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Attributed graphs with both topological information and node information have prevalent applications in the
real world, including recommendation systems, biological networks, community analysis, and so on. Recently,
with rapid development of information gathering and extraction technology, the sources of data become more
extensive and multi-view data attracts growing attention. Consequently, attributed graphs can be divided into
two categories: single-view attributed graphs and multi-view attributed graphs. Compared with single-view
attributed graphs, multi-view attributed graphs can provide more complementary information but also pose
challenges to fusing information of multi-views. Moreover, attributed graph clustering aims to reveal the
inherent community structure of the graph, which is widely applied in fraud detection, crime recognition, and
recommendation systems. Recently, numerous methods based on various ideas and techniques have appeared
to cluster attributed graphs, thus there is an urgent need to summarize related methods. To this end, we make
a timely and comprehensive review of recent methods. Furthermore, we provide a novel standard according to
fusion results to classify related methods into three categories: fusion on adjacency matrix methods, fusion on
embedding methods, and model-based methods. Moreover, to conduct a comprehensive evaluation of existing
methods, this article evaluates these advanced methods with sufficient experimental results and theoretical
analysis. Finally, we analyze the challenges and open opportunities to promote the future development of this
field.
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1 Introduction
As a common type of graph [8, 25, 97], attributed graphs are composed of a set of nodes with individ-
ual characteristics and edges that reflect connection relationships and features. Moreover, attributed
graphs [71, 84] have prevalent applications in the real world due to their powerful ability to model
complex relationships between different entities with various features, including social networks
[22], citation networks [27], biological networks [3, 15, 39], and knowledge graphs [17, 41]. For
instance, in social networks [11, 40, 57], each individual is represented as a node whose attributes
are personal information, and edges connecting two nodes can reflect the communications between
individuals. In a biological network of protein–protein-interaction [58, 94], a protein can be seen
as a node whose attributes are protein characteristics, and edges can reveal biochemical interac-
tions between two proteins. Recently, with the rapid development of information gathering and
extraction technology, data sources have become more extensive, and multi-view data has attracted
increasing attention. Compared with single-view attributed graphs, multi-view attributed graphs
can model more complex networks with multiple relationships and contain more complementary
information. Due to this attractive modeling ability, attributed graphs [71, 84, 96] are becoming
ubiquitous and driving the emergence of various tasks in graph data mining.

Attributed graph clustering [14, 37, 93] aims to allocate given nodes into several disjoint clusters,
which plays a critical role in recommendation system [54, 69], organization detection, and other
applications, as shown in Figure 1. For example, in social media, such as Facebook, Twitter, and
Weibo, users and their connections constitute an attributed graph. Node attributes contain the
information of users, including place of residence, gender, education level, and other details. We can
cluster nodes via attributes and connections to divide users into different groups, which contributes
to friend recommendation and interest tribe construction. As a challenging problem, attributed
graph clustering needs to effectively combine structural information and node attributes, which
can be applied in many real-life applications. Here are some typical applications:

—Recommendation System. E-commerce platforms and short video platforms attempt to
provide users with goods or videos that users are interested in. Attributed graph clustering
can contribute to accurate and effective personalized recommendations [4], as users in the
same cluster may have similar interests and preferences.

—Organization Detection. In the field of anti-fraud, to obtain huge profits in a short time, the
crimes show obvious gang characteristics, while the terrorist organization also has obvious
group characteristics in social networks. Thus, attributed graph clustering is beneficial to
quickly discover groups for organization detection (i.e., fraud detection [77] and terrorist
organization identification [70]).

— Biomedical Science. In the fields of biology and medicine, attributed graph clustering can
not only identify complexes of new proteins and disease pathogenic factors but also help
integrate proteome and genetic data to reveal key insights into the structure of mammalian
lipid metabolism networks.

— Social Network Analysis. In social networks [57] such as WeChat, Facebook, and Twitter,
platforms can gather users and recommend people with the same hobbies, creating a tribe of
interests so users can communicate better. Online friends can also be connected in real life to
expand the social sphere.
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Fig. 1. Applications of attributed graph clustering.

Owing to the importance of attributed graph clustering, many advanced works have emerged.
Since there are few works related to edge attributes, in this article, we mainly focus on attributed
graphs with node attributes. In this part, we review existing works about clustering attributed
graphs in the past decades and classify these works into several groups. Figure 2 shows the timeline
of attributed graph clustering development.
Different from plain graphs only with structural information, attributed graphs have not only

attributes but also structural information, both of which contribute to the clustering. Hence, it is
crucial to make full use of attributes and structural information. However, earlier works often only
consider attributes or structure information. For example, k-means methods only focus on node
attributes and greatly reduce the clustering accuracy.
To fully utilize attributes and structural information, recent works focus on fusing these two

pieces of information. Several works take attributes into structural information to update a new
adjacency matrix, such as References [2, 59, 73, 74, 78, 88]. These works convert the attributed
graph to the weighted graph by fusing attribute similarity between nodes and original adjacency
relationships and then implement the label propagation algorithm or other methods to cluster.
Moreover, there are some methods that adopt subspace learning to fuse attributes and structural
information to obtain a new adjacency/similarity matrix. Furthermore, many works attempt to
utilize spectral clustering methods and provide the needed affinity matrix via fusing attributes and
topology.

In recent years, graph neural networks have served as an excellent embedding learning technol-
ogy in many fields [63, 81, 92]. Due to their excellent ability to learn deep information, GNN-based
methods achieve brilliant performance on clustering tasks by optimizing the embeddings. These
methods aim to take structural information into attributes by blending attributes of adjacent
nodes. However, as GNNs are not designed for clustering, some works presented in References
[36, 99, 100] just implement GNNs as feature extractors and then utilize traditional clustering
methods on node embeddings. Consequently, the processes of representation learning and
clustering are executed separately [23, 44], which limits the accuracy of clustering. Many end-to-end
clustering methods in References [83, 85, 89, 91] are proposed to build a clustering-oriented
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Fig. 2. A timeline of attributed graph clustering development.

framework. These methods integrate the node representation and clustering process into a
unified framework.
Besides, some works in References [42, 67, 95] design special algorithms and fuse attribute

information and structural information into the unique concepts within the algorithm, such as
reinforcement learning, evolutionary methods, matrix factorization [32, 61, 65, 87], and so on.

Through adequate research and analysis of existing works, we divide the relevant works into the
following three categories:

— Fusion on adjacency matrix methods. These methods always convert attributes to the
adjacency matrix by calculating similarities between nodes. Then, clustering methods will be
conducted on the updated adjacency matrix to realize clustering.

— Fusion on embedding methods. These methods integrate structural information into
attribute information by combining attributes of adjacency nodes. The updated embeddings
fusing the structural information with attributes can contribute to the accuracy of
clustering.
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Table 1. Compared with Existing Surveys

Survey Year Graph Type Criterion of Division
[6] 2015 Attributed graphs Edge or node-attributed graphs
[12] 2019 Attributed graphs Fusion sequence
[76] 2021 All types of graphs Deep learning technology
Ours 2023 Attributed graphs Fusion results

—Model-based methods. Model-based methods usually design a specific algorithm to realize
clustering, thus, these methods combine attributes and structural information into unique
concepts, such as reinforcement methods that integrate attributes and structural information
as a reward function to optimize the clustering results.

Comparison with existing reviews. In our investigation, there are three surveys [6, 12, 76]
related to graph clustering in recent years. We compare these surveys with ours from different
aspects, as shown in Table 1. The first survey [6] was published in 2015, and it focused on the
attributed graphs with either edge or node attributes. Another survey [12] was published in 2019,
and this article paid attention to node-attributed social networks. This survey classified methods
according to when to fuse attributes and structural information. The survey presented in Reference
[76] considered all types of graphs and paid attention to the deep-learning methods. In the past
few years, many approaches based on different ideas and techniques related to attributed graphs
have emerged in this field. Thus, we sort out recent methods and make a summary of various
methods.
This article gives a comprehensive and up-to-date overview of attributed graph clustering and

classifies recent articles according to a novel classification standard. Furthermore, we evaluate
recent methods on attributed graph clustering by various experiments and explore the relationships
between multi-view and single-view clustering tasks through the experiment results. This article
is intended for general researchers who want to learn about attributed graph clustering, graph
clustering researchers who want to track the latest advances in single-view or the nascent
development of multi-view, and domain experts who want to extend existing clustering methods
to multi-view graph clustering. The main contributions of this survey are summarized as follows:

—Unified framework and systematic classification. In this article, we propose a new
systematic taxonomy for this survey. For each category, we overview related methods and
summarize each category into a unified framework.

—Related experimental evaluation. We perform a thorough analysis and comparison of
different methods through various experiments. Four single-view datasets and five multi-view
datasets are selected to evaluate related methods.

—Abundant resources. We collect abundant resources related to attributed graph clustering,
including datasets of single-view tasks and multi-view tasks, evaluation metrics, and so on.

— Future direction. We offer insightful suggestions for future studies. We discuss challenges
and open opportunities for future directions.

The remainder of this article is organized as follows: Section 2 describes the related tasks in
detail and provides some related concepts and definitions. Moreover, we classify and summarize
advanced methods of clustering on single-view attributed graphs in Section 3. Section 4 reviews
methods related to clustering on the multi-view attributed graphs. In Section 5, we summarize
the challenges of the multi-view task and attempt to learn from the single-view task to bring
inspiration to the multi-view task. Section 6 summarizes the relevant datasets. Section 7 evaluates
advanced methods related to attributed graph clustering with extensive experimental results.
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Table 2. Notations and Descriptions

Notations Descriptions Notations Descriptions
𝑁 The number of nodes 𝑆 Similarity matrix
𝑋 Attribute matrix 𝛼 Weighting factor

𝐴 Adjacency matrix 𝑙
The probability distribution
of clustering labels

𝐺 Attributed graph 𝑄 The distribution of soft labels

𝑅 The number of views 𝑃
The target distribution
derived from 𝑄

𝑥𝑟𝑖
The attribute vector of
node 𝑣𝑖 in the rth view 𝐿𝑐𝑜𝑛 The contrastive loss function

𝑒𝑟𝑖, 𝑗
The relationships between
node 𝑣𝑖 and 𝑣 𝑗 in the rth view 𝐿𝑐 The clustering loss

𝐶 The clustering partition of the graph 𝜆𝑟 The weight for the rth view

𝐾 The number of clusters 𝑋
𝑟 The smooth representation by

graph filtering in the rth view

𝐷 Self-expression coefficient matrix. 𝑓 (𝐴𝑟 )
The high-order adjacency
relationship

𝑧𝑖 The node representation of node 𝑣𝑖 (∗)𝑇 The transpose of the matrix
| | ∗ | |2 The 𝑙2 norm 𝑟 The smooth parameter
| | ∗ | |𝐹 Frobenius norm 𝐿𝑒 The reconstruction loss

Section 8 summarizes the key contributions and findings of this survey and then analyzes the
future directions.

