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The  multiobjective  evolutionary  algorithm  based  on decomposition  (MOEA/D),  which  decomposes  a  mul-
tiobjective  optimization  problem  (MOP)  into  a  number  of  optimization  subproblems  and  optimizes  them
in a  collaborative  manner,  becomes  more  and  more  popular  in  the  field  of evolutionary  multiobjective
optimization.  The  mechanism  of  balance  convergence  and  diversity  is very  important  in MOEA/D.  In the
process  of  optimization,  the chosen  solutions  must  be  distinctive  and  as  close  as  possible  to the  Pareto
front.  In  this  paper,  we  first  explore  the relation  between  subproblems  and  solutions.  Then  we propose
daptive region adjustment
onvergence
iversity
volutionary computation
ultiobjective optimization

the  adaptive  region  adjustment  strategy  to balance  the convergence  and  diversity  based  on  the  objec-
tive  region  partition  concept.  Finally,  this  strategy  is embedded  in  the  MOEA/D  framework  and  then  a
simple  but  efficient  algorithm  is  proposed.  To demonstrate  the effectiveness  of  the  proposed  algorithm,
comprehensive  experiments  have  been  designed.  The  simulation  results  show  the  effectiveness  of  our
proposed  algorithms.

© 2018  Published  by  Elsevier  B.V.
. Introduction

Many real-world problems can be converted to multiobjective
ptimization problems (MOPs), which have several objectives that
re conflict and need to be optimized simultaneously [1,2]. The
ormulation of a MOP  could be expressed as follows:

minimize F(x) = (f1(x), f2(x), . . .,  fm(x))

subject to x ∈ �
(1)

here x = (x1, . . .,  xn) ∈ Rn is a vector of decision variables; n is the
otal number of decision variables; � is the feasible decision space.
(x) can be expressed as F : � −→ Rm, where m is the number of

m
bjective functions, and R is the objective space.
Since the objectives defined in (1) are mutually conflicting, it

ight be no single point in � which is able to minimize all the
bjectives simultaneously. In practice, the best tradeoffs among the
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Z. Li), lik@newpaltz.edu (K. Li).
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568-4946/© 2018 Published by Elsevier B.V.
objectives can be defined by Pareto optimality. Let u, v ∈ Rm, u is
said to dominate v, denoted as u ≺ v, if and only if ui ≤ vi, for every
i ∈ 1, 2, . . .,  m,  and there exists a j ∈ 1, 2, . . .,  m which makes uj <

vj . A solution x* ∈ � is said to be Pareto optimal solution to (1)
if there is no other solution x ∈ � such that F(x) dominate F(x*).
And F(x*) is called a Pareto optimal objective vector. The set of all
Pareto optimal solutions is called the Pareto set (PS) and the set of
all Pareto optimal objective vectors is called the Pareto front (PF),
with PS = {x*|F(x*) < F(x), ∀ x ∈ �}  and PF = {F(x)|x ∈ PS}. PF is what
we are looking for in solving multiobjective optimization problems
[3].

Over the past decades, multiobjective evolutionary algorithms
(MOEAs) have gained wide popularity for solving MOPs in the evo-
lutionary computation (EC) community [4–8]. Compared with the
traditional optimization methods, the MOEAs have the advantages
that require very few assumptions on the problems and is able to
obtain an approximation of the PF through a single run. In fact, the
goal of most MOEAs is to find a finite set of solutions to approximate
PF [1,9]. In the evolutionary process, the selection mechanism plays
a key role in balancing convergence and diversity. Depending on

different selection mechanisms, most existing MOEAs can be clas-
sified into three categories: (1) Pareto domination-based approach
which uses Pareto dominance relation among solutions as the pri-

https://doi.org/10.1016/j.asoc.2018.06.023
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ary selection operation [6,10,11]. (2) Indicator-based approach
hich uses performance indicator which can measure convergence

nd diversity simultaneously to guide their selection [12–15]. (3)
ecomposition-based approach which decomposes a MOP into a
umber of scalar objective subproblems or several simple mul-
iobjective subproblems and simultaneously optimizes them in a
ollaborative manner [9,16–22].

In this paper, we focus on the multiobjective evolutionary algo-
ithm based on decomposition (MOEA/D) [9], which optimizes a set
f single objective subproblems in a collaborative manner through
he neighborhoods that are based on the relationship among such
ubproblems. In the MOEA/D evolution process, the subproblems
enerate the next generation solution by mating with the infor-
ation about their neighborhood and then perform the select and

eplacement in their neighborhood. Given that any new solution of
 subproblem can replace the current solution of its neighborhood,
everal subproblems may  have the same solution, especially if the
ew solution is a better solution [23,24]. In this case, the diversity
f solutions is reduced and is easily trapped in local optima.

In recent years there have been a number of works focusing on
election and replacement in order to maintain population diver-
ity [1]. In the MOEA/D-DE [25], the authors believed that the
eplacement neighborhood is smaller than the selection (mating)
eighborhood is conducive to maintaining the diversity of the pop-
lation. In the MOEA/D-AGR [26], the authors held that it is very
dvantageous to have a small replacement neighborhood in the
arly stage of the evolutionary process and a large replacement
eighborhood in the latter part of the evolutionary process. Li et al.
stablished a stable matching model to coordinate the relationship
etween solutions and subproblems in MOEA/D-STM [27], and pre-
ented MOEA/D-IR [28] which defined mutual preferences between
olutions and extended relating the preference of between sub-
roblems and solutions. In MOEA/D-ACD [29], Wang et al. proposed
n adaptive constraint decomposition method based on MOEA/D.
n [30], Gee et al. proposed an online diversity metric, which esti-

ated the diversity loss of a solution to the whole population by
 notion of maximum relative diversity loss (MRDL). In [31], Wu
t al. considered that the original MOEA/D-STM had a high risk of
atching solutions and unfavorable sub-problems, and eventually

ed to unbalanced selection results. Therefore, they introduced the
oncept of incomplete preference lists into the MOEA/D-STM to
ompensate for the loss of population diversity and reduce imbal-
nces.

To improve the balance between convergence and diversity in
OEA/D, we have considered this issue from a new perspective.

rom the above literature review, it can be found that the previous
esearch work is often more focused on considering convergence,
nd there is not a mandatory diversity, which often leads to a lack of
iversity. So first emphasize a diversity, and then consider the con-
ergence will be beneficial. In this paper, we applies the adaptive
egion adjustment strategy (ARA), which divides the region based
n the solution of the neighborhood of the subproblem, to strike a
alance between diversity and convergence. Then, we embed this
trategy into the MOEA/D and apply this method on a number of
ypical test problems for a comprehensive systematic experimental
tudy.

The rest of this paper is organized as follows. Section 2 presents
ome background knowledge about MOEA/D and related work. In
ection 3, the adaptive region adjustment strategy is first described.
hen the ARA strategy is integrated into the MOEA/D framework,
hich is called the MOEA/D-ARA algorithm. The general experi-
ental settings and test problems are described in Section 4. And
he empirical results are presented and analyzed in Section 5.
inally, this paper is concluded in Section 6.
Fig. 1. Illustration of the Tchebycheff decomposition approach.

2. Background

2.1. Important components of MOEA/D

In this section, we  mainly introduce two  important components
in MOEA/D framework. First, we introduce decomposition method,
and then introduce the related concepts of neighborhood.

2.1.1. Decomposition approaches
In MOEA/D framework, a multi-objective problem is decom-

posed into a number of scalar optimization subproblems by using
decomposition approaches and then optimizes them simultane-
ously. There are three popular decomposition approaches in the
EMO  community.

1. Weighted Sum Approach: In this approach, a convex combina-
tion of the different objectives is considered. The ith subproblem
is defined as the following scalar optimization problem:

minimize gws(x|�i) =
m∑
j=1

�j
i
fj(x)

subject to x ∈ �

(2)

This approach could work well for convex PFs (concave PFs
in the case of maximization). However, it cannot obtained the
entire PF in the case of nonconvex PFs [9].

2. Tchebycheff Approach: In this approach, the ith subproblem is
defined as the following scalar optimization problem:

minimize gT (x|�i, z∗) = max1≤j≤m{�j
i
|fj(x) − z∗

j
|}

subject to x ∈ �
(3)

where � = (�1, �2, . . .,  �m) is the weight vector of the scalar opti-
mization subproblem, �i ≥ 0 for all i = 1, 2, . . .,  m and

∑m
i=1�i = 1.

In practice, when the weight value is equal to zero (�i), we
usually set a very small value, such as 10−6, to replace it. z∗ =
(z∗1, z∗2, . . .,  z∗m) is the reference point, z∗

i
= min{fi(x)|x ∈ �} − �

for each i = 1, 2, . . .,  m. � > 0 is a very small value, such as 10−6.

Under some mild conditions, the optimal solution of (3) is a
Pareto optimal solution of (1) [3,9]. As shown in Fig. 1, it illus-
tration of the Tchebycheff decomposition approach.
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Fig. 2. Illustration of the neighborhood structure of a subproblem of size 5.

