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Abstract—As a promising paradigm, edge computing enhances
service provisioning by offloading tasks to powerful servers at
the network edge. Meanwhile, Non-Orthogonal Multiple Access
(NOMA) and renewable energy sources are increasingly adopted
for spectral efficiency and carbon footprint reduction. However,
these new techniques inevitably introduce reliability risks to
the edge system generally because of i) imperfect Channel
State Information (CSI), which can misguide offloading decisions
and cause transmission outages, and ii) unstable renewable
energy supply, which complicates device availability. To tackle
these issues, we first establish a system model that measures
service reliability based on probabilistic principles for the
NOMA-based edge system. As a solution, a Reliable Offloading
method with Multi-Agent deep reinforcement learning (ROMA)
is proposed. In ROMA, we first reformulate the reliability-critical
constraint into an long-term optimization problem via Lyapunov
optimization. We discretize the hybrid action space and convert
the resource allocation on edge servers into a 0-1 knapsack
problem. The optimization problem is then formulated as a
Partially Observable Markov Decision Process (POMDP) and
addressed by multi-agent proximal policy optimization (PPO).
Experimental evaluations demonstrate the superiority of ROMA
over existing methods in reducing grid energy costs and enhanc-
ing system reliability, achieving Pareto-optimal performance
under various settings.

Index Terms—Edge computing, task offloading, reliability,
deep reinforcement learning.
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I. INTRODUCTION

THE ONGOING evolution of the Internet of Things (IoT)
technology is propelling the exponential growth of con-

nected devices and latency-sensitive applications, which poses
great challenges to the traditional cloud computing paradigm.
To satisfy stringent Quality of Service (QoS) guarantees,
edge computing has emerged as a promising solution and
received much attention from across the industry and the
academia. With computation resources deployed closer to the
data, latency-critical tasks can be offloaded to and handled
by mobile edge computing (MEC) servers without being
transmitted to cloud centers through the backbone network.
The potential of edge computing in mitigating network con-
gestion and minimizing transmission delays makes it an
effective approach for realizing low-latency services in sce-
narios involving computation-intensive and latency-sensitive
applications [1].

Recent advances in edge computing involve the application
of next-generation wireless communication technologies and
the promotion of system sustainability. On the one hand, the
fifth-generation (5G) network with Non-Orthogonal Multiple
Access (NOMA) are widely deployed to improve the spectrum
utilization efficiency, accommodate high-density IoT devices
(IoTD), and construct large-scale edge computing systems [2].
It enables concurrent transmission of superimposed signals
over the same resource block, with successive interference
cancellation (SIC) to disentangle signals at the receiver. On
the other hand, environmental sustainability has attracted
widespread attention. Commonly used grid energy relies
on fossil fuels, which emit greenhouse gases and lead to
environmental pollution. Therefore, embracing green energy
sources, such as solar and wind power, is critical for achieving
sustainability and reducing carbon emissions [3].

However, the introduction of NOMA and green energy
supply brings new problems to the table where the system
or service reliability is an outstanding concern [4]. The risk
of task failure becomes more critical as edge computing
services are increasingly deployed in safety-critical scenarios.
Both data transmission and task computation require relia-
bility assurance during task offloading. For the transmission
stage, co-channel interference from superposed NOMA trans-
mission introduces transmission failure risks and threatens
system reliability [5]. Additionally, the complexity of channel
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variations makes it difficult to obtain perfect CSI estimations
in practice, which complicates scheduling and further threatens
system reliability [6]. From the computational viewpoint,
devices require a sufficient energy supply for task processing.
Otherwise, energy shortages can cause task failures. Although
relying on green energy has environmental benefits, it intro-
duces instability, unpredictability, and intermittent energy
supply. Overly allocating energy poses future energy short-
age threats, while insufficient energy allocation cannot meet
delay requirements [7]. Consequently, offloading decisions and
resource allocations must be made with an awareness of the
transmission channel status and energy provision situations. It
is increasingly important to circumvent transmission failures
and energy shortages, thereby enhancing system reliability.

Much effort has been paid to the optimization of compu-
tation offloading strategies including traditional mathematical
optimizations and heuristic approaches [8]. However, these
solutions often experience diminished performance as the
complexity of advanced edge computing systems increases.
Deep Reinforcement Learning (DRL), as an experience-
based deep learning paradigm, is increasingly favored for its
efficiency and performance across diverse decision-making
environments. The integration with the deep neural network
enhances the feature extraction capability to recognize pat-
terns within high-dimensional state information, and the
interaction-exploration-exploitation feature of DRL facilitates
continuous learning and adaptation to dynamic environments.
Hence, DRL has shown great potential to enable intelligent
computation offloading [9]. In addition, the development of
multi-agent DRL can further empower agents for decentralized
decision-making that fits well in realistic edge computing over
autonomic devices [10].

Motivated by the demand for reliability at the network edge
and the potential of multi-agent DRL, we present ROMA,
a Reliable Offloading method based on Multi-Agent DRL.
ROMA makes offloading decisions and allocates resources in a
decentralized and intelligent manner, with the goal of reducing
grid energy costs while maintaining latency requirements and
system reliability. The main contributions of this paper are as
follows:

1) We present a system model that features renewable
energy-supplied IoTDs and NOMA transmission with
imperfect CSI. We construct a reliability metric by
modeling wireless transmission failures and IoTD power
shortages.

2) We propose a reliable offloading approach called
ROMA. By integrating the long-term reliability con-
straint into an instantaneous objective with Lyapunov
optimization, a multi-agent DRL algorithm is applied
for decentralized offloading decision-making. Via dis-
cretization transform, resource allocation on MEC
servers is decomposed into a 0-1 knapsack problem to
reduce action space.

3) With extensive numerical evaluation we demonstrate that
the proposed ROMA outperformed several traditional
methods and DRL-based algorithms, achieving signifi-
cantly enhanced system reliability and lower grid energy
costs.

The remainder of this article is organized as follows. In
Section II, we briefly review related works in the field.
Section III introduces the system model with problem for-
mulation. The proposed ROMA is described in details in
Section IV. Section V summarizes and discusses the experi-
mental results. Finally, the paper is concluded in Section VI.

II. RELATED WORK

A. Task Offloading and Resource Allocation

With the advancement of edge computing technologies, how
to simultaneously realize energy efficiency and low latency
approaches has been a problem of great interest. In the
domain, an important line of study is focused on task offload-
ing and resource allocation, which is challenging since the
optimization is in most cases combinatorial. Many prior works
generally focused on applying mathematical optimization and
heuristic approaches to obtain feasible solutions. For exam-
ple, [11] formulated it as a bilevel optimization problem and
used the ant colony algorithm for the upper-level offload-
ing decisions. Reference [12] transform the problem into a
fractional programming problem aimed at maximizing energy
efficiency. They combine the Dinkelbach algorithm with the
Lagrangian multiplier to iteratively search for the optimal effi-
ciency and corresponding variables. Reference [13] design a
genetic simulated annealing-based particle swarm optimization
algorithm to obtain near-optimal solutions in partial offloading.
Reference [14] decoupled the problem and adopted a partial
order-based heuristic approach for task offloading and solved
the resource allocation problem by Lagrangian duality with
Karush-Kuhn-Tucker (KKT) conditions.

