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A B S T R A C T

The automatic classification of arrhythmia is an important task in the intelligent auxiliary diagnosis of an
electrocardiogram. Its efficiency and accuracy are vital for practical deployment and applications in the medical
field. For the 12-lead electrocardiogram, we know that the comprehensive utilization of lead characteristics is
key to enhancing diagnostic accuracy. However, existing classification methods (1) neglect the similarities and
differences between the limb lead group and the precordial lead group; (2) the commonly adopted attention
mechanisms struggle to capture the domain characteristics in an electrocardiogram. To address these issues, we
propose a new dual-branch convolutional neural network with domain-informed attention, which is novel in
two ways. First, it adopts a dual-branch network to extract intra-group similarities and inter-group differences
of limb and precordial leads. Second, it proposes a domain-informed attention mechanism to embed the critical
domain knowledge of electrocardiogram, multiple RR (R wave to R wave) intervals, into coordinated attention
to adaptively assign attention weights to key segments, thereby effectively capturing the characteristics of the
electrocardiogram domain. Experimental results show that our method achieves an F1-score of 0.905 and
a macro area under the curve of 0.936 on two widely used large-scale datasets, respectively. Compared to
state-of-the-art methods, our method shows significant performance improvements with a drastic reduction in
model parameters.
1. Introduction

Arrhythmia is one of the most common types of cardiovascular
disease, which is the leading cause of death worldwide (Amini et al.,
2021). The 12-lead electrocardiogram (ECG) is an important tool for
assisting the diagnosis of Arrhythmia. Interpreting 12-lead ECG is
a labor-intensive task that requires significant time and effort from
medical experts with specialized knowledge to ensure accurate inter-
pretation. With the introduction of AI, automatic ECG classification
technology can help to improve the accuracy and efficiency of med-
ical expertise in ECG analysis, arrhythmia diagnosis, and treatment
planning.

However, automatic ECG classification methods are still limited
by the accuracy of classification models in clinical applications. After
our analysis, we found that two key factors limit the accuracy of
classification models. One factor is that the similarities and differences
in the 12-lead ECG have not been fully explored and jointly exploited.
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The other factor is the lack of domain knowledge that makes it difficult
to accurately capture the dynamic characteristics of ECG.

Firstly, existing research does not effectively utilize both the simi-
larities and differences features of the 12-lead ECG, which significantly
impacts the performance of the classification model. Some studies
designed a single-branch network for each lead to integrate the spatial
information from multiple time points within a single lead, aiming to
capture the internal characteristics of each lead (Yang et al., 2021;
Zhang et al., 2021). While this approach extracts difference features
between leads, it overlooks the similarities features among leads. Other
studies integrate information from all 12-lead ECG data in spatial and
temporal (Wang et al., 2020; Zhang et al., 2020; Yao et al., 2020),
extracting global features of 12-lead ECG, which ignores the differences
between leads. Secondly, existing methods treat ECG classification as
a general problem similar to computer vision and natural language
processing, and therefore introduce generic attention mechanisms to
https://doi.org/10.1016/j.engappai.2024.109480
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data mining, AI training, and similar technologies. 
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Fig. 1. Two planes of the heart. A 12-lead ECG reflects the electrical activities of the
heart in the frontal plane and horizontal plane.

focus on the spatial, temporal, and channel features of ECG signals.
However, domain knowledge specific to ECG, such as the RR interval,
has not been fully utilized. The RR interval, which represents the
time between two consecutive R-peaks in an ECG, is a key indicator
for ECG diagnosis (Isler et al., 2019), prediction (Narin et al., 2018;
Surucu et al., 2021), and signal segmentation (Shet et al., 2012; Peng
et al., 2023; Niroshana et al., 2023). Since the current attention mech-
anisms do not incorporate this medical domain knowledge, the model’s
classification accuracy is limited.

This paper aims to consider both the similarities and differences
characteristics of 12-lead ECG and introduce professional medical do-
main knowledge to design a high-precision ECG classification model.
First, we believe that the design mechanism of the 12-lead leads
to similarities and differences characteristics. In order to reflect the
electrical activity of the heart in the frontal and horizontal plane (see
Fig. 1), the 12-lead are divided into limb lead groups and precordial
lead groups. As shown in Fig. 2, there are similarities in waveforms
and signal amplitude values of ECG signals between leads in the same
group (Goldberger et al., 2018). However, because the two lead groups
represent different cardiac activities, there are significant differences
in waveform and signal amplitude between the two groups. In order to
extract the similarities and differences features of these ECG signals,
we designed a dual-branch network consisting of two single-branch
networks. Among them, each single-branch network takes the ECG
signal of a lead group as input to extract similarities features within
this lead group. There are differences between these two sets of char-
acteristics. Second, we incorporated an attention mechanism to each
single network and introduced RR interval as domain knowledge to the
attention mechanism. Specifically, RR interval refers to the duration
between two consecutive R waves in the ECG. If it is too long or too
short, it indicates arrhythmia. Therefore, the attention mechanism can
more accurately capture ECG features through domain knowledge.

In addition, we designed a group leads fusion module after the dual-
branch network. This module processes the two lead group features
extracted by the dual-branch network, further improving the accuracy
of the model. First, the module calculates the information entropy of
the lead group features to enhance important features and weaken
secondary features. Second, the module fuses the feature values of the
two lead groups to extract all 12-lead features. This way, the fusion
module is more sensitive to important features while still paying atten-
tion to global features, thereby improving the classification accuracy of
the entire model. Based on the above, we propose a new Dual-branch
2 
Convolutional Neural Network with domain-informed attention, which
is named DCRR-Net, for arrhythmia classification.

Our main contributions are summarized as follows.

• We propose a dual-branch convolutional neural network to cap-
ture the intra-group similarities and inter-group differences of
limb and precordial leads, hence significantly enhancing the clas-
sification performance.

• We present a domain-informed attention mechanism for effec-
tively extract dynamic features of ECG, which employs coordi-
nate attention with domain knowledge-RR intervals. This mecha-
nism extensively explores the individualized characteristics of RR
intervals across different individual patients.

• We conduct extensive experiments on two public datasets to
verify the effectiveness of the module by controlling a single
module in the network. The experimental results demonstrate
the effectiveness of each module. DCRR-Net outperforms state-
of-the-art methods and greatly reduces the number of model
parameters.

