = Id, each
Up can be updated independently by

min
Up

∥∥∥∥Up −
(
Xp −Ep +

1

β
Λp

)
V�
∥∥∥∥2
F

. (13)

Clearly, we have

Up =

(
Xp −Ep +

1

β
Λp

)
V�. (14)

2) Update V: With others being fixed, V can be solved by

max
V

Tr (VM) , s.t. VV� = Id, (15)

where M = 2ZA� + β
∑v

p=1 Q
�
pUp and Qp = Xp −Ep +

1
βΛp. The analytical solution can be achieved by singular value
decomposition (SVD) [22].

3) Update Z: With others being fixed, Z is solved by

min
Z,F

Tr

(
v∑

p=1

γ2
pZ

�Z+ 1n

(
diag

(
A�A

)�)
Z�

−2V�AZ� − 2

v∑
p=1

γ2
pX

�
pWpZ

�
)

+ μTr
(
F�L̃F

)
,

s.t. Z1m = 1n, Z ≥ 0, F�F = Ik. (16)

Since (16) involves two variables, we use the block-coordinate
descent method to update Z and F alternatively. With Z being
fixed, (16) is simplified to,

min
F

Tr
(
F�L̃F

)
, s.t. F�F = Ik. (17)

To efficiently solve (17), we solve the singular values of Z

rather than the eigenvalues of S. By decomposing F =

[
Fn

Fm

]
,

(17) can be rewritten as,

max
Fn,Fm

Tr
(
F�

nD
− 1

2
n ZD

− 1
2

m Fm

)
,

s.t. F�
nFn + F�

mFm = Ik. (18)

Theorem 1 provides the analytical solution of (18).
Theorem 1: Supposing P ∈ Rn×k,O ∈ Rn×m,R ∈ Rm×k,

we have

max
P,R

Tr
(
P�OR

)
,

s.t. P�P+R�R = Ik. (19)

The optimal solutions areP =
√
2
2 Uo andR =

√
2
2 Vo, where

Uo and Vo are the rank-k left and right singular vectors of O.
Detailed proof is provided in supplementary material, avail-

able online.
After optimizing F, we turn to optimize Z. We have

Tr
(
F�L̃F

)
=

n∑
i=1

m∑
j=1

tijzij = Tr
(
TZ�) , (20)

where tij = ‖ f in√
Dn[i,i]

− fjm√
Dm[j,j]

‖22.

Eq. (16) can be rewritten as n row independent problem w.r.t.
Z, i.e.,

min
Z[i,:]

1

2

∥∥∥Z[i,:] − Z̃[i,:]

∥∥∥2
2
,

s.t. Z[i,:]1 = 1, Z[i,:] ≥ 0, (21)

where Z̃[i,:] = − g�
2
∑v

p=1 γ2
p

, g� = diag(A�A)� − (2V�A+

2
∑v

p=1 γ
2
pX

�
pWp − μT)[i,:].

Theorem 2 gives the analytical solution of (21).
Theorem 2: The analytical solution of (21) is

Z[i,:] =
(
Z̃[i,:] + εi1

�
m

)
+
, (22)

where εi can be solved by Newton’s method efficiently.
Detailed proof is provided in [22].
4) Update Ep: With others being fixed, each Ep is indepen-

dently solved by

min
Ep

α2
p ‖Ep‖2,1 +

β

2
‖Xp −UpV −Ep +

1

β
Λp‖2F , (23)

which can be further rewritten as the following compact formu-
lation

min
Ep

α2
p

β
‖Ep‖2,1 +

1

2
‖Ep −Hp‖2F , (24)

where Hp = Xp −UpV + 1
βΛp. According to [39], the solu-

tion is

eip =

{(
1− α2

p

β‖hi
p‖2

)
hi
p, if

∥∥hi
p

∥∥
2
>

α2
p

β ,

0, otherwise.
(25)

5) Update A: With others being fixed, A is solved by

min
A

Tr
(−2VZA� +ADmA�) . (26)

Taking the partial derivative on A, we have

∂

∂A
Tr
(−2VZA� +ADmA�)

= −2VZ+ 2ADm. (27)

By enforcing the partial derivative equals to 0, we have

VZ = ADm. (28)

Supposing (Dm)−1 exists, we have

A = VZ(Dm)−1. (29)

Remark 3: (Dm)−1 exists means that the column sum of the
bipartite graph Z ∈ Rn×m are always greater than 0. However,
such ideal cases do not always hold, and there is still a minimal
probability that the jth column sum ofZ is 0 in experiments. That
is, aj is an isolated anchor without building membership with
other instances. In experiments, we find that such undesirable
cases may occur during inchoate iterations, and the existence of
isolated aj has no impact on the objective value, so it will not
affect exploring the final graph representation. Therefore, we
remove the isolated anchors directly.
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Algorithm 1: BGAE.