Recent efforts tend to utilize RL/DRL for better complex
environment optimization ability. Reference [15] formulate
the offloading problem between UAV and MEC servers as
a submodular non-cooperative game and propose two RL-
based approaches to find the Nash Equilibrium. Reference [16]
construct a UAV-assisted edge computing system and combine
the Long-Short Term Memory (LSTM) module with Deep
Deterministic Policy Gradient (DDPG) to make offloading
decisions. In [17], Deep Q-Learning (DQN) is used for
offloading scheduling in a vehicular edge network, where the
CPU frequency allocation problem is proved to be convex and
the optimal solution is obtained by gradient descent. In addi-
tion, the decentralized nature of edge computing is well-suited
for multi-agent DRL algorithms, and many recent studies
leverage it. Reference [18] consider a DNN-task offloading
problem and propose a Dueling DQN-based method to achieve
coordinated optimization of energy cost, latency, and utility.
Reference [19] consider a multi-UAV assisted network and use
the Q-Mix algorithm to promote collaboration. For a multi-
access edge computing system, [20] propose a multi-agent
DDPG (MADDPG) based offloading approach that follows
the Centralized Training Decentralized Execution (CTDE)
paradigm. Reference [21] target on a satellite-based IoT
system, and propose a multi-agent information broadcasting
and judging algorithm to improve the cooperation between
agents.
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B. Reliability-Aware Offloading Approaches

The common objective of computation offloading is to
minimize task processing latency and energy consumption.
As edge computing needs to support applications in security-
sensitive domains, ensuring system reliability has emerged as
a critical concern.

From the perspective of communication, a naïve way is
to model failure probability as a fixed value and use a
penalty term to thereby discourage task offloading in cer-
tain situations [22]. However, it is unrealistic to ignore the
dynamics and uncertainties of channel state information. It
is also common to assume task processing failure events
as Poisson distributions whose parameters are obtained by
fitting historical data [23]. Probabilistic approaches can better
describe the uncertainty of such events. Recent research has
begun to focus on the impact of imperfect CSI on transmission
processes. Reference [24] consider a multi-user MEC system
with orthogonal transmission and focus on the impact of
imperfect CSI on transmission rates and latency. They propose
a probabilistic delay constraint to ensure successful task
processing. Similarly, [25] incorporate imperfect CSI into
their model, which only affects transmission rates without
causing outages, and propose a mathematical approach for
optimization. Closer to our work, [26] discuss transmission
outages due to imperfect CSI. However, instead of deriving
a probabilistic expression for transmission outages as we
do, they approximate the probabilistic constraint as a non-
probabilistic one and incorporate it into the optimization
objective.

From the energy management perspective, an unreliable
energy supply for IoTDs can lead to energy outage and
computation failure that threatens system reliability. To control
energy usage, [27] introduce battery power and energy cost
constraints to ensure that scheduling actions comply with
energy management requirements. Reference [28] employ
DRL approaches, incorporating penalties for constraint vio-
lations to prompt improved energy management practices.
Reference [29] formulate the energy constraint as a long-
term average constraint and transform it into a single-step
stability objective. Reference [30] convert the challenge into
a timeslot partitioning problem for energy harvesting and
task processing, and allocate computation resources according
to the harvested energy. Reference [31] similarly consider
obtaining energy from MEC via radio frequency transmission
and completely spending it on task processing at each timeslot,
thus transforming the problem into a timeslot partitioning
problem. To expand energy sources, [7] advocate for a hybrid
energy supply model that combines renewable and grid energy
to alleviate the insufficient and unstable renewable energy
supply. The optimization target is to reduce grid energy depen-
dency and enhance overall energy efficiency. Furthermore, [32]
explore the adoption of wireless power transfer from MEC
servers to IoTDs to secure a more consistent power supply,
noting the importance of carefully managing energy transmis-
sion loss and channel occupancy.

The aim of our study is to ensure the edge system reliability
while leveraging the sustainable energy sources. Our solution

TABLE I
LIST OF KEY NOTATIONS

Fig. 1. Illustration of the constructed NOMA-based edge computing system
with renewable energy supply.

is an integrated offloading decision-making framework that
considers both communication and computation risks.

III. SYSTEM MODEL AND PROBLEM FORMULATION

To address the stringent reliability demands of edge com-
puting systems, we first present our system model shown in
Fig. 1. For ease of reading, key notations are summarized
in Table I. We model system dynamics with discretized time
slots t ∈ T = {1, . . . ,T}. The network model consists of
M multi-access points (APs), each combined with a MEC
server to provide computing services, denoted by m ∈ M =
{1, . . . ,M }. Without loss of generality, APs and MEC servers
are treated as integrated entities without distinction. N IoTDs
indexed by n ∈ N = {1, . . . ,N } are deployed. The task,
which is described as a triplet union (y tn , c

t
n , q

t
n ), where y tn

represents task data size, ctn denotes compute cycles required,
and q tn is the tolerable delay, is generated by IoTDs. For
the energy supply, APs typically contain high-power electrical
devices that cannot be met by the limited energy output of
sustainable resource sensors, while the energy requirements
of IoTDs are much lower. To provide stable services while
maintaining sustainability, IoTDs are assumed to only rely on
sustainable energy and APs are powered by grid energy to
provide robust energy support.
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A. Communication Model

In the considered model, the wireless communication for
task offloading between IoTDs and APs is based on NOMA,
which facilitates simultaneous transmissions within the same
spectrum frequency but introduces co-channel interference. We
assume each AP operates on a unique spectrum frequency
to eliminate co-channel interference between APs. For the
multiple task uploading signals to the same AP, they are
first integrated based on superposition coding(SC) and then
transmitted. Denoting the set of IoTDs N t

m that send signals
to AP m at time t, the received signal of AP m is given by

ym =
∑

n∈N t
m

(
|htn,m |2/ln,m

)√
pSn + an , (1)

where p is the transmit power, Sn is the uploading signal, and
an is the additive white Gaussian noise (AWGN) with variance
σ2. |htn,m |2/ln,m is the channel gain, in which htn,m is the
small-scale Rayleigh fading and ln,m is the path loss. Note
that in dynamic and complex wireless environments, Rayleigh
fading is time-varying and difficult to accurately obtain
through CSI estimation. Thus, following [26], [33], [34], we
formulate the realistic Rayleigh fading channel gain as

htn,m = ĥtn,m + εtn,m , (2)

where ĥtn,m ∼ CN (0, 1− σ2e) denotes the estimated Rayleigh
fading obtained from the imperfect CSI estimation, and
εtn,m ∼ CN (0, σ2e ) is a random variable to represent the
estimation error.

After the overlapped signals arrive at the AP, SIC is
employed to sequentially decode the signals in descending
order of channel gain. Stronger signals are reconstructed and
removed first, while weaker signals are extracted afterward.
The weaker signals are considered as co-channel interference
noise when decoding the stronger ones. Denoting the band-
width as B and the weaker signal set that interfering signal
from IoTD n as N ′t

n,m = {n ′|∀n ′ ∈ N ,n ′ �= n, μtn ′ =

m, |htn ′,m |2/ln ′,m < |htn,m |2/ln,m}, the uplink data rate from
IoTD n to AP m is calculated as

Rt
n,m = B log2

(
1 +

p(|htn,m |2/ln,m )∑
n′∈N ′t

n,m
p(|ht

n′,m |2/ln′,m ) + σ2

)
.

