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Decentralized and Compressed Data Storage for
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Siwang Zhou , Xiao Zhang , Yonghe Liu , Hongbo Jiang , and Keqin Li , Fellow, IEEE

Abstract—Sensing data acquired with crowdsensing are gener-
ally stored at central cloud servers, since massive data are involved
and sensing devices do not have enough space to store them. Al-
though each sensing device only has limited storage capacity, the
total size of storage across thousands of devices can be considerable.
In view of this, this article addresses decentralized storage problem
in mobile crowdsensing system, providing an alternative to cloud-
based data storage. By investigating a virtual sensor model, the
movement of a participant in the target sensing area is formulated
as a random sampling over the data field related to this area. With
a particular encoding algorithm, the data field is compressed into
only one measurement along with a random sampling process. Each
participant stores its own measurements as if various compressed
snapshots of the data field are separately stored by different partic-
ipants. We further investigate a recovery algorithm, reconstructing
the original data field by carefully decoding enough measurements.
Extensive experiments validate the proposed storage scheme under
various crowdsensing scenarios, and our scheme achieves excellent
performance in terms of recruitment overhead, decoding time, and
decoding accuracy.

Index Terms—Compressed sensing, data recovery, data storage,
mobile crowdsensing.

I. INTRODUCTION

N ETWORK-BASED applications, including the popular
mobile crowdsensing (MCS) systems, usually employ

cloud-based storage management [9], [11], [23]. In MCS cam-
paigns, the participants, such as human beings, unmanned aerial
vehicles, vehicles and vessels, are required to collect data from
their sensing devices [1], [24]. The target sensing area generally
relates to a large amount of environmental monitoring data,
whereas the sensing devices cannot provide enough storage
capacity for crowdsensing tasks. Therefore the participants have
to report their data over the network to some collectors typically
located in central cloud servers.
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Cloud servers are often supposed to have enough space for
storing all the data uploaded from MCS systems. However, in
some MCS scenarios, the users may need to inquire just a subset
of data related to certain interested hot-spot areas. Uploading
the entire data field of the whole target area obviously wastes
valuable storage space of the cloud server in this situation.
Moreover, it will introduce additional network load if numerous
participants keep transmitting their sensing data to cloud servers
via wireless network infrastructures. In addition, sending data
frequently can chew up a lot of electricity of sensing devices,
while mobile sensing devices have only limited battery power.
There is an urgent need to exploit a new MCS system, where
cloud servers focus on computation what they do best, without
having to store the data field all the time.

It is noteworthy that, although a participant only has very
limited storage capacity, the total storage of an extensive number
of participants can be reasonably large. For instance, human
beings participate in a MCS campaign, utilizing their smart-
phones to monitor the information from a target sensing area.
Let us assume that one participant uses only 0.01% of its 128
gigabytes of storage to conduct crowdsensing tasks since the
smartphone is used mostly for work and life. Even with such
small storage space of a participant, the storage of MCS system
can still reach as many as 12 terabytes if this system recruits one
million participants. It can be fairly said that MCS systems do
have certain storage capacities of their own.

However, few researchers study the storage method in MCS
systems outside of a cloud server. It is not a trivial task to
utilize little pieces of storage space scattered over numerous
participants. This is like a normal disk is broken up into a
number of tiny storage fragments. To complicate matters further,
the participants often move around in the target sensing area,
and these storage fragments do not even have a stable spatial
distribution. This may be the reason that central cloud-based
storage has to be employed in MCS systems. It should be noted
that, the storage without employment of central servers has been
exploited in traditional wireless sensor networks by utilizing
multi-hop routing [14], [19], [31]. Sensor networks contain a
large number of nodes deployed in designated locations, and
these nodes communicate with each other via a certain routing
protocol. Unfortunately, the participants are, for the most part,
total strangers moving by themselves in the target sensing area.
It is inappropriate for MCS systems to simply adopt the storage
strategy employed in sensor networks.

This article investigates a participant-based, decentralized
and compressed data storage in MCS systems to utilize the
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fragmented storage across different participants. Our motivation
is based on an important understanding: one random movement
of a participant over the target sensing area can be considered
as a random sampling for the data field on this area. We can
therefore propose a unique encoding algorithm, compressing the
entire data field into one value, termed as measurement, along
with a random sampling process. The measurement is like a
snapshot of the data field, which is stored by the corresponding
participant with the space of just one measurement. Note that
this measurement may be a very ambiguous snapshot due to
the fact that the data field is represented by only one encoded
measurement. However, if enough number of participants store
their measurements, one can recover the original data field with
desired accuracy by exploring a reasonable decoding algorithm.