2. Related work

Convolutional neural networks (CNN), deep belief network, recur-
rent neural networks (RNN), and long short-term memory network
(LSTM) have been widely employed for automatic arrhythmia classifi-
cation (Hong et al., 2020). Early research focused on the classification
of single-lead ECG (Yildirim, 2018; Sayantan et al., 2018; Li et al.,
2020; Raza et al., 2022; Hannun et al., 2019; Yıldırım et al., 2018;
Zhang et al., 2017; Natesan et al., 2020; Petmezas et al., 2021; Hu
et al., 2022; Park et al., 2022). Sayantan et al. proposed using a
gaussian–bernoulli deep belief network combined with active learning
to identify arrhythmias (Sayantan et al., 2018). Hannun et al. pro-
posed a deep neural network to attain 12 arrhythmia classifications for
91,232 single-lead ECG, which achieved cardiologist-level arrhythmia
detection performance (Hannun et al., 2019). Petmezas et al. proposed
a hybrid CNN-LSTM network structure to improve the accuracy of
arrhythmia detection by handling unbalanced data (Petmezas et al.,
2021). The 12-lead ECG better meets the requirements of clinical
applications, thus prompting more research focus on its automatic
classification (Xie et al., 2021; Wang et al., 2020; Zhang et al., 2020;
Yao et al., 2020; Yang et al., 2021; Zhang et al., 2021; Ribeiro et al.,
2020; Yao et al., 2018; Chen et al., 2019; Ismail Fawaz et al., 2020;
He et al., 2019; Wang et al., 2017; Hochreiter and Schmidhuber,
1997). Park et al. employed a 152-layer squeeze-and-excitation residual
network to classify five types of ECG, and experiments demonstrated
that the classification performance of 12-lead ECG is superior to that of
single-lead ECG (Park et al., 2022). Subsequently, several methods have
been proposed to improve the accuracy of 12-lead ECG classification.
For example, Yang et al. developed a method based on cascaded con-
volutional neural networks and expert features(CNN_Expert Feature)
for arrhythmia classification considering the spatio-temporal correla-
tion of 12-lead ECG (Yang et al., 2021). Ribeiro et al. proposed a
unidimensional residual neural network that produced superior results
in recognizing six classes of abnormalities on a large dataset of over
2 million samples, outperforming the performance of cardiology res-
idents (Ribeiro et al., 2020). Yao et al. proposed a time-incremental
CNN (TI-CNN) to tackle the problem that CNN can receive only fixed-
length input and thus may result in loss of critical information (Yao
et al., 2018). Chen et al. proposed a CNN-LSTM network to capture the
temporal relationships between latent features, considering the charac-
teristics of multivariate time series data (Chen et al., 2019). In addition,
comparative learning (Le et al., 2023) was utilized for arrhythmia
classification of 12-lead ECG. However, they did not consider both the
similarities and differences in the characteristics of the 12-lead ECG
limb lead group and precordial lead group.
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Fig. 2. A 12-lead ECG sample overlaid with group aggregation.
The attention mechanism is an effective method for improving the
performance of deep learning models, and it has achieved signifi-
cant success in various fields (Vaswani et al., 2017; Li et al., 2021;
Liu et al., 2022). It also provides a new path for enhancing ECG
classification. Some studies have explored the temporal and spatial
characteristics of ECG signals (Zhang et al., 2021; Wang et al., 2020;
Yao et al., 2020; Zhang et al., 2020; Wang et al., 2023; Han et al.,
2023; Song et al., 2024; Li et al., 2024; Srivastava et al., 2021; Fu et al.,
2020). For example, Zhang et al. proposed a multi-lead branch fusion
network(MLBF-Net), introducing an attention mechanism to integrate
the global features of the 12-lead within the network (Zhang et al.,
2021). Wang et al. introduced a deep multi-scale fusion convolutional
neural network (DMSFNet) that effectively captures disease-related ab-
normal patterns and performs multi-class arrhythmia detection (Wang
et al., 2020). Zhang et al. proposed a spatio-temporal attention-based
convolutional RNN (STA-CRNN) which sequentially embeds temporal
attention and spatial attention mechanisms, emphasizing locally rep-
resentative features along the spatial and temporal axes (Zhang et al.,
2020). Yao et al. proposed attention-based time-incremental convolu-
tional neural network (ATI-CNN), which uses an attention mechanism
to achieve the spatial and temporal fusion of ECG signal informa-
tion (Yao et al., 2020). Wang et al. proposed a multi-head self-attention
mechanism capable of capturing global contextual information to ex-
tract relationships and semantic features between ECG segments (Wang
et al., 2023). Han et al. used an attention-driven fusion method to fuse
temporal instance features with visual instance features (Han et al.,
2023). Song et al. introduced a novel attention mechanism based on
an improved dynamic time warping method to analyze and control
the fusion of temporal and spatial features in ECG signals (Song et al.,
2024). Li et al. proposed a beat attention mechanism and a rhythm at-
tention mechanism within the CNN-Transformer framework to enhance
the spatio-temporal features of ECG (Li et al., 2024). Other studies
focus on channel attention mechanisms. Srivastava et al. proposed
a deep neural network based on channel self-attention mechanism
to discriminate cardiac abnormalities using combinations of different
numbers of leads (Srivastava et al., 2021). Fu et al. introduced a
multi-lead attention mechanism in the CNN-LSTM, which automatically
measures and assigns weights based on the contributions of different
leads (Fu et al., 2020). Existing methods improve the accuracy of
deep learning models by introducing universal temporal, spatial, and
channel attention mechanisms. However, these studies fail to fully
utilize the domain knowledge of ECG to effectively guide the learning
and reasoning process of the attention mechanism, which may limit the
improvement of model performance.
3 
RR interval is a crucial domain knowledge in ECG (Narin et al.,
2018; Isler et al., 2019; Surucu et al., 2021), and several studies
utilize it to enhance the performance of classification models. Yang
et al. extracted features such as the average, median, and variance
of RR intervals as expert features, and combined these features using
a random forest to obtain classification probabilities (Yang et al.,
2021). Mathews et al. conducted classification using simple features
by extracting RR interval and morphological features as input to a
deep neural network (Mathews et al., 2018). Rahul et al. proposed
an improved RR interval based model by extracting the main feature
of RR interval and other statistical features from ECG (Rahul et al.,
2021). Eltrass et al. integrated linear and nonlinear features extracted
from ECG signals and RR intervals, thereby improving the diagnostic
performance of ECG (Eltrass et al., 2022). Udawat et al. proposed ex-
tracting time-domain, frequency-domain, and nonlinear features from
RR intervals and used statistical analysis and machine learning to detect
atrial fibrillation (Udawat and Singh, 2022). Andersen et al. utilized RR
intervals in the data pre-processing stage to segment ECG into RR inter-
val segments, from which high-level features were extracted (Andersen
et al., 2019). Chen et al. introduced weighted RR intervals to enhance
classification performance; they conducted experiments with weight
values ranging from 1 to 50 and determined the optimal weights
through cluster analysis (Chen et al., 2017). However, existing methods
usually use the RR interval in the preprocessing stage of ECG data,
for beat segmentation or as a fixed feature value. In other words,
they do not explicitly utilize the RR interval to capture the dynamic
characteristics of the ECG.

3. Preliminaries

3.1. 12-lead ECG

The heart is a three-dimensional structure with autonomous electri-
cal activity that can be recorded by a 12-lead ECG. A 12-lead ECG can
be mapped to two planes (Wan, 2009): the frontal plane (limb leads)
and the horizontal plane (precordial leads) (see Fig. 1). The frontal
plane includes leads I, II, III, aVR, aVL, and aVF, providing information
about the superior, inferior, left, and right positions of the heart. The
horizontal plane includes leads V1, V2, V3, V4, V5, and V6, giving
information about the left, right, anterior, and posterior positions of
the heart. Fig. 2 presents a 12-lead ECG sample overlaid with group
aggregation. Within each group, the leads exhibit similarities in wave-
forms and signal amplitude values, while differences in waveforms and
voltage values are evident between the two lead groups.
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Fig. 3. The morphological characteristics of a heartbeat include the P wave, QRS
complex wave, and 𝑇 wave.