2 Preliminaries
In this section, we mainly focus on two types of attributed graphs and introduce the definitions
and applications of these graphs. The used notations are summarized in Table 2.

2.1 Attributed Graphs
In this section, we classify attributed graphs into two categories, namely, single-view attributed
graphs and multi-view attributed graphs, which are formally defined as follows:

2.1.1 Single-view Attributed Graphs. A basic attributed graph can be referred to as a single-view
attributed graph. This graph is usually generated from one relationship. To facilitate the study, we
give a precise definition of the common attribute graph.

Definition 1 (Single-view Attributed Graph). We consider a common attributed graph 𝐺 =

(𝑉 , 𝐸, 𝑋 ), where 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑁 } is the node set, and 𝑁 is the number of nodes. Further-
more, 𝐸 is the edge set of a given attributed graph 𝐺 , which contains edges 𝑒𝑖, 𝑗 connecting nodes
𝑣𝑖 and 𝑣 𝑗 . 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} represents the attribute matrix, where 𝑥𝑖 represents the attributed
vector of node 𝑣𝑖 . The adjacency matrix𝐴 ∈ 𝑅𝑛×𝑛 is a general data structure to store the connecting
relationship between the vertices in the graph. If there exists an edge between nodes 𝑣𝑖 and 𝑣 𝑗 , then
𝑎𝑖, 𝑗 = 1, otherwise, 𝑎𝑖, 𝑗 = 0.

Example 2.1. Figure 3(a) describes the interactions around Jack on the WeChat platform. Each
node represents a user of the WeChat platform, whose attributes of nodes are personal information,
such as hobbies, addresses, and so on. Edges can reveal the interaction between two users. We can
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Fig. 3. An example of the single-view attributed graph and the multi-view attributed graph.

observe Jack and Leo have chatted with each other, which may indicate they are online friends,
while Jack and Ann have no communication, hinting that they may not know each other.

2.1.2 Multi-view Attributed Graphs. Multi-view attributed graphs can provide different but
complementary information from multiple views.

Definition 2 (Multi-view Attributed Graph). Define a multi-view attributed graph as 𝐺 =

{Φ, 𝐸1, 𝐸2, . . . , 𝐸𝑅, 𝑋1, 𝑋2, . . . , 𝑋𝑅}, where 𝑉 is the node set, 𝑒𝑟𝑖, 𝑗 ∈ 𝐸𝑟 denotes the relationships
between nodes 𝑣𝑖 and 𝑣 𝑗 in the rth view 𝐺𝑟 (𝑉 , 𝐸𝑟 , 𝑋𝑟 ), and 𝑥𝑟𝑖 ∈ 𝑋 𝑟 is the attribute matrix of node
𝑣𝑖 in the rth view. Additionally, adjacency matrices {𝐴𝑟 }𝑅𝑟=1 for 𝑎𝑟𝑖, 𝑗 ∈ 𝐴𝑟 are utilized to store the
structure information of𝐺 . If there exists an edge between nodes 𝑣𝑖 and 𝑣 𝑗 , then 𝑎𝑟𝑖, 𝑗 = 1, otherwise,
𝑎𝑟𝑖, 𝑗 = 0.

Example 2.2. Figure 3(b) shows a multi-view attributed graph representing different relationships
in a social network. Nodes represent individuals in the social life that have different attributes and
relationships in each view, providing different perspectives for us. In the co-focus relationship,
attributes are composed of related topics that people care about; in the colleague relationship,
attributes reflect personal information such as the member’s academic background and home
address; while in the co-hobby relationship, attributes include the interests and hobbies of different
individuals.

2.2 Graph Clustering
Definition 3 (Single-view Attributed Graph Clustering). Given an attributed graph𝐺 = (𝑉 , 𝐸, 𝑋 ),

graph clustering aims to partition the nodes of the graph 𝐺 into 𝐾 clusters {𝐶1,𝐶2, ...𝐶𝐾 }.

Definition 4 (Multi-view Attributed Graph Clustering). Given a multi-view attributed graph
𝐺 =

{
𝑉 , 𝐸1, 𝐸2, . . . , 𝐸𝑅, 𝑋 1, 𝑋 2, . . . , 𝑋𝑅

}
, the clustering on multi-view attributed graph aims to find

a consensus partition fitting all views to partition the nodes into k clusters {𝐶1,𝐶2, ...𝐶𝐾 }.

Example 2.3. Taking Figure 3 as an example, Figure 3(a) is a single-view attributed graph of
a social network, and by fusing the attributes containing personal information and structure
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indicating social relationships, we can segment the nodes representing people well. In the multi-
view attributed graph of Figure 3 (b), we need to consider the information under three views,
including co-focus, colleague, and co-hobby relationships with their related attributes, perform
the fusion between the views, extract the consensus information, and the clustering result should
satisfy the approval of multiple views at the same time.

2.3 Evaluation Metrics
To evaluate the quality of clustering results, we introduce the following evaluation indicators:
ACC (Accuracy), NMI (Normalized Mutual Information), ARI (Adjusted Rand Index),
F1 (F1 − score), P (Precision), and R (Recall). There are different calculation methods and evalua-
tion criteria for different evaluation indicators.

ACC: Accuracy [75] compares the obtained tags with the real tags that are provided by the data.
Formally, it is defined as

𝐴𝐶𝐶 =

∑𝑁
𝑖=1 𝜎 (𝑠𝑖 , 𝑚𝑎𝑝 (𝑟𝑖 ))

𝑁
, (1)

where 𝑟𝑖 and 𝑠𝑖 represent the obtained tags and the actual tags corresponding to data 𝑥𝑖 , 𝑁 is the
number of nodes, and 𝜎 indicates an indicator function:

𝜎 (𝑥,𝑦) =
{
1 𝑖 𝑓 𝑥 = 𝑦 ;
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

(2)

The mapping in the formula represents the recursive allocation of the best class criteria to ensure
the accuracy of the statistics.
NMI: Normalized Mutual Information [75] is defined to measure the similarities between clus-

tering results and real tags. Its value range is [0,1], and the larger the value, the more similar it is.
Formally, NMI can be computed as

𝑁𝑀𝐼 (𝑌,𝐶) = 2 × 𝐼 (𝑌 ;𝐶)
𝐻 (𝑌 ) + 𝐻 (𝐶) , (3)

where 𝑌 represents the true category of the data, 𝐶 is the clustering result. 𝐻 (.) represents cross
entropy and is defined as

𝐻 (𝑋 ) = −
|𝑋 |∑︁
𝑖=1

𝑃 (𝑖) × 𝑙𝑜𝑔 𝑃 (𝑖) , (4)

while 𝐼 (𝑌 ;𝐶) is mutual information, 𝐼 (𝑌 ;𝐶) = 𝐻 (𝑌 ) − 𝐻 (𝑌 |𝐶).
ARI: For any number of cluster centers and samples, the Adjusted Rand Index [33] of random

clustering is very close to zero. Its value range is [-1,1], and a negative number represents a bad
result. The closer it is to 1, the better the result is. Formally, it can be computed as

𝐴𝑅𝐼 =

∑
𝑖 𝑗

(𝑛𝑖 𝑗
2
)
− [∑𝑖

(
𝑎𝑖
2
) ∑

𝑗

(𝑏 𝑗
2
)
]/
(
𝑛
2
)

1
2 [
∑
𝑖

(
𝑎𝑖
2
)
+∑

𝑗

(𝑏 𝑗
2
)
] − [∑𝑖

(
𝑎𝑖
2
) ∑

𝑗

(𝑏 𝑗
2
)
]/
(
𝑛
2
) , (5)

where 𝑛𝑖 𝑗 is the number of nodes that belong to the real cluster 𝐶 𝑗 and assignment cluster 𝐶 ′
𝑖 .

Respectively, 𝑎𝑖 represents the number of nodes that belong to the assignment cluster 𝐶 ′
𝑖 , and 𝑏 𝑗 is

the number of nodes in real cluster 𝐶 𝑗 . Moreover, 𝑛 represents the total number of nodes.
P: Precision [79] refers to the ratio of the number of correct nodes to the total number of nodes

in the same cluster according to clustering results and can be computed as

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 , (6)
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Fig. 4. Weighted edge methods. These methods convert attributed graphs into weighted graphs by combining
both attributive and adjacency relationships and adopting these combinations as the weights of edges.

where 𝑇𝑃 represents the number of nodes that belong to the same cluster according to real labels
and assigned clusters, and 𝐹𝑃 is the number of nodes in different clusters according to real labels
but in the same cluster in accordance with assigned results.
R: Recall [83] refers to the ratio of the number of correct answers given by the algorithm to

the number of nodes that belong to the same cluster in accordance with real labels. Formally, it is
defined as

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 , (7)

where 𝐹𝑁 is the number of nodes that belong to the same cluster according to real labels but in
different clusters in the light of assigned clusters.
F1-score: F1-score [62] represents the harmonic average of Precision and Recall and can be

computed by

𝐹1 = 2 × 𝑃 × 𝑅
𝑃 + 𝑅 . (8)

3 Single-view Attributed Graph Clustering Methods
In this article, we review related articles in recent years and classify these methods into three classes
according to fusion results: fusion on adjacency matrix methods, fusion on embedding methods,
and model-based methods. The fusion on adjacency matrix methods store attributed information
of nodes inside the adjacency matrix. Differently, the second class stores the topology information
inside the node embeddings. The third class combines attribute and structure information into
particular concepts inside the proposed models. In this section, we display these three classes and
representative works in detail.