Our contributions of this article are summarized below.
� We propose a novel virtual sensor model to abstract the

target sensing area, where geographical observation sites
are considered as virtual sensor nodes. One random move-
ment of a participant in the monitoring area can then
be formulated as one random sampling of the data field
corresponding to this area.

� We develop a participant-based compressed storage
scheme by designing a special encoding algorithm. Based
on one random sampling owing to a participant’s move-
ments, the entire data field is compressed into only one
measurement, stored by the corresponding participant. We
further develop block partition and data exchange strate-
gies, increasing the number of the measurements without
affecting the encoding performance.

� We present a data reconstruction scheme with an atten-
tion mechanism, ensuring the original data field, when
necessary, can be recovered from our decentralized MCS
storage system with desired accuracy. We further present
the mathematical foundation for successful data recovery,
which is validated through extensive experiments.

The remainder of this article is organized as following.
Section II reviews the related work. Section III introduces the
virtual sensor model, based on which encoding algorithms are
further presented. Section IV presents the data recovery algo-
rithm followed by the mathematical foundation for data recovery
in Section V. In Section VI we evaluate the performance of the
proposed scheme through extensive experiments and conclude
in Section VII.

II. RELATED WORK

Mobile crowdsensing is becoming increasingly attractive as
a solution for environmental monitoring with the pervasive
presence of mobile sensing devices and ever increasing wireless
communication capacity [5], [8], [16], [27]. As common for
most environmental monitoring systems, the potential large data
volume, coupled with limited storage capacity of the mobile
sensing devices, has incentivised MCS systems to rely on cloud-
based storage. In a typical MCS system, acquired environmental
data by a participant’s device are reported using wireless network
links to the central data collector, generally located within a
cloud server [9], [11], [23]. In order to acquire the data field on

Fig. 1. Virtual sensor model.

an area, central cloud servers are also needed to schedule the
participants to visit designated observation sites [13], [21], [25].
In contrast, this article investigates decentralized MCS storage
scheme, where the entire data field is stored into the sensing
devices of the participants independently of any cloud servers.

Data compression technology is provided to decrease the
size of data volume, thus the storage space can be saved. A
plethora of compression strategies have been investigated in
recent years, including compression algorithms for document
data [12], [28], the compression standard for image data with
Joint Photographic Experts Group [18], compression standards
for audio and video data with Moving Picture Experts Group [2],
and compression algorithms toward high-energy single-cycle
pulses and streaming spectrum data [20], [26]. Data sharing tech-
nology is also introduced in [22] for sharing the data generated
by sensing devices, potentially compressing the size of data by
avoiding redundancy. Unfortunately, in MCS scenarios, there is
not a consistent one-to-one match between each participant and
each observation site, and the participant does not even have a
normal data set of the target sensing area, since one can hardly
expect this participant to visit all observation sites. Therefore
conventional data compression and data sharing algorithms are
extremely difficult to be applied to MCS systems.

The research on MCS originates from wireless sensor net-
work. Several distributed storage methods without employment
of central servers have been proposed in wireless sensor net-
works [10], [14], [19], [31]. For fault tolerance in case of network
failure or the central sink node failure, sensors may temporarily
store the data by themselves. The authors in [19] recommend that
every sensor node disseminates its data throughout the network
by using multi-hop routing. In this way, each node can receive
the data from all other nodes in the network. These data are then
compressed and the compressed result is stored at these nodes.
This method is further improved in [31] to save data dissem-
ination cost. However, data dissemination based decentralized
storage is not applicable to MCS, since most of the participants
are total strangers and do not communicate with each other.
Perhaps for this reason, nearly all the MCS systems still employ
cloud storage except reference [32], which exploits a distributed
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storage method to temporarily store the data when network out-
age is encountered. However, this storage strategy only consider
the extreme scenario where wireless connectivity between the
participants and the server is temporarily interrupted. In this
article, we further consider a more general case, i.e., the MCS
system itself is seen as a natural participant-based decentralized
storage system. The entire data field is stored into a number of
participants outside of a cloud server.