(3)

When the achievable data rate Rt
n,m falls lower than a

threshold ath , it is considered as a transmission outage. After
simplifying the expression by ignoring subscript t and m, e.g.,
ĥtn,m to ĥn , the transmission failure probability given the
estimated channel gain ĥn is formulated as

P t,otg
n,m = Pr

⎧
⎨

⎩
B log2

⎛

⎝1 +
p(|ĥn + εn |2/ln )

∑
n′∈N ′

n
p
(
|ĥn′ + εn′ |2/ln′

)
+ σ2

⎞

⎠ < ath

⎫
⎬

⎭
.(4)

In Theorem 1 we derive the closed-form expression of
P t ,otg
n,m .

Theorem 1: For the transmission outage probability
described by (4) and let φ = 2a

th/B − 1, ωn =
(pσ2e)/(lnσ

2), un = (2|ĥn |2)/(σ2e ), the approximate closed-
form expression can be expressed as

P t ,otg
n,m =

⎧
⎪⎨

⎪⎩

F
Γ
(

dn
2
,2
)
(
φ−βn
αn

)
, αn > 0,

1− F
Γ
(

dn
2
,2
)
(
φ−βn
αn

)
, αn < 0,

(5)

where FΓ(·) is the cumulative distribution function of the
gamma distribution Γ(·), and

αn =
ω3n
(
2 + 3u2n

)
+
∑

n ′∈N ′
n
(−φωn ′)3

(
2 + 3u2n ′

)

ω2n (2 + 2u2n ) +
∑

n ′∈N ′
n
(−φωn ′)2

(
2 + 2u2n ′

) ,

βn = ωn

(
2 + u2n

)
+
∑

n ′∈N ′
n

(−φωn ′)
(
2 + u2n ′

)

−

[
ω2n
(
2 + 2u2n

)
+
∑

n ′∈N ′
n
(−φωn ′)2

(
2 + 2u2n ′

)]2

ω3n (2 + 3u2n ) +
∑

n ′∈N ′
n
(−φωn ′)3

(
2 + 3u2n ′

) ,

dn =

[
ω2n
(
2 + 2u2n

)
+
∑

n ′∈N ′
n
(−φωn ′)2

(
2 + 2u2n ′

)]3

[
ω3n (2 + 3u2n ) +

∑
n ′∈N ′

n
(−φωn ′)3

(
2 + 3u2n ′

)]2 . (6)

Proof: See the Appendix.
Here a task offloading policy is denoted by μt = {μtn |n ∈

N}, where μtn ∈ [0,M ], with μtn = m indicating the task
of IoTD n is offloaded to AP m and μtn = 0 representing
local processing. Therefore, for a task with data size y tn , the
transmit delay and energy cost can be expressed as

d t ,transn,m = y tn/R
t
n,m , (7)

et ,transn,m = pd t ,transn,m . (8)

B. Computation Model

Given the offloading decisions, tasks must then be processed
either locally on IoTDs or remotely at APs. For local exe-
cution, we characterize the computation capacity of IoTD n
as fn CPU cycles per timeslot, and a proportion τ tn ∈ [0, 1]
of computing resources are allocated through dynamic voltage
and frequency scaling (DVFS), the resulting computation delay
and energy cost for local processing are computed as

d t ,comp
n = ctn/

(
τ tn fn

)
, (9)

et ,comp
n = κctn

(
τ tn fn

)2
, (10)

where κ is the energy coefficient. Similarly, if the task arising
from IoTD n is offloaded to the AP m with the computation
capacity fm , and the allocated portion τ tn,m of resources, the
delay and energy cost are calculated as

d t ,comp
n,m = ctn/

(
τ tn,m fm

)
, (11)

et ,comp
n,m = κctn

(
τ tn,m fm

)2
. (12)

Without loss of generality, we follow the assumption
that task output size (i.e., downlink payload) is negligible
compared to the task data size [21], [25]. Thus, combining
the above communication model, the processing delay d tn ,
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renewable energy cost etn , and the grid energy cost etn,m on
AP m are computed as

d t
n = 1

(
μt
n = 0

)
d t,comp
n

+
∑

m∈M
1
(
μt
n = m

)(
d t,trans
n,m + d t,comp

n,m

)
, (13)

etn = 1
(
μt
n = 0

)
et,comp
n +

∑

m∈M
1
(
μt
n = m

)
et,transn,m , (14)

etn,m =
∑

m∈M
1
(
μt
n = m

)
et,comp
n,m , (15)

where the indicator 1(·) = 1 if the condition inside is true.

C. Energy Harvesting Model

We consider system scenarios where IoTDs are indepen-
dently charged by renewable green energy sources. Each IoTD
contains an energy harvester to facilitate the collection of
renewable energy. Due to the unstable and intermittent nature
of the harvested energy, batteries are used for storing energy
to support subsequent task executions. Similar to existing
works [35], we model renewable energy arrivals as a Bernoulli
distribution, wherein each IoTD harvests w units of renewable
energy at the beginning of each timeslot with a probability
of p to recharge batteries. By btn we denote the battery level
of IoTD n at the beginning of t, the available energy after
harvesting is

b̂tn = min bub , btn + ψt
nw , (16)

where bub is the battery capacity, and ψt
n ∼ Bern(p) indicates

whether energy is successfully harvested.
In a timeslot, if the IoTD chooses to process a task locally,

it incurs energy consumption for local computation; otherwise,
the device consumes energy to transmit the data to APs. In
both cases, the battery level is updated as

bt+1
n = max{0, b̂tn − etn}. (17)

As a different role, APs use the grid power supply to
maintain uninterrupted high availability, which also causes
brown energy consumption. Thus, minimizing the total energy
costs from APs is one of the ultimate goals to protect the
environment and enhance sustainability.

D. Reliability Metric

System reliability, which is related to the probability of
task completion, faces significant challenges from both com-
munication and computation perspectives. On the one hand,
transmission outages during task offloading to APs could
lead to incomplete reception of task packets. On the other
hand, insufficient energy in IoTDs compromises their ability
to support CPU operations for task processing and even causes
the devices to go offline. In addition, high processing latency
can result in the breach of delay constraints. These factors
can lead to task failures and pose risks to the overall system
stability. To quantitatively represent the reliability of edge
systems, we construct the reliability metric from the above two
perspectives based on our theorem with the aid of simulations.

From the communication perspective, we combine the
theoretical estimation of successful transmission probability
and actual transmission outages to represent transmission relia-
bility. If an unsuccessful transmission occurs, the transmission
reliability is denoted as 0; otherwise, it is indicated as 1 −
P
t ,otg
n,m to penalize the probability of transmission failures.

Additionally, if a task is processed locally, the transmission
reliability is fixed at 1 since no transmission process is
involved. Thus, the transmission reliability is calculated as

z t ,transn =

⎧
⎨

⎩

1, if μtn = 0,

1− P t ,otg
n,m , if μtn �= 0 and Rt

n,m ≥ ath ,

0, if μtn �= 0 and Rt
n,m < ath .

