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Abstract—Sparse tensor contraction (SpTC) is an important op-
erator in tensor networks, which tends to generate a large amount of
sparse high-dimensional data, placing higher demands on the com-
putational performance and storage bandwidth of the processor.
Using GPUs with powerful arithmetic characteristics is a reliable
choice for accelerating SpTC, however, the high dimensionality and
sparsity of tensor makes GPU-accelerated SpTC operators suffer
from the difficulties of low computational intensity and high mem-
ory consumption. The recent introduction of Tensor Core Units
(TCUs) on GPUs brings even more powerful arithmetic, which
exacerbates the memory wall problem. To cope with the challenges,
this paper proposes a new BCB format that linearizes the indices
of multidimensional blocks to reduce block index accesses and uses
a bitmap to store the distribution of non-zero elements in a block
to reduce the storage overhead. A parallel blocking algorithm of
BCB-SpTC is designed to divide the binary linear indices into
free and contracted indexes to improve the pairing overhead of
computational tasks. Then based on the characteristic computation
method of TCUs, the proprietary filling method of TCUs is designed
to overcome the inefficiency of parallel computation of sparse data
on TCUs. Finally, experimental results on the A100 dataset show
that BCB-SpTC improves the acceleration ratio by 1.1× to 21.3×
over the existing SpTC GPU method.

Index Terms—Bit optimization, GPU, sparse tensor contraction
(SpTC), sparse tensor format, tensor core.
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I. INTRODUCTION

S PARSE tensor contraction (SpTC) has drawn a lot of in-
terest from researchers in a variety of domains, such as

quantum physics [1], [2], [3] and machine learning [4], [5].
For example, tensor contraction is a major operation in tensor
networks and tensor decomposition algorithms [6]. The tensor
contraction layer is a network structure with the ability to ex-
tract deep features in deep learning [7]. In these applications,
tensors usually represent large datasets or high-dimensional
physical models and need to be reshaped and reduced during
computation. Tensor contraction can be traced back to matrix
multiplication in linear algebra. Unlike matrix multiplication,
tensor contraction can operate on tensors of any dimension. In
tensor computation, the dimensions of tensors can sometimes be
very large, so effectively reducing the dimensionality of tensors
is crucial.

SpTC is confronted by a constellation of challenges, drawing
parallels with the difficulties encountered in the realm of sparse
matrices. These challenges encompass a range of issues, includ-
ing the ambiguity of output dimensions, the need to anticipate
non-zero patterns prior to computation, and the intricate puzzle
of load imbalance [8], [9]. Moreover, SpTC is faced with the
challenge of dealing with the complex subtleties that arise from
the unique features associated with high-dimensional tensor
contractions.

One of the primary issues faced by SpTC pertains to the com-
plex field of multi-dimensional index matching. The presence
of this intricate nature leads to the emergence of unpredictable
memory access patterns, resulting in a significant negative effect
on the overall performance landscape. In certain situations, the
fundamental characteristics of SpTC require the utilization of
various modes of tensor contraction, thereby demanding the
coordination of matching for indices in many dimensions. Nev-
ertheless, the inclusion of this orchestration element presents
a possible burden on performance, hence introducing an extra
level of complexity to the computing process.

Another significant challenge arises in the shape of a huge
increase in memory usage. The overhead in question arises
due to the inclusion of tensors and their intermediate products
within the underlying structure of GPU. Empirical investiga-
tions have shown that sparse tensors can consume significant
memory, typically several gigabytes. Previous studies report
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usage ranging from 1.1 GB to 99.3 GB depending on tensor
size and sparsity [10]. The memory usage is exacerbated by
the dimensions of intermediary products and output tensors,
thus compounding the footprint. The increasing memory re-
quirements surpass the limitations of GPU capabilities, which
becomes especially evident when the size of tensors continues
to grow.

The third predicament of SpTC revolves around the phe-
nomenon of diminished arithmetic intensity[11] during compu-
tational processes. Arithmetic intensity, a pivotal metric quan-
tifying the ratio of arithmetic operations to the distinct data
elements accessed, experiences a gradual decline as the dimen-
sionality of sparse tensors increases. This reduction in arithmetic
intensity is attributed to the inherent sparsity that emerges in
higher-dimensional tensors. This challenge is particularly mag-
nified in the context of SpTC, where higher-dimensional tensors
are frequently encountered, ultimately resulting in a detrimental
effect on the overall performance of the tensor contraction
process.

Limited by the development of hardware platforms, opti-
mizing the performance of tensor contraction is an important
research direction [9], [12]. In particular, there is very little
work about SpTC on GPU, because most of the current works
are focused on dense tensor contraction [13], [14] and CUDA
Cores [15]. While the processing capacity of GPU has greatly
increased for dense tensor operations, it is significantly more
difficult to employ Single Instruction Multiple Data (SIMD) for
sparse tensor operations, such as sparse tensor-times-vector and
SpTC, because of irregular data accesses, despite their intrinsic
parallelisms matching SIMD computing power well. With the
ever-increasing computing power demands from deep learning,
more specialized hardware for matrix multiplications, such as
Tensor Cores Units (TCUs), started to become available inside
GPU. However, the majority of the existing sparse tensor stor-
age formats are incompatible with such hardware accelerators
because they are only designed to support small blocked dense
matrices. TCUs are challenging to use in SpTC due to the
high dimensional sparsity of the sparse tensor. TCUs are not
effectively utilized in SpTC as sparse tensors usually exhibit
high-dimensional sparse features and extremely sparse distribu-
tion of non-zero elements. Therefore, SpTC calculations cannot
directly employ TCUs, and as the tensor dimension grows, this
issue worsens.

To overcome the above difficulties, we
� propose a new sparse tensor storage format, Bit coordi-

nate Bitmap (BCB), which intuitively reduces memory
footprint and memory accesses, and is used to accelerate
data index matching and memory accesses to alleviate the
memory wall problem caused by high-speed computation
in TCUs.

� design a parallel algorithm for SpTC based on BCB for-
mat (BCB-SpTC), which introduces a conflict resolution
method to increase the occupancy of thread blocks by
constructing task lists and removing dependencies between
tasks to improve GPU utilization.

� implement a TCUs-based kernel function that adjusts the
filling of TCUs according to different scaling tasks to

overcome the inefficiency of parallel computation of sparse
data on TCUs.

� conduct experiments with real-world datasets and the find-
ings demonstrate that BCB format has a smaller memory
footprint than current formats and the BCB-SpTC im-
proves the acceleration ratio by 1.1× to 21.3× over the
state-of-the-art method on the A100 GPU.

The rest of the paper is organized as follows. Section II
presents the preliminaries of SpTC and TCUs. Section III de-
scribes the Bitmap Coordinates Format. Section IV gives the
BCB-SpTC framework and details the optimization based on
TCUs. Section V presents our experimental results and findings.
Section VI reviews the related work on tensor operations, Bitmap
format, and TCUs. Finally, Section VII concludes the paper.

II. PRELIMINARIES

A. Sparse Tensor Contraction

A tensor is a multi-dimensional array. Each of its dimensions
is called a mode, and the number of modes is its order. A vector
is a first-order tensor, while a second-order tensor is a matrix.
A tensor of order three or higher is called a higher-order tensor.
By fixing all indices but two, a slice can be created. By fixing
all indices except one, a fiber is defined.

Sparse tensor contraction, also known as sparse tensor-times-
tensor [6], is an extension of sparse matrix-times-matrix. For

sparse tensorX ∈ RSX1 ×SX2 ×...SXdX ,Y ∈ R
SY1×SY2×...SYdY andZ ∈

RSZ1×SZ2×...SZdZ , whose dimensions are dX , dY and dZ , respec-
tively. We can represent a sparse tensor contraction as

Z∏Z(Im∪In) = α×X∏X (Im∪Ik) × Y∏Y(Ik∪In)

+ β ×Z∏Z(Im∪In), (1)

where
∏X ,

∏Y and
∏Z are permutations of the symbolic in-

dex sets Im := {m1,m2, . . .,mγ}, In := {n1, n2, . . ., nζ} and
Ik := {k1, k2, . . ., kξ}. The index sets Im, In respectively are
the free indices of X and Y (i.e., these indices appear in X ,
Y and Z), and Ik is the contracted indices of X and Y (i.e.,
those indices appear in both X and Y , but not in Z) [16]. The
dimensions of X , Y and Z are dX = γ + ξ, dY = ζ + ξ and
dZ = γ + ζ.