. Penalty-based Boundary Intersection Approach: In this
approach, the ith subproblem is defined as the following
scalar optimization problem:

minimize gpbi(x|�i, z∗) = d1 + �d2

subject to x ∈ �
(4)

where d1 = ‖(F(x)−z∗)T �i‖
‖�i‖ , d2 = ‖F(x) − (z∗ − d1

�i
‖�i‖ )‖, and z* is

the reference point which is same as in the TCH approach, � is a
penalty parameter. One weakness with the PBI approach is that
the parameter � need to be properly tuned [9,1].

Among these methods, the Tchebycheff decomposition method
s the most widely used as it has ability to solve multi-objective
roblems with non-convex Pareto optimal fronts [3,9]. In this
aper, we also use the Tchebycheff decomposition method.

MOEA/D framework have attracted a lot of interest from
esearchers since it had been proposed, and many of MOEA/D-
ased variants of the algorithm were proposed, which includes a
ariant of the weight vector to design algorithms. In the [32], the
uthors argued that the simplex-lattice design cannot guarantee

 set of uniform solutions, and proposed a new weight vector ini-
ialization method, called WS-transformation. This paper adopts
his method as the decomposition method in MOEA/D. The WS-
ransformation maps the weight vector which is generated by the
implex-lattice design to its solution mapping vector. The form is
s follows:

 = WS(�) =
(

1
�1∑m
i=1

1
�i

,

1
�2∑m
i=1

1
�i

, . . .,
1
�m∑m
i=1

1
�i

)
(5)

.1.2. Neighborhood concepts
In MOEA/D framework, the concept of neighborhood is an

mportant component. The decomposition method described above
ecomposes the multiobjective problem into a set of simple sub-
roblems. The difference between these subproblems is that the
alues of � are different, and between these � have close relation-
hip which is measured by their geometric distance to each other.
n MOEA/D [9], the authors argued that if there is a close relation-
hip among �, then the corresponding subproblems of these � have
imilar optimal solutions. Based on it, Zhang and Li proposed the

eighborhood concepts, generally denoted as T. Given a subprob-

em, its neighborhood T represents the set of T most closely related
ubproblems of this subproblem. As shown in Fig. 2, it illustrates
he neighborhood structure of a subproblem of size 5.
puting 70 (2018) 797–813 799

In the [33] and [34], the authors further discussed the concept
of neighborhood, and divided into two neighborhoods, namely the
mating neighborhood (Tm) and replacement neighborhood (Tr). The
mating neighborhood is used to select parent solutions for repro-
duction operations to generate new solutions, and the replacement
neighborhoods are used to determine which subproblem solution
can be replaced by a new solution. In the [35] and [26], the mating
and replacement neighborhoods were further discussed respec-
tively.

2.2. Related work and motivations

2.2.1. Selection process
In multiobjective optimization, convergence and diversity are

two critical issues in search process, and a multiobjective evolu-
tionary algorithm requires not only good convergence but also the
ability to maintain diversity. The convergence means that the MOP
function value of the solution for each subproblem should be as
close as possible to the Pareto front, and the diversity means that
the MOP  function values of the solution of each subproblem are as
uniform as possible on the Pareto front.

In the above section, we  introduced the importance of keep-
ing the balance of convergence and diversity in MOEA. Selection
process, can be regarded as the process of choice solution, plays a
key role in balancing the convergence and diversity. How to choose
the solution directly affects the balance between convergence and
diversity. Before performing the selection process, there is a repro-
duction operation that generates a solution set, which is used to
select. As we all know, there is no single EA that outperforms all
other EAs on different issues. Therefore, in addition to the most clas-
sical SBX and polynomial mutation operations in NSGAII [10] and
MOEA/D [9], there are some studies that aim to modify reproduc-
tion operators to improve the performance of MOEAs. For example,
reproduction operation based on DE [25,36], reproduction oper-
ation based on PSO, reproduction operation based on ACO [37],
etc. There are multiple selection strategies used to maintain the
diversity of solutions after the copy operation, such as the crowd-
ing distance sorting strategy in NSGAII [10], the niching strategy in
NSGAIII [6], the stable matching (STM) model strategy in MOEA/D-
STM [27], etc.

This article focuses on the selection process in MOEA/D. As the
optimal solution of a subproblem is generally the intersection of the
Pareto front and the weight vector, and the weight vectors are gen-
erally designed evenly distributed [9,32]. A unique and distinctive
solution for each subproblem implies a promising solutions diver-
sity and a well distribution along the PF [28]. In MOEA/D [9], the
solution with the smallest aggregation function value is selected
for the current subproblem in the its neighborhood. In MOEA/D-
AGR [26], the authors proposed to influence the process of selecting
solutions by adjusting the size of neighborhoods. In MOEA/D-ACD
[29], in order to help balance the diversity and convergence, the
authors proposed to add some constraints to the subproblem. In
MOEA/D-MRDL [30], the selection solution is based on an online
diversity evaluation.

2.2.2. Motivations
In MOEA/D, a multiobjective optimization problem (MOP) is

decomposed into a number of optimization subproblems. Solving
MOP  can be converted to obtain a set of uniform solutions with
Pareto approximation. In fact, the diversity of the solutions implied
in MOEA/D algorithm framework depends on the uniform distri-
bution of subproblems. In [32], the author found that the solution

of the subproblem is the intersection of the Pareto front and the
corresponding weight vector of the subproblem. If it can find the
intersections or close enough to these intersections, then the solu-
tions of the MOP  will naturally have diversity. Therefore, in the
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Fig. 3. Illustration of objective space partition.

volutionary process, the solution of subproblem need be as close
s possible to corresponding weight vector. One possible way to
uarantee the diversity of solutions is to establish an one-to-one
orrespondence relation between subproblems and solutions in the
volutionary process. Motivated by this, a new MOEA/D variant
OEA/D-ARA is proposed which uses an adaptive region adjust-
ent to improve the balance of convergence and diversity. In this

aper, we use the objective region partition strategy to establish
his correspondence relationship.

.2.3. Objective region partition
As discussed in Section 2.2.2, a one-to-one correspondence

elation between subproblems and solutions can guarantee the
iversity of solutions. The diversity can be characterized by the dis-
ribution of solutions in the objective space. These solutions that are
istributed across different regions within the objective space have

 higher diversity. In fact, the subproblems divides the entire objec-
ive space into a number of sub-regions. Through this division, we
an identify which region is located closest to the weight vector
f the corresponding subproblem and then classify such region as
he solution region of the subproblem. We  use a special example
o briefly explain this strategy. As shown in Fig. 3, the region of
he vectors a and b is the solution region of weight vector �i−1 and
he solution xi−1 is the solution of subproblem �i−1. And the solu-
ion region of �i and �i+1 are similar. It is easy to know from Fig. 1
hat under this strategy xi is assigned to subproblem �i instead of

OEAD algorithm where xi−1 is assigned to �i. Although xi is a lit-
le worse than xi−1 in terms of the Tchebycheff function value for
ubproblem �i, but xi is in fact more preferred. Without loss of gen-
rality, we provide two simple ways to measure and partition the
bjective space based on the weight vectors. The geometric rela-
ionship between a solution and a weight vector can be described
n two simple ways, namely, by measuring the distance between
he solution point and the weight vector [38] and by measuring the
ngle between the weight vector and the solution vector that con-
ects the solution and reference point [20,29,39]. The distance is
alculated as follows:

(�, F(x)) = F(x) − �′ · F(x)
�′ · �

�  (6)

′
here x is the solution point, � is the weight vector, � is the trans-
ose of � and F(x) is the object function value. Given the difficulty

n calculating the angle, we use to the sin value of the angle as a
roxy for the angle value because the sin function is strictly mono-
Fig. 4. Illustration of the distribution of solution.

tonically increasing when the angle value ranges from 0 to �
2 . The

sin value of the angle is calculated as follows:

sin〈�, F(x)〉 =
√

1 −
(
�′ · F(x)
|F(x)||�|

)2

(7)

where all symbols have the same connotation as those in the pre-
vious formula.

The algorithm proposed in this paper uses the angle measure-
ment, and the distance measurement is used to study the influence
of the measurement on the algorithm.

3. Adaptive diversity adjustment mechanism

3.1. Algorithm proposed

3.1.1. Adaptive region adjustment
We  investigate the one-to-one correspondence objective region

partition strategy in the previous section to guarantee the diversity
of solutions. However, there is another shortcoming in the MOEA/D
framework that needs to be overcome, which is the problem of
evolutionary imbalance between subproblems. This also leads to
an imbalance between convergence and diversity. In order to dis-
tinguish with the imbalance discussed earlier, we  call it vertical
imbalance, and the former we  call it horizontal imbalance which is
similarity of solutions to different subproblems. Though the solu-
tion of subproblem with slow convergence is larger probability
updated by the solution of adjacent subproblem with fast con-
vergence is largely improved by keeping the diversity strategy,
the evolutionary imbalance between subproblems also leads to
another problem. The probability that the subproblem with slow
convergence will be update is small, one of the reasons is proba-
bly because the subproblem optimization area is relatively small,
which leads to some subproblems to find the optimal solution very
early and others may  remain in the random generation solution.
As show in Fig. 4, the new solution A will replace xi−1 and xi in
the MOEAD, but only xi in the diversity strategy. In fact, it is clear
that in the next generation of population to retain A and xi−1 better
than to retain A and xi. We  further improve by proposing the ARA
strategy to overcome the drawback, in which the solution region of
the subproblem is dynamically adjusted based on the comparison

between the solutions of adjacent subproblems.