1: Input: Input data {Xp}vp=1, cluster number k, anchor
number m, latent dimension d, maximal iteration Γ.

2: Initialize {Up}vp=1, A, {Wp}vp=1, Z, V, α, γ,
{Λp}vp=1.

3: while not converged and iteration less than Γ do
4: Optimize {Ep}vp=1 by updating (23).
5: Optimize {Up}vp=1 by updating (12).
6: Optimize A by updating (26).
7: Optimize {Wp}vp=1 by updating (30).
8: Optimize Z by updating (16).
9: Optimize V by updating (15).

10: Optimize α by updating (31).
11: Optimize γ by updating (33).
12: Optimize {Λp}vp=1 and β by updating (35).
13: end while
14: Output: The predicted clustering labels Ỹ.

6) Update Wp: With others being fixed, each Wp is solved
by

max
Wp

Tr
(
W�

pBp

)
, s.t. W�

pWp = Im, (30)

where Bp = XpZ, (30) can be efficiently solved by SVD.
7) Update α: With other variables being fixed, each αp is

independently optimized by

min
αp

v∑
p=1

α2
pτp, s.t. α ≥ 0,α�1 = 1, (31)

where τp = ‖Xp −UpV‖2,1. The solution of αp can be
straightly computed by Cauchy-Schwarz inequality, i.e.,

αp =
1/τp∑v
p=1 1/τp

. (32)

8) Update γ: With other variables being fixed, each γp is
independently optimized by

min
γp

v∑
p=1

γ2
pδp, s.t. γ ≥ 0,γ�1 = 1, (33)

where δp = ‖WpZ
� −Xp‖2F . The solution of γp can be

straightly computed by Cauchy-Schwarz inequality, i.e.,

γp =
1/δp∑v
p=1 1/δp

. (34)

9) Update Λp and β: Each Lagrangian multiplier Λp and β
can be updated by

Λp = Λp + β (Xp −UpV −Ep) ,

β = ρβ, (35)

where ρ controls the convergence speed and we empirically set
ρ = 2 in experiments.

TABLE II
MVC DATASETS STATISTICS

D. Complexity Analysis

In graph machine learning, constructing similarity graphs is
necessary. Given a desktop with 64 GB RAM, a double precision
floating point format requires 8 bytes, the largest matrix that can
be stored is 92, 682× 92, 682, and larger sizes will incur out-of-
memory error. This section carefully analyses the complexities.
For simplicity, we set g1 =

∑v
p=1 dp and g2 =

∑v
p=1 d

2
p. Com-

monly, n � d and n � m.
Time Complexity: The time complexity consists of nine parts:

(1) updating {Ep}vp=1 requires O(ng1d) complexity, (2) up-
dating {Up}vp=1 requires O(ng1d) complexity, (3) updating
A requires O(ndm) complexity, (4) updating {Wp}vp=1 re-
quires O(n(g1m+ g2)) complexity, (5) updating Z requires
O(n(g1m+ dm+m2)) complexity, (6) updating V requires
O(n(g1m+ dm+ d2)) complexity, (7) updating α requires
O(ng1d) complexity, (8) updating γ requires O(n(g1m+ g2))
complexity, (9) updating {Λp}vp=1 requires O(ng1d) complex-
ity. So, the total time complexity for each iteration isO(n(g1d+
g1m+ g2 + dm+ d2 +m2)).

Space Complexity: The space complexity comes from stor-
ing huge matrices, i.e., {Ep}vp=1, {Xp}vp=1, {Up}vp=1, A,
{Wp}vp=1, Z, V, and {Λp}vp=1. The total space complexity is
O(n(g1 + d+m) + g1(d+m) + dm).

Therefore, the complexities are linear with n, enabling it can
scale to large datasets with n ≥ 100, 000.

IV. EXPERIMENT

A. Experimental Settings

1) Synthetic Datasets: To visualize the “benefits” from the
“decoding” learning in retaining the initial manifold structures,
we design a synthetic two-moon data from two clusters, shown
in Fig. 2(a). Each moon consists of 100 samples, one moon is
colored with green dots and the other with pink dots.