3.2. RR interval

RR interval represents the time elapsed between the R wave peaks
of two consecutive heartbeats. A heartbeat includes morphological
features such as QRS complex waves, P waves, and T waves (e.g., see
Fig. 3). Fluctuations in these waveforms lead to ongoing alterations
in the RR interval, which in turn reflect the dynamics of cardiac
rhythm. For example, RR interval may become irregular in arrhythmia,
excessively prolonged, or shortened. Fig. 4 shows RR interval variations
in three aspects: within the same sample, within the same arrhythmia
category, and among different arrhythmia categories. RR interval is of
significant importance in ECG analysis, as it aids in the identification
of heart diseases. It can be defined as follows:

𝑅𝑅𝐼 = 𝑝𝑜𝑠(𝑅(𝑛 + 1)) − 𝑝𝑜𝑠(𝑅(𝑛)), (1)

where 𝑝𝑜𝑠(𝑅(𝑖)) is the position of the ith R wave peak.

3.3. The 12-lead ECG classification problem

We define the 12-lead ECG classification problem as an 𝑛-
classification problem with a mapping function f : E→Y, where E =
(𝑒1, 𝑒2,… , 𝑒𝑖,… , 𝑒12) ∈ R12×𝑙 is an input 12-lead ECG, with each 𝑒𝑖 de-
noting a lead and 𝑙 indicating the sample length, and Y =
(𝑦1,… , 𝑦𝑖,… , 𝑦𝑛) with 𝑦𝑖 ∈ [0, 1] representing the probability that E
belongs to the 𝑖th category.

4. Method

4.1. Overview

The overall framework of our dual-branch convolutional neural
network with a domain-informed attention is shown in Fig. 5. DCRR-
Net contains three key components: (1) A dual-branch network is
established to extract intra-group similarities and inter-group differ-
ences; (2) a domain-informed attention (RR Attention) is proposed to
capture dynamic ECG features by embedding multiple RR intervals into
a coordinate attention mechanism; (3) a group lead fusion module is
presented to fuse global information from the 12-lead ECG.

4.2. Lead grouping and dual-branch network

As discussed in Section 1, there are similarities and differences
in the 12-lead ECG. Thus, we divide a 12-lead ECG into limb leads
group and precordial leads group and develop a dual-branch network to
extract distinct characteristics from the two lead groups. Given the anal-
ogous nature of feature extraction from both the limb and precordial
leads, we employ the same branch network structure for both groups.
The limb/precordial lead branch network includes convolutional layers,
depth-wise separable convolution (DSC) (Chollet, 2017), and multiple
4 
RR attention modules. It learns features of the limb lead group and
precordial lead group, respectively.

A given 12-lead ECG E is divided into the limb lead group EL ∈ R6×𝑙

and precordial lead group EP ∈ R6×𝑙, as input to the branching network.
We design two convolutional layers to extract the low-dimensional
features of ECG. In a convolutional layer, a (3, 3) convolution kernel is
typically employed. However, to preserve the temporal characteristics
of ECG, we use a (1, 3) convolution kernel in each channel. Next, we
utilize DSC instead of a traditional convolutional layer. A DSC has two
parts: a depth-wise convolutional layer and a point-wise convolutional
layer The benefit of DSC is to reduce the number of parameters used
for convolutional computation by splitting the correlation between the
spatial dimension and channel dimension to achieve the purpose of
model lightweight.

Subsequently, the features are fed into the depth-wise convolutional
layer (see Fig. 5), which performs spatial convolutions independently
on feature maps in each channel. Following this, the feature maps are
passed to the RR attention. We propose the RR attention to capture
dynamic features between heartbeats by embedding information of
multiple RR intervals into the coordinate attention, which will be
described in Section 4.3. We posit that segregating spatial convolu-
tions from channel convolutions enables the RR attention to effectively
concentrate on the spatial attributes of the ECG. Finally, point-wise con-
volutional layers execute channel-wise convolutions to merge spatial
features. In addition, we enhance the model’s expressive capacity by
utilizing DSC with convolutional kernels of sizes (1, 1), (1, 3), and (1,
5) at the same time.

4.3. RR attention

RR interval is a highly valuable indicator for assessing arrhythmia.
Due to fluctuations in the ECG waveforms, alterations occur in RR
intervals, as described in Section 3. To capture the dynamic variations
in these waveforms, we design the RR attention (see Fig. 6(b)) that in-
tegrates multiple RR intervals with the coordinate attention. It includes
two stages: embedding and weighting.

4.3.1. Multiple RR intervals embedding
Inspired by coordinate attention (Hou et al., 2021), we capture the

dynamic features of ECG by embedding information of multiple RR
intervals into coordinate attention. Coordinate attention encodes the
coordinate positions within the feature map, enabling the model to
comprehend the significance and relationships among different posi-
tions. As discussed in Section 1, ECG waveforms exhibit characteristics
of location similarity, which align with the design intent of coordinate
attention. In traditional coordinate attention, a feature map can be
encoded in the horizontal and vertical directions on each channel
(see Fig. 6(a)). In RR attention, we aggregate features separately with
different RR intervals in the horizontal direction (Fig. 6(b)). Subse-
quently, we merge these features to enhance the model’s capability to
capture dynamic ECG characteristics. At the same time, we preserve
precise positional information by vertically aggregating feature maps.
The specific steps for embedding RR intervals are as follows.

First, we locate all the R peaks in E by using the algorithm of Pan
and Tompkins (1985). We specifically employ lead II for R peak local-
ization due to its ability to provide clearer and more easily interpretable
ECG waveforms. Second, based on the detected R peaks, we calculate
all the RR intervals using Eq. (1), and select the maximum RR interval
(𝑟max), the average RR interval (𝑟avg), and the minimum RR interval
(𝑟min). Due to the similarities in the locations of the 12-lead waveforms,
we use RR interval information obtained from lead II for the other
leads. Third, we employ multiple RR intervals to horizontally group
ECG signals in each lead, facilitating a comprehensive capture of the
dynamic features of the ECG. The purpose of grouping the horizontal
ECG data based on RR intervals is to facilitate the aggregation of
features within these intervals. The numbers of their groupings are
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Fig. 4. Variations in the RR interval of samples within the china physiological signaling challenge 2018 (CPSC2018) dataset (Liu et al., 2018). The numbers beneath the black
lines represent the lengths of RR intervals.

Fig. 5. The overall framework of DCRR-Net. Step 1: Separate the preprocessed ECG into limb leads and precordial leads, which are used as inputs for the two branch networks,
respectively. Step 2: Fed two leads into the parallel branch networks, which consist of convolutional layers, depth-wise separable convolutions, and an RR attention module, used
to learn the features of the limb leads and precordial leads separately. Step 3: Fuse the features of the limb leads and precordial leads.

Fig. 6. Coordinate attention versus RR attention. Compared to the original coordinate attention, multiple RR intervals are embedded to capture the dynamic features of the ECG.
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determined as 𝑛max = 𝑙∕𝑟max, 𝑛avg = 𝑙∕𝑟avg, and 𝑛min = 𝑙∕𝑟min, where
represents the sample length of a lead in E. We believe that the

dynamic characteristics of the ECG can be integrated through multiple
RR intervals.