Utilizing the index sets Im, In, and Ik makes it easy to
represent an arbitrary dimension SpTC. In the following, we
assume that Im, In, and Ik are not empty in SpTC.

Example: For three-order tensor X ∈ RSX1 ×SX2 ×SX3 and Y ∈
RSY1×SY2×SY3 . The contracted indices of X and Y , i.e. Im, is
{k1}. The free indices of X and Y are {m1,m2} and {n1, n2},
respectively. This example operation is denoted as

Z∏Z(m1,m2)∪(n1,n2))
= β ×Z∏Z(m1,m2)∪(n1,n2))

+

α×X∏X ((m1,m2)∪(k1))
× Y∏Y((k1)∪(n1,n2))

, (2)

where the dimension of X , Y and Z are dX = 3, dY = 3 and
dZ = 4.
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Fig. 1. Tensor Cores Units 4x4x4 matrix multiply and accumulate.

B. Tensor Cores Units

Different forms implement a floating-point computation on
CUDA Cores per clock cycle. TCUs perform a matrix-matrix
computation within each clock cycle [17]. To be concrete, TCUs
provide a 16× 16× 16 matrix processing array which performs
the operation D = A×B + C, where A, B, C and D are 16×
16 matrices as Fig. 1 shows. The matrix multiply inputs A and B
are FP16 matrices, while the accumulation matrices C and D may
be FP16 or FP32 matrices. Before calling TCUs, all registers in a
warp need to collaboratively store these matrices into a fragment
(GPU register memory for storing the input matrices), which
allows data sharing across registers [18]. Significantly, TCUs
can only operate data from registers.

NVIDIA provides Warp-level Matrix Multiply and Accu-
mulate (WMMA) API to program TCUs. NVIDIA introduced
the WMMA API in CUDA 9.0 for developers to use TCUs.
Through the WMMA API, the D = A×B + C (A, B, C,
and D could be tiles of the larger matrix) can be regarded
as the warp-level operation and all threads of warp can coop-
erate to multiply and add matrices on these tiles. A CUDA
kernel that performs a matrix multiplication of two matrices
with one CUDA Wrap (WMMA allows one computation with
256 elements in a wrap) can be divided into five stages. First,
declaring the WMMA fragments Afrag, Bfrag, and Cfrag.
Second, setting Cfrag, the accumulator fragment, for stor-
ing the result of the matrix multiply, to zero. Third, loading
the input matrices into the fragments Afrag, Bfrag using
wmma::load_matrix_sync(). Fourth, the multiplication
is performed by calling the wmma::mma_sync(). Finally,
moving the results from the fragment Cfrag to D in the GPU
global memory.

III. BCB FORMAT

In this section, we introduce the BCB format for storing
sparse tensors. First, the BCB format is introduced in detail by
describing the process of COO to BCB format. Then, the storage
optimization techniques in it are given. Finally, its theoretical
storage size is analyzed.

A. Format Conversion

Observing (1), SpTC essentially involves searching for the
intersection of tensor spaces X ,Y with the same contracted
indices Ik. We only need to search for all non-zero elements,
but the search space is the entire tensor, which is too large.
Therefore, we divide the entire tensor set into several subsets,
i.e., blocking. The BCB structure stores the tensor in blocks,

and this multi-dimensional blocking method splits the blocks
by treating the sparse tensor as if it were dense. Because the
high-dimensional tensor is sparse, this results in a large number
of empty blocks with no non-zero elements. These empty blocks
do not contribute to the SpTC results, so we only record blocks
with non-zero elements.

By introducing indices of non-zero elements, the COO format
avoids the memory traffic of sparse tensors with a significant
number of zero elements, but at the cost of low arithmetic
intensity. To improve the arithmetic intensity, further elimination
of redundancy in non-zero element indices is considered. The
primary goal of the BCB format is to replace the integer type
with a bit type in order to reduce the amount of redundant data
contained in index data. In addition to reducing memory storage,
bit operations also facilitate set operations (intersection). BCB
format stores non-zero elements of each block in dense form.
That is, each block element can be either zero or a non-zero
value. We use a bitmap, a set of binary numbers corresponding
to each value in the block, to keep track of which elements have
non-zero values.

Fig. 2 illustrates the conversion procedure from COO to BCB
format. First, multi-dimensional blocking techniques are com-
bined to improve the localization of data. Second, the non-zero
elements in each block are stored in a bitmap to facilitate TCUs
acceleration. Third, the multi-dimensional index of each block
is mapped to a binary linear space to reduce the complexity
of multi-dimensional matching and the number of memory
instruction accesses during computation.

B. Multi-Dimensional Blocking

As shown in the first step of Fig. 2, multi-dimensional
blocking splits blocks by treating a sparse tensor as a dense
tensor. Multi-dimensional blocking is a popular technique used
in sparse tensors to improve the efficiency of the computation
process. This technique involves dividing the tensor set into
several subsets of blocks, which are then separately processed.
Multi-dimensional blocking is used in the BCB format to split
the blocks by treating the sparse tensor as if it were dense. The
high-dimensional tensor is often sparse, resulting in a large
number of empty blocks with no non-zero elements. These
empty blocks do not contribute to the SpTC results, so it is
crucial to only record the blocks that contain non-zero elements.
By dividing the tensor into blocks, each block can be processed
separately, improving the efficiency of the contraction process.

Tensor contraction involves searching for non-zero elements
and finding matching elements between two tensors. Multi-
dimensional blocking helps to reduce the size of the search space
and increase the search step, as the data is localized and can
be processed more efficiently. By reducing the search space,
the efficiency of the contraction process can be significantly
improved.

C. Improvement of Blocking and Bit Encoding

While the concept of blocking and bit encoding has been
explored in HiCOO [19], ALTO [20], and BLCO [21], our BCB
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Fig. 2. Conversion process from COO to BCB format. The tensor block size is set to 2× 2× 2, as an example indicated above. (bi, bj , bk) represents the index of
a block within the tensor space. After blocking, the indices of all elements within a block are mapped into an 8-bit bitmap. Additionally, (bi, bj , bk) is compressed
into a 6-bit binary linear index. .

format introduces key distinctions that optimize both storage
and computation.
� Storage: HiCOO, ALTO, and BLCO primarily compress

indices by focusing on individual non-zero elements.
HiCOO uses hierarchical storage to compress relative in-
dices within each block, while ALTO and BLCO linearize
the absolute indices across the entire tensor. These ap-
proaches reduce memory usage by minimizing the storage
required for each element’s location. In contrast, BCB
compresses indices at the level of tensor blocks rather
than individual elements, utilizing bitmaps to encode the
positions of non-zero elements within each block. This
compact representation captures the structure of a block
in a single, efficient data structure. By operating on blocks,
BCB significantly reduces the overhead of storing and
accessing index data, making it well-suited for handling
large, sparse tensors while maintaining low memory con-
sumption.

� Computation: The computational strategies of HiCOO,
ALTO, and BLCO are element-centric, with HiCOO navi-
gating hierarchical indices and ALTO/BLCO iterating over
linearized indices to process each element. BCB, however,
leverages block-level storage to perform computations in
batches. Instead of sequentially processing individual el-
ements, BCB processes entire tensor blocks at once. This
batch processing is particularly efficient when using TCUs,
which are optimized for parallel matrix operations. By per-
forming block-wise computations, BCB fully exploits the
parallelism of TCUs, resulting in faster tensor contractions.