(18)

In addition to transmission failures, insufficient energy
availability and slow response also pose risks to system reli-
ability. If the scheduling decisions result in energy shortages,
or the task processing latency is larger than requirement qn ,
we mark the task failed and set the computation reliability to
0. Otherwise, it should be set to 1. Formally, the computation
reliability is formulated as

z t ,comp
n =

{
0, if b̂tn − etn < 0 or d tn > qn ,
1, otherwise.

(19)

Thus the overall service reliability metric can be expressed
as the product of transmission reliability and computation
reliability, i.e.,

z tn = z t ,transn z t ,comp
n . (20)

The metric integrates both the theoretical model and real-
world feedback to provide a general and robust representation.
When transmission failures or energy shortages occur in
reality, the reliability metric is significantly impacted and
marked as 0. Otherwise, a relatively minor penalty is applied to
the probability of transmission failure based on the theoretical
model. Therefore, despite the minor but inevitable gap between
theory and reality, our metric can still effectively reflect the
actual system reliability.

E. Problem Formulation

In this paper, we aim to reduce the grid energy cost of
APs while ensuring system reliability by jointly optimizing
the offloading decisions and computation resource allocation.
The optimization problem is formulated as

P1 : min
μ,τL,τAP

lim
T→∞

1

T

T∑

t=1

(
M∑

m=1

N∑

n=1

etn,m

)

s.t. C1 : lim
T→∞

1

T

T∑

t=1

E
[
z tn
]
≥ ψz , ∀n ∈ N ,

C2 : 0 ≤ μtn ≤ M , μtn ∈ Z,

C3 : 0 ≤ τ tn ≤ 1,

C4 : 0 ≤
N∑

n=1

τ tn,m ≤ 1, (21)

where τL = {τ tn |n ∈ N} and τAP = {τ tn,m |n ∈ N ,m ∈
M} respectively refers to resource allocation decisions by
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IoTDs and APs. C1 specifies that the long-term system relia-
bility should be larger than ψz in expectation; C2 limits the
offloading decision between local processing and offloading to
one of the M APs; C3 constrains the local resource allocation
proportion to between 0 and 1; C4 limits the sum of resource
fractions allocated by each AP to [0, 1].

IV. OUR METHOD

The objective function in (21) presents a non-trivial
mixed-integer non-linear programming (MINLP) subject to
time-averaged constraints. To facilitate efficient solutions with
realistic complexity, we present our Reliable Offloading frame-
work with Multi-Agent DRL (ROMA). In ROMA, we first
simplify the problem by converting the time-average reliability
constraint into an instantaneous (single-timeslot) objective
through Lyapunov optimization. We then discretize resource
allocation to avoid discrete-continuous hybrid action space and
thereafter decompose the resource allocation of APs as a 0-1
knapsack problem to reduce action space. Multi-agent PPO is
employed for decentralized decision-making about offloading
and local resource allocation on every IoTD in the system.

A. Transform of Reliability Constraint

We begin with transforming the long-term constraint of
system reliability. We rewrite C1 into

lim
T→∞

1

T

T∑

t=1

E
[
ψz − z tn

]
≤ 0, ∀n ∈ N , (22)

and introduce virtual queues Q t = {Q t
n |n ∈ N}, where

Q1
n = 0,Q t+1

n = max{Q t
n + (ψz − z tn), 0}.

Based on the Lyapunov Optimization theory, when the
virtual queues are stable, the reliability constraint is satisfied.
Thus, the constraint C1 can be expressed as

C1′ : lim
T→∞

1

T

T∑

t=1

E(Q t
n ) = 0, ∀n ∈ N . (23)

Besides, we define the Lyapunov function L(Q t ) =
1
2

∑N
n=1Q

t
n
2 and Lyapunov drift Δ(Q t ) = L(Q t+1) −

L(Q t ). The upper bound of Lyapunov drift can be derived as

Δ(Q t ) =
1

2

∑

n∈N
Q t+1
n

2 − 1

2

∑

n∈N
Q t
n
2

≤ 1

2

N∑

n=1

(ψz − z tn)
2 +

N∑

n=1

Q t
n(ψz − z tn)

≤ B +

N∑

n=1

Q t
n(ψz − z tn), (24)

where B is a constant term representing the upper bound of
1
2

∑N
n=1(ψz − z tn)

2.
To minimize the original objective while ensuring sta-

ble queues, we leverage the drift-plus-penalty minimization
approach, which aims to minimize the upper bound of Δ(Q t )

and the objective function weighted by coefficient v for each
timeslot. Thus, P1 is converted into P1′ as follow:

P1′ : min
μ,τL,τAP

lim
T→∞

1

T

T∑

t=1

[
v

M∑

m=1

N∑

n=1

etn,m

+

N∑

n=1

Q t
n(ψz − z tn)

]

s.t. C2,C3,C4. (25)

Intuitively, the added term Q t
n(ψz − z tn) serves to penalize

increases in the virtual queue length thus encouraging a shorter
queue and a smaller gap between the current reliability and
its expected value ψz .

B. Action Discretization

Offloading decisions are discrete while resource allocation
requires continuous actions. The resulting hybrid action space
significantly complicates DRL by making the learning process,
algorithm design, and convergence more difficult. To this end,
we propose to discretize the continuous resource allocation.

For local resource allocation, we discretize τL into τ̂L =
{τ̂ tn |τ̂ tn ∈ {0, 1}}, where τ̂ tn = 1 means the IoTD tries to
allocating sufficient resources to complete the task and vice
versa. Similarly, τAP are discretized to τ̂AP = {τ̂ tn,m |τ̂ tn,m ∈
{0, 1}}. Now we provide proposition 1, which proves that
when τ̂ tn or τ̂ tn,m is feasibly decided, the corresponding
resource allocation ratio can be optimally determined.

Proposition 1: Given feasible, determined τ̂ tn and τ̂ tn,m , the
optimal resource allocation ratio for IoTDs and APs can be
determined as

τ tn =

{
0, if τ̂ tn = 0,
ctn
qn fn

, otherwise,
(26)

τ tn,m =

{
0, if τ̂ tn,m = 0,

ctn
(qn−d t,trans

n,m )fn
, otherwise.

(27)

Proof: For local resource allocation at timeslot t, suppose we
have two feasible solution τL and τL∗, where the difference
is ∃n ∈ N , τ t∗n ≤ τ tn .

When μtn �= 0, the value of τ tn has no impact on et ,transn,m

and e
t ,comp
n,m . Therefore, the aforementioned difference has no

influence on the system. When μtn = 0, given that et ,comp
n,m

monotonically increases with respect to τ tn , we can deduce
that et ,comp

n,m ≤ et ,comp∗
n,m , which leads to higher risk of energy

insufficiency in the following timeslots. If it occurs at t̂ ,

we have z t̂ ,comp
n,m ≤ z t̂ ,comp∗

n,m , ultimately resulting in worse
performance. Thus, iteratively updating the current policy to
τL∗ with fewer local resource allocations leads to consistent
or better results, and the optimal fraction is the lowest one
that satisfies demands.