2) Realistic Datasets: Table II lists ten public MVC datasets.
Yale1 involves 165 grayscale images of 15 individuals. 3sources2

is a text dataset. MSRCV1 [58] contains 210 images from
7 clusters. ORL_3views and ORL_4views3 are face datasets
containing 400 images from 40 categories but with different

1http://cvc.cs.yale.edu/cvc/projects/yalefaces/
yalefaces.html

2http://mlg.ucd.ie/datasets/3sources.html
3https://cam-orl.co. UK/facedatabase.html
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TABLE III
COMPARISON OF ALGORITHM COMPLEXITY

views. SUN RGB-D4 contains 10,335 real RGB-D images of
room scenes. YouTubeFace20, YouTubeFace50, and YouTube-
Face100 are face video datasets extracted from YouTube [21]
with different number of clusters.

3) Compared Baselines: To evaluate the effectiveness of the
proposed BGAE framework, thirteen state-of-the-art baselines
are collected. 1) RMKM [50] proposes a robust MVC method
using �2,1-norm. 2) AMGL [51] designs a multi-graph clustering
model with an auto-weighted strategy. 3) FMR [52] introduces
kernel dependence measure to extract latent representation with
nonlinear and high-order structures. 4) PMSC [53] fuses mul-
tiple views in the partition level. 5) BMVC [54] incorporates
collaborative binary coding and binary cluster structure learning.
6) LMVSC [26] proposes sampling anchors by k-means and
concatenating multiple anchor graphs to exploit complemen-
tary information. 7) SMVSC [18] proposes to project multiple
views into a latent space and learn unified anchors through
optimization. 8) SFMC [25] restricts generating the same an-
chors across multiple views and fuses a unified bipartite graph
with Laplacian rank constraint. 9) FMCNOF [55] designs an
orthogonal NMF variant and fuses a unified indicator matrix
to predict labels directly. 10) FPMVS [56] is a parameter-free
extension of SMVSC. 11) SDAFG [45] exploits structural di-
versity by merging diverse anchor graphs into a large target
graph with connectivity constraints. 12) UDBGL [57] fuses
view-wise and view-consensus information to learn a unified
anchor graph and coupled with connectivity constraints to hold
discrete cluster structures. 13) FastMICE [21] introduces the
concept of random view groups to capture multi-view relation-
ships and devises a hybrid fusion method to combine diver-
sities of features, anchors, and neighbors, achieving ensemble
clustering. Table III reports their complexity.

4) Technical Details: The codes of compared baselines are
collected directly from the authors’ homepage or GitHub with-
out corrections, hyper-parameters are carefully tuned following
the authors’ suggestions, and we report the best metrics. For
baselines involving k-means, the results mean± std are reported
by repeating 50 times to alleviate randomness. The cluster
number k is assumed pre-known following most experimental
settings [59], [60], [61].

4https://rgbd.cs.princeton.edu/

For our BGAE, the anchor number m is fixed at k, the latent
dimension d of representation V varies in [k, 2k, . . . , 9k] and
d ≤ minp{dp}vp=1 should be satisfied. Following [25], μ is
heuristically updated by measuring the gap of k and ι, where
ι denotes the multiplicity of eigenvalue zeros. Specifically, μ is
initially set to 1 and iteratively updated by μ = 2× μ if ι ≤ k
or μ = μ

2 if ι > k + 1.
Performance is measured by accuracy (ACC), normalized

mutual information (NMI), purity, and F-score [62], [63]. Ex-
periments were performed on a desktop with Intel(R) i9 9900 K
CPUs @3.6GHZ, 64 GB RAM, and Matlab 2020b.

B. Effectiveness of BGAE Compared to Baselines

Table IV reports clustering metrics, and we observe that:
1) Our novel BGAE achieves competitive performance and

ranks first in most cases. Compared to the runner-up
ones, ours achieves 3.31%, 4.43%, 1.98%, 6.15%, 2.50%,
3.50%, 1.44%, 4.45%, 7.74%, and 2.80% improvement
of ACC on ten datasets, respectively. In particular, our su-
periority is evident on large-scale datasets (n ≥ 38, 654),
demonstrating the effectiveness. Moreover, our end-to-
end model does not require post-processing, avoiding the
randomness of k-means.

2) RMKM, AMGL, FMR, and PMSC are MVC models with
space complexity O(n2), requiring to construct fully con-
nected graphs, they suffer “OOM” on large-scale datasets
(n ≥ 63, 896) and exhibit limited scalability, while our
BGAE can still handle such challenging tasks with promis-
ing performance.