Definition 1. Given subproblem �i and its current solution
xi, we say that the set of x is the contour of current solution
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Fig. 5. Illustration of the solution on the contour line comparison.
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Fig. 6. Illustration of regional dynamic adjustment.

i to the subproblem �i (contour xi �i), if x is satisfied con-
our xi �i = {x|gT(x|�i, z*) = gT(xi|�i, z*), ∀ x ∈ �}.

For a subproblem, whether a new solution replaces the current
olution is to see if the formula (3) value is less than the value of
he current solution. From a geometric perspective, the solution of

 subproblem must be placed on the edge of the innermost square,
n which the intersection of contour and subproblem correspond-
ng vector acts as the vertex while reference point (z*) is another
iagonal vertex. As shown in Fig. 5, the G point is the intersection.

n other words, for subproblem �i, the solution that can replace the
urrent solution xi is only possible in the rectangle with the line seg-
ent GZ* as the diagonal. Further, for the order of the two solutions,

ifferent subproblems may  not be the same. For subproblem �i, the
olution on the contour line a (contour xi �i) is better than that
n the contour line b, and the solution on the contour line is supe-
ior to that on the contour line c (contour xi−1 �i). for subproblem
i−1, the solution on the contour line d (contour xi−1 �i−1) is bet-

er than that on the contour line e (contour xi �i−1). Specifically,
or subproblem �i, xi is better than xi−1, but for subproblem �i−1,

i−1 is better than xi.

efinition 2. Given adjacent two subproblems �i−1, �i and their
urrent contours contour xi−1 �i−1, contour xi �i, we say that
puting 70 (2018) 797–813 801

the intersection point of contour xi−1 �i−1 and contour xi �i is
contour point (O �i−1 �i)

Algorithm 3. Adaptive Region Adjustment

Input:
solution set S, subproblem set P, a new solution.

Output:
the new solution s* may replace a old solution of solution set S

1:  for i ←− 1 to solution size do
2: k ←− perm[i];
3: for j ←− 1 to object number do
4:  if g(newsolution, lambda [k]) < g(newsolution, lambda [ind[j]]) then
5:  temp ←− Ind[j]; Ind[j] ←− k; k ←− temp
6:  end if
7: end for
8: end for
9: for i ←− 1 to object number do do
10: Min;
11: for j ←− 1 to object number do do
12: if min> f[j] * lambda [ind[j]][i] then
13: min←− f[j] * lambda [ind[j]][i];
14: end if
15: end for
16: point[i] ←− min
17: end for
18: for i ←− 1 to object number do do
19: if f new < f[i] && g(newsolution, lambda [ind[i]]) < g(point,

lambda [ind[i]]) then
20: solution of subproblem ind[i] replaced by new solution;
21: end if
22: end for

In the ARA strategy, contour point is used as the division. For
a subproblem, if the convergence speed of the current subprob-
lem is slower than the adjacent subproblem, then the intersection
is located far from the weight vector of corresponds to the sub-
problem. In this case, the probability that the current solution of
the subproblem will be replaced is greater than that of the adja-
cent subproblem. As shown in Fig. 6, the solutions xi−1, xi and
xi+1 correspond to the subproblems �i−1, �i and �i+1, respectively,
while points P and Q denote O �i−1 �i and O �i �i+1 respectively.
If using angle measurement, the current solution region of sub-
problem �i is surrounded by rays �Z∗P, �Z∗Q and the contour line
contour xi �i. The pseudo-code of the ARA strategy is given in
Algorithm 3.

In Algorithm 3, lines 1 to 8 to determine that the location of
the new solution is located among which several subproblems, the
general m is equal to the objective dimension. Line 1 and line 2
loop through each subproblem in a random manner to compute
the angle of the subproblem and the new solution. The perm array
is used to store random sorted subproblem numbers. And the ind
array is used to store the nearest m subproblems from the new solu-
tion. Line 3 loops through the ind array to update it. The g function
is used to calculate the angle. Line 4 calculates the angle of the new
solution to the current subproblem, the angle of the new solution
to the subproblem in the ind array, and then compares them. If the
angle of the new solution to the current subproblem is smaller than
the angle of the new solution to the subproblem in the ind array,
the subproblem in the ind array is replaced with the current sub-
problem in the line 5. Lines 9 to 17 are used to calculate contour
point. The point array is used to store contour point. The meaning
of the loop in line 9 is to traverse each object and find the smallest
function value of each object. Line 10 loops through each subprob-
lem in the ind array to find the minimum function value. Line 18 to
22 update subproblems if conditions are met. For a subproblem, the
solution of the subproblem is replaced by the new solution only if

the value of the Chebyshev function of the new solution is smaller
than that of the old solution and the angle of the new solution to
the subproblem is smaller than the angle of the contour point to
the subproblem.
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.1.2. Computational complexity analysis
In this section, we will analyze the computational complexity of

he ARA strategy in three steps. First, we identify some of the most
uitable subproblems for the new solution. This process is described
n lines 1 to 8 of Algorithm 3. It needs to find out m suitable sub-
roblems in the N subproblems, so requires O(MN) computations.
econd, we find the minimum component of the current solution
f these subproblems to form the contour point. This process is
escribed in lines 9 to 17 of Algorithm 3 and requires O(MM) com-
utations. Third, we find the subproblem of the region where the
ew solution is located and then compare the object value. If the
alue of this subproblem is less than the object value of its current
olution, then this subproblem is replaced and it needs constant
ime O(M). M denotes the number of objects, and this value must
e far less than that of N, which denotes population size. So the
trategy ARA requires a total of O(MN) computations.

.1.3. Discussion
In this section we compare MOEA/D-ARA with the general

OEA/D framework. In MOEA/D-ARA, because of the partition of
he solution to the subproblem and ARA strategy, it is almost impos-
ible for different subproblems to have the same solution and the
iversity of solutions is preserved. More generally, MOEA/D-ARA
an also ensure that the difference between solutions is as large
s possible through a repulsive relationship between similar solu-
ions. Fig. 6 shows that the new solution produced by MOEA/D-ARA
an replace the old solution without reducing the area. The ARA
trategy also makes the area of this solution similar to that of the
ector, thereby preventing overlapping of solution areas between
ubproblems. In other words, that is to strengthen the diversity
t the same time did not weaken its convergence. In MOEA/D-ARA
e choose all subproblems as a replacement neighborhood in order

o find a highly suitable subproblem for the new solution. In this
ay, we can avoid some new solutions that are unsuitable for the

urrent subproblem. Otherwise, the solution to the other subprob-
em is abandoned in this process, thereby wasting computational
esources.

In order to enhance the readability of this paper, we further
ompare MOEA/D-ARA proposed in this paper with the MOEA/D-
AS [20], which discuss issues of diversity and convergence. The
OEA/D-ARA and the MOEA/D-SAS are both discussing how to

mprove the balance between diversity and convergence. Both
OEA/D-ARA and MOEA/D-SAS use the value of the angle between

he solution and the subproblem to measure the relationship
etween the solution and the subproblem. However, these two
lgorithms have different purposes for solving it. In MOEA/D-SAS,
he L nearest solutions for each subproblem are found sequentially,
nd then all the solutions are divided into different subsets accord-
ng to the relationship between the solutions and the subproblems.
he closer the solution to the sub-problem is, the more likely it is
o be reserved for the next generation. Further, in MOEA/D-SAS,
he two points in the objective space are calculated, and the largest
ngle in the smallest angle of the selected next-generation solu-
ion set is selected. In MOEA/D-ARA, the relationship between the
ubproblem and the solution is to determine which subproblem is
ore suitable for the current solution, and the current solution can

nly replace the solution to the subproblem. Therefore, it is more
ikely to find a potential subproblem that can be replaced.

.2. Incorporation into MOEA/D

In this section, we present a MOEA/D variant. It uses the

RA strategy presented in the previous section, and we call it
OEA/D-ARA, which differs from MOEA/D-DRA [40] in that the ARA

trategy is applied during the selection process. The pseudo-code
f MOEA/D-ARA is showed in Algorithm 4, and then some impor-
puting 70 (2018) 797–813

tant components of MOEA/D-ARA are further more illustrated. The
parameters of input in Algorithm 4, MOP  is the demand solution
problem, Maxevaluations is the stopping criterion, N is the num-
ber of population or subproblems considered in MOEA/D, Tm is
the number of the weight vectors whose corresponding solutions
are used to select mating parent solutions in the neighborhood of
each weight vector, Tr is the number of the weight vectors whose
corresponding solutions may  be replaced by new solutions in the
neighborhood of each weight vector and ı is the probability that
parents are selected from the neighborhood.