Therefore, when τ̂ tn = 0, the optimal value of τ tn should be
0 for energy preservation. When τ̂ tn = 1, to satisfy the delay

constraint the minimum valid value of τ tn is ctn
qn fn

.
Similarly for APs, allocating the exact amount of required

resources leads to less etn,m without affecting Q t
n and z tn .

Thus, the optimal allocation policy is obtained based on the
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binary decision τ̂ tn,m = 0 and the task demand. When τ̂ tn,m =

0, the optimal value of τ tn,m should be 0. And when τ̂ tn =
1, the delay constraint is expected to be satisfied, hence the
minimum valid value of τ tn is ctn

qn fn
.

C. Task Offloading and Resource Allocation

From a practical perspective, task offloading and local
resource allocation decisions should be autonomously made by
each IoTD, whereas APs should independently determine their
own resource allocation. Mathematically, the former decisions
critically influence the time-evolving remaining energy and
the virtual queue length of IoTDs that are directly linked
to the long-term optimization goal. Conversely, the resource
allocation decisions by APs have a relatively minor impact
on future objectives. This distinction naturally leads to the
decomposition of these problems. Hence, we decompose
problem P1′ into two sub-problems, that is, P2 which is the
optimization of task offloading and local resource allocation
by IoTDs for long-term performance, and P3 which directs
APs in resource allocation that focuses on the current timeslot.

P2 : min
μ,τ̂L

lim
T→∞

1

T

T∑

t=1

[
M∑

m=1

N∑

n=1

vetn,m

+

N∑

n=1

Qn(t)
(
ψz − z tn

)
]

s.t. C2,

C5 : τ̂ tn ∈ {0, 1},
C6 : τ tn ≤ 1, ∀n ∈ N . (28)

P3 : min
τ̂ tn,m

M∑

m=1

N∑

n=1

v τ̂ tn,met ,comp
n,m +

N∑

n=1

Q t
n(ψz − z tn)

s.t. C7 : τ̂ tn,m ∈ {0, 1},

C8 :
N∑

n=1

τ̂ tn,mτ
t
n,m ≤ 1, ∀m ∈ M. (29)

We first discuss the sub-problem P3 of allocating resources
for APs. Since each IoTD task can only be offloaded to one AP
or processed locally and that z t ,transn is fixed given the deter-
mined offloading decisions, we can rewrite

∑N
n=1Qn (t)(ψz−

z tn) as
∑M

m=1

∑N
n=1 1(μ

t
n = m)Qn (t)(ψz − z t ,transn τ̂ tn,m ),

where the missing terms about local processing is a constant
term here and can be ignored. Thus, the joint optimization
problem can be split into several independent problems, where
each AP m focuses on the following problem:

P3m : min
τ̂ tn,m

N∑

n=1

v τ̂ tn,met ,comp
n,m

+ 1(μtn = m)Q t
n (ψz − z t ,transn τ̂ tn,m )

s.t. C7,C8. (30)

For locally processed tasks or the tasks offloaded to AP
other than m, we have 1(μtn = m) = 0, allocating τ̂ tn,m = 0
can obviously minimize the objective function. For tasks that
failed in transmission, we have z t ,transn = 0 that makes the
latter item constant, thus the optimal decision is τ̂ tn,m = 0.

For the task set N ′
m = {n ′|n ′ ∈ N ,1(μtn = m) = 1,Rt

n,m ≥
ath}, in which tasks successfully arrive at AP m, the problem
can be further transformed into the following P3′m, where the
constant term Qn(t)ψz is ignored:

P3′m : min
τ̂ tn,m

∑

n∈N ′
m

τ̂ tn,m (vet ,comp
n,m −Q t

n (1− P t ,otg
n,m ))

s.t. C7,C8. (31)

Obviously, the problem P3′m is a 0-1 knapsack problem
that could be solved by individual APs in a decentralized
manner. Due to the disruption of transmission outages, only a
limited number of tasks could be successfully offloaded to the
same AP at the same time, so the complexity of the problem
is minimal. Existing methods such as exhaustive search and
dynamic programming (DP) are well established to solve this
problem within a short delay.

Remark 1: With exhaustive search, the time complexity is
O(2|N ′

m |). As an alternative, DP can achieve a linear time
complexity but is only suitable for scenarios involving integer
knapsack capacity and item weights. Thus, when |N ′

m | is
relatively small, exhaustive searching can be chosen. When
|N ′

m | becomes larger, DP can still be utilized by scaling and
rounding up relative terms to achieve an integer space.

Subject to the remaining energy and the reliability virtual
queue length of IoTDs, the optimization problem formulated
in P2 is a long-term problem, where decisions will have
an impact on the subsequent states. Traditional methods
with local optimization insurance cannot guarantee long-
term optimal solutions. Fortunately, the recent development
of DRL shows advanced performances in such a long-
term optimization problem. The model-free characteristic also
allows DRL to update its policy through interactions with the
real environment rather than relying solely on the theoretical
model, which provides generalizability to real-world scenarios.
In addition, since the decentralized nature of edge computing
diverges from centralized DRL approaches, the multi-agent
DRL algorithm appears to be a more appropriate approach,
where each IoTD behaves as an independent agent to access
local observations for decentralized execution. The prerequi-
site for adopting multi-agent DRL is to formulate the problem
as a POMDP, represented by a tuple < O,A,P,R, γ >,
where O is the partial observation space of agents. A is the
joint action space. P is the state transition probability. R is
the reward of taking actions and γ is the discount factor. In
this system, the observation, action, and reward are defined as
follows.

1) Observation: each agent can only observe the part
of the system state related to itself. We formulate
the observation of IoTD n at timeslot t as ot

n =

{y tn , ctn , q tn , ĥtn , btn ,Q t
n}, where y tn , c

t
n , q

t
n are task

informations, ĥtn = {ĥtn,m |m ∈ M} is the estimated
Rayleigh fading channel gain. btn indicates the available
energy and Q t

n is the length of the virtual queue. The
global system state is the aggregate of observations, i.e.,
st = (ot

1, . . . ,o
t
N ).

2) Action: The agent of IoTD n should make task offload-
ing decision μtn and local computing resource allocation
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τ̂ tn at timeslot t. Since resource allocation only has
impacts when for local processing, we pack them into
one action encoded as atn , where atn = 0 and atn = M +
1 respectively refers to τ̂ tn = 0 or τ̂ tn = 1 with μtn = 0,
and 1 ≤ atn ≤ M matches 1 ≤ μtn ≤ M for offloading.
The joint action is defined as a t = (at1, . . . , a

t
N ).