An input feature map 𝐗 ∈ R𝑐×ℎ×𝑤 to RR attention undergoes
encoding operations in both the horizontal and vertical directions,
where 𝑐 represents the number of channels, ℎ is the height of the
feature map, and 𝑤 is the width. Horizontally, 𝐗 is subject to 1D feature
encoding using three pooling kernels: (1, 𝑠max), (1, 𝑠avg), and (1, 𝑠min),
where 𝑠max = 𝑤∕𝑛max, 𝑠avg = 𝑤∕𝑛avg, 𝑠min = 𝑤∕𝑛min, and w represents the
width of the feature map 𝐗. Simultaneously, encoding with the three
distinct RR intervals is done by Eq. (2), denoted by 𝐑𝐑𝑚𝑎𝑥, 𝐑𝐑𝑎𝑣𝑔 , and
𝐑𝑚𝑖𝑛, each as:

𝐑𝐑𝑖,𝑗 ,𝑚 = 1
𝑠

(𝑚+1)⋅𝑠−1
∑

𝑘=𝑚⋅𝑠
𝐗𝑖,𝑗 ,𝑘. (2)

Specifically, in Eq. (2), in the computation of 𝐑𝐑𝑚𝑎𝑥, the parameters are
𝑠 = 𝑠max and 𝑚 ∈ [0, 𝑛max). In the computation of 𝐑𝐑𝑎𝑣𝑔 , 𝑠 = 𝑠avg and
∈ [0, 𝑛avg). In the computation of 𝐑𝐑𝑚𝑖𝑛, 𝑠 = 𝑠min and 𝑚 ∈ [0, 𝑛min).
Using the three coding schemes in Eq. (2), we embed multiple RR

nterval information. To more precisely capture the position informa-
ion of ECG and the relationship between heartbeats, it is essential to
use the three types of encoding information. For this, we first expand
he dimensions of 𝐑𝐑𝑚𝑎𝑥, 𝐑𝐑𝑎𝑣𝑔 , and 𝐑𝐑𝑚𝑖𝑛 to match the dimensions
f 𝐗 using Eq. (3),

𝐑𝐑𝐄𝑖,𝑗 ,[𝑚⋅𝑠∶(𝑚+1)⋅𝑠−1] = 𝐑𝐑𝑖,𝑗 ,𝑚. (3)

After the above expansion, we obtain 𝐑𝐑𝐄𝑚𝑎𝑥, 𝐑𝐑𝐄𝑎𝑣𝑔 , and 𝐑𝐑𝐄𝑚𝑖𝑛,
hose dimensions are the same as 𝐗’s dimensions. Then an addition
peration is performed on them using Eq. (4) to aggregate the dynamic
eatures captured by these three RR intervals,

𝐑𝐗𝑖,𝑗 ,𝑘 = 𝐑𝐑𝐄𝑚𝑎𝑥
𝑖,𝑗 ,𝑘 + 𝐑𝐑𝐄𝑎𝑣𝑔

𝑖,𝑗 ,𝑘 + 𝐑𝐑𝐄𝑚𝑖𝑛
𝑖,𝑗 ,𝑘, (4)

where 𝐑𝐗𝑖,𝑗 ,𝑘 represents the encoded value after fusion.
Vertically, we encode 𝐗 using Eq. (5), where ℎ represents the height

of 𝐗:

𝐑𝐘𝑖,𝑘 = 1
ℎ

ℎ−1
∑

𝑗=0
𝐗𝑖,𝑗 ,𝑘. (5)

4.3.2. RR attention weighting
After embedding through RR intervals, we perform a concatenation

peration on RX and RY, and then the (1, 1) convolution transform
function is applied to them, as shown in Eq. (6),

𝐅 = 𝛿(𝑓 ([𝐑𝐗,𝐑𝐘])), (6)

where 𝐅 ∈ R(𝑐∕𝜆)×(ℎ+𝑤), f denotes convolution, 𝜆 represents the reduc-
ion rate (e.g., 𝜆 = 32), and 𝛿 stands for the ReLU function.

Next, we divide 𝐅 into 𝐅𝐗 ∈ R(𝑐∕𝜆)×𝑤 and 𝐅𝐘 ∈ R(𝑐∕𝜆)×ℎ respectively
long the horizontal and vertical directions. Two (1, 1) convolution
perations 𝑓 𝑥 and 𝑓 𝑦 are performed to transform the 𝐅𝐗 and 𝐅𝐘 feature
aps into the same number of channels as the input, using the sigmoid

unction 𝜎. The transformation process is expressed as Eqs. (7) and (8):

𝐖𝑋 = 𝜎(𝑓 𝑥(𝐅𝐗)), (7)

and

𝐖𝑌 = 𝜎(𝑓 𝑦(𝐅𝐘)), (8)

where 𝐖𝑋 and 𝐖𝑌 are the attention weights in the horizontal and
ertical directions, respectively. The final output of the RR attention
odule is expressed as Eq. (9):

𝐀 = 𝐗 ⋅𝐖𝑌 ⋅𝐖𝑋 . (9)
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Incorporating the RR attention into arrhythmia classification offers
wo significant advantages. First, coordinate attention ensures an effi-
ient transition during the computational process, as the introduction
f RR intervals incurs only a small amount of additional computation
osts. Second, the combination of multiple RR intervals enables the
odel to effectively highlight the dynamic characteristics of ECG,

hereby enhancing classification performance.

4.4. Group leads fusion module

The 12-lead contains the full range of cardiac activity, and hence
he global characteristics of 12-lead should not be ignored. However,
he above branch networks consider only features within either the
imb or precordial lead groups. Therefore, we develop a group leads
usion module to integrate global features from the 12-lead ECG, mainly
onsists of information entropy and RR attention.

Information entropy can be used as a selection criterion of pa-
ameters and a quantitative indicator of information content (Shang

et al., 2021). We propose to assign weights of the lead groups based on
information entropy for fusing high-dimensional features of the limb
lead group and precordial lead group. Information entropy is used
to enhance important features and weaken secondary features. Then,

R attention not only considers all features but also focuses more on
important features, thereby enhancing the model’s performance. The
specific steps of the group leads fusion module are as follows.

First, the output feature maps of the limb leads branch network and
the precordial leads branch network are flattened for each channel. This
process results in a limb leads feature map 𝐗𝐿 and a precordial leads
feature map 𝐗𝑃 . Then, the information entropy is calculated based on
𝐗𝐿 and 𝐗𝑃 using Eqs. (10) and (11), denoted as 𝑖𝑒𝑙 and 𝑖𝑒𝑝, as shown
below:

𝑖𝑒𝑙 =
∑

𝑖
(−

∑

𝑗
𝑝(𝐗𝐿

𝑖,𝑗 ) log 𝑝(𝐗𝐿
𝑖,𝑗 )), (10)

𝑖𝑒𝑝 =
∑

𝑖
(−

∑

𝑗
𝑝(𝐗𝑃

𝑖,𝑗 ) log 𝑝(𝐗𝑃
𝑖,𝑗 )). (11)

Second, we employ the softmax function to map 𝑖𝑒𝑙 and 𝑖𝑒𝑝 into [0,
1] by Eq. (12),

[𝑠𝑙 , 𝑠𝑝] = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥([𝑖𝑒𝑙 , 𝑖𝑒𝑝]). (12)

Third, 𝐗𝐿 and 𝐗𝑃 are weighted through multiplication, followed by
a concatenation operation to derive the comprehensive information of
the 12-lead ECG, as shown Eq. (13):

𝐅𝑔 𝑙 𝑜𝑏𝑎𝑙 = [(1 + 𝑠𝑙) ⋅ 𝐗𝐿, (1 + 𝑠𝑝) ⋅ 𝐗𝑃 ]. (13)

Subsequently, 𝐹𝑔 𝑙 𝑜𝑏𝑎𝑙 is fed to RR attention, which enhances the
erformance of the model through capturing global features between

the 12-lead ECG.