Algorithm 4. MOEA/D-ARA

P =
{
B(i), if rand < ı

{1, 2, . . .,  N} otherwise

Input:
MOP, Maxevaluations, N, Tm , Tr ,ı.

Output:
An approximated POF {f1, f2, . . ., fN}
An approximated POS {x1, x2, . . .,  xN}

1: Initialize the weight vectors �′ by applying WS-transformation
Eq. (2) on the evenly weight vectors, and then compute him
and T closest weight vectors to each weight vector without the
euclidean distance;

2: Initialize the population S ←− {x1, x2, . . .,  xN}, by uniformly
random sampling the decision space, and then compute the
objective function value fi of each solution.

3: Initialize the z by setting zk = minj=1,2,...,N f
f
k

where k = 1, 2, . . .,
m.

4:  set gen = 0 and �i = 1 for all i = 1, 2 . . .,  N.
5: Let all indices of the subproblems whose objectives are MOP

individual objectives fi form the initial I. By using
ten-tournament selection based on �i , select other N

5 − m
indices and add them to I

6: for i ←− 1 to size (I) do
7: Selection of Mating/Update Range: Uniformly randomly

generate a number rand from (0,1). Then set

P  =
{

B(i), if rand < ı

{1, 2, . . .,  N}  otherwise
8: ReproductionSet r1 = i and Randomly select three solutions xr2 ,

xr3 from P; then use xr1 , xr2 , xr3 to generate a solution ȳ by a DE
operator. And use a mutation operator on ȳwith probability pm

to produce a new solution y. Evaluate the F-function value of y;
9: Update the current ideal objective vector z*: for each j = 1, 2,

.  . .,  m, if zj < fj(y), then set zj = fj(y).
10: Update the current solutions: use Algorithm 3 update the

current solutions.
11: end for
12: Stopping Criteria if the stopping criteria is satisfied, then stop

and output solutions and them F-function value.
13: iteration++. If mod(iteration, 50) = 0 then compute �i , the

relative decrease of the objective for each subproblem I during
the last 50 iteration, update as follows:

�i =

{
1, if �i > 0.001

(0.95 + 0.05 × �i

0.001
) × �i otherwise

Go to Line 6.

3.2.1. Initialization of the algorithm
Evenly spread weight vectors are usually preferred as we do not

have a priori knowledge on how the weight vectors affect the distri-
bution of final output solutions. In MOEA/D framework, there is no
easy to generate the evenly spread weight vectors when the num-
ber of objectives is large. Here, We  initialize a set of weight vectors
� = {�1, �2, . . .,  �N} that are evenly spread in the objective space
and set the number of weight vectors be equal to the population
size. In this paper, we  use the method proposed in [41] to generate
the evenly spread weight vectors. Each element of a weight vector

w takes a value from { 0

H ,
1
H , . . ., HH }, where H is the number of divi-

sions along each coordinate, and the number of weight vectors is
N = CN+m−1

m−1 . After the generation of �, we get the weight vectors �̄
by applying WS-transformation Eq. (3) on the evenly weight vec-
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Fig. 7. Evolution of the median IGD metric values versus the number of function evaluations.
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ors and compute the Euclidean distance between any two  weight
ectors of �̄. The neighborhood set of each weight vector �i, i ∈ {1,
, . . .,  N}, is defined as B(i) = {i1, i2, . . .,  iT}, where �i1 , �i2 , . . .,  �iT are
he T (1 ≤ T ≤ N) closest weight vectors of �i.

The initial population S = x1, . . .,  xN can be randomly sampled
rom via a uniform distribution as no prior knowledge about the
earch can be used. After the generation of S, we  compute the
bjective function value fi of each solution. Since the ideal objective
ector is usually unknown a priori, here we use the set of the min-

mum F-function value of each objective to approximately replace
he objective vector.
 versus the number of function evaluations.

3.2.2. Reproduction and evolutionary strategies
A very important operation in the evolutionary algorithm is the

reproduction operation. The reproduction operation is to generate
the offspring population. In this paper, the reproduction operation
is the same as done in [25], which use the differential evolution
(DE) operator [42] and polynomial mutation [43]. Specifically, the
process of generating an offspring solution xinew = {xi1, xi2, . . .,  xin} is
as follows:
uij =
{
xr1
j

+ F × (xr2
j

− x
r3
j

), if rand < CR or j = jrand

xi
j

otherwise
(8)
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Fig. 9. Evolution of the median IGD metric values
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ig. 10. Evolution of the median IGD metric values versus the number of function
valuations.

here xr1
j

is the current solution and xr2
j

, xr3
j

are two  solutions
andomly chosen from neighborhood, CR and F are two control
arameters of differential evolution operator, rand is a random real
umber which is uniformly sampled from 0 to 1, jrand is a random

nteger uniformly chosen from 1 to n. On the basis of this interme-
iate solution, we use polynomial mutation to obtain solution xinew .
he jth decision variable of xinew is calculated as follows:
i
j =

{
ui
j
+ �j × (bj − aj), if rand < Pm

ui
j

otherwise
(9)
 versus the number of function evaluations.

and �j of the above formula is calculated as follows:

�j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(2 × rand)

1
	 + 1 − 1, if rand < 0.5

1 − (2 − 2 × rand)

1
	 + 1 otherwise

(10)

where the distribution index 	 and mutation rate pm are two  control
parameters, and aj, bj are respectively lower and upper bounds of
the jth decision variable.

4. Experiment settings

To validate the optimization performance of our proposed
algorithm, seven state-of-the-art MOEAs were used here for com-
parative studies. The details are as follows.

4.1. The comparison algorithm

1. MOEA/D-DRA [40]: It is a variant of MOEA/D, which won the
CEC2009 MOEA competition. And different from MOEA/D, it
dynamically allocates the computational resources to different
subprobloms based on their utility values.

2. MOEA/D-STM [27]: It is a variant of MOEA/D, which uses a stable
matching model to adjust the selection process of MOEA/D.

3. MOEA/D-IR [28]: It is a recently proposed MOEA/D variant, which
uses incorporating interrelationship by defining mutual pref-
erences between subproblems and solutions for selection in
MOEA/D.

4. MOEA/D-AGR [26]: It is a recently proposed MOEA/D variant,
which applies a global replacement (GR) scheme and adaptive
scheme to adjusting Tr size for MOEA/D replacement mechanism

5. MOEA/D-ACD [29]: It is a recently proposed MOEA/D variant,
which imposes some constraints on the subproblems to help
MOEA/D balance the population diversity and convergence in
6. NSGA-III [6]: It is the most popular Pareto-based MOEA, which
suggest a reference-point-based many-objective evolutionary
algorithm following NSGA-II framework. It emphasizes that the
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Fig. 11. Plots of the final solutions with the lowest IGD-metric values found by MOEA/D-ARA, MOEA/D-ACD, MOEA/D-AGR, MOEA/D-IR, MOEA/D-STM, MOEA/D-DRA, NSGAIII
and  ARMOEA in 30 runs in the objective space on MOP4.

F /D-AR
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ig. 12. Plots of the final solutions with the lowest IGD-metric values found by MOEA
nd  ARMOEA in 30 runs in the objective space on MOP7.

solutions are both non-dominated and close to a set of supplied
reference points.

. ARMOEA [15]: It propose an MOEA based on an enhanced
inverted generational distance indicator, in which an adaptation
method is suggested to adjust a set of reference points based on

the indicator contributions of candidate solutions in an external
archive.
A, MOEA/D-ACD, MOEA/D-AGR, MOEA/D-IR, MOEA/D-STM, MOEA/D-DRA, NSGAIII

4.2. Testing problems

In order to study the MOEAD-ARA algorithm proposed in this
paper, seventeen unconstrained MOP  test instances are used as
the benchmark problems. Specifically, UF1 to UF10 are used as the

benchmark in CEC2009 MOEA competition [40], which UF1-UF7
are bi-objective problems and UF8-UF10 are tri-objective prob-
lems. MOP1-MOP5 are bi-objective problems and MOP6-MOP7 are
tri-objective problems [4,44]. The number of decision variables of
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Table 1
Performance comparisons of IGD values on MOP1-MOP7 test instances.