D. Optimized Storage of Blocks

As shown in the second step of Fig. 2, the BCB format stores
non-zero elements of each block in dense form. That is, each
block element can be either zero or a non-zero value. We use a
bitmap, a set of binary numbers corresponding to each value in
the block, to keep track of which elements are non-zero values.
If the value is greater than zero, the corresponding bit in the

bitmap is set to 1, otherwise it is set to 0. This way, we can easily
determine whether an element is non-zero or not by checking the
corresponding bit in the bitmap. By using bitmaps to reduce the
index redundancy of non-zero elements within a block, bitwise
storage helps improve the arithmetic intensity of SpTC.

As shown in the third step of Fig. 2, BCB format uses bit com-
pression to reduce the redundancy of non-empty block indices.
The purpose of bit compression is to map the multi-dimensional
indices of each block into a binary linear space to reduce the
complexity and memory traffic of multi-dimensional matching.
The bit compression method adjusts the number of bits based on
the size of dimensions rather than using the same size shaping
to store index values for different dimensions of the tensor.
Thus, the bit-compression method converts all non-zero element
indices into binary linear indices and maintains them in the
smallest amount of storage space for tensors of various shapes.

E. Storage Space Analysis

For a sparse tensor X ∈ RS1×S2×···×SK containing N non-
zero elements, assume that the block B dimension is H1 ×H2

× · · · ×HK . Therefore, the binary linear index of each block
after block bit compression occupies the bit space size Wbc is

Wbc =
K∑

k=1

⌈
log2

Sk

Hk

⌉
bits. (3)

Further, assuming thatX hasM non-empty blocks, the bit space
size Dbc required to store all the block indices is

Dbc = Wbc ×M bits. (4)

Moreover, the elements within the blocks are stored in bitmap
format, and the bit space size Wbm occupied by storing the
bitmap index of each block is

Wbm =

K∏
k=1

Hk bits, (5)
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Algorithm 1: BCB-SpTC.
Input:

A tensor X ∈ RSX1 ×SX2 ×···×SXdX ;
A tensor Y ∈ R

SY1×SY2×···×SYdY ;
Output:

A tensor Z ∈ RSZ1×SZ2×···×SZdZ ;
1: /*Store two input tensors with BCB format based on

multi-dimensional blocking*/
2: BCBX ← COO2BCB(X );
3: BCBY ← COO2BCB(Y);
4: /*Generate the task list between input tensors for the

matching relationship between blocks*/
5: T ← Task_List(BCBX ,BCBY);
6: for each item (X̂ , Ŷ) in T do
7: /*Carry out the block-based tensor contraction

between X̂ , Ŷ*/
8: Ẑ ← TC_TCUs(X̂ , Ŷ) in Algorithm 2;
9: end for

10: /*Remove zero values after contraction and compact the
result tensor*/

11: Compact_Zero(Z);
12: return Z;

then the bit space size Dbm needed to store the bitmap index of
all non-empty blocks is

Dbm = Wbm ×M bits. (6)

Assuming that the data type of the non-zero element values is
float and that each non-zero element occupies 32 bits of space,
the bit space size required to store the non-zero element values
is

Dval = 32×N bits. (7)

Summing up the above analysis, the total storage space size
DB required for tensor X stored in BCB format is

DB = Dbc +Dbm +Dval

=

(
K∑

k=1

⌈
log2

Sk

Hk

⌉
+

K∏
k=1

Hk

)
×M

+ 32×N bits. (8)

For COO format with integer index and float value type, the total
storage space size DCOO required for tensorX with N non-zero
elements is

DCOO = 32×K ×N + 32×N bits (9)

Hence, when

DB < DCOO(
K∑

k=1

⌈
log2

Sk

Hk

⌉
+

K∏
k=1

Hk

)
×M < 32×K ×N (10)

holds, our BCB format will be better than COO format in storage
size.

IV. BCB-SPTC PARALLEL ALGORITHM

When applying SpTC, researchers must address certain chal-
lenges, such as the multi-dimensional matching problem and
the high memory overhead caused by dimensions and sparsity.
In particular, SpTC may struggle to locate non-zero elements
with identical indices in high-dimensional spaces due to its
multi-dimensional nature.

A. Framework Design

To enhance notation convenience, we refer to our approach
as BCB-SpTC, which introduces the sparse tensor contraction
based on our newly proposed BCB format. Fig. 3 presents an
overview of the framework, which is divided into four parts
as outlined in Algorithm 1. First, we use multi-dimensional
blocking to split the tensor. The BCB storage method
(Section III) stores non-empty, multidimensional blocks whose
index maps to a binary linear index, and non-zero elements
in each block are kept in a bitmap. Next, we generate a task
list to capture the matching relationship between blocks with-
out block computation. The search space is reduced thanks to
the elimination of empty blocks. After obtaining the matching
block pairs in the task list, we perform block-based contraction
using TCUs. Bitmaps are used to load non-zero elements in
the corresponding locations of TCUs based on free and con-
tracted indices. Finally, since tensor contraction is performed
on a block-by-block basis, some resulting blocks may have
the same free indices, requiring accumulation. Additionally, we
allocate GPU warps to compute a pair of blocks using WMMA,
with the warp scheduler scheduling another active warp for
the calculation to achieve higher throughput and address load
imbalance.

To contract two tensors, it is crucial to first identify the tensor
blocks that can be contracted, meaning those with the same con-
tracted indices. Inspired by the Expansion-Sorting-Compression
(ESC) strategy introduced by [22] and further developed in
CUSP [23], we divide the task list generation process into three
stages: pairing, sorting, and compression.

In the pairing stage, represented by the Task_List(·, ·) func-
tion, we identify and pair tensor blocks that share the same
contracted indices. Specifically, for each output tensor block,
which is represented by a binary linear index composed of two
free indices, FX and FY , from the input tensors, we match the
corresponding contracted indices,CX andCY . The sorting stage,
also part of the Task_List(·, ·) function, involves arranging the
paired tensor blocks based on the memory required for contrac-
tion. This step ensures that multi-dimensional blocks from the
input tensors, identified by the pairs (FX , CX ) and (FY , CY),
where CX equals CY , are placed adjacently. This adjacency is
crucial for optimizing memory access patterns during contrac-
tion. The compression stage compresses the sorted tuples by
their free indices (FX , FY) after finishing tensor contraction by
TC_TCUs(·, ·) (Algorithm 2), as represented in Compact_Zero
(·) function. Due to the adjacency achieved by the sorting stage.
We only need to sum up all the contracted blocks with the same
free indices.
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Fig. 3. Overview of our proposed BCB-SpTC parallel computing framework. The BCB-SpTC framework consists of four stages: 1©Multi-dimensional blocking,
2© Generation of the task list, 3© Contraction between blocks, and 4©Write-back of the result tensor.

Fig. 4. Multi-dimensional blocks contraction with TCUs. Each block is packed
into a TCU fragment. After computation, the result will update the contracted
block.

B. Loading Scheme for TCUs

TCUs are components on GPUs used for matrix computations
D = A×B + C, and how to utilize them for tensor contraction
is a matter that requires careful consideration. We design our
method to take advantage of their parallelism for block-wise
sparse tensor contraction. By mapping sparse data into block
structures, we are able to exploit the computational power of
TCUs, which significantly reduces the time required for contrac-
tion operations. The blockwise tensor contraction is illustrated
in Fig. 4. After the TCU computation is completed, a new task
is retrieved from the task list to execute tensor contraction, and
this process is repeated until all items in the task list have been
traversed.

The loading scheme for tensor contraction on TCUs depends
on free indices and contracted indices. The free index of tensor
X is treated as the row index of matrix A, and the free index of
tensor Y is treated as the column index of matrix B. Bitmaps
are employed to find the loading position for non-zero elements
in TCUs.