3.1 Fusion on Adjacency Matrix Methods
3.1.1 Weighted Edge. The works in References [2, 30, 56] convert the attributed graph𝐺 (𝑉 , 𝐸, 𝑋 )

into a weighted graph 𝐺 (𝑉 , 𝐸) by combining both attributive and adjacency relationships and
adopting these combinations as the weights of edges. Then, the clustering task is performed on
the weighted graph instead of the attributed graph, as shown in Figure 4. Table 3 summarizes
recent works related to weighted edge methods. In Reference [2], authors calculate weights of
edges by combining attribute similarity and adjacency information. Here, the weights of edges can
be concluded as

𝑒𝑖, 𝑗 = 𝑠𝑖𝑚(𝑥𝑖 , 𝑥 𝑗 ) , (9)

𝑒𝑖, 𝑗 = 𝜆 × 𝑒𝑖, 𝑗 + (1 − 𝜆) × 𝑒𝑖, 𝑗 , (10)
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Table 3. Recent Works Related to Weighted Edge Methods

Methods Year Edge Weights Clustering Methods Quality Measures

SAS-LP[2] 2022
The combination of
attribute similarity
and structural similarity

Label Propagation NMI, ACC, F1

MICAG[30] 2022
The likelihood in
the same cluster
of adjacent nodes

Depth-first search P, R, F-measure

Modified
LPA [56] 2021 Edge Weighting

Methods [31] Label propagation
NMI, Modularity,
Modularity, Entropy,
Conductance, Density
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Fig. 5. Affinity-based methods. They construct affinity matrix by combining attributes and structural infor-
mation and then implement spectral clustering on the affinity matrix to acquire the final clusters.

where 𝑥𝑖 denotes the attribute of node 𝑣𝑖 and the function 𝑠𝑖𝑚(∗, ∗) defined as Cosine Similarity or
Matching Coefficient values aims to calculate the attributes similarities between nodes. Equation (10)
describes the integration of both structural and attributive similarities. The hyperparameter 𝜆
contributes to the balance between attributes and structure. If 𝜆 = 0 in Equation (10), then the
generated graph contains weights based on structural information; if 𝜆 = 1, then the generated
graph is based on attributes. MICAG [30] obtains weights of edges by calculating the likelihood in
the same cluster of adjacent nodes, and Modified LPA [56] expends the edge weighting methods
[31] to continuous properties.
After we obtain the weighted graph, classical graph clustering algorithms can be utilized such

as weighted Louvain, depth-first search [30], and label propagation [2, 56]. It is worth noting that
attributive similarities are often determined by author preferences.

3.1.2 Affinity-based Methods. Several affinity-based methods in References [85, 86, 98] construct
affinity matrix by combining attributes and structural information. After obtaining the affinity
matrix (symmetric and non-negative), these methods implement spectral clustering method on
the affinity matrix to acquire the final clusters, as shown in Figure 5. Table 4 summarizes recent
works related to affinity-based methods. To obtain the affinity matrix, most methods presented
in References [85, 86] utilize the self-expression module, while Reference [98] applies the linear
kernel to learn pairwise similarity between nodes. The self-expression module is introduced by
deep subspace clustering methods to learn the self-expressiveness between node representations.
Specifically, given a node representation 𝑧𝑖 , the self-expression module can represent this node
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Table 4. Recent Works Related to Affinity-based Methods

Methods Year Number of Clusters Affinity Matrix
Construction Method

Quality Measures

NCAGC [86] 2022 Yes Self-expression Layer ACC, NMI, ARI
MSGA [85] 2021 Yes Self-expression ACC, NMI, ARI
AGC [98] 2019 Yes Linear kernel ACC, NMI, F1

Table 5. Recent Works Related to Similarity-based Methods

Methods Year Fusion Similarity
Construction

Number of Clusters Quality Measures

FGC [38] 2022 Self-expression learning Yes ACC, F1, NMI
SSB [10] 2020 Weighted fusion Yes ACC, Entropy, NMI
AGPFC [29] 2019 Weighted fusion Yes Density, Entropy
SAGSC [20] 2023 Self-expression learning Yes ACC, ARI, NMI

embedding via a linear combination of other node representations, where the reconstructed node
representation 𝑧𝑖 can be expressed as:

𝑧′𝑖 =
∑︁
𝑖≠𝑗

𝑑𝑖 𝑗𝑧 𝑗 , (11)

where 𝑑𝑖 𝑗 is the weight for node embedding 𝑧 𝑗 to represent node representations 𝑧𝑖 . Thus, 𝐷 is the
self-expression coefficient matrix. Moreover, the coefficient matrix𝐷 can be obtained by minimizing
the self-expression loss as follows:

𝐿 =min | |𝑍 − 𝑍𝐷 | |2𝐹 + ||𝐷 | |2, (12)

where 𝐷 is the self-expression coefficient matrix consisting of each linear combination coefficient,
| | ∗ | |2 represents the 𝑙2 norm, and | |𝐷 | |2 is a regularization term.

3.1.3 Similarity-based Methods. We have introduced several methods that convert attributive
information to structural information by constructing weighted edges and learning the adjacency
matrix for spectral clustering in the above parts. Then, similarity-based methods are described that
construct a new similarity matrix by combining the structural similarity and the attributed similarity.
Table 5 summarizes recent works related to similarity-based methods. SSB [10] and AGPFC [29]
combine attributive similarity and structure similarity by linear weighting. The combined similarity
can be represented as follows:

𝑆 (𝑣𝑖 , 𝑣 𝑗 ) = 𝛼 × 𝑠𝑠𝑡𝑟 (𝑣𝑖 , 𝑣 𝑗 ) + (1 − 𝛼) × 𝑠𝑎𝑡𝑡 (𝑣𝑖 , 𝑣 𝑗 ), (13)

where 𝑣𝑖 represents the ith node, 𝑠𝑠𝑡𝑟 (𝑣𝑖 , 𝑣 𝑗 ) is the structural similarities between nodes 𝑣𝑖 and 𝑣 𝑗 ,
and 𝑠𝑎𝑡𝑡 (𝑣𝑖 , 𝑣 𝑗 ) measures the attributed similarity. In the above formula, 𝛼 is the weighting factor
ranging from 0 to 1.

In SSB [10], 𝑠𝑠𝑡𝑟 (𝑣𝑖 , 𝑣 𝑗 ) is obtained from the original adjacency matrix, and 𝑠𝑎𝑡𝑡 (𝑣𝑖 , 𝑣 𝑗 ) is calculated
by defining the similarities between node attributes. SAGSC [38] and FGC [20] utilize self-expression
learning to update the new similarity matrix, whose details of self-expression methods are described
in Equation (11).

3.2 Fusion on Embedding Methods
3.2.1 Two-stageMethods. As deep learningmethods develop, many researchers attempt to utilize

the powerful ability to represent graphs and implement the clustering task on the features. Several
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Fig. 6. A general framework for two-stage methods. These methods usually contain two stages: the embedding
step and the clustering step. First, they obtain embeddings by optimizing the loss functions. Then, clustering
methods are applied to optimized embeddings.

Table 6. Recent Works Related to Two-stage Methods

Title Year Loss Embedding
Technique

Number of
Clusters

Quality
Measures

MTEL [100] 2022 Multi-task prediction GCN Yes ACC, ARI, NMI
DLGAMC [47] 2022 Self-supervised loss GAT Yes ACC, F1, NMI, ARI
NAS-GC [35] 2022 Self-supervised loss GCN Yes ACC, NMI, DM, F1
AHLO [90] 2022 Regularized harmony loss GAT Yes NMI, ACC, ARI

SP-DAGC [36] 2021
Reconstruction,
Self-separation
regularization

Graph-AE No ACC, F1, ARI, NMI

DFCN[80] 2021
Reconstruction,
Self-separation
regularization

Graph-AE Yes ACC, NMI, ARI, F1

SENet[99] 2021 Spectral clustering loss GCN Yes ACC, NMI, ARI

two-stage methods in References [35, 36, 47, 80, 100] usually contain two stages: the embedding step
and the clustering step. At first, the topology information and attributes are encoded as embeddings
by GNN or autoencoder. Second, the traditional clustering method like the k-means method is
conducted on the embedded vectors to attain the final clusters, as shown in Figure 6. Significantly,
the first step aims to extract useful information via the designed losses. The related training losses
mainly include reconstruction loss, self-supervision loss, and so on. These losses will be described
in detail as follows.

In Table 6, we summarize recent two-stage approaches. SP-DAGC [36] and DFCN [80] utilize the
reconstruction losses that contain both feature reconstruction loss and structural reconstruction
loss. The reconstruction loss of feature aims to learn node representations that can recover
the original data. Differently, the structural reconstruction loss guarantees that the learned
node representations can maintain the linkage relationships between each pair of nodes. The
reconstruction loss can be defined as follows:

𝐿 = | |𝑋 −𝐴𝐸1 (𝑋 ) | |2 + ||𝐴 −𝐴𝐸2 (𝐴) | |2, (14)

where 𝑋 is the feature matrix, 𝐴 represents the adjacency matrix, and 𝐴𝐸 (∗) denotes the process
of autoencoder.
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Fig. 7. A general framework for end-to-end methods. These methods optimize the node embeddings and the
pseudo labels simultaneously through the objective loss function and output the finally optimized results of
the pseudo labels as the clustering labels.

In References [47] and [35], the self-supervision loss aims to reduce the distances among nodes
that belong to the same class and meanwhile enlarge the distances among nodes in the different
classes. Furthermore, the initial partition is performed by calculating the similarities between the
initial node embeddings, and then the node embeddings are continuously optimized through the
training process. The self-supervision loss can be defined as:

𝐿𝑜𝑠𝑠 =
∑︁
𝑐∈𝐶

𝛼
∑︁

𝑣𝑖 ∈𝑐,𝑣𝑗∉𝑐
| |𝑧𝑖 − 𝑧 𝑗 | |2 −

∑︁
𝑐∈𝐶

𝛽
∑︁

𝑣𝑖 ,𝑣𝑗 ∈𝑐,𝑣𝑗≠𝑣𝑖
| |𝑧𝑖 − 𝑧 𝑗 | |2, (15)

where 𝐶 represents the cluster partition of all nodes, 𝛼, 𝛽 are loss weights, and 𝑧𝑖 , 𝑧 𝑗 are node
representations of node 𝑣𝑖 and 𝑣 𝑗 , respectively.
Unlike above works in References [35, 36, 47, 80], MTEL [100] constructs two prediction tasks

to obtain embedding that considers node correlation and is capable of downstream clustering.
AHLO [90] models node representations using a mixture of von Mises-Fisher distributions on a
unit hypersphere. SENet [99] introduces the spectral clustering loss to obtain node embeddings
more suitable for clustering. Although the loss functions adopted in these methods are different,
they are all designed to obtain embeddings more suitable for clustering.