5. Experiments

5.1. Datasets and experimental settings

5.1.1. Datasets
We use two public datasets in our experiments. The china phys-

ological signaling challenge 2018 (CPSC2018) dataset (Liu et al.,
2018) was designed specifically for evaluating ECG rhythm and mor-
phological anomaly detection algorithms. The physikalisch-technische
bundesanstalt large dataset (PTB-XL) (Wagner et al., 2020) is the most
extensive publicly available clinical ECG dataset to date, boasting rich
ECG annotations and offering distinct data subsets for specific tasks.
We mainly focus on the heart rhythm subtask.
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Table 1
CPSC2018 dataset (Liu et al., 2018).
ECG Description Records Pr (%) Time length (s)
class Min Max Mean Median

N Normal 918 13 10 60 15.43 13.00
AF Atrial fibrillation 1098 16 9 60 15.01 11.00
1-AVB First-degree atrioventricular block 704 10 10 60 14.32 11.27
LBBB Left bundle branch block 207 3 9 60 14.92 12.00
RBBB Right bundle branch block 1695 25 10 60 14.42 11.19
PAC Premature atrial contraction 556 8 9 60 19.46 14.00
PVC Premature ventricular contraction 672 9 6 60 20.21 15.00
STD ST-segment depression 825 12 8 60 15.13 12.78
STE ST-segment elevated 202 3 10 60 17.15 11.89
s
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f
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w
C
t
C

Table 2
Overview of rhythm statements in PTB-XL dataset. Wagner et al. (2020).

Records Description

SR 16 782 Sinus rhythm
AFIB 1514 Atrial fibrillation
STACH 826 Sinus tachycardia
SARRH 772 Sinus arrhythmia
SBRAD 637 Sinus bradycardia
PACE 296 Normal functioning artificial pacemaker
SVARR 157 Supraventricular arrhythmia
BIGU 82 Bigeminal pattern (unknown origin, SV or Ventricular)
AFLT 73 Atrial flutter
SVTAC 27 Supraventricular tachycardia
PSVT 24 Paroxysmal supraventricular tachycardia
TRIGU 20 Trigeminal pattern (unknown origin, SV or Ventricular)

• The CPSC2018 dataset (Liu et al., 2018) provides 6877 standard
12-lead ECG recordings. The ECG recordings were sampled from
6 s to 60 s at a sampling rate of 500 Hz. The ECG categories
are shown in Table 1, described as N, AF, 1-AVB, LBBB, RBBB,
PAC, PVC, STD, and STE. We use stratified sampling to divide the
dataset into ten parts, 90% of which is allocated to the training
set and 10% to the test set.

• The PTB-XL dataset (Wagner et al., 2020) contains 21 837 clinical
12-lead ECG of length 10 s from 18 885 patients. The dataset
has a total of 12 categories of rhythm statements, as shown in
Table 2. We train and test using data with at least one statement.
We divided the training and test sets according to the method
provided by Wagner et al. (2020).

5.1.2. Experimental configuration
Experiments were conducted on a workstation equipped with an

nter Xeon(R) E5-2673 v3 processor, NVIDIA GeForce GTX 1080Ti
PU, and 64G memory. The PyTorch framework was employed for the

mplementation of DL models.

5.1.3. Pre-processing
The CPSC2018 dataset exhibits sample imbalance, as shown in

Table 1. Therefore, we applied oversampling to augment the data for
maller classes before training. Additionally, the CPSC2018 dataset

contains ECG recordings of varying lengths. Considering that longer
segments can increase the computational load and that only parts of
these longer segments may contain abnormalities, we segmented the
data. We divide all data into 6 s segments. For recordings longer than
6 s, we use a nested segmentation approach, where each subsequent
segment overlaps with the previous one by 3 s. This is done to prevent
the loss of key features due to segmentation. The records in the PTB-
XL dataset are of fixed length. Hence, there was no requirement for
segmentation. Furthermore, we removed baseline drift and applied
normalization to each sample, which helps reduce the impact of noise
and outliers on the overall sample.
 a
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5.1.4. Evaluation metrics
We employ standard classification metrics, including accuracy, pre-

cision, recall, and F1-score, which are defined as Eqs. (14)–(17):

𝑎𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 = 𝑇 𝑃 + 𝑇 𝑁
𝑇 𝑃 + 𝐹 𝑃 + 𝑇 𝑁 + 𝐹 𝑁 , (14)

𝑝𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑃 , (15)

𝑟𝑒𝑐 𝑎𝑙 𝑙 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑁 , (16)

𝐹 1 − 𝑠𝑐 𝑜𝑟𝑒 = 2 × (𝑝𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐 𝑎𝑙 𝑙)
𝑝𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐 𝑎𝑙 𝑙 , (17)

where TP, FP, FN, and TN denote the numbers of true positives, false
positives, false negatives, and true negatives, respectively.

To conform to the evaluation criteria established in previous studies,
we employ single-labeling for the CPSC2018 dataset, computing class-
specific F1-score and overall F1-score using the precision and recall
metrics. On the PTB-XL dataset, in which a majority of samples pos-
ess multiple labels, we consider the area under the curve (AUC) in
ur evaluation. AUC represents the area under the receiver operating

characteristic (ROC) curve, with a value closer to 1 indicating better
model performance.

5.1.5. Training setting
The batch size is configured to 32. By evaluating the two cases of

batch size = 32 and batch size = 64, 32 is more suitable in our method,
which can effectively balance the convergence speed and accuracy.
We set the initial learning rate to 0.001, use 1-cycle learning rate
scheduling (Smith, 2018), and AdamW optimizer (Loshchilov et al.,
2017). We employed stratified sampling to partition the training and
testing sets of the CPSC2018 dataset. For the PTB-XL dataset, we
ollowed the method described in Strodthoff et al. (2020) to partition

the training and testing sets. We set weights for each class in PTB-XL to
alleviate the data imbalance problem. SR = 0.55, AFIB = 1.16, STACH
= 2.12, SARRH = 4.10, SBRAD = 2.27, PACE = 3.75, SVARR = 7.98,
BIGU = 12.3, AFLT = 22.4, SVTAC = 24.0, PSVT = 64.9, and TRIGU =
87.6.

5.1.6. Compared methods
We compare our DCRR-Net with representative existing DL methods

for automatic 12-lead ECG classification.
For the CPSC2018 dataset, we compare our method with

CNN_Expert Feature (Yang et al., 2021),MLBF-Net (Zhang et al., 2021),
MSFNet (Wang et al., 2020), STA-CRNN (Zhang et al., 2020), and

ATI-CNN (Yao et al., 2020) for three main reasons. First, these meth-
ds adopt two popular model construction strategies: one focuses on
xtracting internal features of a specific lead, as seen in CNN_Expert
eature and MLBF-Net, while the other treats the 12-lead ECG as a
hole and extracts global features from all leads, as seen in ATI-
NN, DMSFNet, and STA-CRNN. These two strategies are currently
he dominant approaches for 12-lead ECG classification. Second, ATI-
NN, DMSFNet, STA-CRNN, and MLBF-Net incorporate spatio-temporal

ttention mechanisms to aggregate the spatial and temporal features of
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Table 3
Comparative results of our DCRR-Net and SOTA methods on the CPSC2018 dataset. Results in bold indicate the best results in each column.