3) LMVSC and FPMVS are the two strongest MVBGC
competitors. However, the separation of clustering and
post-processing results in unstable performance and sub-
optimal solutions. Mostly, all BGC baselines only consider
the “encoding” learning process but omit the “decoding”
process in bipartite graph learning, their performance is
inferior to ours.

C. Significance of the “encoding” Module

To reveal the discrimination of the encoded representation
intuitively, Fig. 4 t-SNE visualizes the original data distribution
{Xp}vp=1 and the latent representation V on MRSCV1 (7 clus-
ters), Dermatology (6 clusters), and ORL_3views (40 clusters).
We observe that:

1) Input data stacks together and shows complex curved or
folded manifold structures. The separability for disjoint
clusters is inconspicuous. By contrast, by extracting the
latent representation, the data show much clearer sepa-
rability, even for ORL_3views that includes 40 clusters,
the decision boundaries are still distinct. Although the
encoded latent representation may mistake the correlation
of instances caused by complex manifolds, subsequent
bipartite graph learning can further exploit intrinsic struc-
tures and correct several mistaken memberships, as shown
in Fig. 6.
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TABLE IV
SUMMARY OF CLUSTERING METRICS

Fig. 4. t-SNE visualization of the input multi-view data {Xp}vp=1 and the extracted latent representation V.
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Fig. 5. Ablation analysis of the “decoding” module by visualizing the bipartite graph representation.

TABLE V
EXPERIMENTAL SETTINGS OF ABLATION ANALYSIS

2) An interesting phenomenon is that the learned anchors
almost lie in the centroids of clusters, exhibiting discrim-
inative property, and conform to our intuitive and ideal
pursuit in bipartite graph learning. A reasonable expla-
nation is that we enforce the connectivity constraint on
the bipartite graph to ensure the k-connected components,
making the bipartite graphZ sparse enough to satisfy such
a constraint. Recalling anchors are optimized without con-
straint, and our experimental setting m = k contributes
to approaching the intuitive result that each anchor lies
in the corresponding centroid of the cluster. The results
verify the reasonability of our unconstrained optimization
strategy on anchors A.

D. Ablation Analysis of the “decoding” Module

To verify the significance of our novel “encoding-decoding”
design, Table V lists ablation study settings. For simplicity,
“(w/o) Dec_V1” denotes our model that removes the “decod-
ing” module. “(w/o) Dec_V2” denotes “(w/o) Dec_V1” with a

quadratic term of Z, i.e., introducing an additional regulariza-
tion term ζz2ij , where the balanced parameter ζ is heuristically
pre-determined following [43]. As a reference, we also give the
metrics of the latent representationV coupled k-means to output
labels, called “LV_KM”.

First, Fig. 5 visualize bipartite graphs on MSRCV1, Der-
matology, ORL_3views, YouTubeFace20, and YouTubeFace50
datasets. Since we impose connectivity constraint, bipartite
graphs show sparse representation. Caused by the undesirable
trivial solution, “(w/o) Dec_V1” largely mistake the member-
ships of anchors and instances, immensely destroying graph rep-
resentation. Introducing additional regularization can correct the
mistaken memberships, as shown in “(w/o) Dec_V2”. However,
since “(w/o) Dec_V2” ignores the guidance of the “decoding”
process, it still mistakes some memberships and degrades per-
formance, as shown in MSRCV1 and ORL_3views. Mostly, the
extra regularizer acts as a penalty term to avoid trivial solu-
tions, which leads to an undesirable hyper-parameter ζ without
practical interpretations, requiring additional parameter-tuning
or heuristic solutions.

Furthermore, Fig. 6 quantifies clustering metrics. We observe
that “(w/o) Dec_V1” outputs dramatically poor metrics. “(w/o)
Dec_V2” apparently improves clustering metrics. “LV_KM”
introduces unstable performance caused by the randomness of
k-means. By contrast, our BGAE achieves the best metrics and
outperforms baselines with large margins of 3.64%, 6.52%,
4.76%, 0.84%, 9.25%, 6.00%, 4.97%, 1.89%, 3.26%, and 3.44%
of ACC, respectively. In particular, our BGAE shows significant
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Fig. 6. Ablation analysis of the “decoding” module by quantifying the clustering metrics.

Fig. 7. Effect of latent feature dimension.

improvement over “LV_KM” in most cases, indicating that the
bipartite graph construction module can further explore and re-
fine the latent representation encoded from “encoding” module.