Problem IGD ARA ACD AGR IR STM DRA NSGAIII ARMOEA

MOP1 Mean 1.661E–02 1.755E–02 2.047E–02 1.784E–02 3.440E–01 3.469E–01 3.4205E–01 3.435E–01
Std  1.30E–03 1.56E–03 5.23E–03 1.31E–03 3.46E–02 3.37E–02 4.79E–03 3.78E–03
Rank  1 2– 4– 3– 5– 6– 7– 8–

MOP2 Mean 2.073E–02 2.080E–02 4.101E–02 6.053E–02 2.305E–01 2.402E–01 3.509E–01 3.549E–01
Std  4.45E–02 4.21E–02 5.79E–02 7.98E–02 4.94E–02 5.51E–02 1.06E–02 2.26E–16
Rank  1 2 ≈ 4– 3– 6– 5– 7– 8–

MOP3 Mean 4.005E–03 8.716E–03 2.517E–02 1.071E–02 1.255E–01 1.288E–01 4.875E–01 5.068E–01
Std  6.09E–03 1.09E–02 5.07E–02 2.41E–02 5.98E–02 5.95E–02 4.69E–02 3.56E–02
Rank  1 2 ≈ 4– 3 ≈ 5– 6– 7– 8–

MOP4 Mean 1.649E–02 3.039E–02 3.366E–02 7.044E–02 2.496E–01 2.759E–01 2.948E–01 3.058E–01
Std  1.48E–02 3.91E–02 3.60E–02 7.04E–02 9.24E–03 3.16E–02 1.49E–02 3.23E–01
Rank  1 2 ≈ 3– 4– 5– 6– 7– 8–

MOP5 Mean 1.423E–02 1.506E–02 1.586E–02 1.540E–02 3.105E–01 3.139E–01 2.003E–01 2.401E–01
Std  9.95E–04 1.19E–03 2.10E–03 1.50E–03 1.40E–02 1.05E–02 1.87E–02 2.87E–02
Rank  1 2– 4– 3– 7– 8– 5– 6–

MOP6 Mean 3.181E–02 4.053E–02 4.388E–02 3.902E–02 2.959E–01 2.848E–01 3.093E–01 3.093E–01
Std  8.15E–04 1.30E–03 1.30E–03 1.49E–03 1.89E–02 3.08E–02 4.22E–06 2.93E–07
Rank  1 3– 4– 2– 6– 5– 7– 8–

MOP7 Mean 6.198E–02 2.102E–01 1.642E–01 1.973E–01 3.288E–01 3.402E–01 3.570E–01 3.570E–01
Std  2.45E–03 3.59E–02 3.74E–02 3.72E–02 3.25E–02 2.52E–02 7.01E–06 2.42E–07
Rank  1 4– 2– 3– 5– 6– 8– 7–
Total  rank 7 17 25 21 39 41 48 53
Final  rank 1 2 4 3 5 6 7 8

Wilcoxons rank sum test at a 0.05 significance level is performed between MOEA/D-ARA and each of the other competing algorithms. − and + denotes that the performance
of  the corresponding algorithm is significantly worse than or better than that of MOEA/D-ARA, respectively. The best mean is bold. MOP1 to MOP5 have two  objectives and
MOP6,  MOP7 have three objectives.

Table 2
Performance comparisons of HV values on MOP1-MOP7 test instances.

Problem HV ARA ACD AGR IR STM DRA NSGAIII ARMOEA

MOP1 Mean 6.436E–01 6.425E–01 6.389E–01 6.421E–01 1.139E–01 1.087E–01 1.340E–01 1.310E–01
Std  1.69E–03 2.01E–03 5.38E–03 1.63E–03 6.78E–02 6.37E–02 1.11E–02 8.77E–03
Rank  1 2– 4– 3– 5– 6– 7– 8–

MOP2 Mean 3.105E–01 3.076E–01 2.880E–01 2.595E–01 6.786E–02 5.947E–02 2.357E–03 0.000E+00
Std  4.50E–02 4.44E–02 6.80E–02 9.54E–02 4.74E–02 4.38E–02 6.93E–03 0.00E+00
Rank  1 2– 3– 4– 5– 6– 7– 8–

MOP3 Mean 2.085E–01 2.015E–01 1.949E–01 2.010E–01 9.943E–02 9.670E–02 0.000E+00 0.000E+00
Std  9.31E–03 1.67E–02 3.71E–02 2.73E–02 5.26E–02 5.30E–02 0.00E+00 0.00E+00
Rank  1 2 ≈ 4– 3 ≈ 5– 6– 7– 8–

MOP4 Mean 4.980E–01 4.802E–01 4.797E–01 4.326E–01 1.763E–01 1.576E–01 1.447E–01 1.342E–01
Std  1.94E–02 4.87E–02 5.39E–02 9.41E–02 2.06E–02 2.02E–02 1.48E–02 6.83E–03
Rank  1 2 ≈ 3– 4– 5– 6– 7– 8–

MOP5 Mean 6.458E–01 6.448E–01 6.438E–01 6.442E–01 3.536E–01 3.536E–01 3.551E–01 3.544E–01
Std  1.20E–03 1.56E–03 1.98E–03 2.06E–03 6.25E–17 6.25E–17 8.40E–03 1.00E–03
Rank  1 2– 4– 3– 7– 8– 5– 6–

MOP6 Mean 7.924E–01 7.840E–01 7.774E–01 7.841E–01 5.091E–01 5.253E–01 4.978E–01 4.991E–01
Std  9.11E–04 1.52E–03 1.39E–03 1.65E–03 2.83E–02 4.59E–02 1.14E–04 1.62E–05
Rank  1 3– 4– 2– 6– 5– 8– 7–

MOP7 Mean 4.046E–01 3.367E–01 3.446E–01 3.235E–01 2.251E–01 2.208E–01 2.123E–01 2.139E–01
Std  2.40E–03 1.98E–02 5.15E–02 3.63E–02 2.53E–02 2.37E–02 2.23E–04 9.38E–06
Rank  1 4– 2– 3– 5– 6– 8– 7–
Total rank 7 17 24 22 38 43 49 52
Final  rank 1 2 4 3 5 6 7 8
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ilcoxons rank sum test at a 0.05 significance level is performed between MOEA/D
f  the corresponding algorithm is significantly worse than or better than that of MO
OP6,  MOP7 have three objectives.

F1-UF10 is set to 30; for MOP1-MOP7, the number of objectives
s set to 10. MOP1-MOP7 problems decision variables range from

 to 1. And UF1-UF10 decision variables range from −1 to 1 except
hat the first variable (x1) is from 0 to 1.

.3. The parameter settings

The parameters of MOEA/D-DRA, MOEA/D-AGR, MOEA/D-STM,

OEA/D-IR, MOEA/D-ACD, NSGAII and SPEA2 are set according to

heir corresponding references [40,26–29,6,15] respectively. The
etailed parameter settings of our proposed MOEA/D-ARA are sum-
arized as follows.
and each of the other competing algorithms. − and + denotes that the performance
-ARA, respectively. The best mean is bold. MOP1 to MOP5 have two  objectives and

• The population size N: It is set to be N=300 for MOP1 to MOP5
problems and UF1 to UF7, N = 600 for MOP6 to MOP7 and UF8 to
UF10 problems.

• Number of runs and termination condition: Each algorithm was
run 30 times independently for each test instance on a Linux
operating system computer with a configuration of Intel Core2
Duo CPU 2.4 GHz processor and 16 GB memory. The algorithms
termination after a preset number of function evaluations. The
maximal number of function evaluations is set to be 300 000 for

MOP1 to MOP5 and UF1 to UF7 problems, and 900 000 for MOP6
to MOP7 and UF8-UF10 problems.

• The neighborhood size: In MOEA/D-ARA, Tm = 20 and Tr = N.
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Table  3
Performance comparisons of IGD values on UF1-UF10 test instances.

Problem IGD ARA ACD AGR IR STM DRA NSGAIII ARMOEA

UF1 Mean 1.644E–03 1.798E–03 2.448E–03 1.865E–03 1.741E–03 1.809E–03 8.699E–02 1.052E–01
Std  8.18E–05 5.51E–05 1.90E–04 1.07E–04 7.33E–05 1.65E–04 1.48E–02 1.64E–02
Rank  1 4– 6– 5– 2– 3– 7– 8–

UF2  Mean 3.033E–03 6.695E–03 6.899E–03 4.823E–03 6.418E–03 5.438E–03 2.271E–02 3.291E–02
Std  1.02E–03 1.50E–03 1.26E–03 1.76E–03 1.44E–03 8.10E–03 4.70E–03 1.32E–02
Rank  1 5– 6– 3– 4– 2– 7– 8–

UF3  Mean 4.248E–03 7.235E–03 3.302E–03 4.448E–03 9.960E–03 1.637E–02 1.500E–01 2.675E–01
Std  2.62E–03 4.58E–03 2.10E–03 2.59E–03 1.25E–02 2.41E–02 3.96E–02 4.76E–02
Rank  2 5– 1 + 3 ≈ 4 ≈ 6– 7– 8–

UF4  Mean 5.457E–02 6.125E–02 5.413E–02 5.616E–02 6.328E–02 5.874E–02 4.068E–02 4.086E–02
Std  2.48E–03 4.96E–03 2.69E–03 3.33E–03 4.79E–03 4.53E–03 4.79E–04 3.88E–04
Rank  4 7– 3 ≈ 5– 8– 6– 1 + 2 +

UF5  Mean 3.054E–01 3.381E–01 2.448E–01 3.077E–01 2.822E–01 3.130E–01 2.253E–01 2.877E–01
Std  1.43E–01 6.47E–02 2.20E–02 8.72E–02 9.23E–02 1.53E–01 4.57E–02 9.15E–02
Rank  4 8– 3 ≈ 7 ≈ 5 ≈ 6 ≈ 1 + 2 +