Method F1- score for each class Overall F1-score

N AF 1-AVB LBBB RBBB PAC PVC STD STE

CNN_Expert Feature (Yang et al., 2021) 0.660 0.910 0.570 0.920 0.960 0.600 0.820 0.770 0.590 0.760
ATI-CNN (Yao et al., 2020) 0.789 0.920 0.850 0.872 0.933 0.736 0.861 0.789 0.556 0.812
DMSFNet (Wang et al., 2020) 0.820 0.900 0.860 0.870 0.930 0.780 0.880 0.800 0.620 0.828
STA-CRNN (Zhang et al., 2020) 0.819 0.936 0.866 0.862 0.926 0.789 0.865 0.812 0.640 0.835
MLBF-Net (Zhang et al., 2021) 0.847 0.934 0.884 0.896 0.939 0.822 0.878 0.818 0.677 0.855
DCRR-Net 0.918 0.900 0.921 0.910 0.919 0.877 0.887 0.907 0.904 0.905
Table 4
Comparative results (class-wise AUC and macro AUC) of SOTA and our DCRR-Net on the PTB-XL dataset. Results in bold indicate the best results in each column.

Method SR AFIB STACH SARRH SBRAD PACE SVARR BIGU AFLT SVTAC PSVT TRIGU macro AUC

lstm_bidir (Hochreiter and Schmidhuber, 1997) 0.755 0.839 0.953 0.593 0.954 0.846 0.794 0.776 0.870 0.997 0.997 0.804 0.848
fcn_wang (Wang et al., 2017) 0.831 0.938 0.965 0.663 0.953 0.883 0.888 0.768 0.878 0.991 0.965 0.574 0.858
inception1d (Ismail Fawaz et al., 2020) 0.894 0.989 0.982 0.716 0.966 0.884 0.948 0.891 0.981 0.986 0.986 0.736 0.913
xresnet1d101 (He et al., 2019) 0.929 0.992 0.984 0.785 0.970 0.947 0.917 0.933 0.904 0.997 0.995 0.763 0.926
DCRR-Net 0.919 0.983 0.991 0.800 0.961 0.891 0.824 0.914 0.970 0.983 0.997 0.998 0.936
t
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the 12-lead ECG, and the effectiveness of attention mechanisms has
een demonstrated. Third, CNN_Expert Feature integrates CNN with
xpert features, which aligns with our approach of leveraging domain
nowledge from ECG to improve the model, making it a valuable
eference for comparison.

For the PTB-XL dataset, we compare the performance with repre-
sentative single models provided in Strodthoff et al. (2020), including
inception1d (Ismail Fawaz et al., 2020), xresnet1d101 (He et al., 2019),
fcn_wang (Wang et al., 2017) and lstm_bidir (Hochreiter and Schmidhu-
er, 1997). In Strodthoff et al. (2020), they used several representative

existing network architectures, such as ResNet, Inception, and LSTM,
to perform prediction and classification tasks on the PTB-XL dataset.

hey concluded that architectures based on ResNet and Inception
perform better on time-series classification tasks, with inception1d
nd xresnet1d101 achieving the best classification performance. While

fcn_wang and lstm_bidir represent standard fully convolutional net-
works and recurrent neural networks respectively. These methods cover
the major works of CNNs and RNNs and have been validated on
he PTB-XL dataset, making them valuable references for comparison.
mplementations of these methods follow as closely as possible the

architecture described in the original publications and references.

5.2. Experimental results

5.2.1. Comparison with state-of-the-art methods
The experiments compare the classification performance of our

CRR-Net with state-of-the-art (SOTA) methods on the two public
atasets.

Table 3 shows the results of our method in comparison with the
OTA methods on the CPSC2018 dataset. One can see that DCRR-
et achieves the highest overall F1-score. Furthermore, it obtains the
ighest F1-score for N, 1-AVB, PAC, PVC, STD, and STE. Although its
1-score for AF, LBBB, and RBBB are not the highest, they all exceed
.9. It is worth noting that its F1-score for STE increases by 0.227
ompared to the second best result (Zhang et al., 2021). As shown in

Table 3, MLBF-Net (Zhang et al., 2021) achieves the best F1-scores for
STD (0.818) and STE (0.677) among the SOTA methods. In contrast,
DCRR-Net outperforms (Zhang et al., 2021) with F1-scores of 0.907
or STD and 0.904 for STE, which are substantial improvements. These
ower classification accuracies of the SOTA methods can be attributed
o the relatively small variations in ST segments, which pose challenges
o the known models in capturing such subtle changes. Our model
xcels by effectively capturing the dynamic features of ECG through
ultiple RR intervals, resulting in enhanced classification performances

n these two categories.
Table 4 illustrates the AUC values for rhythm classification within

he PTB-XL dataset. From Table 4, it can be observed that DCRR-Net
8 
achieved the highest macro AUC. Additionally, it also obtained the
highest AUC for STACH, SARRH, PSVT, and TRIGU. Except for SVARR,
the AUC for other categories also exceeded 0.9. Inception1d achieved
the highest AUC in SVARR and AFLT. Xresnet1d101 obtains the highest
AUC for SR, AFIB, SBRAD, PACE, BIGU, and SVTAC. However, DCRR-
Net achieved comparable AUC with xresnet1d101 in AFIB, SBRAD,
and SVTAC. It is worth noting that on TRIGU, DCRR-Net (0.998) is
0.233 higher than xresnet1d101 (0.765), which is a considerable im-
provement. The difference between results in Table 4 and those shown
in Strodthoff et al. (2020) stems from different data preprocessing
methods used in our implementation compared to Strodthoff et al.
(2020). In Strodthoff et al. (2020), these methods are trained on fixed-
length (2.5 s) random segments extracted from the complete recordings,
which serves as an effective data augmentation. To maintain the same
training conditions as DCRR-Net, we train these reference methods on
he complete recordings without utilizing data augmentation. These
esults confirm the effective classification performances of DCRR-Net.

The 95% confidence interval of our model’s performance is [0.894,
.917]. First, the lower bound of the confidence interval is greater

than 0.5, indicating that the model’s classification performance is sig-
nificantly better than random guessing. Second, the lower bound of
the confidence interval is higher than those of other referenced mod-
els, suggesting that our model outperforms the comparative baselines.
Therefore, we can be 95% confident that the model’s actual perfor-
mance falls between 0.894 and 0.917.

The above experimental results show that the performance of DCRR-
Net outperforms state-of-the-art methods. We believe there are two
reasons for this. First, DCRR-Net’s dual-branch architecture learns the
haracteristics of limb leads and precordial leads respectively, thus
ugmenting feature discrimination when compared with single-branch
etwork approaches. Second, compared to existing methods, the RR at-
ention in DCRR-Net prioritizes dynamic ECG variations, consequently
olstering the model’s classification proficiency. We will demonstrate
hose through experiments and analysis in Sections 5.2.2, 5.2.3, and

5.2.4.

5.2.2. Effect of the dual-branch network
To validate the effectiveness of our dual-branch network structure,

we create a control model featuring only a single-branch network. The
architecture of the single-branch network in the control model closely
resembles that of DCRR-Net, with no modifications to the group leads
usion module. The key distinction lies in that 12-lead ECG is used as
nput to the control model as a whole.