The APIs (WMMA) provided by NVIDIA only provide one
calculation with 256 elements in a warp. We choose the unsigned

Algorithm 2: TC_TCUs: WMMA Operations for the 1-
Mode Contraction in GPU Kernel Function.

Input:
Element array: X_ele,Y_ele;
Task list arrays: task_list_ptr, task_list;

Output:
Result array: Z_ele;
Bitmap index array: bmp3

1: int WID ← threadIdx.x/32;
2: wmma::fragment A_frag,B_frag, C_frag;
3: int t1 ← task_list_ptr[WID];
4: int t2 ← task_list_ptr[WID + 1];
5: bmp3 ← 0;
6: for i = t1 to t2 do
7: (bmp1, bmp2)← task_list(i);
8: slice_num← 2;
9: for s = 0 to 8 do

10: Load2Frag(s, slice_num, bmp1,X_ele, A_frag);
11: Load2Frag(s, slice_num, bmp2,Y_ele, B_frag);
12: wmma::mma_sync(C_frag,A_frag,B_frag,

C_frag);
13: Load2Bmp(C_frag, bmp3,Z_ele);
14: s+ = slice_num;
15: end for
16: end for
17: return bmp3,Z_ele;

long long integer for bitmaps, which is equal to 64 elements
being computed (8× 8) at once, resulting in not exploiting the
full performance of matrix multiplication of TCUs at once.
Regardless, WMMA directly loads elements from global mem-
ory into registers of each thread containing a fragment of the
matrix, where the partial matrix is loaded and stored. Fig. 5
illustrates the loading method for a tensor block (size 8× 8× 8)
inAfrag of TCUs under 1-mode and 2-mode contraction. Light
colors represent bits set to 0in the bitmap, while dark colors
represent bits set to 1. ForBfragof TCUs, the loading method is
similar. To provide a clear illustration, we mainly depict the first
slice of the tensor block and the positions of non-zero element
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Fig. 5. Loading methods for blocks. The white spaces in TCUs represent the initial state of the fragment, where all positions are zeroed out and not yet loaded
with data. The light-colored blocks correspond to elements where the bitmap’s bit is set to 0, meaning these are structural zeros in the tensor. The dark-colored
blocks indicate non-zero elements, where the bitmap’s bit is set to 1, representing the active data that will be used in the tensor contraction process.

Algorithm 3: Load2Frag: Load Two8× 8Slices Into a16×
16 Fragment Matrix Using 64-Bit Bitmaps.

Input: slice_idx, slice_num, bmp, ele_ptr
Output: frag
1: Initialize frag as a 16× 16 matrix filled with zeros
2: for i = 0 to 7 do
3: for j = 0 to 7 do
4: /*Calculate the bit position in the bitmap*/
5: bit_pos← i× 8 + j
6: if (bmp[s]&amp; (1� bit_pos)) �= 0 then
7: frag[i][j]← ∗ele_ptr ++
8: end if
9: end for

10: end for
11: for i = 8 to 15 do
12: for j = 8 to 15 do
13: /*Calculate the bit position in the bitmap*/
14: bit_pos← (i− 8)× 8 + (j − 8)
15: if (bmp[s+ 1]&amp; (1� bit_pos)) �= 0 then
16: frag[i][j]← ∗ele_ptr ++
17: end if
18: end for
19: end for
20: return frag

loadings at the beginning and end of the slice and execute,
and we perform the sparse tensor self-contraction operation
for a tensor block unit B ∈ R8×8×8, namely Z∏Z(Im∪Im) =
B∏B(Im∪Ik) × B∏B(Ik∪Im).

In 1-mode contraction, for each element in the result tensor
Z , we have

Z(h1, h3, h3, h1) = B(h1, h3, :)× B(:, h3, h1), (11)

Algorithm 4: Load2Bmp: Store Bitmaps From the non-Zero
Elements of Two 8× 8Diagonal Submatrices Within a 16×
16 Fragment.

Input: frag, bmp, ele_ptr
Output: bmp, ele_ptr
1: bit_idx← 0
2: bmp0 ← 0, bmp1 ← 0
3: for i = 0 to 7 do
4: for j = 0 to 7 do
5: /*Set the corresponding bit in bmp to 1*/
6: if frag[i][j] �= 0 then
7: bit_idx← i× 8 + j
8: bmp0 ← bmp0|(1� bit_idx)
9: ∗ele_ptr ++← frag[i][j]

10: end if
11: end for
12: end for
13: for i = 8 to 15 do
14: for j = 8 to 15 do
15: /*Set the corresponding bit in bmp to 1*/
16: if frag[i][j] �= 0 then
17: bit_idx← (i− 8)× 8 + (j − 8)
18: bmp1 ← bmp1|(1� bit_idx)
19: ∗ele_ptr ++← frag[i][j]
20: end if
21: end for
22: end for
23: bmp.push(bmp0, bmp1)
24: return bmp

where Im = {H1, H3} and Ik = {H2}. Then, we extend it to
the slice form,

Z(h1, :, :, h1) = B(h1, :, :)× B(:, :, h1). (12)
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As depicted in Fig. 11(a), achieving 1-mode contraction on H2,
merely requires placing each slice into the diagonal matrices
of the fragment. Remarkably, the contraction of two slices can
be accomplished by executing a single WMMA operation. For
an 8× 8× 8 block, four WMMA operations are required. We
extract solely the diagonal matrices from the resulting matrix to
produce the 1-mode contraction results.

In Fig. 11(b), we adopt a similar approach to slicing and
fragment placement. For 2-mode contraction, we have

Z(h3, h3) =
8∑

h1=1

8∑
h2=1

B(h3, :, :)× B(:, :, h3). (13)

where Im = {H1, H2} and Ik = {H3}.
However, for 2-mode contractions, we upscale our original

8× 8 slice into a 4× 16 one. One WMMA operation suffices
for the contraction of four slices, and hence, for an 8× 8× 8
block, two WMMA operations are necessary. It is noteworthy
that after computing the 2-mode contraction with TCUs, we must
sum up the four small matrices located only on the diagonal of
the resulting matrix separately. Consequently, we obtain just four
contraction results from one WMMA operation.

Algorithm 2 illustrates the execution of GPU threads for
1-mode tensor block contraction using WMMA operations.
Within Algorithm 2, the variableWID denotes the warp to which
each thread belongs. Each warp iterates through matched pairs
contributing to a single result block based on the information
from array task_list_ptr in lines 6 to 16. The variable bmp3
represents the result block in BCB format. A matched pair
(bmp1, bmp2) is obtained in line 7. During computation, each
warp reads non-zero elements from slice_num slices and stores
them in registers, specifically A_frag and B_frag, utilizing
the index information outlined in lines 10 and 11, as detailed
in Algorithm 3. Algorithm 3 aims at fill the values in frag
with the corresponding position by the bit-AND operation. Sub-
sequently, C_frag is produced by performing matrix-matrix
multiplication between A_frag and B_frag in line 12 with the
wmma built-in function. Two diagonal submatrices in C_frag
are stored in line 13, as detailed in Algorithm 4. Algorithm 4
store two diagonal submatrices of the wmma result matrix
which are transformed into bitmaps with bit-OR operation. After
processing all matched pairs assigned to this warp, the result
block is transferred to the result tensor Z .

The procedure for 2-mode contraction exhibits similarities to
that of 1-mode contraction. However, there are two distinctions
in the functions Load2Frag and Load2Bmp. Fig. 11(b) illustrates
the process of 2-mode contraction, where both A_frag and
B_frag are simultaneously loaded with 4 slices to participate
in TCUs (lines 10-11). Here, the variable slice_num is assigned
a value of 4. Additionally, the extraction of four diagonal ma-
trices is performed, followed by the summation of all elements
within each matrix. Consequently, the sum of elements in each
diagonal submatrix is treated as an individual element within
the resulting tensor in line 13. Therefore, for the contraction
of a four-dimensional tensor and so forth, the process can be
extrapolated by simply modifying the loading method.