UF6  Mean 1.333E–01 2.163E–01 9.310E–02 9.719E–02 2.177E–01 2.106E–01 1.258E–01 1.530E–01
Std  1.40E–01 1.66E–01 1.04E–01 4.79E–02 1.69E–01 1.49E–01 1.82E–02 7.58E–02
Rank  4 6– 1 + 2 ≈ 8– 7– 3– 5–

UF7  Mean 1.826E–03 3.175E–03 2.875E–03 3.743E–03 2.631E–03 6.773E–03 3.447E–02 1.060E–01
Std  1.86E–04 1.88E–03 4.26E–04 3.95E–03 1.76E–03 7.08E–03 8.62E–03 1.22E–01
Rank  1 5– 6– 2– 4– 3– 7– 8–

UF8  Mean 2.465E–02 4.025E–02 3.405E–02 2.524E–02 4.367E–02 3.506E–02 4.896E–01 2.356E–01
Std  4.16E–04 5.13E–03 6.66E–03 8.49E–04 4.38E–03 2.34E–03 8.48E–02 3.26E–04
Rank  1 5– 3– 2– 6– 4– 8– 7–

UF9  Mean 4.997E–02 7.625E–02 5.830E–02 5.910E–02 5.613E–02 1.057E–01 1.201E–01 9.710E–02
Std  4.86E–02 5.52E–02 5.28E–02 5.45E–02 5.06E–02 5.34E–02 6.26E–02 5.04E–02
Rank  1 5– 3– 2 ≈ 4– 7– 8– 6–

UF10  Mean 2.859E–01 4.335E–01 4.720E–01 3.061E–01 3.155E–01 3.168E–01 3.258E–01 3.207E–01
Std  8.45E–02 8.56E–02 8.74E–02 6.03E–02 2.76E–02 6.59E–02 6.45E–02 1.22E–01
Rank  1 7– 8– 2 ≈ 4– 3– 6 ≈ 5 ≈
Total  rank 20 57 40 33 49 46 55 59
Final  rank 1 7 3 2 5 4 6 8

Wilcoxons rank sum test at a 0.05 significance level is performed between MOEA/D-ARA and each of the other competing algorithms. − and + denotes that the performance
of  the corresponding algorithm is significantly worse than or better than that of MOEA/D-ARA, respectively. The best mean is bold. UF1 to UF7 have two objectives and UF8
to  UF10 have three objectives.

values

•

Fig. 13. Evolution of the median IGD metric 

Control parameters: As recommended in [25], we set CR = 1.0 and
F = 0.5 for the DE operator [42] and 	 = 20 and pm = 1/n  for the

polynomial mutation [43] for reproduction operators. And ı = 0.9
for probability to select in the neighborhood.
 versus the number of function evaluations.

4.4. The evaluation indicators
In this paper experimental studies, we adopt the following two
widely used performance metrics.
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Fig. 14. Evolution of the median IGD metric values versus the number of function evaluations.

Table 4
Performance comparisons of HV values on UF1-UF10 test instances.

Problem HV ARA ACD AGR IR STM DRA NSGAIII ARMOEA

UF1 Mean 6.638E–01 6.635E–01 6.624E–01 6.634E–01 6.636E–01 6.636E–01 5.530E–01 5.322E–01
Std  2.26E–04 1.11E–04 2.72E–04 2.34E–04 1.40E–04 2.30E–04 1.55E–02 1.59E–02
Rank 1 4– 6– 5– 2– 3– 7– 8–

UF2  Mean 6.620E–01 6.570E–01 6.569E–01 6.597E–01 6.574E–01 6.596E–01 6.368E–01 6.313E–01
Std  1.28E–03 2.28E–03 2.09E–03 2.14E–03 2.02E–03 8.01E–03 5.36E–03 7.81E–03
Rank 1 5– 6– 3– 4– 2– 7– 8–

UF3  Mean 6.576E–01 6.531E–01 6.600E–01 6.564E–01 6.512E–01 6.467E–01 4.765E–01 3.731E–01
Std  5.91E–03 8.12E–03 3.94E–03 7.20E–03 1.56E–02 1.97E–02 3.80E–02 4.30E–02
Rank 2 5– 1 + 3 ≈ 4 ≈ 6– 7– 8–

UF4  Mean 2.530E–01 2.442E–01 2.544E–01 2.509E–01 2.439E–01 2.477E–01 2.751E–01 2.753E–01
Std  3.58E–03 6.59E–03 3.64E–03 5.18E–03 5.11E–03 5.68E–03 5.29E–04 3.32E–04
Rank 4 7– 3 ≈ 5 ≈ 8– 6– 2 + 1 +

UF5  Mean 5.352E–02 5.481E–02 2.586E–02 6.428E–02 6.528E–02 1.262E–01 1.705E–01 1.661E–01
Std  7.96E–02 6.76E–02 4.53E–02 7.81E–02 8.48E–02 9.72E–02 9.15E–02 5.78E–02
Rank 7 5 ≈ 8 ≈ 4 ≈ 6 ≈ 3 + 1 + 2 +

UF6  Mean 2.044E–01 1.810E–01 2.188E–01 2.338E–01 1.975E–01 2.059E–01 2.551E–01 2.585E–01
Std  6.91E–02 1.06E–01 9.13E–02 5.59E–02 7.77E–02 7.06E–02 4.68E–02 4.71E–02
Rank 5 8 ≈ 3 + 4 ≈ 7 ≈ 6 ≈ 1 + 1 +

UF7  Mean 4.967E–01 4.950E–01 4.950E–01 4.944E–01 4.957E–01 4.929E–01 4.458E–01 3.917E–01
Std  3.28E–04 1.74E–03 6.98E–04 4.27E–03 1.18E–03 5.10E–03 1.38E–02 8.03E–02
Rank 1 5– 6– 2– 3– 4– 7– 8–

UF8  Mean 4.373E–01 4.014E–01 4.149E–01 4.363E–01 3.936E–01 4.115E–01 2.150E–01 2.071E–01
Std  1.27E–03 1.35E–02 1.18E–02 1.61E–03 8.23E–03 3.32E–03 1.65E–02 3.99E–04
Rank 1 5– 3– 2– 6– 4– 7– 8–

UF9  Mean 7.254E–01 6.849E–01 7.154E–01 7.151E–01 7.058E–01 6.424E–01 6.147E–01 6.281E–01
Std  6.95E–02 7.66E–02 7.66E–02 7.71E–02 6.84E–02 7.17E–02 5.09E–02 4.65E–02
Rank 1 4– 2 ≈ 3 ≈ 5– 6– 8– 7–

UF10 Mean 1.159E–01 6.255E–02 8.067E–04 9.745E–02 1.090E–01 1.313E–01 1.171E–02 7.947E–02
Std  5.63E–02 3.04E–02 1.52E–03 3.60E–02 2.59E–02 2.98E–02 1.04E–02 9.64E–02
Rank 3 6– 8– 5 ≈ 4 ≈ 1 ≈ 2 ≈ 7–
Total rank 26 54 46 36 49 41 50 58
Final  rank 1 7 4 2 5 3 6 8

W -ARA 

o EA/D
t

1

ilcoxons rank sum test at a 0.05 significance level is performed between MOEA/D
f  the corresponding algorithm is significantly worse than or better than that of MO
o  UF10 have three objectives.

. Inverted Generational Distance [45–47]: Inverted generational
distance is adopted to assess the algorithm performance and

can provide reliable information on both the diversity and con-
vergence of obtained solutions. Let P* be a set of uniformly
distributed Pareto optimal points along the true Pareto front
in the objective space. Let P be an approximate set to the true
and each of the other competing algorithms. − and + denotes that the performance
-ARA, respectively. The best mean is bold. UF1 to UF7 have two objectives and UF8

Pareto front obtained by an algorithm. The IGD measures the
gap between P* and P, which is calculated as follows:
IGD(P, P∗) =
∑

x ∈ P∗d(x, P)

|P∗| (11)
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Fig. 15. Evolution of the median IGD metric 

where d(x, P) is the Euclidean distance between the point x
from P* and the nearest member of P, and |P*| is the cardinality
of P*. When |P*| is large enough, IGD(P, P*) can measure both the
uniformity and the convergence of P.

. HV Metric [48]: Hypervolume metric measures the size of the
objective space dominated by the approximated solutions P and
bounded by a reference point zr = (zr1, zr2, . . .,  zrm)T in the objec-
tive space that is dominated by all Pareto-optimal objective
vectors. And the HV metric is computed as follows:

HV(P) = Leb
(⋃

[f1(x), zr1] × . . . × [fm(x), zrm]
)

(12)

where Leb() indicates the Lebesgue measure. In our experi-
ments, zr is set to (1.0, 1.0)T for bi-objective test instances and
(1.0, 1.0, 1.0)T for tri-objective test instances.

To certain extent, both IGD and HV can measure the convergence
nd diversity of P simultaneously. The smaller the IGD value or the
igher the HV value, the better the quality of P for approximating
he entire PF. The comparison results data for the experiment is
resented in the corresponding table, where the best mean met-
ic values are highlighted in bold. Wilcoxons rank sum test at a 5%
ignificance level is conducted to compare the significance of differ-
nce between two algorithms for statistically sound conclusions.