Table 5 shows the performances of these two models on the
CPSC2018 dataset. One can see that the overall F1-score of the nine
categories and the F1-score of each class are better when using the
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Table 5
Comparison of classification performances between single-branch and DCRR-Net(dual-branch) on the CPSC2018 dataset. Results in bold indicate
the best results.
Method F1-score for each class Overall F1-score

N AF 1-AVB LBBB RBBB PAC PVC STD STE

Single-branch 0.907 0.876 0.900 0.908 0.912 0.840 0.855 0.882 0.865 0.883
DCRR-Net(dual-branch) 0.918 0.900 0.921 0.910 0.919 0.877 0.887 0.907 0.904 0.905
Table 6
Performances of ablation experiments on DCRR-Net with the CPSC2018 dataset. Results in bold indicate the best results.
Model F1-score for each class Overall results

N AF 1-AVB LBBB RBBB PAC PVC STD STE Overall F1-score Precision Recall Accuracy

BM 0.910 0.895 0.883 0.878 0.921 0.834 0.827 0.801 0.846 0.866 0.885 0.855 0.874
BM + RR Attention 0.931 0.881 0.952 0.843 0.912 0.864 0.891 0.915 0.837 0.892 0.894 0.890 0.901
DCRR-Net 0.918 0.900 0.921 0.91 0.919 0.877 0.887 0.907 0.904 0.905 0.913 0.899 0.906
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group leads approach than the approach of using 12-lead as a whole.
Using the group leads approach, the overall F1-score increases by
2.2%, the F1-scores for STE, RBBB, and PVC increase by over three
percent, at 3.9%, 3.7%, and 3.2%, respectively, and for STD, AF, and
1-AVB increase by 2.5%, 2.4%, and 2.1%, respectively. The similarities
between limb leads and precordial leads are reflected in the basic
waveform structure and time step, and their differences are reflected in
the amplitude and shape of the waveform. The single-branch network
takes the 12-lead as a whole and does not explicitly distinguish the lead
groups. Therefore, the similarity and difference characteristics may be
confused in the feature extraction process, and the dual-branch network
tructure can make up for this shortcoming. The experiments show
hat by modeling from the perspective of lead groups, the performance
f the classification model can be effectively improved by taking into
ccount the similar and different characteristics of 12-lead ECG.

5.2.3. Effect of RR attention and information entropy
To validate the effectiveness of RR attention and information en-

tropy in DCRR-Net, we applied the control variable method and incre-
mentally added RR attention and information entropy.

• Base model(BM): The base model contains branch networks and
a group leads fusion module, but excludes RR attention and
information entropy. The branch networks are employed to cap-
ture similarities features within each lead group and differences
features between lead groups. Moreover, we use a group leads
fusion module to combine the local and global characteristics of
12-lead ECG.

• BM + RR Attention: On BM, we add RR attention within each
branch network to obtain an intra-group level attention mecha-
nism. By embedding multiple RR intervals into coordinate atten-
tion, RR attention is able to focus on the dynamic features of ECG.

• BM + RR Attention + Information entropy (DCRR-Net): Building
upon the BM + RR Attention, we incorporate RR attention and
information entropy into the group leads fusion module. RR
attention and information entropy integrate both the local and
global characteristics of 12-lead ECG, enhancing the relationships
between the leads.

Table 6 reports the results of the ablation experiments on the
CPSC2018 dataset. The overall results indicate that our DCRR network’s
RR Attention and Information entropy are effective for automatic clas-
ification of 12-lead ECG. Specifically, on the overall F1-score, BM
chieves an F1-score of 0.866. Upon incorporating RR attention into
M, the F1-score increases to 0.894. Furthermore, with the application
f information entropy, DCRR-Net achieves an F1-score of 0.905. These
esults underscore the effectiveness of RR attention and information

ntropy, both of which exert a favorable influence on the model’s
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performance. The overall results all show a rising trend, underscoring
the beneficial influence of DCRR-Net’s key modules on the model’s
performance.

Fig. 7 presents the confusion matrix from the ablation study con-
ducted on the DCRR-Net. By analyzing the results from the confusion
matrix, we can observe the correspondence between the predicted
and actual categories, further discussing the model’s performance. The
horizontal axis represents the predicted outcomes, while the vertical
xis represents the true labels. Diagonal elements indicate the classi-

fication accuracy, with darker colors representing higher classification
accuracy, and the off-diagonal elements indicate the probability of mis-
lassification. Overall, from Fig. 7(a) to (c), classification performance
rogressively improves, indicating that the incremental addition of key
odules effectively enhances the model’s performance.

Comparing Fig. 7(b) to (a), after adding RR attention on top of the
M, the accuracy of STD increased from 0.72 to 0.93. In Fig. 7(a), the

model misclassifies PAC as STD with a probability of 0.13, and PVC
as STD with a probability of 0.1, highlighting the model’s difficulty in
istinguishing between PAC, PVC, and STD. In ECG, both PAC and PVC
an exhibit prolonged RR intervals, and PVC is often accompanied by
T-segment changes, which might lead to the model confusing these
hree conditions. After incorporating RR attention, the model can more
ccurately capture the dynamic features of the ECG through multiple
R intervals, demonstrating the effectiveness of the RR attention mech-
nism. Comparing Fig. 7(c) to (b), after adding information entropy

based on Fig. 7(b), the overall performance improves further, with
the misclassification rate falling below 0.1. The 12-lead ECG provides
comprehensive information for diagnosis, but certain arrhythmias are
more prominently reflected in specific leads. For example, RBBB can
bserve abnormal QRS waves in leads V1, V5 or V6, and STE can
etermine the damaged area of the heart based on the abnormal
eads. We use information entropy to enhance the importance of leads,
hereby improving the performance of the model.

5.2.4. Visualization of learned features
In this section, we visually evaluate our proposed DCRR-Net model

through two visualization methods, focusing on the feature distribution
of the data and the areas emphasized by the model.

First, we apply the t-SNE algorithm (van der Maaten and Hin-
ton, 2008) to evaluate the model comprehensively. t-SNE is a non-
linear dimensionality reduction algorithm suitable for reducing high-
dimensional data to 2 or 3 dimensions for visualization. In Fig. 8, the
orizontal and vertical axes represent the two dimensions of the data

mapping. Fig. 8(a) illustrates the data distribution within the CPSC2018
dataset, displaying a substantial overlap among the nine categories
and a conspicuous absence of noticeable clustering. This suggests a
limited inherent correlation within the original dataset. Fig. 8(b) shows
the classification results of the BM. First, the t-SNE results reveal that
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Fig. 7. Confusion matrices for ablation experiments on DCRR-Net with the CPSC2018 dataset. The horizontal axis represents predicted results and the vertical axis represents
true labels. Diagonal elements indicate the classification accuracy and off-diagonal elements indicate the probability of misclassification.(a) Base model; (b) Base model and RR
attention:; (c) adding information entropy to (b).
Fig. 8. Visualization results using sampled t-SNE. The horizontal and vertical axes of the graphs represent the two dimensions of the data distributions. (a) The original distribution
of the CPSC2018 dataset. (b) Distribution of CPSC2018 after base model test. (c) Distribution of CPSC2018 after DCRR-Net test.
u

the data forms several distinct clusters, with AF, 1-AVB, LBBB, RBBB,
STD, and STE each forming clear clusters, indicating a high degree of
separation between different classes. However, the boundaries between
N, PAC, and PVC are blurred, suggesting that these three may share
similar features in high-dimensional space. Additionally, both PAC and
1-AVB exhibited two clusters, indicating that the aggregation ability
of features within these categories is limited. Finally, overlapping data
points across different classes suggest that the model is not entirely
accurate in distinguishing between the features. Fig. 8(c) illustrates the
visualization results of DCRR-Net, which incorporates RR attention and
information entropy on the basis of Fig. 8(b). Compared to Fig. 8(b),
Fig. 8(c) exhibits two notable changes: First, the boundaries between
the nine categories are more distinct, indicating greater differentiation
in the features of different classes. Second, the feature aggregation for
the 1-AVB and PAC categories is tighter, suggesting a more compact
internal structure within these classes. From the perspective of data dis-
tribution, this implies that the introduction of RR attention and entropy
has enhanced feature aggregation, thereby improving the performance
of DCRR-Net.