III. COMPRESSED DATA STORAGE

This section formulates the movements of the participants
as random samplings by defining a virtual sensor model. Then
encoding algorithms with block partition and data exchange
strategies are proposed. Each participant independently per-
forms encoding and stores its own measurements, without any
support from central cloud servers.

A. Data Sampling by Employing Virtual Sensor Model

1) Virtual Sensor Model: We consider the geographical tar-
get sensing area as a static virtual sensor model. An example of
virtual sensor model is schematically shown in Fig. 1, where vij
denotes the virtual sensor node located at the coordinates of i, j.

Our idea is gotten from classical wireless sensor network,
where sensor nodes are deployed at the observation sites in
the target area for collecting environmental information. We
notice that environmental information is, in fact, irrelevant to
physical sensor nodes. Environmental information, if anything,
is relevant to the corresponding observation site. Environmental
information is always there, even if one does not deploy any
physical sensor node. With this in mind, the concept of virtual
sensor node is defined in Definition 3.1.

Definition 3.1 (Virtual Sensor Node). A geographical obser-
vation site is a virtual sensor node. The information of the
observation site is sensed by the corresponding virtual node,
just as a real node is deployed at this observation site.

From Definition 3.1, an observation site is imagined as a
virtual sensor node, and the target sensing area consists of a
number of virtual nodes. Virtual sensor node is like a physical
one, but it has many differences from a real one, as illustrated
in Properties 3.1 and 3.2.

Property 3.1 (Storage Capacity). The virtual sensor node, like
a real physical sensor, is capable of sensing the information of
the observation site. However, the virtual node has no storage
capacity, and can not store any sensing data.

Property 3.2 (Sensing Time). The sensing time of the virtual
sensor node relies on the activities of the participants. When
some participant visits an observation site, the corresponding
virtual node senses once.

It can be seen from Property 3.1 that, virtual node is memo-
ryless, since it is a virtual one of our imagination. Property 3.2
gives the relationship between the proposed virtual sensor model
and the participants in terms of sensing time. When a participant
visits an observation site, it acquires and stores the data sensed
by the corresponding virtual sensor node.

2) Random Data Sampling: Based on the proposed virtual
sensor model, random movements of the participants in the target

Algorithm 1: Encoding Algorithm.
Input: Vl;
Output: yl;
1: Initialize yl = 0;
2: while vij ∈ Vl do
3: yl ← yl + φijxij ;
4: end while

sensing area can be easily formulated into a set of data sampling
processes.

Fig. 2 illustrates the relationship between these two issues.
As shown in Fig. 2(a), six participants move randomly in an
area, each with its own moving trajectory. The trajectory of a
participant corresponds to a random data samplings over the data
field related to this area. The sampling processes are shown in
Fig. 2(b)–(g), respectively. From Fig. 2, with the data sampling
process, each participant obtains its own sampled result of the
data field. In crowdsensing scenario, any participant can not be
expected to move through all observation sites. A participant
may only randomly visit a percentage of visual nodes. That is,
the sampled result is a random subset of the data field.

Fortunately, the data in the neighboring observation sites
are generally correlated to each other. By exploiting the data
correlation, it is possible to deduce the entire data field from a
sampled subset of the data with a reasonable encoding algorithm
and the corresponding recovery strategy. That is, the participant
can acquire the information of the entire data field with some
degree of accuracy, although it only conducts random local
sampling. Along with the increase of the participants, the target
sensing area can be wholly covered by their trajectories, i.e., the
data field may be fully sampled with enough participants.

B. Participant-Based Compressed Data Storage

In this section we introduce an encoding method, with which
the data field is compressed into one measurement along with
a random sampling process. Each participant stores its own
measurement, not the original sampled result. Block partition
and data exchanging strategies are further investigated to in-
crease the number of the measurements, without requiring more
participants.

1) Encoding Algorithm: Assume that X is the data field
related to a target sensing area, xij denotes the datum sensed
by virtual sensor node vij on the sampling path of participant
Pl, Vl is the set of all virtual nodes visited by Pl, φij is a random
number generated by Pl when virtual node vij is visited, and yl
is the encoded result, i.e., measurement. The encoding algorithm
is shown in Algorithm 1.