V. EVALUATION

In this section, we conduct a number of experiments on
GPU to evaluate the performance of our proposed approach.
First, we analyze the storage space size of the BCB format
and evaluate its effectiveness in improving the performance of
SpTC computation. Second, we verify the efficient utilization
of TCUs under different downsizing modes by our proposed
TCU kernel loading method. Third, by comparing the current
SpTC implementations, we demonstrate the superiority and
advancement of BCB-SpTC in terms of overall performance.

A. Experimental Setup

1) Platforms: The GPU used for the experiments is the
NVIDIA A100 GPU (A100 for short) of the Ampere architec-
ture, which is installed on an Intel(R) Xeon(R) Gold 5120 CPU.
The CPU memory size used for the experiments is 128 GB, and
the GPU global memory size is 40 GB, which has 6912 cuda
cores and 432 tensor cores. We use GCC 7.5.0 and NVCC 11.2.

2) Datasets: We evaluate our method on four sparse tensors
that are obtained from the real-world datasets with varying
characteristics. These four tensor datasets are from GroupLens
Research,1 Chengdu Taxi data2 and vertical excitation energies
in uracil [24]. The details are as follows.
� Ratings & Art: Published by GroupLens Research. They

described the anonymous movie and art ratings from mem-
bers of the movie recommendation service MovieLens.
The dimension size of Ratings is 6040× 3952× 5 and the
number of its records is 1000209. The dimension size of
Art is 669× 379× 251 and the number of its records is
63064.

� Taxi: The traffic flow data collected frome Chengdu City
area in August 2014. It obtained over 1.4 billion GPS
trajectory data of more than 14000 taxis. The dimension
size of Ratings is 7471× 1080× 28 and the number of its
records is 688758.

� Uracil: The chemistry data came from Vertical excitation
energies in uracil in the gas phase and in the water solution.
It joined in the perturbative triples correction (T) in Cou-
pled Cluster (CC) methods. The dimension size of Uracil
is 90× 90× 174× 174 and the number of its records is
1034755.

3) Parameter Settings: Tensor contraction is a computation-
ally challenging process due to the huge dimension of tensors.
To facilitate the observation of the performance of BCB-SpTC
framework, we perform a tensor contraction of Z∏Z(Im∪Im) =
X∏X (Im∪Ik) ×X∏X (Ik∪Im) to generate two tensors with the
same sparse structure. For the 3-dimensional tensor, we consider
the computational task of the contraction of one mode and the
computational task of the contraction of two modes. For the
4-dimensional tensor, we also consider the computational task of
the contraction of three modes. Limited by the device memory,
we always contract the longer indices. To better demonstrate
the progress of our method, we chose other recent research

1https://grouplens.org
2https://challenge.datacastle.cn/v3/cmptDetail.html?id=175
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TABLE I
MEMORY USAGE (MB) OF DATASETS

results (tSparse [25], DBCSR [26], GSpTC [15]) as the baseline
methods. These methods are both executed on GPU and only
tSparse utilizes TCUs. It should be noted that we have extended
the tSparse, originally used for computing sparse matrix multi-
plication, to handle sparse tensor contractions. Both BCB-SpTC
and tSparse utilize bitmap-based storage for non-zero elements
and employ block partitioning strategies with TCUs. However,
a pivotal divergence arises concerning the structure of block
units and the approach to indexing. BCB-SpTC adopts tensors
as block units and employs a binary linear indexing scheme to
store block information. In contrast, tSparse, while extended to
tensor operations, retains matrices as block units and records
block indices using the COO format. Furthermore, we continue
to utilize tSparse for representation.

B. Efficiency of BCB Format

1) Storage Usage Analysis: The memory usage data for four
datasets (Ratings, Art, Taxi, and Uracil) under four methods are
summarized in Table I. As shown in Table I, the BCB-SpTC
method consistently outperforms the other three methods in
terms of storage usage. Across all datasets, BCB-SpTC ex-
hibits lower memory consumption by an average of 1.75 MB,
33.80 MB, and 21.76 MB compared to tSparse, GSpTC, and
DBCSR, respectively. These results demonstrate the superior
storage efficiency of the BCB-SpTC method for SpTC on GPU.
Although the relative improvement in storage usage with BCB-
SpTC is more modest for the Ratings, Art, and Taxi datasets
(maximum 6.31 MB, 0.71 MB, and 4.98 MB reductions, re-
spectively), a significant advantage is observed for the Uracil
dataset. BCB-SpTC achieves substantial memory savings, re-
ducing storage consumption by 141.29 MB and 80.90 MB
compared to GSpTC and DBCSR, respectively. This outcome
underscores the particular strength of the BCB-SpTC method
for handling large-scale datasets, offering potential benefits for
memory-constrained computing environments. In BCB format,
the utilization of block partitioning reduces memory overhead
and facilitates processing of large sparse tensors by breaking
them into manageable blocks. And the bitmap format for index
storage efficiently represents non-zero elements, resulting in
compact memory usage. Moreover, the adoption of binary linear
indexing simplifies data access within each tensor block, further
optimizing memory usage.

Overall, the results indicate that BCB-SpTC outperforms the
other methods in terms of storage efficiency, making it a promis-
ing approach for SpTC on GPU, particularly when handling
large-scale datasets.

2) Time Analysis by Stage: The operation steps of the various
SpTC algorithms are different, but the execution time can be

uniformly divided into three parts according to the computation
phase. They are the pre-computation phase (task processing),
the computation phase (computation), and the post-computation
phase (output processing). In BCB-SPTC, we refer to the gen-
eration of the task list as task processing, contraction between
blocks as computation, and write-back as output processing.

Fig. 6 shows the execution time of 2-mode contraction for four
methods on the four datasets. The execution time is presented in
three parts. On the Ratings and Taxi datasets, the execution time
of BCB-SPTC is much less than the other methods. BCB-SPTC
is up to 6.19 times faster than the other methods and 5.18
times faster on average on Ratings. Moreover, BCB-SPTC is
up to 2.54 times faster than the other methods and 2.37 times
faster on average on Taxi. On the Uracil dataset, BCB-SPTC
is significantly faster than DBCSR and GSpTC, and the execu-
tion time of BCB-SpTC is only half of tSparse. On Art, since
the dataset is relatively sparse and has many sparse non-zero
elements, BCB-SPTC does not have a large advantage over
other methods on the execution time. However, it is still better
than other methods. Overall, the results reveal that BCB-SPTC
outperforms the other methods in terms of execution time.

For each part of the execution time, the BCB-SPTC has a
short time of computation than other methods over all datasets.
Furthermore, the task processing time of BCB-SPTC is less than
other methods on Ratings, Taxi, and Uracil. BCB-SPTC has a
longer task processing time since the Art dataset is relatively
sparse, and there are a lot of sparse non-zero elements in it. But
the time of this part of BCB-SPTC is still less than tSparse. For
the time of output processing, BCB-SPTC outperforms DBCSR
and GSpTC over all datasets. The time of this part for BCB-
SPTC is pretty much the same as tSparse. It is worth mentioning
that the time of output for BCB-SPTC is slightly faster than that
of tSparse. Overall, except for the time of task processing on the
Art dataset, BCB-SPTC outperforms the other methods in time
at each stage across all datasets.

In conclusion, the experience results indicate that BCB-SPTC
outperforms the other methods in terms of execution time, and
the time for each part of BCB-SPTC is better than the other
methods in most cases on all datasets, particularly when handling
large-scale datasets and relatively dense datasets.