Second, we use gradient-weighted class activation mapping (Selvaraj
et al., 2017) for feature interpretation. Fig. 9 shows the visualization
results of the left bundle branch block (LBBB) and the right bundle
branch block (RBBB) on the CPSC2018 dataset. The darker blue part in
gradient-weighted class activation mapping means that this part of the
features is more important, and a red box shows a specific feature. First,
the LBBB instances and RBBB instances are from different samples,
and thus their RR intervals are different. By visualizing the results, it
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becomes evident that the model has acquired an understanding of the
RR interval features, as the blue region consistently aligns with each
heartbeat. Second, Fig. 9(a) shows the LBBB features learned by the
model. Diagnostic criteria for LBBB encompass the disappearance of the
Q wave, broadening and splitting of the R wave, and 𝑇 wave inversion,
as prominently demonstrated in lead III. Furthermore, a small R wave
emerges alongside a widened and deepened S wave, accompanied by
an upright 𝑇 wave, as depicted in lead V3. Fig. 9(b) shows that the
model has learned RBBB features. The diagnostic criteria for RBBB are
that the QRS waveform in lead V1 is split, r < R’, and the 𝑇 wave is
inverted; the S wave in lead V6 is widened and the 𝑇 wave is upright.
Overall, the gradient-weighted class activation mapping results show
that the model effectively learns the characteristics of different disease
patterns by embedding the RR interval information, thus improving the
model’s discriminating ability.

5.2.5. Computation cost comparison
In this section, we compare the number of parameters of several

models. The number of model parameters represents a crucial metric
for assessing models, especially in practical application scenarios. It is
imperative to evaluate a model not solely based on its accuracy but also
with regard to its resource requirements, thus enhancing its practical
utility. Table 7 shows the comparison of the parameter amount and
overall performance of DCRR-Net and reference models. From Table 7,
it is evident that DCRR-Net achieved the highest F1-score and the
lowest number of parameters (0.17 million) on the CPSC2018 dataset.
For PTB-XL, xresnet1d101 achieved the second highest AUC, while
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Fig. 9. Gradient-weighted class activation mapping visualized features(Third row): LBBB and RBBB on the CPSC2018 dataset. The deeper the color, the higher the attention
received in that area. (a) The diagram shows the waveform characteristics of leads III and V3 of LBBB. (b) The diagram shows the waveform characteristics of leads V1 and V6
of RBBB.
Table 7
Parameter comparison between DCRR-Net and reference models. The unit of parameter
count is in millions.

CPSC2018 PTB-XL

Method F1-score Parameters Method macro AUC Parameters

TI-CNN 77.3 5.26 inception1d 0.913 0.04
ATI-CNN 81.8 4.98 xresnet1d101 0.926 3.77
MLBF-Net 85.5 0.42 fcn_wang 0.858 0.03
DCRR-Net 90.5 0.17 lstm_bidir 0.848 2.33

DCRR-Net 0.936 0.17

the number of parameters for xresnet1d101 (3.77 million) is signif-
icantly higher than DCRR-Net (0.17 million). Additionally, fcn_wang
has the smallest number of parameters (0.03 million), but its AUC is
far lower than DCRR-Net. DCRR-Net strikes a balance between model
performance and the number of parameters.

5.3. Discussion

Our study demonstrates that DCRR-Net significantly improves the
classification accuracy of 12-lead ECG. This improvement is mainly
attributed to two factors: First, the dual-branch network effectively
captures both the similarity in waveform patterns and timesteps within
lead groups and the differences in waveform morphology between lead
groups. Second, the introduction of RR Attention allows the model to
capture the dynamic characteristics of ECG signals.

Previous studies emphasized either the spatial features across mul-
tiple time points within a single lead or the integration of global spatial
and temporal features across the 12-lead. However, unlike these meth-
ods, we were inspired by the mapping relationship between ECG signals
and cardiac activity. By utilizing a dual-branch network, we capture
both the similarities and differences in features between the 12-lead
ECG, complementing the extraction of global and local features, which
enhances model accuracy. Additionally, considering domain knowledge
of ECG, where the RR interval is an important feature for distinguish-
ing between multiple categories, we combined this with an attention
mechanism to more accurately capture the dynamic characteristics of
ECG signals, further improving the model’s classification performance.

Although our DCRR-Net has proven effective on two datasets, it still
has two limitations. First, we assign different weights based on sample
size to alleviate the impact of data imbalance on the model, but this
method may not perform equally well on different datasets. Second,
while we used visualization techniques to analyze the experimental
results, we did not explore the model’s interpretability.
11 
6. Conclusion

We proposed a 12-lead ECG classification method, DCRR-Net, which
combined convolutional neural networks with a domain-informed at-
tention mechanism. First, we designed a dual-branch structure to
capture similarity and difference features. Second, we introduced a
domain-informed attention to highlight the dynamic characteristics of
the ECG. In addition, we developed a lead fusion module to integrate
the global features of the 12-lead. Experimental results showed that
our proposed DCRR-Net outperformed existing methods on two public
datasets. Our research establishes the foundation for developing more
accurate 12-lead ECG classification models, demonstrating the potential
of combining domain knowledge with deep learning, and providing
new insights for the automatic analysis of 12-lead ECG.

In future work, we will consider exploring the combination of more
ECG domain knowledge and deep learning models. In addition, we will
further explore the potential relationship between the 12-lead and the
ECG categories.
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Appendix. Notations description

Notation Description
ECG Electrocardiograms
DCRR-Net Dual-branch Convolutional Neural Network

with domain-informed attention
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory Network
CNN_Expert Feature Convolutional Neural Network and Expert

Features
MLBF-Net Multi-Lead Branch Fusion Network
DMSFNet Deep Multi-Scale Fusion convolutional

neural network
STA-CRNN Spatio-Temporal Attention-based

Convolutional RNN
TI-CNN Time Incremental Convolutional Neural

Network
ATI-CNN Attention-based Time-incremental

Convolutional Neural Network
RRI RR interval
DSC Depth-wise Separable Convolution
CPSC2018 China Physiological Signaling Challenge

2018
PTB-XL Physikalisch-Technische Bundesanstalt Large

dataset
AUC Area Under the Curve
ROC Receiver Operating Characteristic
BM Base model
SOTA State-of-the-art
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