We use Fig. 3 as an example to illustrate the encoding process.
With Algorithm 1, at every virtual sensor node, participantPl en-
codes the sensory data and stores the encoded measurement. For
instance, in the first step of the sampling process, yl = φ50x50,
where x50 is the original environmental datum sensed by v50,
and in the second step, yl = φ50x50 + φ41x41. Pl performs this
encoding operation until it completes the sampling process. At
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Fig. 2. Random sampling process. (a) Moving trajectories of six participants shown in blue, red, black, purple, green, and orange, respectively. (b)–(g) Sampling
results of six participants shown in the corresponding colors.

Fig. 3. Participant Pl runs the encoding algorithm along with a random
sampling process, and stores the encoded result, measurement yl.

the end of the process, it has

yl = φ50x50 + φ41x41 + φ42x42 + φ32x32 + φ23x23

+ φ24x24 + φ14x14 + φ15x15 + φ05x05. (1)

Denote that Tl is the trajectory matrix of Pl in the sampling
process shown in Fig. 3, φl is a matrix consisting of random

numbers, Φl = φl ◦ Tl, Ml(i, j) is an element at i-th row and
j-th column of matrix Ml, and “◦” means Hadamard Product.
Then, measurement yl shown in (1) is calculated as (2)–(4).

X̃l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1

0 0 0 0 1 1

0 0 0 1 1 0

0 0 1 0 0 0

0 1 1 0 0 0

1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Tl

◦

⎛
⎜⎜⎜⎜⎝

x00 x01 . . . x05

x10 x11 . . . x15
...

...
. . .

...

x50 x51 . . . x55

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
X

,

(2)

Ml =

⎛
⎜⎜⎜⎜⎝

φ00 φ01 . . . φ05

φ10 φ11 . . . φ15
...

...
. . .

φ50 φ51 . . . φ55

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
φl

◦ X̃l

= φl ◦ (Tl ◦X)

= (φl ◦ Tl) ◦X
= Φl ◦X, (3)

yl =
∑
i

∑
j

Ml(i, j). (4)

The derivation from (2) to (4) indicates that, our encoding
algorithm has considered the data correlation. By construct-
ing matrix Φl, measurement yl can acquire the information
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Algorithm 2: Encoding Algorithm With Block Partition.
Input: Vl;
Output: {ykl };
1: Initialize ykl = 0, 0 ≤ k < �;
2: while vij ∈ Vl do
3: for k = 0 to � − 1 do
4: if vij ∈ V k then
5: ykl ← ykl + φijxij ;
6: end if
7: end for
8: end while

of the entire data field, X , with Φl ◦X . That is, what par-
ticipant Pl encodes is X , not just the sampled subset of the
data, {x50, x41, x42, x32, x23, x24, x14, x15, x05}. We ascribe
this conclusion to the randomness of Φl, where Φl = φl ◦ Tl
and trajectory matrix Tl abstracts the random movement of Pl.
Φl ◦X is like a random sampling forX withΦl, data correlation
of X can then be exploited, and yl features the information
of the entire data field, X . When enough of the measurements
are generated by different Φl related to various participants, the
complete information ofX could be represented jointly by these
measurements.

2) Block Partition Strategy: This subsection proposes a
block partition strategy, aiming at increasing the number of mea-
surements without requiring more participants. Block partition is
usually used in image processing for reducing the computational
complexity [7], [30]. Here we apply the idea of blocking to MCS
scenarios.

Suppose that the target sensing area is partitioned into �
blocks, V k denotes the set of virtual nodes in k-th block, and
ykl is the k-th measurement of Pl. An enhanced version of the
encoding algorithm with additional block partition strategy is
shown in Algorithm 2.

Fig. 4 illustrates the scenario of block partition, where two
measurements, {y1l , y2l }, are generated by the same participant,
Pl. According to Algorithm 2, one has

y1l = φ23x23 + φ24x24 + φ14x14 + φ15x15 + φ05x05, (5)

and

y2l = φ50x50 + φ41x41 + φ42x42 + φ32x32. (6)

Taking measurement y1l as an example, it can be further derived
from

y1l =
∑
i,j

M1
l (i, j), (7)

where

M1
l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
φl ◦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1

0 0 0 0 1 1

0 0 0 1 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
◦X

Fig. 4. Encoding with block partition, where the trajectory of Pl is seen as
two sampling processes, and Pl stores two measurements, {y1l , y2l }.

= Φ1
l ◦X. (8)

By investigating a measurement matrix Φ1
l to exploit the data

correlation, measurement y1l features the entire data field, X ,
not its subset, {x23, x24, x14, x15, x05}. The same analysis is
true for measurement y2l .