3.2.2 End-to-end Methods. The two-stage methods fail to obtain effective node representations
for downstreamnode clustering task due to the separation of the clustering task and node embedding.
As shown in Figure 7, end-to-end methods adopt a strategy that optimizes clustering allocation
probability and node embedding simultaneously to solve this problem. The end-to-end methods
utilize objective loss function to optimize the node embeddings and pseudo labels simultaneously
and then consider the optimized pseudo labels as clustering results.
According to Table 7, some works presented in References [26, 89, 91, 101] utilize graph con-

trastive loss to optimize node embeddings and the pseudo labels.
The graph contrastive loss aims to maximize similarities among positive samples and meanwhile

maximize distances among negative samples. Mutual information maximization can be employed
to estimate the consistency between sample pairs, and the graph contrastive learning objective is
expressed as:

𝐼 (𝑍 1, 𝑍 2) = 1
𝑁

𝑁∑︁
𝑖=1

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑧1𝑖 , 𝑧2𝑖 ))∑𝑁

𝑗=1, 𝑗≠𝑖 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑧1
𝑖
, 𝑧2
𝑗
))
, (16)

where 𝑍 1 and 𝑍 2 represent the node representations of node 𝑣𝑖 in view 1 and view 2, respectively.
And 𝑠𝑖𝑚(∗) is a function to calculate similarities between node representations.
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Table 7. Recent Works Related to End-to-end Methods

Title Year Loss Embedding
Technique

Number of
Clusters

Quality
Measures

EFR-DGC [28] 2023 Self-optimizing loss
Reconstruction loss GAT Yes ACC, F1, NMI, ARI

AGCC [89] 2022 Contrastive Learning GCN Yes ACC, F1, NMI, ARI

DNENC [83] 2022 Reconstruction loss,
Self-optimizing loss GAT Yes NMI, ACC, F,

P, R, AE, ARI
AGC-DRR [26] 2022 Contrastive Learning GCN Yes ACC, ARI, NMI, F1
Graph Debiased
Contrastive
Learning [101]

2021 Contrastive Learning GCN Yes ACC, ARI, NMI

SCAGC [91] 2021 Contrastive Learning GNN Yes ACC, NMI, ARI, F1
AGCN [66] 2021 Self-optimizing loss GCN Yes ACC, ARI, NMI, F1
SDCN [5] 2020 Self-optimizing loss GCN Yes ACC, ARI, NMI, F1
DAEGC [82] 2019 Self-optimizing loss GAT Yes ACC, ARI, NMI, F1

AGC-DRR [26] and Graph Debiased Contrastive Learning [101] leverage two stochastic aug-
mentation functions to generate two different views, defined as 𝐴, 𝐵. They transform the node
representations 𝑍𝑎, 𝑍𝑏 into probability distribution of clustering labels 𝑙𝑎, 𝑙𝑏 ∈ 𝑅𝑛×𝐾 through clus-
tering module, where 𝑙𝑎

𝑖,𝑘
represents the probability that the ith node belonging to kth class and 𝐾

is the number of classes. And each column 𝑙𝑎
𝑘
of 𝑙𝑎 is the representation of the kth cluster. Note that

these methods will make representations of the same class more similar and increase the distances
of representations in different classes. Thus, they randomly sample a cluster representation 𝑙𝑎

𝑘
in

view 𝐴 as an anchor, and the cluster representation 𝑙𝑏
𝑘
in view 𝐵 is the positive example. On the

contrary, the other cluster representations in the two views are negative examples. Then, the graph
contrastive loss function is defined as follows according to Equation (8):

𝐿𝑐𝑜𝑛 = −𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑙𝑎

𝑘
, 𝑙𝑏
𝑘
)/𝜏)∑𝐾

𝑗=1 [𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑙𝑎
𝑘
, 𝑙𝑎
𝑗
)/𝜏) + 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑙𝑎

𝑘
, 𝑙𝑏
𝑗
)/𝜏)]

, (17)

where 𝜏 is the instance temperature parameter and 𝑠𝑖𝑚(∗) is the cosine similarity.
In Reference [91], unlike References [26] and [101], which adopt graph contrastive learning for

the probability distribution of clustering labels, it utilizes graph contrastive learning for embedding
representations and learns node embeddings by comparing positive and negative samples. Differ-
ently, AGCC [89] proposes instance contrastive loss and cluster contrastive loss to utilize graph
contrastive learning for node representations and clustering assignment probability.
Several methods presented in References [5, 28, 66, 82, 83] adopt the self-optimizing loss to

guide the process of clustering. They input the initial node embeddings into clustering module that
utilizes the KL divergence to optimize the node embedding and obtain the estimated labels. The KL
divergence in self-optimizing loss aims to calculate the similarity of distributions 𝑃 and𝑄 , where𝑄
is the distribution of assigned labels measured through student’s t-distribution and 𝑃 is the target
distribution originating from 𝑄 . With the target distribution 𝑃 used as the ground-truth labels, the
clustering loss constructed from the KL divergence is defined as:

𝐿𝑐 = 𝐾𝐿(𝑃 | |𝑄) =
∑︁
𝑖

∑︁
𝑢

𝑝𝑖𝑢𝑙𝑜𝑔
𝑝𝑖𝑢

𝑞𝑖𝑢
, (18)

where 𝑖 represents the ith node, 𝑢 denotes the uth class, and 𝑞𝑖𝑢 measures the similarity of
node embedding 𝑧𝑖 and the center of the uth cluster 𝜇𝑢 . Moreover, 𝑞𝑖𝑢 is measured by student’s
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Table 8. Recent Works Related to Model-based Methods

Title Year Model Type Number of
Clusters Quality Measures

DCFG2 [42] 2021 Game theory Yes Density, Entropy, F1
ACMin [95] 2021 Random walk model Yes AAMC, Modularity, CA, NMI
MOGA [67] 2020 Evolutionary Methods Yes NMI, CNMI
EMSC [16] 2020 Evolutionary Methods Yes Density, Mutation, ClustExp
PWMA\PLCA [1] 2020 Mathematical programming No RI, NMI
DCFG1 [7] 2019 Game theory Yes Density, Entropy, Average F1

We refer to “Evolutionary mining of skyline clusters of distributed graph data” as “EMSC” for short.

t-distribution:

𝑞𝑖𝑢 =
(1 + ||𝑧𝑖 − 𝜇𝑢 | |2)−1∑
𝑘 (1 + ||𝑧𝑖 − 𝜇𝑘 | |2)−1

, (19)

where 𝑧𝑖 is the node representation of node 𝑣𝑖 , and 𝜇𝑢 represents the center of the uth cluster.
The student’s t-distribution 𝑞𝑖𝑢 can be viewed as a distribution that assigns each node to different
classes according to current node embeddings. The target distribution 𝑝𝑖𝑢 can be expressed as:

𝑝𝑖,𝑢 =
𝑞2𝑖𝑢/

∑
𝑖 𝑞𝑖𝑢∑

𝑘 (𝑞2𝑖𝑘/
∑
𝑖 𝑞𝑖𝑘 )

. (20)

It is worth noting that the clustering results for node 𝑣𝑖 that are directly acquired from the optimized
𝑄 can be defined as:

𝑙𝑖 = argmax
𝑢
𝑞𝑖𝑢, (21)

where 𝑞𝑖𝑢 is the possibility that node 𝑣𝑖 belongs to the uth class.
Compared with DAEGC [82], which only employs a simple attention autoencoder to learn node

embeddings, DNENC [83] proposes a neighbor-aware autoencoder to better integrate neighbor
node attributes. Moreover, to better combine structural information and attributes, SDCN [5] adopts
a basic autoencoder and GCN, which are unified by a dual self-supervised mechanism. AGCN [66]
employs the dual self-supervised mechanism of SDCN [5] and further proposes a scale-wise fusion
module that can accumulate multi-scale features. Differently, compared with SDCN [5], EFR-DGC
[28] utilizes the reconstruction losses of two autoencoders (the graph-autoencoder (GAE) and a
basic autoencoder) and the self-optimizing loss to efficiently guide model updates.

3.3 Model-based Methods
In the previous section, we introduce methods fusing attribute information and structural in-
formation to adjacency relationships and embeddings, respectively. However, there exist some
methods that cannot fuse structural information and attributes to either adjacency relationships or
embeddings. These methods provide a specific model or algorithm to realize the clustering task
on attributed graph. Meanwhile, they integrate structural and attribute information into unique
concepts within the model or algorithm, such as methods based on game theory, evolutionary
methods, random walk models, and so on. Table 8 concludes recent model-based methods.

3.3.1 Game Theory. Game theory is widely applied in various fields. This is an ideal scenario
for game theory analysis, where users interact and make rational decisions to ultimately realize
their goals. Thus, to apply game theory to clustering problems, in References [42] and [7], nodes
can usually be regarded as participants, strategy is defined as selecting from different clusters,
and the cohesion and similarity obtained by transferring from one group to another are defined
as rewards. The equilibrium of the game represents a stable clustering result. Moreover, these
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Table 9. Recent Works Related to Matrix Factorization–based Methods

Title Year Compression Type Number of
Clusters Quality Measures

TANMF [53] 2022 2-factor NNMF Yes NMI, Kappa
ORCA [18] 2021 2-factor NNMF Yes NMI, RI
NAGC [55] 2020 2-factor NNMF Yes ARI, AMI
jGENMF-AN [49] 2020 2-factor NNMF Yes NMI
SpEC [9] 2020 2-factor NNMF Yes F1, Jaccard, AC, NMI
CAR [34] 2019 2-factor NNMF Yes ACC

methods based on game theory usually define a special utility function, combining structural
information with attributes for attributed graphs. The utility function is the particular definition
in game theory–based methods. Each player has their own utility function and aims to maximize
their utility value and quality function. Furthermore, Reference [7] considers that clusters are not
necessarily disjoint compared with Reference [42].

3.3.2 Evolutionary Methods. Genetic algorithm is a biomimetic algorithm that attempts to find
the optimum results via the theory of biological evolution. It compiles parameters into genes that
are presented as binary or decimal code to simulate gene recombination and evolution in natural
processes. The evolution of numerous chromosomes derived from multiple genomes resembles the
process of biological evolution, which is conducted repeatedly until a final outcome is achieved.
To utilize both structural and attribute information simultaneously, methods based on genetic
algorithms have redefined the fitness function. In Reference [16], the fitness function is the special
definition of genetic algorithm that can aggregate both structural and attribute information. Com-
pared with Reference [16], MOGA [67] combines structure and attributes into the multiobjective
functions.

3.3.3 RandomWalk Model. The randomwalk–based model can effectively capture the multi-hop
relationships. For example, as a common model, random walk with restart (RWR) utilizes the
restart probability to capture the multi-hop relationships better. However, the random walk–based
cannot process the attributed graph, since it only considers topology information. To solve this issue,
ACMin [95] defines an attributed transition probability and a topological transition probability to
take both attribute and structural information into account.