C. Utilization of Tensor Cores

1) Computation Time Analysis: To highlight the efficiency
of BCB-SpTC in utilizing TCUs, we compare its computa-
tion time with tSparse, as both methods leverage TCUs for
sparse tensor computations. TCUs use half-precision (FP16)
calculations, which can introduce numerical errors compared
to the single-precision (FP32) computations typically used by
CUDA cores. This makes a comparison with tSparse crucial for
evaluating both performance and accuracy in the TCU context.
Since tSparse is the only baseline method designed to utilize
TCUs, other methods relying on CUDA cores would not provide
a meaningful comparison. The results are shown in Fig. 7.
For all 1-mode contraction, it can be seen that the difference
between the computation time of BCB-SpTC and tSparse is
almost negligible, which is due to the fact that BCB-SpTC,
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Fig. 6. Execution time of each part on A100.

Fig. 7. Computation Time Comparison with TCUs.

which performs 1-mode contraction, and tSparse have the same
method of data populating the TCUs, i.e., they both compute
two slice at a time. For 2-mode and 3-mode contraction, it can
be seen that BCB-SpTC has a larger performance improvement
relative to tSparse. This is because tSparse still uses two slice
computation at a time to fill the TCUs, while BCB-SpTC uses
four slice computation at a time to fill the TCUs in response
to the characteristics of the 2-mode and 3-mode computations.
Specifically, BCB-SpTC achieves an average speedup ratio of
2.70× relative to tSparse when performing 2-mode contraction.
In the case of performing a 3-mode contraction, the average
speedup ratio is 2.27×. The reason for the slightly lower
performance gain of 3-mode reduction over 2-mode reduction

is that the workload for 3-mode loading is higher, which slightly
reduces the utilization of the TCUs.

2) Error Analysis: Since the acceleration of computation
using TCUs is to use FP16 as the type of input data and FP32
as the type of output data, this can lead to numerical errors
in the computation process. Therefore, in order to verify the
effectiveness of BCB-SpTC using TCU, we compare the error
of the computation results of BCB-SpTC and tSparse with the
results of the computation using FP32 accuracy on CPU, where
the error R is calculated as follows:

R =

√
1

|Ω|
∑
i∈Ω

(ZFP32(i)−ZFP16(i))
2

|Ω| =
dZ∏
j=1

SZj (14)

where ZFP32 is the result of use FP32, and ZFP16 is the
result with FP16. Fig. 8 illustrates the numerical errors in the
calculations of BCB-SpTC and tSparse. 1-mode contraction of
BCB-SpTC and tSparse have the same method of data popu-
lating the TCUs, making their errors similar. For the 2-mode
reduction, the errors are larger than 1-mode and smaller than
3-mode, due to the fact that as the number of contracted modes
increases, so does the error generated by the computation using
TCU. Overall, the numerical errors are below 1.5% for both
tSparse and BCB-SpTC.
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Fig. 8. Numerical Error Comparison with TCUs.

D. Comparison to Other Implementations

1) Performance on Matrix Groups: To evaluate the perfor-
mance of BCB-SpTC on synthetic data, we created tensors
by combining several matrices from the SuiteSparse matrix
collection.3 Specifically, we generated two tensors: one from
the oscil_dcop matrix series with dimensions (430× 430× 57),
containing 88,008 non-zero elements, and another from the
fpga_dcop matrix series with dimensions (1220× 1220× 51),
containing 300,359 non-zero elements. We performed tensor
contractions in both mode-1 and mode-2 operations on an A100
GPU. The analysis covered execution time and the distribution
of time across different computational phases, highlighting the
efficiency of BCB-SpTC in handling these synthetic tensors.
Fig. 10 shows the performance of BCB-SpTC compared to other
methods for both mode-1 and mode-2 tensor contractions on the
synthetic data. BCB-SpTC demonstrates competitive execution
times, largely due to the spatial locality present in the synthetic
tensors. The organization of non-zero elements in these tensors,
derived from grouped matrices, aligns well with BCB-SpTC’s
multi-dimensional blocking strategy, enabling efficient handling
of localized data. Fig. 11 show the time distribution for different
phases–task processing, computation, and output processing–
during mode-1 and mode-2 contractions. BCB-SpTC shows
a balanced distribution of time across all phases, particularly
excelling during the computation phase due to its block-wise
strategy, which is well-suited to the synthetic data’s structure.

The strong performance of BCB-SpTC on synthetic data is
likely due to the spatial locality of non-zero elements within the
tensors derived from grouped matrices. This structure allows
BCB-SpTC to optimize data access and minimize redundant
computations, leading to faster execution times and more effi-
cient utilization of GPU resources.

2) Performance on Real Tensors: We provide a compar-
ison between BCB-SpTC and three alternative methods. To
further evaluate the scalability and robustness of our BCB-
SpTC method, we extended our experiments to include two
significantly larger and more sparse tensors: the Nips and
Uber tensors [27]. The Nips tensor has dimensions of 2482×
2862× 14036× 17 with 3101609 non-zero elements, while the
Uber tensor has dimensions of 183× 24× 1140× 1717 with

3https://sparse.tamu.edu/

3309490 non-zero elements. Fig. 9 illustrates the performance of
sparse tensor contraction using six methods on A100 GPU. Each
of the comparative methods focuses on achieving sparse tensor
contraction on GPU across six diverse datasets, encompassing
1-mode, 2-mode, and 3-mode tensor contraction scenarios. It
is noteworthy to mention that tSparse, initially designed for
sparse matrix multiplication, is extended to accommodate tensor
contractions by us. The results indicate that the time required for
tensor contraction increases with the dimensionality and size of
the tensor. Despite this increase, BCB-SpTC maintains its com-
petitive edge in performance, demonstrating effective scaling
across these more challenging datasets. In 1-mode sparse con-
traction, BCB-SpTC consistently outperforms tSparse, yielding
speedup ratios ranging from approximately 1.4× to 2.2×. In
2-mode contraction, BCB-SpTC maintains its competitive edge,
with speedup ratios between 1.6× and 3.3×, further empha-
sizing its advantage over tSparse. These findings underscore
BCB-SpTC’s efficiency in the context of tensor contraction. And
this performance discrepancy can be attributed to BCB-SpTC’s
efficient TCUs utilization and optimized indexing strategy.

When comparing BCB-SpTC to GSpTC and DBCSR, a
clear trend emerges in favor of BCB-SpTC’s execution times.
GSpTC leverages COO format for sparse tensor contractions’
parallel optimization, while DBCSR employs a similar parallel
optimization strategy for sparse tensor contractions using the
DBCSR framework. In contrast, BCB-SpTC excels in memory
utilization and computational speed by utilizing tensor-based
block units and binary linear indexing. The empirical results
in Fig. 9 consistently portray BCB-SpTC’s superior execution
time. As an example, in the 1-mode contraction of the Taxi
dataset, BCB-SpTC takes approximately 5.8 × less time than
GSpTC (827.6 milliseconds) and around 5.6 × less time than
DBCSR (806.9 milliseconds) to complete the task. This perfor-
mance advantage is rooted in BCB-SpTC’s effective strategy of
BCB format and TCUs, resulting in improved data access and
computation efficiency. For instance, with the addition of the
Uber and Nips tensors, the increased computational demand due
to their larger dimensions and lower sparsity further highlights
BCB-SpTC’s capability to handle large-scale tensor contrac-
tions efficiently.

In conclusion, our comparison analysis establishes BCB-
SpTC as a powerful and memory-efficient solution for executing
sparse tensor contractions on GPU. Its unique approach of
utilizing TCUs and BCB format grants BCB-SpTC a distinct
edge in terms of computational speed and memory efficiency.
Overall, the results in Fig. 9 indicate that BCB-SpTC has a
significant advantage over tSparse, GSpTC, and DBCSR in
terms of computational speed and efficiency, with an average
speedup ratio of 4.6× and speedup ratios ranging from 1.1× to
21.3×.

VI. RELATED WORK

In the realm of scientific and engineering applications,
emerges as a computational task that poses significant chal-
lenges. To tackle these challenges and optimize the performance
of algorithms, researchers have delved into various methods.
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Fig. 9. SpTC performance of different methods on A100.

Fig. 10. SpTC performance of different methods about synthetic tensors on
A100.