3) Reward: After taking joint action a t , the step reward is
obtained to guide policy update. Since the target of DRL
is to maximize the cumulative reward, we set the reward
as the negative objective function, which is calculated
as

Rt(st ,a t) = −
M∑

m=1

N∑

n=1

vet ,comp
n,m

−
N∑

n=1

Qn(t)
(
ψz − z tn

)
. (32)

Before presenting our ROMA, we start with the necessary
preliminaries. For a multi-agent DRL system, the ultimate
goal is to learn a joint policy π(a |o) =

∏N
n=1 π

θn
n (an |on )

that maximize the expected discounted cumulative reward
J (π) = Eπ [

∑∞
t=0 γ

tRt ], where θn is the policy parameter
of agent n. The value function Vπ (s) denotes the cumulative
reward under a given policy starting at state s , the state-action
function Qπ (s,a) refers to the obtainable future return by
taking joint action a in the state s, and the advantage function
Aπ (s,a) represents how better the joint action a compared to
mean action, is defined as

Vπ (s) = Eπ

[ ∞∑

i=t

γi−tRi |st = s

]
, (33)

Qπ (s,a) = Eπ

[ ∞∑

i=t

γi−tRi |st = s,a t = a

]
, (34)

Aπ (s,a) = Qπ (s,a)− Vπ (s). (35)

Considering the characteristics of decision-making in dis-
crete action space, we base our method on the multi-agent
proximal policy optimization algorithm (MAPPO) [36].

In general, the MAPPO algorithm adopts a centralized
training and decentralized execution (CTDE) framework fol-
lowing the actor-critic paradigm. Each IoTD is treated as
an independent agent to select actions based on their local
observation, and a global critic network is trained to evaluate
current state values using the aggregated system state. During
training, the actor networks are updated to optimize policies
to maximize cumulative rewards, and the critic learns to
accurately predict future rewards. Once trained, decentralized
execution allows each agent to operate autonomously without
relying on the centralized critic.

Specifically, the global critic network V ω
π with parameter

ω is learned to predict the state function Vπ for each state
s. Based on the Bellman Equation, the critic network can
be iteratively updated by minimizing the following temporal-
difference(TD) loss under the sampled trajectory ρ:

L(ω) = E(st ,a t ,Rt ,st+1)∼ρ

[(
V ω

π (st )− (Rt + γV ω
π (st+1))

)2
]

.

(36)

The objective of actor networks is to maximize the proba-
bility of taking action with a higher cumulative reward, which
can be estimated by the advantage function value. Thus, the
loss function of actor networks to be minimized is the negative
of objective, which is formulated as

L(θn ) = −Eρ

[
min

(
ηn (θn )A

t , clip(ηn (θn ), 1− ε, 1 + ε)At
)]

,

(37)

where ηn(θn ) = πθn (an |on )/πθnold (an |on ) is the importance
sampling ratio between updating policy and sampling policy,
to enable multiple updates with single sampled trajectory.
The function clip(ηn (θn ), 1− ε, 1+ ε) controls ηn(θn ) inside
the interval [1 − ε, 1 + ε] to avoid excessive update. The
advantage function value can be obtained from the state
value function estimated by the critic network through the
generalized advantage estimator (GAE) [37] as

At =

h∑

l=0

(γλ)l
(
Rt + γV ω

π (st+l+1)− V ω
π (st+l )

)
, (38)

where h is the length of trajectory, λ is the hyper-parameter of
GAE. Thus, θn can be updated via gradient descend L(θn ).

Fig. 2 illustrates the overall framework of the proposed
ROMA and Algorithm 1 shows the pseudo-code. We divide
the operational time into episodes. In each episode, ROMA
initially performs decentralized execution to interact with the
environment and collect transitions over T timeslots. These
data are subsequently used for centralized policy updates.
Specifically, Lines 5-17 present the decentralized execution
stage. In Lines 6-10, each IoTD collects observations and
selects an action with its own deployed actor network in
parallel at each timeslot. The action is then recovered and
executed. From Lines 11 to 14, each AP independently
collects information about the arrived tasks and solves the
constructed 0-1 knapsack problem to allocate computational
resources. Rewards are collected and transitions are stored for
training (Lines 15-16). Note that these operations are fully
decentralized. Each IoTD and AP focuses only on a small
decision sub-problem. Consequently, ROMA is suitable for
large-scale edge computing systems. After interactions, Lines
19-23 detail the centralized training stage. Transitions are
collected to calculate advantage values, which helps to update
the actor and critic networks.

D. Complexity Analysis

Since the N agents take actions in parallel, the total
complexity of inference for task offloading and local resource
allocation is primarily determined by the structure of the
applied neural network for the actor.

Based on the given observation definition, the input size
is M + 5, and the output size is M + 2, where each action
corresponds to a log probability output. Assuming the number
of neurons in each hidden layer is H and the number of hidden
layers is K, and taking into account the activation function,
the complexity of task offloading and local resource allocation
can be expressed as O((M +5)H +KH 2+(M +2)H +KH ).
Similarly, the resource allocation on APs can also be executed
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Fig. 2. The framework of ROMA. It follows the centralized-training-decentralized-execution paradigm. During the execution stage, IoTDs make decisions
autonomously with their actor network. APs manage and allocate resources by solving the 0-1 knapsack problem based on the information of arrived tasks.
A centrally deployed critic network assists with policy updates based on the collected interaction transitions only at the training stage.

Algorithm 1 ROMA
1: Randomly initialize actor network parameters θn for each

IoTD and critic network parameters ω. Set learning rate
and hyper-parameters Δ, ψz , λ, γ;

2: Initialize the length of the virtual queue and the available
remaining energy;

3: for episode = 1, 2, . . . ,E do
4: \* Decentralized Execution Stage. * \
5: while t < T do
6: for n ∈ N in parallel do
7: Collect observation otn ;
8: Sample an action atn from πn (a

t
n |otn ), and recover

it into μtn and τ̂ tn
9: Obtain τ tn based on (26) and execute μtn and τ tn ;

10: end for
11: for m ∈ M in parallel do
12: For n ∈ N ′

m , find the optimal τ̂n,m by solving
(31), otherwise allocate τ̂ tn,m = 0;

13: Obtain τn,m from (27) and execute it;
14: end for
15: Calculate reward Rt ;
16: Store transition (st ,a t ,Rt ) to the trajectory ρ;
17: end while
18: \* Centralized Training Stage. * \
19: Calculate Advantage function value by (38);
20: for n ∈ N in parallel do
21: Update actor network by gradient descent (37);
22: end for
23: Update critic network by gradient descent (36);
24: end for

in parallel. Since the upper bound of |N ′
m | is N, assuming the

scaling up factor is S, the complexity of DP becomes O(NS ).
Therefore, the overall complexity of the algorithm execution

is the sum of the complexities of each DRL agent and that on
each AP, i.e., O(H (2M + 7 + (H + 1)K ) + NS ).

During the training phase, the critic network plays a crucial
role in the learning process. It takes inputs of size N(M + 5)
and produces an output of size 1. Considering a critic network
with J hidden layers, each consisting of L neurons, the compu-
tational complexity can be expressed as O(L(N (M+5)+LJ+
1)). In each training episode spanning C timeslots, several
interactions occur. Since the complexity of the Generalized
Advantage Estimation (GAE) algorithm is proportional to C,
and considering the training process over U episodes, the total
complexity becomes O(U (C + 1)(H (2M + (H + 1)K ) +
NS ) + UC + UL(N (M + 5) + LJ + 1)).