3.3.4 Matrix Factorization. Non-negative matrix decomposition (NMF) has developed
rapidly in the field of graph clustering. In Table 9, several matrix factorization methods in References
[9, 18, 34, 49, 53, 55] decompose the adjacency matrix or attribute matrix and attempt to get the
optimal cluster membership matrix that conforms to both adjacency and attribute relationships, as
shown in Figure 8. In Reference [53], the adjacency matrix 𝐴 is decomposed into two nonnegative
matrixes 𝐹1 ∈ 𝑅𝑁×𝐾 and 𝐵 ∈ 𝑅𝐾×𝑁 , where 𝐹1 represents the basis matrix and 𝐵 represents the clus-
ter membership matrix. Moreover, the attribute matrix 𝑋 is also decomposed into two nonnegative
matrixes 𝐹2 ∈ 𝑅𝑁×𝐾 and 𝐵. The unified objective function can be expressed as:

𝐿𝑜𝑠𝑠 = | |𝐴 − 𝐹1𝐵 | |2𝐹 + ||𝑋 − 𝐹2𝐵 | |2𝐹 . (22)

The above objective function utilizes both attributes and topology information to obtain the
cluster membership matrix that is consistent in the attribute relation and adjacency relation. The
cluster label for node 𝑣 𝑗 can be acquired as:

𝑞 = arg max
1≤𝑖≤𝐾

𝐵𝑖 𝑗 , (23)
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Fig. 8. A general framework for matrix factorization–based methods. These methods decompose the attribute
matrix and adjacency matrix and attempt to get the optimal clusters by combining these two objective
functions.

where 𝐾 is the number of clusters and 𝑞 is the obtained label. Compared with TANMF [53], ORCA
[18] aims to deal with the problem that sparse and low-rank input can lead to an inordinate number
of outliers. Moreover, jGENMF-AN [49] utilizes dimensionality reduction to extract attributes and
adopts a smoothing process to reduce the heterogeneity of attributes and topology.

3.4 Discussions
In this section, we classify recent single-view attributed graph methods into three categories
according to fusion results: fusion on adjacency matrix methods, fusion on embedding methods, and
model-based methods. Unlike fusion on adjacency matrix methods pay more attention to storing
attributed information in graph structure, fusion on embedding methods utilize GNN to integrate
information from neighboring nodes that can store topology information into node embeddings.
Moreover, model-based methods can store structural information and attributes into unique
concepts.
Fusion on adjacency matrix methods. Three subcategories have different characteristics.

Weighted edge methods convert the attribute graph into a weighted graph and implement label
propagation or Louvain methods to obtain clusters, unlike similarity-based methods that just
consider both structure and attribute information but still retain the property of the updated
attribute graph to cluster via the classical distance-based clustering method. The definition of
similarity between attributes is the key point and aporia of weighted edge methods. By fusing
attribute similarity with existing adjacency information, edge weights can be effectively updated.
Existing attribute similarity methods mostly rely on the cosine distance, and a more accurate and
rapid method for measuring attribute similarity is still expected to be proposed. Furthermore, in
existing methods, the number of clusters has a significant impact on clustering results, and most
methods require the number of clusters as an input value. To our knowledge, there are few articles
for clustering that do not require the given number of clusters. However, we observe that by
updating label propagation methods or Louvain methods, weighted edge methods can effectively
avoid the need for the number of clusters, which can contribute to unsupervised clustering.
The second subcategory (affinity-based method) is similar to similarity-based methods, which

both construct a matrix indicating similarities among nodes. However, compared with similarity-
based methods, the requirements for constructing an affinity matrix in the second subcategory
are more stringent. Similarity-based methods construct a similarity matrix by calculating attribute
similarities and add them to the original adjacency matrix, while the affinity matrix is usually
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obtained through self-expression modules and has both non-negative and symmetric properties.
In addition, the affinity matrix is used for spectral clustering, while similarity-based methods use
k-means and other custom clustering methods without these serious limitations. Moreover, these
two methods have a smaller number of parameters and a simpler process compared to fusion on
embedding methods based on deep learning and can be well extended to multi-view attributed
graph clustering.

Fusion on embedding methods. In fusion on embedding methods, compared with two-stage
methods that implement GNN as the feature exactor, end-to-end methods take node representation
learning and clustering into a unified framework. However, these two subcategories are designed
based on deep learning and have a large number of parameters. Faced with challenges of large
graph and multi-view tasks, they may require model compression, pruning, and other operations
to reduce costs and improve efficiency.
Model-based methods. In model-based methods, we observe that game theory methods can

be extended to deal with fuzzy clustering, which can discover joint clusters. Non-negative matrix
factorization can be applied to each single view separately and then obtain the consensus graph by
fusing decomposition results of different views, ultimately achieving multi-view clustering.

4 Multi-view Attributed Graph Clustering Methods
This section focuses on the methods of clustering multi-view attributed graphs, which contain
fusion on adjacency matrix methods and fusion on embedding methods. These methods aim to
find a cluster partition that is consistent in all views. Thus, several methods attempt to construct a
consensus graph from all views and then conduct a clustering task in the consensus graph. In this
section, we will describe related works of the fusion on adjacency matrix methods and fusion on
embedding methods.

4.1 Fusion on Adjacency Matrix Methods
To cluster multi-view attributed graphs, it is extremely important to obtain consistent information
between different views and conduct the consensus graph. That is, all views share the same
clustering results and further enjoy the same similarity matrix, whereas each view may play a
different role in the clustering process.

To obtain the same similarity matrix 𝑆 in all views, Reference [51] utilizes the self-expressiveness
property and optimizes the following objective function:

min
𝑆,𝜆𝑟

𝑅∑︁
𝑟=1

𝜆𝑟
(
| |
(
𝑋
𝑟
)𝑇

−
(
𝑋
𝑟
)𝑇
𝑆 | |2𝐹 + 𝛼 | |𝑆 − 𝑓 (𝐴𝑟 ) | |2𝐹

)
+

𝑅∑︁
𝑟=1

(𝜆𝑟 )𝛼 , (24)

where 𝜆𝑟 is the weight for the rth view, 𝑋
𝑟
is the smooth representation by graph filtering in the

rth view, 𝑓 (𝐴𝑣) is the high-order adjacency relationship, and 𝛼 < 0 is the a smooth parameter.
Through the optimization of the objective function, we can acquire the consensus similarity matrix
and then implement a clustering module to obtain final results, as shown in Figure 9. Compared
with MAGC [51], MCGC [64] adopts graph contrastive learning to learn a consensus graph, and
MvAGC [50] chooses some anchors to reduce the computation complexity. Table 10 summarizes
recent works related to the fusion on adjacency matrix methods.

4.2 Fusion on Embedding Methods
Fusion on embedding methods presented in References [19, 48, 52] usually train a series of encoders
or auto-encoders via the reconstruction loss and, moreover, provide a module to obtain consensus
embeddings through consistent loss. Then, we can conduct the traditional clustering algorithm
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Fig. 9. The fusion on adjacency matrix method for multi-view attributed graphs.

Table 10. Recent Works Related to the Fusion on Adjacency Matrix Methods for Multi-view
Attributed Graphs

Title Year
Number of
Clusters Specialty Quality Measures

MAGC [51] 2021 Yes High-order
adjacency information ACC, F1, NMI, ARI

MCGC [64] 2021 Yes Contrastive Clustering ACC, NMI, ARI, F1
MvAGC [50] 2021 Yes Anchor Selecting Strategy ACC, F1, NMI, ARI

Clusters

GNN 

Encoder

GNN 

Encoder

Embeddings

Embeddings

GNN 

Decoder

GNN 

Decoder

Consistency Loss

Reconstruction Loss

Reconstruction Loss

Consensus 

Embeddings

Fig. 10. Fusion on embedding methods for multi-view attributed graphs.

like k-means and others on the consistent embeddings to acquire clustering results, as shown in
Figure 10. In particular, LMGEC [21] designs a linear graph autoencoder to reduce running time.
Table 11 summarizes recent works related to fusion on embedding methods. Furthermore, we
introduce frequently used losses for multi-view attributed graph clustering.

The reconstruction loss in single-view methods is defined as Equation (25), while in multi-view
clustering methods presented in References [19, 48, 52], it can be considered as the sum of
reconstruction loss in each view:
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Table 11. Recent Works Related to Fusion on Embedding Methods for Multi-view Attributed Graphs

Methods Year Loss
Embedding
Technique

Number of
Clusters

Quality Measures

O2MAC [19] 2020
Reconstruction loss,
Self-optimizing loss

Graph-AE Yes
ACC, ARI, NMI,
F1, Modularity

DIAGC [48] 2022
Reconstruction loss,
Self-optimizing loss

GCN Yes ACC, ARI, NMI, F1

MGCCN [52] 2022
Reconstruction loss,
Self-optimizing loss

GCN Yes ACC, ARI, NMI

LMGEC [21] 2023 Reconstruction loss Linear Graph-AE Yes ACC, ARI, NMI, F1

𝐿𝑒 =min
𝜃

𝑅∑︁
𝑟=1

| |𝑋𝑟 − 𝑋𝑟 | |2𝐹 , (25)

where 𝜃 is the parameter of multi-view attributed graph encoders, 𝑅 is the number of views, and
𝑋𝑟 is the reconstruction of 𝑋𝑟 .

The consistent embedding 𝑇 usually represents node representations of the consensus view.
𝑇 differs from 𝑆 in Equation (24). S ∈ 𝑅𝑛×𝑛 reflects the similarity relationships among nodes in
the consensus view, while T ∈ 𝑅𝑛×𝑑 serves as the representation of nodes in the consensus view.
Consistency loss attempts to maximize the similarity between the embeddings of each view and
the consistency embeddings. In Reference [48], authors utilize mutual information maximization to
obtain the consistent embeddings:

𝐼 (𝑍 𝑟 ,𝑇 ) = 1
𝑁

𝑁∑︁
𝑗=1

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑧𝑟𝑗 , 𝑡 𝑗 ))∑𝑁

𝑗
′
=1, 𝑗 ′≠𝑗 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑧𝑟

𝑗
, 𝑡 𝑗 ′ ))

, (26)

where 𝑧𝑟𝑗 represents the node representation of node 𝑣 𝑗 in the rth view, 𝑁 represents the number
of nodes, and 𝑇 is the consistent embedding. To maximize similarities between the embeddings in
each view and the consensus embedding, the consistency loss can be defined as:

𝐿 =

𝑅∑︁
𝑟=1

𝐼 (𝑍 𝑟 ,𝑇 ), (27)

where 𝑅 is the number of views, 𝐼 (𝑍 𝑟 ,𝑇 ) is the mutual information defined in Equation (26), and 𝑟
is the rth view.

4.3 Discussion
In this section, we conclude methods clustering on multi-view attributed graphs and classify them
into two classes: the fusion on adjacency matrix methods and the fusion on embedding methods.
The proposed classification standard is also available for clustering multi-view attributed graphs.
For example, MAGC and MCGC belong to the affinity-based method, one of the adjacency matrix
fusion methods. O2MAC and MGCCN belong to the end-to-end methods, while DIAGC belongs to
the two-stage methods, which are all fusion on embedding methods.
Multi-view graphs pose great challenges to existing methods, and with the development of

multi-view large graphs, it is urgent to propose more efficient and low-cost clustering methods.
However, through our investigation, there is currently only one article, presented in Reference
[50], that involves reducing model complexity and running time. It will be interesting to fill
this gap in the future study. To deal with this challenge, the fusion on embedding methods
can adopt model pruning and model compression to improve efficiency. For the fusion on
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adjacency matrix methods, more effective anchor methods or graph sampling techniques can
be utilized to accelerate clustering. Moreover, faced with the problem that GNN is designed for
single-view tasks, we need to design a specific GNN more suitable for multi-view rather than the
superposition of multiple encoders. Furthermore, existing fusion on adjacency matrix methods
do not integrate node representation and clustering into one process, leading to ineffectively
extracting information that is conducive to clustering. Therefore, it is expected to integrate
multi-view information extraction and clustering objectives into a unified framework in the future
study.