The primary goal of optimizing SpTC is to leverage the
sparsity property. This objective has led to numerous approaches
proposed in recent years. Ozog et al. [28] investigated schedul-
ing algorithms for block-sparse tensor contractions within the
NWChem computational chemistry code, considering different
degrees of sparsity. Liu et al. [9] developed Sparta, which
employed novel data representations and structures to address
specific challenges facing the optimization of SpTC. Hérault
et al. [29] implemented tensor contraction efficiently and scal-
ably using the task-focused (PaRSEC) runtime. Xiao et al. [15]
presented GSpTC, an efficient element-wise SpTC framework
on CPU-GPU heterogeneous system, which addressed the prob-
lem of index matching and accumulation. However, these works
lacked the exploration of SpTC acceleration using TCU which
is new generation hardware.

Bitmap-based formats have emerged as a promising so-
lution for improving the optimization of performance. Vari-
ous researchers have proposed these formats to overcome the
challenge of leveraging sparsity effectively. Wang et al. [30]

Fig. 11. Time Distribution for each part about synthetic tensors on A100.

implemented Sparse Tensor-Times-Matrix (SpTTM) on CPU-
GPU heterogeneous hybrid systems, which gave a parallel ex-
ecution strategy for SpTTM in different sparse formats and
designed a new graph neural network SPT-GCN to select a
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suitable tensor sparse format. Zhang et al. [31] developed data
parallel algorithms to pair up bitmap-indexed sparse matrix
blocks for SpGEMM utilizing data parallel primitives. Kannan
et al. [32] proposed a bitmapped sparse matrix format that
stores entries as blocks without incurring load overheads. Chan
et al. [33] presented a comprehensive framework for studying
the design space of bitmap indices for selection queries. Wang
et al. [34] proposed IAP-SpTV, an input-aware adaptive pipeline
SpTV via Graph Convolutional Network (GCN) on CPU-GPU.
They designed the hybrid tensor format (HTF) and constructed
Slice-GCN to select a suitable format for each slice of HTF. A
lot of research has focused on monolithic compression formats
to fine-grained blocked compression formats. The tiled and
blocked compression formats have become the research hotspot.

Recently, researchers have started exploring the potential
of TCUs to enhance the optimization of. TCUs are special-
ized hardware components that accelerate tensor operations on
NVIDIA GPUs. Zachariadi et al. [25] designed tSparse, which
employs a bitmap-based format to store the matrix, partitions
the input matrices into tiles, and multiplies tiles using the mixed
precision mode of TCUs to perform SpGEMM. Feng et al. [35]
developed Emulated GEMM on Tensor Cores (EGEMM-TC)
to extend the usage of Tensor Cores to accelerate scientific
computing applications without compromising the precision re-
quirements. Wang et al. [36] proposed a novel approach to GPU-
based Sparse Tensor Matrix Chain Multiplication (SpTMCM)
and explored the discovery of SpTMCM coupled with the
emerging computing core, TCUs. It developed a TCU-based
tensor parallel algorithm with a novel approach to increase
the memory bandwidth. The current exploration of TCUs ac-
celerated calculations mainly focuses on matrix computation
which is a low-dimensional computation, and lacks exploration
of high-dimensional data contraction computation.

VII. CONCLUSION

We propose BCB-SpTC, a parallel computing framework
based on bit compression and bitmaps on GPU. BCB-SpTC
blocks the entire tensor in multiple dimensions and stores
the sparse distribution in a bitmap to minimize index storage.
Multiple indices of blocks are replaced with binary indices to
achieve multi-dimensional index matching for block matching.
For block computation, the element indices are mapped into
the TCUs for tensor contraction using bitmaps. Experiments
on real-world tensor datasets demonstrated that BCB-SpTC
outperformed conventional tensor contraction methods.

For future work, we will continue to improve the computa-
tional efficiency of bit operations and focus on the design pattern
of the TCUs from PTX-level optimization. For extremely sparse
tensors, the bitmaps will contain more non-zero elements by
appropriate data transformation and transposition.

REFERENCES

[1] S. Hirata, “Tensor contraction engine: Abstraction and automated parallel
implementation of configuration-interaction, coupled-cluster, and many-
body perturbation theories,” J. Phys. Chem. A, vol. 107, pp. 9887–9897,
2003.

[2] J. Gray and S. Kourtis, “Hyper-optimized tensor network contraction,”
Quantum, vol. 5, 2021, Art. no. 410.

[3] J. Kim et al., “Optimizing tensor contractions in CCSD(T) for effi-
cient execution on GPUs,” in Proc. Int. Conf. Supercomputing, 2018,
pp. 96–106.

[4] C. Roberts et al., “TensorNetwork: A library for physics and machine
learning,” 2019, arXiv: 1905.01330.

[5] J. Kossaifi, A. Khanna, Z. C. Lipton, T. Furlanello, and A. Anandkumar,
“Tensor contraction layers for parsimonious deep nets,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. Workshops, 2017, pp. 1940–1946.

[6] A. Cichocki, “Era of Big Data processing: A new approach via tensor
networks and tensor decompositions,” 2014, arXiv:1403.2048.

[7] J. Kossaifi, Z. C. Lipton, A. Kolbeinsson, A. Khanna, T. Furlanello, and A.
Anandkumar, “Tensor regression networks,” J. Mach. Learn. Res., vol. 21,
no. 1, pp. 4862–4882, 2020.

[8] R. Kunchum, A. Chaudhry, A. Sukumaran-Rajam, Q. Niu, I. Nisa, and
P. Sadayappan, “On improving performance of sparse matrix-matrix
multiplication on GPUs,” in Proc. Int. Conf. Supercomputing, 2017,
pp. 14:1–14:11.

[9] J. Liu, J. Ren, R. Gioiosa, D. Li, and J. Li, “Sparta: High-performance,
element-wise sparse tensor contraction on heterogeneous memory,”
in Proc. ACM Sigplan Symp. Princ. Pract. Parallel Program., 2021,
pp. 318–333.

[10] S. Smith and G. Karypis, “Tensor-matrix products with a compressed
sparse tensor,” in Proc. 5th Workshop Irregular Appl.: Architectures Algo-
rithms, 2015, pp. 1–7.

[11] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, no. 4, pp. 65–76, 2009.

[12] M. T. Fishman, S. R. White, and E. M. Stoudenmire, “The ITensor software
library for tensor network calculations,” 2020, arXiv: 2007.14822.

[13] D. A. Matthews, “High-performance tensor contraction without transpo-
sition,” SIAM J. Sci. Comput., vol. 40, 2018, Art. no. C1–C24.

[14] P. J. Martínez-Ferrer, A. N. Yzelman, and V. Beltran, “A native
tensor–vector multiplication algorithm for high performance computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 12, pp. 3363–3374,
Dec. 2022.

[15] G. Xiao, C. Yin, Y. Chen, M. Duan, and K. Li, “GSpTC: High-performance
sparse tensor contraction on CPU-GPU heterogeneous systems,” in Proc.
IEEE 24th Int. Conf. High Perform. Comput. Commun.; 8th Int. Conf. Data
Sci. Syst.; 20th Int. Conf. Smart City; 8th Int. Conf. Dependability Sensor,
Cloud Big Data Syst. Appl., 2022, pp. 380–387.

[16] P. Springer and P. Bientinesi, “Design of a high-performance GEMM-like
tensor–tensor multiplication,” ACM Trans. Math. Softw., vol. 44, no. 3,
pp. 1–29, 2018.

[17] S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and J. S. Vetter, “Nvidia
tensor core programmability, performance & precision,” in Proc. IEEE Int.
Parallel Distrib. Process. Symp. Workshops, 2018, pp. 522–531.

[18] Z. Jia, M. Maggioni, J. K. Smith, and D. P. Scarpazza, “Dissect-
ing the NVidia turing T4 GPU via microbenchmarking,” 2019, arXiv:
1903.07486.