In summary, this is convincing evidence corroborating the
effectiveness of our novel MVBGC design and the improvement
brought by the “decoding” module.

E. Effect of Latent Feature Dimension

Considering pre-determining the optimal latent feature di-
mension d is still a challenging problem in unsupervised learn-
ing, Fig. 7 reports clustering metrics with varying latent feature
dimensions in the range [k, 2k, . . . , 9k] on five datasets. As
pointed in Section IV-A4,d ≤ minp{dp}vp=1 should be satisfied,
the maximum latent dimension available for ORL_4views and
YouTubeFace100 is d = 6k and d = 5k, respectively. We find
that dimension-metric curves show dataset-related results and
do not increase monotonously but fluctuate. The results coincide
with the knowledge that higher dimensions can enrich the vol-
ume of information, but may also induce redundancy or noise.
How to pre-determine the optimal latent feature dimension in

unsupervised learning is still an open question, which deserves
future research.

F. View Weight Distribution

Fig. 8 plots the view contribution α in “encoding” module.
We observe that the distribution exhibits dataset-related results.
Due to potential noise or redundancy within the input data,
different views provide different contributions to extracting
latent representation, as shown on MRSCV1, Dermatology, and
ORL_3views. The results demonstrate that designing flexible
and adaptive fusion mechanisms is important in multi-view
learning. The γ distribution in the “decoding” module is avail-
able in supplementary material, available online.

G. Efficiency

Fig. 9 plots time consumption, we observe that:
1) Although our model requires comparative even more exe-

cution time compared to full graph baselines on small-
scale datasets, such as Yale, 3sources, MSRCV1, and
ORL_3views, which is mainly caused by complex op-
timization, unacceptable “OOM” on large-scale datasets
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Fig. 8. View weights α in representation learning process.

Fig. 9. Comparison of the relative logarithm running time. The compared SDAFG is the baseline.

Fig. 10. Empirical validation of the convergence.

will not occur for our BGAE, demonstrating the superior-
ity of our promising scalability with linear complexity.

2) Although BGC baselines and ours share similar linear
complexity, our BGAE costs comparative or more running
time due to ADMM solver. However, these baselines omit
the “decoding” process with degraded unstable perfor-
mance. Generally, we believe that the extra computation
is worthwhile for competitive performance.

H. Convergence

Our solver uses a block-coordinate descent method. The
original objective in (8) is separated into eight sub-problems,
and each one has a closed-form solution. Although the ALM
parameter β increases iteratively, it controls the convergence
speed and generally has little impact on the final results. Ideally,
as β increases, the last term of (11) will be close to 0, and the

ALM objective converges asymptotically to the original function
bounded by 0. According to previous research on ALM frame-
work [38], [39], the original function decreases monotonically
with iterations and thus converges to a local optimal solution.

Fig. 10 empirically validates the convergence of the original
function, further confirming the convergence on all benchmark
datasets. Our model typically converges within 20 iterations,
demonstrating its efficiency. More experimental results are pro-
vided in supplementary material, available online.

V. CONCLUSION

This paper revisits existing MVBGC paradigms and finds that
existing models adopt a common design that encodes input data
directly into bipartite graphs. Enlightened by the popular AE
in deep learning, we transfer the “auto-encoding” design into
traditional graph machine learning, and propose a novel BGAE
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model, which consists of encoding, bipartite graph construction,
and decoding modules. The encoding module extracts a latent
representation from the input data in a robust manner, the bipar-
tite graph construction module learns a discriminative bipartite
graph, and the decoding module recreates the input data. All
these modules are seamlessly integrated and mutually enhanced.
We design an ADMM solver with linear complexity respecting
instances. Empirical experiments on a synthetic dataset visualize
the “benefit” of decoding learning to retain the initial manifold,
and ablation analysis further verifies the effectiveness. This
paper investigates how to build “auto-encoding” design in graph
machine learning, we believe these novel insights will promote
more variants proposed based on our novel design. This paper
introduces �2,1-norm to hold robustness to noise or outliers.
Recent uncertainty-aware learning [64], [65] provides another
solution that can measure the evidence for predictions, so devel-
oping trusted MVBGC that reduces uncertainty is meaningful.
In addition, this paper assumes that the input data is complete.
However, incomplete data within multi-view data is more com-
mon and challenging in real-world scenarios. So, another of our
future work is to extend “auto-encoding” design to incomplete
scenarios.
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