5 Challenges and Solutions: Learning from Single-view to Multi-view
5.1 Challenges for Clustering Single-view Attributed Graphs

—Complex scenarios. There exist overlapping phenomena in many real communities, where
each node may be associated with multiple communities. Therefore, it is expected to extend
existing methods to fit overlapping clustering. In addition, as multi-view data becomes increas-
ingly widespread, it is urgent to develop existing methods for multi-view tasks. Moreover,
homogeneity is difficult to guarantee in real organizational structures, so it is challenging to
cluster in heterogeneous systems. Existing methods are supposed to be extended in these
complex scenarios.

—New trends. With the growth of massive data and the increasing scale of graphs, it is
needed to expand existing methods to large-scale scenarios. It is difficult to minimize the
consumption of space and time while ensuring the accuracy of the model, which poses a
significant challenge to existing research.

5.2 Challenges for Clustering Multi-view Attributed Graphs
The existing methods of clustering on multi-view attributed graphs can be divided into two classes.
The first one incorporates multiple graphs into a consensus graph and employs a single-view
algorithm on the consensus graph. The other methods extract node representations through GNN
and then implement classical clustering methods on the learned node representation. Based on
existing methods, we conclude the related challenges and problems.

— Efficient consensus representations. Several methods obtain clusters from the consensus
graph, which is trained to reconstruct adjacent matrices in different views. However, multi-
view clustering aims to obtain consensus clusters, whereas the reconstruction from the
consensus graph focuses on the diversities between different views, leading to conflicts
between the two tasks.

— Specific GNNs. GNN is designed mainly for single-view models. It is an extremely important
problem to extend GNN to multiple views. Some methods employ a series of encoders and
decoders to extract information from each view. However, these solutions lead to a large
number of parameters and calculations or even introduce more noise to clustering. Therefore,
this direct approach is not effective.

—The end-to-end framework. Most node embeddings aim to reconstruct the original graph,
so they are not suitable for clustering. Therefore, we need to put the optimization of node
embeddings and clustering in a unified framework.

—The balance between consensus and diverse information. Nowadays, most methods
only utilize consensus information, but different views can also provide unique information
as complementary information, so how to extract and utilize complementary information
effectively becomes a problem.
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5.3 Solutions Learning from Single-view to Multi-view
The past few decades have witnessed the vigorous development of methods related to clustering
single-view attributed graphs. However, unlike single-view clustering methods, the clustering
methods on multi-view attributed graphs are still at a nascent stage. Thus, it is essential for us
to learn some solutions from single-view clustering methods that can be extended for multi-view
clustering. The following solutions can be taken into consideration:

—Matrix factorization–based methods. Nowadays, there exist several methods dealing
with multi-view data, which directly concatenate all features into a new feature and then
construct a single graph from it. However, these simple approaches ignore the relationships
between all views. From a global perspective, each view can contain specific information
and mutual information, thus, there is an urgent need for us to better fuse the multi-view
information. We consider that the matrix factorization–based methods can be expanded to
multi-view clustering. We can perform matrix factorization on the attributed graph for each
view. Furthermore, all views share a factorization matrix as the consensus graph or soft label
assignment matrix. If the shared matrix is a consensus graph, then clustering methods can
be performed on the consensus graph. When the shared matrix is a soft label assignment
matrix, the cluster labels can be obtained directly.

—Graph contrastive learning. In the previous section, we describe the loss based on graph
contrastive learning in the single-view methods, which aims to narrow the intra-cluster
distance and alienate the distances between different clusters. In the multi-view task, we can
find the node representations in the consensus graph through graph contrastive losses. The
representations in different views of one node can be taken as positive sample groups, while
the rest can be considered as negative samples. We can extend the graph contrastive losses
to the multi-view clustering task and find consistent representations.

—More suitable node representation for cluster tasks. Obtaining node embeddings and
clustering nodes are two separate tasks. Generally, node embeddings are optimized by recon-
structing the input graph, which leads to the fact that the optimized node embeddings may
not be fitted for clustering. Therefore, we ought to learn from the end-to-end models like
the self-optimizing loss in the single-view methods and optimize the node embeddings and
clustering in a unified way.

—Attention mechanism. The attention mechanism of GAT is extensively employed in single-
view methods and, moreover, we can extend the attention mechanism to multi-view methods.
For example, when embedding nodes in each view, the information of different nodes can be
weighted and fused. In different views, some views have noise or incomplete information, so
different views should enjoy different importance when integrating information.

6 Datasets
6.1 Attributed Graph Clustering Datasets
In this part, we summarize the commonly used single-view attributed graph datasets, as shown in
Table 12.

—Cora1,2: This is a citation graph of papers composed of 2,708 nodes. The nodes represent
scientific papers, and the edges show the citation relationship among papers. Each paper
refers to at least one paper or is cited by other papers. Therefore, this is a connected graph
with no isolated points.

1https://github.com/tkipf/gae/tree/master/gae/data
2https://linqs.soe.ucsc.edu/data
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Table 12. Attributed Graph Clustering Datasets

Datasets Nodes Attribute
Dimension Edges Classes Type Scale

Cora 2,708 1,433 5,429 7 Paper relationship Small
Citeseer 3,327 3,703 4,732 6 Paper relationship Small
PubMed 19,717 500 44,338 3 Paper relationship Large
WIKI 2,405 4,973 17,981 17 Document relationship Small
Amazon-Photo 7,650 745 119,081 8 Purchase relationship Medium
BlogCatalog 5,196 8,189 171,743 6 Blogger relationship Medium
WebKB 877 1,703 1,608 4 Web page relationship Small

—Citeseer1,2: This dataset contains 3,312 scientific publications represented as nodes. The
edges show the citation relationship among papers.

— PubMed1,2: This is a dataset composed of 19,717 scientific publications. These papers belong
to three categories. The edges represent the cited relationships between papers.

—WIKI3: This is a network of documents. The nodes represent documents, and the edges
represent hyperlinks to web pages between documents. The attributes of each node are a
term frequency-inverse document frequency matrix of this document.

— BlogCatalog [45]: This is a blogger community network, in which nodes represent different
bloggers and the edges represent the connections between bloggers. The attributes of nodes
are composed of the keywords of the blogger’s blog.

—WebKB4: It is a web page network of four universities. Each node represents a page, and the
edges represent hyperlinks among pages. The words appearing on the page constitute the
attributes of the node.

6.2 Multi-view Attributed Graph Clustering Datasets
In this part, we summarize the commonly used multi-view attributed graph datasets, as shown in
Table 13.

—ACM5: This is a paper network, where nodes represent papers and can be classified into
three classes. There exist two types of relationships between nodes, namely, co-author and
co-subject.

—DBLP6: This is an author network, where nodes represent authors. Various relationships are
contained among nodes, namely, co-author, co-conference, and co-term.

— IMDB7: This is a movie network, where nodes represent movies and can be classified into
three classes. The edge among nodes indicates they have the same actor or director.

—Amazon Photo and Amazon Computer [72]: They are from the Amazon co-purchase
network dataset. The node represents a product, and the edges between the nodes indicate
whether the two products are usually purchased together. These datasets contain a co-
purchase graph and a feature matrix separately.

—WIKI-pro [72]: The Wiki-pro dataset that contains multiple attribute matrices and multiple
adjacency matrices is generated from the single-view attributed graph dataset (WIKI). In the
WIKI-pro dataset, the additional views are created from the initial data, which contains a

3https://github.com/albertyang33/TADW/tree/master/wiki
4http://linqs.cs.umd.edu/projects/projects/lbc/index.html
5http://dl.acm.org
6https://dblp.uni-trier.de/
7https://www.imdb.com/
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Table 13. Multi-view Attributed Graph Clustering Datasets

Dataset Views Nodes Attributes
in Each View Edges in Each View Clusters

ACM 2 3,025 1,830 Co-subject (29,281) 3Co-author (2,210,761)

DBLP 3 4,057 334
Co-author (11,113)

4Co-conference (5,000,495)
Co-term (6,776,335)

IMDB 2 4,780 1,232 Co-actor (98,010) 3Co-director (21,018)
Amazon
Photo 2 7,487 745 Co-purchase (119,043) 87,487
Amazon
Computer 2 13,381 767 Co-purchase (245,778) 1013,381

WIKI-pro 4 2,405 4,973 24,357 174,973 12,025

single graph structure and attribute matrix. We create the second topology by constructing
the nearest neighbor graph via the cosine distance and generate the second attribute matrix
using a log scale of the original ones.

7 Experiment and Analysis
To analyze the performance of advanced methods including single-view and multi-view methods,
we evaluate these methods in different types of datasets. We select four popular single-view
attributed datasets and three multi-view graph datasets to analyze nine single-view methods that
are advanced in recent years. Meanwhile, we choose three datasets (ACM, DBLP, IMDB) that have
the same attributes but different adjacent relationships, one dataset (Amazon Photos) that has the
same adjacent relationship with different attributes in different views, and one dataset (WIKI-pro)
contains both different adjacent relationships and attributes by artificial generation.
To evaluate the existing methods more detailedly and comprehensively, we will analyze them

from the following four aspects: comparisons among single-view methods, comparisons among
multi-view methods, comparisons between single-view methods and multi-view methods, and
efficiency comparison.

7.1 Comparisons among Single-view Methods
7.1.1 Comparisons of Single-view Methods on Single-view Attributed Graph Datasets. To analyze

the performances of single-view methods, we utilize four publicly available datasets via three
widely employed metrics to evaluate them. The chosen nine methods belong to different types and
were published in the past four years, which we consider important in this field. The results are
shown in Table 14.