[19] J. Li, J. Sun, and R. Vuduc, “HiCOO: Hierarchical storage of sparse
tensors,” in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal.,
2018, pp. 238–252.

[20] A. E. Helal et al., “ALTO: Adaptive linearized storage of sparse tensors,”
in Proc. ACM Int. Conf. Supercomputing, 2021, pp. 404–416.

[21] A. Nguyen et al., “Efficient, out-of-memory sparse MTTKRP on massively
parallel architectures,” in Proc. 36th ACM Int. Conf. Supercomputing,
2022, pp. 1–13.

[22] N. Bell, S. Dalton, and L. N. Olson, “Exposing fine-grained parallelism in
algebraic multigrid methods,” SIAM J. Sci. Comput., vol. 34, pp. C123–
C152, 2012.

[23] S. Dalton, N. Bell, L. Olson, and M. Garland, “CUSP: Generic parallel
algorithms for sparse matrix and graph computations,” 2014. [Online].
Available: http://cusplibrary.github.io/

[24] E. Epifanovsky, K. Kowalski, P.-D. Fan, M. Valiev, S. Matsika, and A. I.
Krylov, “On the electronically excited states of uracil,” J. Phys. Chemistry.
A, vol. 112, no. 40, pp. 9983–9992, 2008.

[25] O. Zachariadis, N. Satpute, J. Gómez-Luna, and J. Olivares, “Accelerating
sparse matrix-matrix multiplication with gpu tensor cores,” Comput. Elect.
Eng., vol. 88, 2020, Art. no. 106848.

[26] I. Sivkov, P. Seewald, A. Lazzaro, and J. Hutter, “DBCSR: A blocked
sparse tensor algebra library,” in Proc. Int. Conf. Parallel Comput.,
2019, pp. 331–340. [Online]. Available: https://api.semanticscholar.org/
CorpusID:204972719

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 20,2025 at 10:59:00 UTC from IEEE Xplore.  Restrictions apply. 

http://cusplibrary.github.io/
https://api.semanticscholar.org/CorpusID:204972719
https://api.semanticscholar.org/CorpusID:204972719


2448 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 12, DECEMBER 2024

[27] S. Smith et al., FROSTT: The formidable repository of open sparse tensors
and tools, 2017. [Online]. Available: http://frostt.io/

[28] D. Ozog, J. R. Hammond, J. Dinan, P. Balaji, S. Shende, and A. D. Malony,
“Inspector-executor load balancing algorithms for block-sparse tensor
contractions,” in Proc. 42nd Int. Conf. Parallel Process., 2013, pp. 30–39.

[29] T. Hérault et al., “Distributed-memory multi-GPU block-sparse tensor
contraction for electronic structure,” in Proc. IEEE Int. Parallel Distrib.
Process. Symp., 2021, pp. 537–546.

[30] H. Wang, W. Yang, R. Ouyang, R. Hu, K. Li, and K. Li, “A heterogeneous
parallel computing approach optimizing SpTTM on CPU-GPU via GCN,”
ACM Trans. Parallel Comput., vol. 10, pp. 1–23, 2023.

[31] J. Zhang and L. Gruenwald, “Regularizing irregularity: Bitmap-based and
portable sparse matrix multiplication for graph data on GPUs,” in Proc.
Int. Conf. Manage. Data, 2018, pp. 1–8.

[32] R. Kannan, “Efficient sparse matrix multiple-vector multiplication using
a bitmapped format,” in Proc. IEEE Int. Conf. High Perform. Comput.,
Data, Analytics, 2013, pp. 286–294.

[33] C. Y. Chan and Y. E. Ioannidis, “Bitmap index design and evaluation,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 1998, pp. 355–366.

[34] H. Wang, W. Yang, R. Hu, R. Ouyang, K. Li, and K.-C. Li, “IAP-SpTV: An
input-aware adaptive pipeline SpTV via GCN on CPU-GPU,” J. Parallel
Distrib. Comput., vol. 181, 2023, Art. no. 104741.

[35] B. Feng, Y. Wang, G. Chen, W. Zhang, Y. Xie, and Y. Ding, “EGEMM-TC:
Accelerating scientific computing on tensor cores with extended preci-
sion,” in Proc. 26th ACM SIGPLAN Symp. Princ. Pract. Parallel Program.,
2021, pp. 278–291.

[36] H. Wang, W. Yang, R. Hu, R. Ouyang, K. Li, and K.-C. Li, “A
novel parallel algorithm for sparse tensor matrix chain multiplication via
TCU-acceleration,” IEEE Trans. Parallel Distrib. Syst., vol. 34, no. 8,
pp. 2419–2432, Aug. 2023.

Rong Hu received the BS degree from Chang’an
University, China, and the MS degree from Hunan
University, China. She is currently working toward
the PhD degree with Hunan University. Her research
interests include parallel and scientific computing,
with focus on sparse tensor decomposition.

Haotian Wang received the PhD degree in computer
science from Hunan University, China, in 2023. He
is currently working as a postdoctoral fellow with
Hunan University, China. He previously completed
a one year joint PhD program from Nanyang Tech-
nological University, and he is an ACM member. His
research interests include parallel computing, tensor
compilation, and artificial intelligence.

Wangdong Yang received the PhD degree in com-
puter science from Hunan University, China. He is a
professor of computer science and technology with
Hunan University, China. His research interests in-
clude modeling and programming for heterogeneous
computing systems, parallel and distributed comput-
ing, and numerical computation. He has published
more than 60 papers in International conferences and
journals.

Renqiu Ouyang received the BS degree from the Hu-
nan University of Technology, China. He is currently
working toward the PhD degree. His research interests
include parallel and scientific computing, with focus
on sparse tensor decomposition.

Keqin Li (Fellow, IEEE) is a SUNY distinguished
professor of computer science with the State Univer-
sity of New York. He is also a national distinguished
professor with Hunan University, China. His current
research interests include cloud computing, fog com-
puting and mobile edge computing, energy-efficient
computing and communication, embedded systems
and cyber-physical systems, heterogeneous comput-
ing systems, Big Data computing, high-performance
computing, CPU-GPU hybrid and cooperative com-
puting, computer architectures and systems, com-

puter networking, machine learning, intelligent and soft computing. He has
authored or coauthored more than 870 journal articles, book chapters, and
refereed conference papers, and has received several best paper awards. He holds
nearly 70 patents announced or authorized by the Chinese National Intellectual
Property Administration. He is among the world’s top five most influential
scientists in parallel and distributed computing in terms of both single-year
impact and career-long impact based on a composite indicator of Scopus citation
database. He has chaired many international conferences. He is currently an
associate editor of the ACM Computing Surveys and the CCF Transactions on
High Performance Computing. He has served on the editorial boards of the IEEE
Transactions on Parallel and Distributed Systems, the IEEE TRANSACTIONS

ON COMPUTERS, the IEEE TRANSACTIONS ON CLOUD COMPUTING, the IEEE
TRANSACTIONS ON SERVICES COMPUTING, and the IEEE TRANSACTIONS ON

SUSTAINABLE COMPUTING. He is an AAIA fellow. He is also a member of
Academia Europaea (Academician of the Academy of Europe).

Kenli Li (Senior Member, IEEE) received the PhD
degree in computer science from the Huazhong Uni-
versity of Science and Technology, China, in 2003.,
and the MS degree in mathematics from Central South
University, China, in 2000. He was a visiting scholar
with the University of Illinois at Urbana-Champaign
from 2004 to 2005. He is a full professor of com-
puter science and technology with Hunan University.
The main research fields are parallel and distributed
processing, supercomputing and cloud computing,
high-performance computing for Big Data and arti-

ficial intelligence, etc. He has published more than 300 papers in international
conferences and journals. He is currently serving on the editorial board of IEEE
TRANSACTIONS ON COMPUTERS. He is an outstanding member of CCF.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 20,2025 at 10:59:00 UTC from IEEE Xplore.  Restrictions apply. 

http://frostt.io/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