. Experiment results

In this section, according to the experimental design described
n Section 4, we study and compare the performance of the pro-
osed MOEA/D-ARA algorithm with that of the MOEA/D-DRA,
OEA/D-STM, MOEA/D-IR, MOEA/D-AGR, MOEA/D-ACD, NSGAIII

nd ARMOEA algorithms. The experiment can be divided into four
arts. Firstly, the performance of MOEA/D-ARA on the MOP1-MOP7
nd UF1-UF10 instances is compared with those of the seven other
lgorithms in Sections 5.1 and 5.2, respectively. Then, the poten-

ial rationality of our proposed ARA are investigated by comparing
his strategy with two other variants of MOEA/D-ARA in Section
.3. Finally, the effects of different measurements are empirically
tudied in Section 5.4.
 versus the number of function evaluations.

5.1. Performance comparisons on MOP1-MOP7 instances

MOP1-MOP7 instances are proposed benchmark problems in
recent years, which are modified from the ZDT and DTLZ instances
[49,50]. Some Pareto solutions to these problems are easy to get,
but some others are extremely hard to find. These observations
can be attributed to the fact that the complex decision-making
space of these problems increases the tendency for the popu-
lation to be trapped in some special areas. It has been argued
in [4] that such tendency can be easily addressed by increasing
the population diversity, thereby highlighting the importance of
balancing convergence and diversity during the search process.
Tables 1 and 2 compare the performances of all eight MOEAs on the
IGD and HV metrics, respectively. MOEA/D-ARA outperforms the
other MOEAs in all MOP1-MOP7 problems. Based on the Wilcoxon
rank-sum test in Table 1, MOEA/D-ARA and MOEA/D-ACD do not
show any differences in MOP2, MOP3 and MOP4, and MOEA/D-ARA
and MOEA/D-IR do not show any differences in MOP3. Meanwhile,
the Wilcoxon rank-sum tests in Table 2, It show not any significant
differences between MOEA/D-ARA and MOEA/D-ACD in MOP3 and
MOP4, and between MOEA/D-ARA and MOEA/D-IR in MOP3.

Figs. 7–10 show the median IGD metric for each algorithm
on MOP  instances along with the evolution of the number of
function evaluations, which react to our proposed algorithms
and contrast algorithms to optimize the search process, such as
whether the optimization is slow or whether it stops at a local
optimum. MOEA/D-ARA shows the best performance throughout
the evolutionary process. Specifically, although the convergence
rate of MOEA/D-ARA at an early stage may  be slower than some
algorithms, but in the end will show better results. and clearly out-
performs the other MOEAs in the whole evolutionary process of
MOP6 and MOP7. In terms of convergence, MOEA/D-ARA demon-
strates a slow convergence rate in the early stages of MOP2 and
MOP3, but shows a fast convergence rate in the middle stage. By
contrast, the other MOEAs demonstrate a fast and slow conver-

gence in the early and late stages, respectively.

Here we  present the solutions of the algorithms in two more
difficult problems, which reflects the convergence and diversity of
our algorithm and the comparison algorithm in the final solutions
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Table 5
Performance comparisons of MOEA/D-ARA and two variants of IGD values.

MOEA/D-ARA Variant-I Variant-II

MOP1 1.661E–02(1.30E–03) 3.334E–01(5.04E–02) 1.899E–02(1.74E–03)
MOP2 2.073E–02(4.45E–02) 2.449E–01(5.17E–02) 6.230E–02(9.58E–02)
MOP3 4.005E–03(6.09E–03) 1.385E–01(2.80E–02) 2.016E–02(3.31E–02)
MOP4 1.649E–02(1.48E–02) 3.081E–01(2.75E–02) 2.008E–02(1.76E–02)
MOP5 1.423E–02(9.95E–04) 3.147E–01(1.51E–02) 1.594E–02(1.49E–03)
MOP6 3.181E–02(8.15E–04) 3.059E–01(3.52E–06) 4.101E–02(9.21E–04)
MOP7 6.198E–02(2.45E–03) 3.510E–01(5.37E–06) 9.085E–02(3.82E–03)
UF1 1.644E–03(8.18E–05) 5.276E–02(4.85E–03) 1.893E–03(1.66E–04)
UF2 3.033E–03(1.02E–03) 4.378E–02(8.15E–03) 5.699E–03(1.12E–03)
UF3 4.248E–03(2.62E–03) 1.760E–01(4.47E–02) 5.513E–03(4.79E–03)
UF4 5.457E–02(2.48E–03) 8.268E–02(8.77E–03) 5.761E–02(4.05E–03)
UF5 3.054E–01(1.43E–01) 6.208E–01(1.22E–01) 2.602E–01(2.53E–02)
UF6 1.333E–01(1.40E–01) 4.957E–01(2.01E–01) 1.054E–01(1.11E–01)
UF7 1.826E–03(1.86E–04) 4.177E–02(5.41E–03) 2.074E–03(1.42E–04)
UF8 2.465E–02(4.16E–04) 1.549E–01(3.30E–02) 2.904E–02(1.44E–03)
UF9 4.997E–02(4.86E–02) 1.905E–01(1.05E–02) 4.605E–02(4.18E–02)
UF10 2.859E–01(8.45E–02) 9.564E–01(3.42E–01) 4.419E–01(7.79E–02)

The numbers are the mean for run 30 times independently and the numbers in
parentheses are the standard deviations.

Table 6
Performance comparisons of MOEA/D-ARA and two variants of HV values.

MOEA/D-ARA Variant-I Variant-II

MOP1 6.436E–01(1.69E–03) 1.331E–01(9.32E–02) 6.401E–01(2.15E–03)
MOP2 3.105E–01(4.50E–02) 5.448E–02(3.64E–02) 2.549E–01(1.19E–01)
MOP3 2.085E–01(9.31E–03) 9.171E–02(2.28E–02) 1.888E–01(3.57E–02)
MOP4 4.980E–01(1.94E–02) 1.349E–01(1.79E–02) 4.933E–01(2.39E–02)
MOP5 6.458E–01(1.20E–03) 3.536E–01(5.55E–17) 6.429E–01(2.00E–03)
MOP6 7.924E–01(9.11E–04) 4.942E–01(4.84E–05) 7.812E–01(1.13E–03)
MOP7 4.046E–01(2.40E–03) 2.124E–01(4.82E–05) 3.763E–01(2.95E–03)
UF1 6.638E–01(2.26E–04) 5.776E–01(8.75E–03) 6.634E–01(2.33E–04)
UF2 6.620E–01(1.28E–03) 6.039E–01(6.23E–03) 6.582E–01(1.77E–03)
UF3 6.576E–01(5.91E–03) 3.782E–01(6.28E–02) 6.558E–01(8.99E–03)
UF4 2.530E–01(3.58E–03) 2.149E–01(9.90E–03) 2.502E–01(4.71E–03)
UF5 5.352E–02(7.96E–02) 1.341E–03(7.22E–03) 1.974E–02(4.93E–02)
UF6 2.044E–01(6.91E–02) 7.007E–02(7.85E–02) 1.987E–01(9.03E–02)
UF7 4.967E–01(3.28E–04) 4.278E–01(1.05E–02) 4.962E–01(2.49E–04)
UF8 4.373E–01(1.27E–03) 2.702E–01(3.49E–02) 4.259E–01(4.04E–03)
UF9 7.254E–01(6.95E–02) 5.440E–01(3.19E–03) 7.244E–01(5.81E–02)
UF10 1.159E–01(5.63E–02) 6.122E–03(1.87E–02) 4.470E–02(2.64E–02)
10 P. Wang et al. / Applied Sof

f these two tests. Fig. 11 shows the distribution of the final solu-
ions with the lowest IGD-metric values found by MOEA/D-ARA,

OEA/D-ACD, MOEA/D-AGR, MOEA/D-IR, MOEA/D-STM, MOEA/D-
RA, NSGAIII and ARMOEA in 30 runs in the objective space on
OP4 which have very complex Pareto front. From Fig. 11, we can

ee that all the algorithms are not very close to the whole Pareto
ront. But the MOEA/D-ARA algorithm is the best performer, and it
ets more Pareto solutions and converges better than other algo-
ithms. Fig. 12 shows the distribution of the final solutions with the
owest IGD-metric values found by MOEA/D-ARA, MOEA/D-ACD,

OEA/D-AGR, MOEA/D-IR, MOEA/D-STM, MOEA/D-DRA, NSGAIII
nd ARMOEA in 30 runs in the objective space on MOP7. From
ig. 12 we can see that only MOEA/D-ARA can approximate the
ntire PF well in these comparison algorithms. The convergence
f the algorithms MOEA/D-ACD and MOEA/D-IR is not enough,
nd many solutions are located far away from the PF. Meanwhile,
he distributions of the algorithms MOEA/D-AGR, MOEA/D-DRA,

OEA/STM, NSGAIII and ARMOEA are not enough, and almost all
f solutions are centered on the edge of the PF.