Overall, across four datasets, the chosen methods perform fairly evenly on the Cora and Citeseer
datasets, while they perform variously in the PubMed and the Wiki datasets, particularly poor in
the Wiki datasets. This above phenomenon has possibilities related to the characteristics of each
dataset. We can observe that either the PubMed dataset, which has 19,717 nodes and is much larger
than other datasets, or the Wiki dataset, which has 17 classes, both present a greater challenge to
clustering than other datasets. Thus, in summary, various methods can perform differently in the
same dataset due to the characteristics of their own methods, and due to the characteristics of the
datasets, a method may perform differently across various datasets.
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Table 14. Single Methods on Single-view Attributed Graph

Dataset Citeseer Cora

ACC NMI F1 ACC NMI F1
AGC 0.6720 0.4139 0.6266 0.6894 0.5374 0.6562

DAEGC 0.6720 0.3970 0.6360 0.7040 0.5280 0.6820
FGC 0.6901 0.4402 0.6443 0.7290 0.5612 0.6327

AGC-DRR 0.6832 0.4328 0.6482 0.2145 0.0243 0.1859
DFCN 0.6750 0.4280 0.6370 0.4177 0.1949 0.2773
SAGSC 0.6600 0.4000 0.2700 0.6200 0.4600 0.1600
SDCN 0.6596 0.3871 0.6362 0.6285 0.4121 0.5530
AGCN 0.6802 0.4067 0.6132 0.6326 0.4264 0.5522

EFR-DGC 0.7050 0.4450 0.6420 0.7220 0.5280 0.7050

Dataset PubMed Wiki

ACC NMI F1 ACC NMI F1
AGC 0.6982 0.3158 0.6876 0.4760 0.4503 0.4036

DAEGC - - - 0.3314 0.3198 0.1907
FGC 0.6942 0.3115 0.6889 0.5089 0.4326 0.3460

AGC-DRR 0.5174 0.1280 0.5009 0.3306 0.2995 0.2937
DFCN 0.4180 0.0287 0.2366 0.2536 0.2087 0.1508
SAGSC 0.7100 0.3300 0.4400 0.4800 0.5000 0.0300
SDCN 0.4977 0.0810 0.3740 0.1672 0.0142 0.0179
AGCN 0.4771 0.0814 0.4619 0.1672 0.0142 0.0179

EFR-DGC 0.6611 0.2680 0.6557 0.4274 0.3317 0.2541

Specifically speaking, in the Citeseer and the Cora datasets, the methods EFR-DGC and FGC
perform better according to the three metrics, while in the PubMed and Wiki datasets, the methods
SAGSC and FGC perform well. As we can observe, the FGC method performs stably and effectively
in all these methods. In fact, although FGC and the other methods (AGC and SAGSC) correspond
to different method classes, they have similarities with each other. AGC proposes the k-oder graph
convolution to smooth the features of nodes in each dimension. FGC not only utilizes the k-oder
graph convolution but implements the self-expression and the high-order adjacency to improve
the performance of clustering. SAGSC also adopts the self-expression and then decomposes the
self-expression matrix further. Thus, their results on these four datasets are stable.

EFR-DGC performs well in the Citeseer and the Cora datasets, while it fails in the Wiki dataset.
EFR-DGC has similarities with three other methods (DFCN, SDCN, AGCN), and they all belong
to end-to-end methods except DFCN, which belongs to two-stage methods. All the above four
methods integrate two deep neural structures for better embedding, with a brief that the graph
neural network paysmore attention to the topological structure and is inferior to extracting attribute
information than other deep neural structures. We observed that EFR-DGC performs better among
the four methods, which may be related to the attention mechanism in GAT, whereas the other
methods all utilize GCN.

DAEGC and AGC-DRR belong to the end-to-end methods. DAEGC implements a special structure
to store graphs, which requires more memory than other methods. As the number of nodes increases,
it demands more memory, so it is out of memory during the PubMed dataset.

7.1.2 Results of Single-viewMethods onMulti-view Attributed Graph Datasets. We utilize different
single methods on each view of multi-view attributed graphs to analyze the relationships between
different views and provide ideas for multi-view clustering.
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Table 15. Single-view Methods on Multi-view Attributed Graph

ACM DBLP IMDB
Dataset View ACC NMI F1 ACC NMI F1 ACC NMI F1

0 0.7884 0.4849 0.7851 0.5495 0.2319 0.5444 0.5403 0.0009 0.2525
1 0.7044 0.4881 0.6800 0.9006 0.7134 0.8949 0.5330 0.0060 0.3044AGC
2 \ \ \ 0.6354 0.3330 0.6398 \ \ \
0 0.6390 0.3372 0.5928 0.4553 0.1778 0.3712 0.4059 0.0093 0.3440
1 0.6432 0.3407 0.5986 0.8780 0.6828 0.8666 0.3736 0.0108 0.3523DAEGC
2 \ \ \ 0.4368 0.1122 0.4218 \ \ \
0 0.8611 0.5793 0.8602 0.7298 0.4124 0.7260 0.5851 0.0660 0.4074
1 0.791 0.4342 0.7851 0.9258 0.7710 0.9212 0.5715 0.0529 0.4328FGC
2 \ \ \ 0.7328 0.4450 0.7311 \ \ \
0 0.3927 0.0189 0.0197 - - - 0.3661 0.0035 0.3455
1 - - - - - - 0.4467 0.0079 0.3180AGC-DRR
2 \ \ \ 0.3350 0.0224 0.3295 \ \ \
0 0.3947 0.0674 0.2634 0.3658 0.0642 0.3653 0.5052 0.0100 0.2641
1 0.6483 0.4109 0.6616 0.8763 0.6720 0.8616 0.5471 0.0104 0.2493DFCN
2 \ \ \ 0.3333 0.0523 0.2164 \ \ \
0 0.8700 0.5900 0.2600 0.5900 0.2500 0.1500 0.5400 0 0.4700
1 0.7000 0.4900 0.4500 0.8900 0.7000 0.3300 0.5400 0 0.4300SAGSC
2 \ \ \ 0.5300 0.2400 0.2800 \ \ \
0 0.9064 0.6939 0.9069 0.4491 0.1490 0.2927 0.5469 0.0288 0.3676
1 0.6595 0.5256 0.5753 0.5891 0.3442 0.5133 0.5103 0.0484 0.4092SDCN
2 \ \ \ 0.5290 0.2668 0.4972 \ \ \
0 0.8922 0.6682 0.8913 0.5290 0.2668 0.4972 0.5469 0.0026 0.2413
1 0.6949 0.4539 0.6968 0.7649 0.6137 0.6387 0.5508 0.0079 0.2736AGCN
2 \ \ \ 0.5933 0.3654 0.5249 \ \ \
0 0.8760 0.6269 0.8725 0.3892 0.0835 0.3684 0.4467 0.0135 0.3856
1 0.8079 0.5422 0.7999 0.7939 0.5624 0.7827 0.4452 0.0157 0.3956EFR-DGC
2 \ \ \ 0.5751 0.2247 0.5383 \ \ \

We utilize “\” to indicate that this view does not exist and “−” represents the experiment is out of memory.

As we observe in Table 15, in the ACM dataset, most methods perform better in the 0th view
than the 1th view, which implies there may exist more useful information in the 0th view in the
ACM dataset. A few methods that do not align with this observation may result from their inability
to effectively extract useful information from the views. In the DBLP dataset, it is evident that all
methods perform better in the 1th view than other views. In the IMDB dataset, the performances
in the two views are close to each other according to all methods. Overall, it is logical and essential
to give different attention to different views in a specific task. However, the importance of views to
a particular method is not always fixed but depends on its ability to abstract useful information
from views.
In detail, in the ACM dataset, SDCN and EFR-DGC perform better in different views. Both in

the DBLP and IMDB datasets, FGC performs best wherever in any view. In general, FGC utilizes
high-order adjacency information and attributes effectively such that it can perform better in the
chosen five datasets.

7.2 Comparisons among Multi-view Methods
Due to the limited number of multi-view methods, we select four existing well-known works
and evaluate these methods on multi-view datasets. There are three datasets (ACM, DBLP, IMDB)
that have the same attribute matrix and different adjacency matrixes in each view. Moreover, the
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Table 16. The Results of Multi-view Methods

Dataset ACM DBLP IMDB

ACC NMI F1 ACC NMI F1 ACC NMI F1
MAGC 0.8723 0.5976 0.8705 0.9307 0.7787 0.9262 0.6171 0.1181 0.4549
MvAGC 0.8882 0.6559 0.8893 0.8915 0.6836 0.8839 0.5435 0.0097 0.3071
O2MAC 0.8988 0.6785 0.9001 0.8904 0.6983 0.8789 0.4087 0.0042 0.3556
LMGEC 0.9298 0.7508 0.9304 0.9285 0.7740 0.9237 0.5846 0.0583 0.4246

Amazon Photos dataset has different attributed matrixes but shares the same adjacency matrix.
Furthermore, the attributed matrix and adjacency matrix in WIKI-pro dataset for each view are
different from the others. The chosen methods can deal with various cases of multi-view graph
datasets except for O2MAC, which is designed for the multi-view graph containing the same
attribute matrix and different adjacency matrixes. Thus, we only evaluate the other three methods
on the Amazon Photos and WIKI-pro datasets.

Up to now, in multi-view attributed graph clustering, works belonging to the fusion on adjacency
matrix methods are significantly more than those belonging to the fusion on embeddings methods,
which may be caused by the fact that, compared with fusion on adjacency matrix methods, the
fusion on embeddings methods have more parameters and longer training time. Thus, all of the
selected methods are fusion on adjacency matrix methods except O2MAC, which is a fusion on
embeddings method.
To demonstrate the performances of different methods more plainly, we use t-SNE to visualize

the optimized node representation, as shown in Figures 12–15. For MAGC and MvAGC, we conduct
SVD on the affinity matrix to obtain node representations. We can clearly see that in the ACM
dataset, the clustering results of LEMGC are more clearly outlined and the categories are more
differentiated than the other methods. Additionally, in the DBLP dataset, the clustering results
of MAGC are more compact than other methods, with clear categories and significant category
differences. Moreover, among these four methods, it is evident that the clustering results for the
Photos and WIKI-pro datasets are notably inferior to those for ACM and DBLP, which can clearly
distinguish different categories.
According to Table 16, we can observe that LMGEC performs well in the ACM and DBLP

datasets, which demonstrates the effectiveness of the proposed linear graph filter based on one-hop
neighborhood propagation. In the IMDB dataset, MAGC performs better than other methods. This
method utilizes the self-expression property and the k-order graph convolution proposed by AGC.
MvAGC is considered an improved version of MAGC, which greatly reduces time consumption
by choosing anchor points. O2MAC implements a series of encoders and a decoder to extract
consensus information that introduces a large number of parameters but is suitable for learning
more complex models.
In the Amazon Photos and WIKI-pro datasets, according to Table 17, MAGC performs better

than other methods, which can be observed that LMGEC is not good at dealing with the case with
multiple attribute matrices.