V. EXPERIMENT

A. Experimental Setup

We built a simulated environment using Python 3.9 and
Pytorch 1.12 on a workstation powered by Intel Core i9-
10900K and Quadro RTX 4000. The simulation system
encompasses a square 60m × 60m area. The default settings
include 3 APs and 10 IoTDs uniformly distributed within
the area. During the transmission phase, all IoTDs utilize
a fixed transmit power of 100 mW, and each AP operates
on an orthogonal channel with a bandwidth of 3 MHz. The
parameter σ2e representing the CSI estimation error is set
to 0.1, and the transmission rate threshold ath is set to 3.
The path loss associated with transmission distance follows
140.7 + 36.7 log10 d . Uniform distributions are employed to
simulate the task data size, required CPU cycles, and latency
requirements. More parameters are listed in Table II.

During the training process, specific training parameters are
configured as follows. Actor networks are designed with three
layers, while the critical network comprises four layers. The
dimension of hidden layers in both networks are set to 128.
Tanh activation function is employed to optimize performance.
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TABLE II
PARAMETER SETTINGS OF SIMULATION

Fig. 3. Convergence analysis for ROMA under different learning rate.
Exponential moving averaging is applied for clearer visualization.

Furthermore, the discount factor γ is set to 0.98, while the
importance sampling ratio ε is assigned a value of 0.2. The
hyper-parameter λ of GAE is set to 0.98. The learning rate
is set to 1e−4. The model is trained for 1200 episodes with
256 timeslots in each episode. The update process is executed
after every 1024 interactions with 10 data reuse times. The
mini-batch size is set to 256. Adam optimizer with ε = 1e−5
is applied. The model with the best performance was tested
with 100 episodes of simulation, and the mean value of each
metric was taken as the final result.

B. Hyperparameter Analysis

In this section, we first analyze the convergence of our
strategy by examining its performance under various learning
rates. We then investigate the impact of different Lyapunov
coefficients v and target reliable expectations ψz on the system
performance.

Learning Rate: Fig. 3 shows the system reward under
three different learning rate settings. Note that the ceiling
is zero in our negative rewarding design. The blue line
corresponds to a high learning rate of 1e−3 which enables
relatively fast convergence, reaching the plateau at around
200 episodes. However, large learning rates also result in
overshooting and oscillations in subsequent stages, impeding
reliable improvements. Conversely, when the learning rate is
set to 1e−5 (yellow line), the convergence speed noticeably
decreases and the model gets trapped in a local optimum.
Therefore, in our learning scenario, a learning rate of 1e−4 is
appropriate to achieve the best performance.

Lyaponov Coefficient: Fig. 4 shows the algorithm’s
performance concerning the grid energy cost of APs and the

Fig. 4. Grid energy cost and reliability using different Lyapunov coefficients.

Fig. 5. Grid energy cost and reliability given different long-term reliability
expectation requirements.

achieved reliability under different settings of the Lyapunov
coefficient v. The value controls the trade-off between grid
energy costs and reliability. Intuitively, results show that
higher values of v prioritize grid energy preservation over the
reliability requirement. As v increases from 1 to 20, the overall
reliability degrades from 0.916 to 0.881, whilst the grid energy
cost decreases from 0.673 to 0.576. This is typically achieved
by learning to selectively drop some computation-intensive
tasks. To balance between grid energy costs and reliability, we
suggest adopting a Lyapunov coefficient of v = 1.

Reliability Requirement: Fig. 5 illustrates the impact of
different long-term reliability expectation requirements ψz on
the system. To encourage the optimization of grid energy
costs, the reward function is designed to stop providing
rewards once the reliability reaches the specified required
value. Experimental results confirm the effectiveness of this
design. When the reliability required values are set below 0.92,
the obtained reliability metrics closely approximate the set
value, and significantly reduce system energy costs. However,
for larger required value, the algorithm faces challenges in
effectively improving system reliability due to limitations in
the ability of the simulated edge computing system. As an
example, when the requirement is raised from 0.96 to 1, the
grid energy consumption exhibits a linear increase, reaching
a value of 0.778, while the actual achieved reliability only
experiences a slight improvement, rising from 0.942 to 0.945.
Therefore, we adopt ψz = 0.92 as the default setting.

C. Performance Evaluation

In this section, we compare and analyze our proposed
method with two widely-used baseline methods and three
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Fig. 6. Grid energy costs and reliability under different settings of task CPU
cycles requirements. Local computing incurs no grid energy cost.

commonly used DRL algorithms under various environment
settings. The baseline methods are specified below:

1) Local Computing: all tasks are executed locally and no
offloading operation is performed.

2) Random: IoTDs make random decisions on task offload-
ing to one of the edge servers or local execution.

3) Independent Q-Learning (IQL): IQL is a decentralized
DRL algorithm in which multiple agents learn inde-
pendently. Each agent maintains its own Q-network to
make decisions based on self-observations. This method
is employed in [38].

4) Q-Mix: Q-Mix follows the CTDE paradigm, where a
centralized mixture network combines individual Q-
values and global states to evaluate actions and guide
updates. It is applied in [19].

5) MADDPG: MADDPG is a CTDE-based DRL algorithm
tailored for multi-agent scenarios. Decentralized agents
learn deterministic policies, which enables agents to
effectively learn continuous actions, facilitating coordi-
nation and cooperation in complex environments. This
method is widely used in the field [39].

Task intensity: We also compare different approaches under
different distributions of task CPU cycles. As shown in Fig. 6,
simple local computing (no offloading), yields poor reliability
that drops from 0.683 to 0.13 as IoTDs constantly get short of
energy in their batteries. Random decision-making somehow
avoids local device energy shortage but still fails to attain
a healthy reliability level due to stochastic failures in trans-
mission. In comparison to other DRL methods, our approach
exhibits lower grid energy costs when tasks require fewer CPU
cycles, while ensuring higher reliability through more rational
scheduling decisions under high load of computation. This
empirically proves that ROMA is energy-efficient to go with
strong reliability promises.

Channel Uncertainty: Fig. 7 visualizes the performance
evaluation under different levels of channel uncertainty rep-
resented by the CSI estimation error rate σ2e . For fair
comparison, we provide the range of results obtained from
multiple test episodes of our method. Our first observation
is that all DRL-based approaches consistently demonstrate

Fig. 7. Achieved reliability under different CSI estimation error rate settings.

Fig. 8. Grid energy costs and reliability in environments of different number
of IoTDs. IoTD population settings are distinguished by the shape of markers,
and the results of different methods are rendered in different colors.

significantly better performance, showing ability to learn com-
plex policies. ROMA consistently offers superior reliability
compared to other approaches, even in the worst case (lower
bound of the bars). Our method exhibits the slightest decline
in reliability as the CSI estimation error increases. In ideal
situations where the CSI estimation error rate σ2e is small,
both IQL and Q-Mix have similar performance. However, as
the error increases, the performance of IQL drops notably due
to the absence of centralized training in IQL, which limits
the ability of agents to effectively collaborate in complex,
uncertain environments. Besides, we notice that MADDPG
shows the worst performance among DRL-based approaches.
We attribute this to the fact that MADDPG is not designed for
discrete action spaces. After generating action probabilities,
sampling is required. This discrepancy between probability
values and actual actions makes deterministic policy updates
inaccurate, leading to the performance gap.