.2. Performance comparisons on UF1-UF10 instances

Tables 3 and 4 compare the IGD and HV metric values of
OEA/D-ARA with those of the other seven MOEAs, respectively.

he experimental results clearly identify MOEA/D-ARA as a promis-
ng solution to UF1-UF10 instances. The Wilcoxon rank-sum tests
eveal that MOEA/D-ARA achieves better results than the other

OEAs in most cases. Table 3 shows that, under the IGD met-
ic, MOEA/D-ARA outperforms the other MOEAs on UF1, UF2, UF7,
F8, UF9 and UF10. On the UF3 and UF6, the MOEA/D-ARA did not
chieve the best performance, but it is only in the best algorithm
erformance behind in the statistical significance of the wilcox-
ns rank sum test. Table 4 shows that MOEA/D-ARA outperforms
OEA/D-AGR, MOEA/D-IR, MOEA/D-ACD, MOEA/D-DRA, MOEA/D-
E on the instances UF1, UF2, UF7, UF8 and UF9. Although the
OEA/D-ARA did not achieve the best performance on instance
F10, but it has no statistically significant difference with the best.
rom these two tables we can find that our algorithm is deficient
n the case of non-continuous Pareto.

Figs. 13–17 show the median IGD metric for each algorithm
n UF1-UF10 instances along with the evolution of the number of
unction evaluations, which react to our proposed algorithms and
ontrast algorithms to optimize the search process, such as whether
he optimization is slow or whether it stops at a local optimum.
lthough the MOEA/D-ARA algorithm converges slowly at an early
tage on instances UF1, UF2, UF7, UF8, UF9 and UF10, it eventu-
lly achieves the best results. On the instances UF3 and UF6 also
chieved good results.

.3. Performance comparisons with other variants

To further investigate the potential rationality of the ARA strat-
gy. we have extracted two variants from this strategy with each
ariant having a unique choice of operation.

Here we present two variants, one is Variant-I, in which each
olution randomly selects a subproblem as an update in all sub-
roblems. In this case, the strategy proposed in this paper is useless.
y contrast, the other is Variant-II which uses a fixed regional divi-
ion rather than a dynamic one where in each solution must first
etermine the subproblem in the solution area before the value
f the function can be replaced. Using the same parameter set-
ings as in Section 4.3, these two variants have been experimentally

ompared with MOEA/D-ARA on MOP1-MOP7 and UF1-UF10 test
nstances. Here we use a non-overlapping fixed regional division
or Variant-II. Tables 5 and 6 show the experimental results for the
GD and HV measurements, respectively. Variants-I behave badly
The numbers are the mean for run 30 times independently and the numbers in
parentheses are the standard deviations.

because of the very low efficiency of the random selection oper-
ations. As a result, many favorable solutions are abandoned and
many computing resources are wasted. In the 17 instances, Variant-
II shows a poorer performance than MOEA/D-ARA except in the
three instances of UF5, UF6 and UF9 in Table 5. Such poor perfor-
mance may  be attributed to the use of a fixed regional division,
so that the subproblems are not synchronized leads some sub-
problems to slow convergence. Moreover, the parameters must be
adjusted accordingly before dividing the area in Variant-II.

5.4. Effects of different measurements

Based on the distance measurements, we  propose a variant that
uses the Euclidean distance measurement of the solution point-
to-subproblem vector to replace the angle measurement of the
solution and subproblem vectors. Using the same parameter set-
tings described in Section 5.3, this variant has been experimentally
compared with the MOEA/D-ARA on the MOP1-MOP7 and UF1-
UF10 test instances. Tables 7 and 8 show the experimental results
for the IGD and HV measurements, respectively. In the 17 instances,

Variant-III shows a poorer performance than MOEA/D-ARA except
in the three instances of UF5, UF6 and UF9 and in the UF6 and UF9
two instances shown in Table 7 respectively. Such performance
has been mainly attributed to the fact that the measurement in
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Fig. 16. Evolution of the median IGD metric values versus the number of function evaluations.
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ariant III leads to overlaps of the solution region of subproblems,
hich may  result in similar or identical solutions for different sub-

roblems, thereby reducing the diversity of these solutions and
ncreasing their tendency to fall into the local optima.

. Conclusion
In MOEA/D, MOP  is decomposed into a number of scalar opti-
ization subproblems by using decomposition approaches and

hen optimizes them simultaneously. In the evolutionary process,
iversity and convergence are required at the same time is neces-
 versus the number of function evaluations.

sary. It is therefore advisable to balance as much as possible when
designing a selection and replacing strategy. This paper presents
a simple yet effective attempt along this direction. To guarantee
diversity, we force different subproblems to correspond to different
solutions in the region division process. On this basis, we proposed
ARA strategy to adjust solutions of different subproblems and to
ensure the balance between their diversity and convergence. We

find that the convergence will not be weakened when diversity is
guaranteed. Extensive experimental studies have been conducted
to compare our proposed MOEA/D-ARA with other peer MOEAs



812 P. Wang et al. / Applied Soft Com

Table 7
Performance comparisons of MOEA/D-ARA and variant-III of IGD values.

MOEA/D-ARA Variant-III

MOP1 1.661E–02(1.30E–03) 1.790E–02(1.92E–03)
MOP2 2.073E–02(4.45E–02) 5.464E–02(8.84E–02)
MOP3 4.005E–03(6.09E–03) 1.215E–02(2.97E–02)
MOP4 1.649E–02(1.48E–02) 2.623E–02(4.39E–02)
MOP5 1.423E–02(9.95E–04) 1.726E–02(7.71E–03)
MOP6 3.181E–02(8.15E–04) 3.407E–02(8.45E–04)
MOP7 6.198E–02(2.45E–03) 6.271E–02(2.31E–03)
UF1 1.644E–03(8.18E–05) 1.899E–03(1.83E–04)
UF2 3.033E–03(1.02E–03) 5.961E–03(8.40E–03)
UF3 4.248E–03(2.62E–03) 8.023E–03(1.39E–02)
UF4 5.457E–02(2.48E–03) 5.666E–02(5.05E–03)
UF5 3.054E–01(1.43E–01) 2.767E–01(8.45E–02)
UF6 1.333E–01(1.40E–01) 1.092E–01(1.46E–01)
UF7 1.826E–03(1.86E–04) 1.994E–03(2.01E–04)
UF8 2.465E–02(4.16E–04) 2.528E–02(2.53E–02)
UF9 4.997E–02(4.86E–02) 3.865E–02(3.89E–02)
UF10 2.859E–01(8.45E–02) 3.087E–01(7.99E–02)

The numbers are the mean for run 30 times independently and the numbers in
parentheses are the standard deviations.

Table 8
Performance comparisons of MOEA/D-ARA and variant-III of HV values.

MOEA/D-ARA Variant-III

MOP1 6.436E–01(1.69E–03) 6.414E–01(2.44E–03)
MOP2 3.105E–01(4.50E–02) 2.672E–01(1.07E–01)
MOP3 2.085E–01(9.31E–03) 2.005E–01(2.97E–02)
MOP4 4.980E–01(1.94E–02) 4.855E–01(6.03E–02)
MOP5 6.458E–01(1.20E–03) 6.417E–01(7.74E–03)
MOP6 7.924E–01(9.11E–04) 7.896E–01(9.03E–04)
MOP7 4.046E–01(2.40E–03) 3.989E–01(3.03E–03)
UF1 6.638E–01(2.26E–04) 6.635E–01(2.29E–04)
UF2 6.620E–01(1.28E–03) 6.591E–01(7.97E–03)
UF3 6.576E–01(5.91E–03) 6.557E–01(1.03E–02)
UF4 2.530E–01(3.58E–03) 2.515E–01(6.26E–03)
UF5 5.352E–02(7.96E–02) 1.256E–02(4.26E–02)
UF6 2.044E–01(6.91E–02) 2.124E–01(7.93E–02)
UF7 4.967E–01(3.28E–04) 4.965E–01(3.55E–04)
UF8 4.373E–01(1.27E–03) 4.358E–01(1.05E–03)
UF9 7.254E–01(6.95E–02) 7.408E–01(5.55E–02)
UF10 1.159E–01(5.63E–02) 1.146E–01(4.93E–02)
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he numbers are the mean for run 30 times independently and the numbers in
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s well as to study their evolutionary processes and performances
nder different selection strategies and measures.

In the future, we will study some of the follow-up studies as
ollows.

. The many-objective optimization problem and complex PF prob-
lem have become major concerns in evolutionary multiobjective
optimization community [6]. It is very interested in extending
the algorithm proposed in this paper to these topics.

. Our studies show that the balance of convergence of different
subproblems can benefit the evolution process. On this basis, we
will conduct further studies on the balance of convergence of
different subproblems.

. It is important to balance the population diversity and con-
vergence in MOEA, especially when different MOPs require a
balance of inconsistencies. The future we will study how to intel-
ligently choose a different balance according to different MOPs,
which should be very important for applying machine learning
algorithm.
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