7.3 Comparisons between Single-view Methods and Multi-view Methods
According to Tables 16 and 17, we find that LMGEC and MAGC perform well in the selected
multi-view graph datasets. To further explore the relationships between single view and multiple
views, we present the performances of the above two methods in each view shown in Figure 11. In
Figure 11, we show the clustering results of each view and consensus view for comparison. We can
observe that in existing methods, consensus views always perform better than individual views. In
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Table 17. The Results of Multi-view Methods

Dataset Amazon Photos WIKI-pro

ACC NMI F1 ARI ACC NMI F1 ARI
MAGC 0.7841 0.7226 0.7291 0.6075 0.5625 0.4654 0.3851 0.3087
MvAGC 0.6630 0.5831 0.6365 0.4838 0.5018 0.4815 0.4220 0.2781
LMGEC 0.7093 0.6484 0.6087 0.5106 0.3587 0.1914 0.3779 0.2254

(a) MAGC on ACM dataset (b) MAGC on BDLP dataset (c) MAGC on IMDB dataset

(d) LMEGC on ACM dataset (e) LMEGC on DBLP dataset (f) LMEGC on IMDB dataset

Fig. 11. Results with different views.

(a) ACM (b) BDLP (c) IMDB (d) Photos (e) WIKI-pro

Fig. 12. The node representations of the LMGEC method using t-SNE for two-dimensional projection and
then colored based on real labels.

(a) ACM (b) DBLP (c) IMDB (d) Photos (e) WIKI-pro

Fig. 13. The node representations of the MAGC method using t-SNE for two-dimensional projection and
then colored based on real labels.
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(a) ACM (b) DBLP (c) IMDB (d) Photos (e) WIKI-pro

Fig. 14. The node representations of the MvGAC method using t-SNE for two-dimensional projection and
then colored based on real labels.

(a) ACM (b) DBLP (c) IMDB

Fig. 15. The node representations of the O2MAC method using t-SNE for two-dimensional projection and
then colored based on real labels.

summary, the performance of the single-view methods is closely bound up with the selected view,
however, a good multi-view method can avoid the adverse information in the view and use the
complementary information between the views to produce a multiplying effect on cooperation and
achieve more excellent performance than the single view.
From Tables 15 and 16, we discover that there exist some single-view methods that perform

better than multi-view methods in each view. In the ACM dataset, from the perspective of each
view, the performances of EFR-DGC are better than MAGC in each view. In the IMDB dataset, the
performances of FGC are better than LMEGC in each view. Thus, it is obvious that the integration
of advanced single-view methods with the idea of multi-view may bring a leap forward in the
growth of multi-view clustering on attributed graphs.

7.4 Efficiency Comparison
In this subsection, we evaluate these methods in terms of efficiency. Tables 18 and 19 show the
running times of the single-view method and the multi-view method on the single-view and
multi-view datasets, respectively.

Table 18 illustrates that SAGSC dedicates less time to clustering, as it employs the NJW spectral
clustering approach [60] to accelerate the process. Furthermore, it can be observed that AGC-
DRR requires a greater amount of time due to its utilization of graph contrastive learning, which
generates two distinct views of the data. Additionally, the model is more intricate and comprises a
considerable number of parameters. Moreover, we can find that, faced with the PubMed dataset,
all methods need more time, for it contains tens of thousands of nodes, much larger than other
datasets. Moreover, DAEGC is unable to allocate sufficient memory when confronted with the
PubMed dataset, which suggests that it may require an excessive amount of space when clustering.
Consequently, it is not a viable option for processing large graphs.

As illustrated in Table 19, LMGEC and MvAGC exhibit superior performance in terms of speed
compared to other methods. LMGEC employs linear graph autoencoder to accelerate clustering,
while MvAGC proposes the use of anchors instead of all nodes, which can notably increase the
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Table 18. Running Time of Single-view Methods

Method Citeseer Cora Pubmed Wiki
AGC 83.10s 13.89s 137.62s 17.45s

DAEGC 6.84s 7.66s out of memory 6.59s
FGC 152.20s 18.08s 335.07s 19.11s

AGC-DRR 188.25s 122.16s 4623.75s 124.72s
DFCN 31.71s 31.86s 121.71s 56.84s
SAGSC 4.42s 1.94s 4.33s 3.96s
SDCN 30.90s 21.85s 390.30s 23.98s
AGCN 35.82s 25.31s 461.66s 27.52s

EFR-DGC 96.88s 22.26s 946.15s 29.52s

Table 19. Running Time of Multi-view Methods

Method ACM DBLP IMDB Amazon Photos WIKI-pro
O2MAC 328.64s 1116.67s 1111.19s \ \
MAGC 83.87s 159.82s 235.48s 92.84s 103.48s
MvAGC 5.68s 9.70s 8.88s 6.80s 16.23s
LMGEC 2.86s 2.58s 2.72s 5.04s 7.24s

running time. Additionally, O2MAC requires a longer clustering time due to its design of a deep
learning model with a greater number of parameters, which limits its effectiveness in processing
larger graphs.

7.5 Summary
In the experimental section, we evaluate advanced single-view and multi-view methods on
four single-view datasets and five multi-view datasets in Sections 7.1.1 and 7.2, respectively.
Subsequently, as we examine the results of single-view methods across each view of the multi-view
datasets in Section 7.1.2, we discover the clustering results vary in different views. Thus, it is logical
and essential to allocate different levels of attention to different views. Moreover, we assess the
performance of multi-view methods under individual views and a consensus view in Section 7.3.
We find that good multi-view methods can harness complementary information between views
to achieve significantly enhanced collaborative effects, surpassing the performance of single-view
methods. Finally, we evaluate these methods from efficiency comparison: We find that SAGSC
and LMGEC dedicate less time to clustering and may be suitable for large-scale scenarios, while
DAEGC needs to allocate more memory, which is not available for large-scale scenarios.

8 Conclusion
In this section, we summarize and emphasize the key contributions and findings of this survey.
Then, we suggest promising research directions related to attributed graph clustering in the future.

8.1 Summary of Key Contributions and Findings
This article conducts a comprehensive and up-to-date review of attributed graph clustering ap-
proaches. In this article, we provide a systematic taxonomy for advanced methods and summarize
the methods of each class into a unified framework. Moreover, we perform a thorough experimental
analysis of these advanced methods to explore relationships among single-view methods and
multi-view methods. Below are our key contributions and findings:
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Novel classification standard. In this article, we classify attributed graph clustering methods
into three categories shown in Section 3 based on fusion results: fusion on adjacencymatrix methods,
fusion on embedding methods, and model-based methods. Fusion on adjacency matrix methods
focus on storing attribute information within the graph structure, while fusion on embedding
methods leverage GNNs to integrate information from neighboring nodes, storing topological
information in node embeddings. Additionally, model-based methods can store structural and
attribute information in distinct concepts. This classification approach is also applied to multi-view
attributed graph clustering, as shown in Section 4.
Relationships between single-view and multi-view methods. Through combining infor-

mation from different views, a good multi-view method can perform better than only using the
individual view. The experiments in Section 7.3 present clustering results for both individual and
consensus views in multi-view datasets. We find that the consensus view consistently outperforms
individual views among existing methods. In summary, the performance of the individual view
heavily relies on the chosen view, while an excellent multi-view method that combines infor-
mation from different views can effectively leverage complementary information across views,
leading to significant improvements to single-view outcomes. Currently, multi-view attributed
graph clustering methods remain in a nascent stage of development. However, considering single-
view techniques with multi-view concepts can significantly contribute to multi-view clustering on
attributed graphs.

Different attentions for different views.Multi-viewmethods need to assign different attention
to different views. The experimental results in Section 7.1.2 show that clustering outcomes vary
across different views in multi-view datasets. Thus, it is both logical and necessary to give varying
attention to different views in a specific task. Furthermore, the attention of each view is not fixed;
it depends on the method’s ability to extract useful information from each view.

8.2 Recommendations for Future Research
Although this survey conducts a comprehensive and up-to-date review of attributed graph clustering
approaches, it mainly focuses on attributed graphs with node attributes, paying less attention to
the cases with edge attributes, which is expected to be further investigated in future research. This
subsection aims to shed light on future research directions to motivate readers and researchers in
this field.

8.2.1 New Problem Setting. Large-scale problem.With the development of information mining
technology, networks in real life have become more complex and large-scale. However, existing
methods are not suitable for large-scale attributed graphs, since more running time and memory
space are required by existing methods as the large scale increases. Therefore, there is an urgent
need to provide a method that can reduce runtime and time complexity while improving the
accuracy of large-scale graph clustering.
Multi-view problem. With the rapid expansion of collecting and mining information fields,

data sources have become diversified, where different sources can provide different views, thus,
multi-view data can contribute to information complementarity and improve the accuracy of
clustering. However, existing single-view methods for clustering attributed graphs can not be
implemented directly on multi-view attributed graphs. Hence, it is critical for us to design unique
methods for multi-view graphs, which can derive from single-view methods.

Incomplete information problem. In real scenarios, not all relationships are available, which
leads to the existence of incomplete information in attributed graphs. For example, due to the high
cost of monitoring all protein interactions, protein-protein interaction (PPI) networks are often
incomplete. In addition, for multi-view attributed graphs, missing and incomplete information
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often occurs. In fact, dealing with missing views is of great significance to us, as it can not only
solve scenarios with incomplete information but also improve clustering performance.

8.2.2 High Efficiency. Model acceleration. With the increase in network scale, the number
of views, and the number of attributes, numerous parameters will be contained in the fusion on
embedding methods, which has significant impacts on runtime, footprint, and efficiency. Thus,
some acceleration algorithms and related lightweight neural networks are needed to improve the
efficiency of models and alleviate the construction consumption of models.

Graph Reduction. A large number of nodes and edges, as well as high dimensional attributes,
can affect the running time of algorithms. Therefore, we can exploit graph pruning, subgraph
sampling, and other techniques to reduce graphs and improve the efficiency of existing algorithms.

8.2.3 HighQuality. High-order adjacency. Due to the insufficient information with only direct
adjacency information, higher-order adjacency is gradually employed in recent research. There are
some problems when adopting higher-order relationships to extract more topology information.
Due to the fact that there are many high-order neighbors for one node, it may combine some
unnecessary features and information, resulting in the probability of changing the relationships of
nodes. Thus, there exists an urgent need for how to construct high-order adjacency.

The specific GNNs. For multi-view graph clustering, most deep models directly use GNN that is
originally designed for the single view. Thus, it is an important issue how to design an appropriate
model for multi-view tasks. Recently, some articles have adopted methods that assign an encoder
and a decoder to each view or use multiple encoders but only one decoder for reconstruction.
However, these encoders are not in intimate connections and with a large number of parameters,
so there is an urgent need for a more efficient multi-view GNN model.
Information fusion. For attributed graphs, the fusion mechanism of attribute information

and structure information has a great influence on clustering, which is always emphasized by
researchers. Furthermore, for multi-view attributed graphs, the fusion of complementary and con-
sensus information is a new challenge. Current methods mainly focus on the consensus information
among different views. Existing methods extract a consensus graph from different views and then
perform clustering on the consensus graph. However, there is not only consensus information but
also unique information in each view. Existing methods overlook the unique information in each
view, resulting in insufficient utilization of information from multiple views and reducing clustering
performance.
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