System Scale: In order to compare different strategies in
environments of varied scales, we experimented in multiple
environments with different numbers of IoTDs. Results in
Fig. 8 indicate that the Local method (overlapped purple
markers) cannot guarantee service reliability, with task suc-
cess rate staying below 0.5. Random offloading exhibits
a sharp decrease of the metric as the number of IoTDs
increases. This boils down to stronger resource contention and
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Fig. 9. Grid energy costs, reliability, and offloading rates under varied
probabilities of renewable energy arrivals. 6 settings of renewable energy
arrival were explored (shown in different marker shapes). Offloading rates for
the Local and Random methods are around 0 and 0.75 respectively and thus
excluded for clarity.

co-channel interference. In comparison to other DRL methods,
the proposed ROMA shows advantages in the balance between
reliability and energy efficiency at all scale — the performance
of ROMA is consistently on the Pareto frontier with strong
reliability guarantee in all cases. With an increasing number of
IoTDs, the performance points of our method scatter from the
upper left to the upper right, while other strategies experience
notable drop in service reliability. This is because their
insufficiency in learning to avoid both critical low battery and
“risky” offloading decisions, resulting in unreliable decisions,
lower AP utilization, and a significant reliability decrease.

Renewable Energy Supply: Fig. 9 provides the performance
comparison in different conditions of renewable energy avail-
ability, demonstrating the effectiveness of the proposed method
in systems with sufficient and insufficient renewable energy
supply. In the situation where green energy is scarce (e.g.,
p = 0.25), DRL-based algorithms have high task offloading
ratio to minimize local battery usage (shown in the bar
chart). However, the scatter plot shows that popular methods
like IQL and QMix struggle to effectively maintain reliable
transmission, resulting in decreased system reliability that
is approximately 10% to 20% lower than our ROMA. By
contrast, in the cases where renewable energy is relatively
ample, ROMA optimizes the utilization of IoTD batteries and
ensures high reliability without paying the price for more grid
energy consumption.

VI. CONCLUSION

Reliability can be critical in edge computing systems. It is of
great challenge to achieve that with uncertain communication
channel conditions and unstable renewable energy supply. In
this paper, we present ROMA, a reliable approach based
on multi-agent DRL, to ensure high service reliability via

computation offloading. We first derive the probability of
NOMA transmission failure given imperfect CSI estimation
and combine it with the battery factors to define a comprehen-
sive reliability metric. We employ Lyapunov optimization to
ensure long-term reliability in a discretized space of actions.
Our solution exploits Multi-agent DRL and 0-1 knapsack
problem solving to jointly optimize task offloading and
resource allocation. Experimental results demonstrate that our
proposed approach outperforms various existing algorithms
in terms of reliability and grid energy costs, showing strong
promises in NOMA-based sustainable edge systems where
reliability is a major concern. However, optimizing service
reliability solely through offloading actions is a challenging
task. As part of future work, we plan to explore proactive
methods and consider variable constraints.

APPENDIX

PROOF OF THEOREM 1

Before presenting the proof of the theorem, it is necessary
to provide the following lemma, which offers an estimation of
the weighted sum of random variables with non-central chi-
squared distributions.

Lemma 1: For random variables Ar following non-central
chi-squared distributions χ22(u

2
r ), the weighted sum S =∑q

r=1 CrAr can be approximated as a random variable taking
the form R = αΓ(d/2, 2) +β, where Γ(·) refers to the gamma
distribution, and

α =

∑q
r=1 C

3
r

(
2 + 3u2r

)
∑q

r=1 C
2
r (2 + 2u2r )

,

β =

q∑

r=1

Cr

(
2 + u2r

)
−
∑q

r=1 C
2
r

(
2 + 2u2r

)
∑q

r=1 C
3
r (2 + 3u2r )

,

d =

(∑q
r=1 C

2
r (2 + 2u2r )

)3
(∑q

r=1 C
3
r (2 + 3u2r )

)2 . (39)

Proof: According to [40], the approximation S ≈ R
is valid if the cumulants Kl (S ), l = 1, 2, . . . , of S are
equal to the cumulants Kl (R) of R = αχ2d + β. From
the cumulants generating function(CGF) of non-central chi-
squared distributions and the properties of cumulants, simple
algebra gives that

Kl (S ) = 2l−1(l − 1)!

q∑

r=1

C l
r

(
2 + lu2r

)
,

K1(R) = αd + β,

Kl (R) = 2l−1(l − 1)!αld , l = 2, 3, . . . , (40)

By letting the first three cumulants of T and R be equal,
i.e., Kl (S ) = Kl (R), l = 1, 2, 3, α, β, δ can be determined as
described in (39). Besides, since d is often not an integer, R
can be represented in the form of the gamma distribution, i.e.,
T ≈ R = αΓ(d/2, 2) + β.
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Defining φ = 2a
th/B − 1, ωn = (pσ2e)/(lnσ

2), and
un = (2|ĥn |2)/(σ2e ) as described in the theorem, the original
expression can be transformed into the following probability:

P t,otg
n,m = Pr

{

B log2

(

1 +
p|hn |2/(lnσ2)

∑
s∈Sn

p|hs |2/(lsσ2) + 1

)

< ath
}

= Pr

⎧
⎨

⎩
ωn

(
2/σ2

e |hn |2
)
+
∑

s∈Sn

−φωs

(
2/σ2

e |hs |2
)
< φ

⎫
⎬

⎭
.

(41)

Under imperfect CSI, as in (2), the actual Rayleigh fading
is represented as the sum of the estimated value and the
estimation error. Referring to the definition of the complex
Gaussian distribution, hn , ĥn , and εn can each be decomposed
into their real and imaginary components as

ĥn = ĥ1n + i ĥ2n ,

εn = ε1n + iε2n ,

hn = h1n + ih2n =
(
ĥ1n + ε1n

)
+ i
(
ĥ2n + ε2n

)
,

where ε1n , ε
2
n follows N (0, σ2e/2), h1n ∼ N (ĥ1n , σ

2
e/2), and

h2n ∼ N (ĥ2n , σ
2
e/2). Therefore, we have

2/σ2e |hn |2 =
(
(
√
2/σe |h1n |)2 + (

√
2/σe |h2n |)

)2

∼ χ22

(
2/σ2e |ĥn |2

)
.

Similarly, we have 2/σ2e |hs |2 ∼ χ22(2/σ
2
e |ĥs |2). Obviously,

the left-hand side of the inequality in P t ,otg
n,m is a weighted

sum of multiple random variables (2/σ2e |hn |2 and 2/σ2e |hs |2)
following the non-central chi-square distribution. Thus, with
Lemma 1, we can simplify (41) into the following expression:

P t ,otg
n,m ≈ Pr{αnΓ(dn/2, 2) + βn < φ}, (42)

where parameters αn , βn , dn are shown as

αn =
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Since αn ∈ R, after moving αn and βn to the right-
hand side, the complex probability could be simplified into
the CDF of the gamma distribution Γ(dn/2, 2). Formally,
the approximation of the transmission outage probability is
represented as

P t ,otg
n,m ≈

⎧
⎪⎨

⎪⎩

F
Γ
(

dn
2
,2
)
(
φ−βn
αn

)
, αn > 0,

1− F
Γ
(

dn
2
,2
)
(
φ−βn
αn

)
, αn < 0,

(44)

where FΓ(·) denotes the CDF of the gamma distribution.
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