Block partition increases the number of the measurements
by reducing the size of the data subset used to compute the
measurements. Randomness is still the hypothesis ensuring the
validity of the encoding operation. When a participant conduct a
random movement in the target sensing area, its local trajectories
in some blocks are random as well. The movement in a local
block can also be seen as a random sampling for the data field
corresponding to the whole area.

3) Data Exchange: Data exchange is used to further increase
the number of the measurements for a certain participant. Con-
sider a common scenario: When two participants meet at some
observation site, they have the opportunity to establish transient
communication by using short range communication interfaces
such as Bluetooth. The participants can then exchange their data
during this opportunistic contact.

Suppose that Dl and Da are data sets acquired by Pl and
Pa on their moving paths, respectively. xij is the r-th element
in Dl, and vij is the corresponding virtual node. The encoding
algorithm by employing block partition and data exchange is
described in Algorithm 3.

We use Fig. 5 to illustrate the encoding algorithm with data
exchange. When Pl meets Pa at virtual node v23, it acquires the
data exchanged from Pa, {x01, x11, x22}. These data are tem-
porarily stored until Pl completes its sampling process. Pl then
performs encoding operation and generates three measurements,
{y0l , y1l , y2l }, by blocks. Notice that Pl does not visit any nodes
in 0-th block, but it can achieve the measurements related to 0-th
block, thanks to the data exchange strategy. From the Pa’s point
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Algorithm 3: Encoding Algorithm With Block Partition and
Data Exchange.
Input: Vl;
Output: {ykl };
1: Initialize Dl = ∅, ykl = 0, 0 ≤ k < �;
2: while vij ∈ Vl do
3: Dl ← Dl ∪ xij ;
4: if Pl meets Pa at vij then
5: Dl ← Dl ∪Da;
6: end if
7: end while
8: for r = 0 to |Dl| − 1 do
9: for k = 0 to �-1 do
10: if vij ∈ V k then
11: ykl ← ykl + φijxij ;
12: end if
13: end for
14: end for

Fig. 5. Encoding with block partition and data exchange. Pl stores three
measurements, {y0l , y1l , y2l }.

of view, it can also obtain the data from Pl with data exchange
when they meet at v23.

For a participant, by employing data exchange, the number
of measurements can be further increased. The participants
exchange their data via short range wireless communication
when they meet at some common observation sites, with almost
no added cellular network overhead.

IV. DATA RECOVERY FROM ENCODED MEASUREMENTS

This section investigates a data recovery algorithm, targeting
at recovering the original data field from a set of M mea-
surements. When decentralized storage is implemented by the
participants independently, data recovery algorithm runs on a
cloud server.

A. Under-Determined System of Measurement Equations

1) Measurement Equations: This subsection formulates the
encoding operations into a system of measurement equations.
Suppose that matrix X represents the original data field con-
sisting of N data. According to Algorithm 1, one measure-
ment is generated by performing an encoding operation on
X with matrix Φl corresponding to participant Pl. Let vec(·)
denote a function that reshapes a matrix into a row vector.
x = (vec(X))ᵀ, Φ(l, :) = vec(Φl), where Φ(l, :) is the l-th row
of matrix Φ. Encoding equation shown in (4) of Section III-B1
can be rewritten into a more general form,

yl = Φ(l, :)x. (9)

M measurements, {y0, y1, . . . , yM−1}, consist of a system of
M measurement equations,

⎛
⎜⎜⎜⎜⎝

y0

y1
...

yM−1

⎞
⎟⎟⎟⎟⎠ = Φx. (10)

Here we term Φ as measurement matrix of this system.
In Algorithms 2 and 3, block partition is employed, and the

measurements are generated by block. Suppose that the target
sensing area is partitioned into � blocks, the original data field
corresponding to k-th block is expressed asxk,∪{xk}0≤k<� =
x, |xk| = n, and�n = N . By considering block partition, (10)
is further rewritten as⎛

⎜⎜⎜⎜⎝

Y 0

Y 1

...

Y �−1

⎞
⎟⎟⎟⎟⎠ = Φ

⎛
⎜⎜⎜⎜⎝

x0

x1

...

x�−1

⎞
⎟⎟⎟⎟⎠, (11)

where
∑�−1
k=0 |Y k| =M , measurement matrix Φ =

⎛
⎜⎜⎜⎜⎝

Φ0

Φ1 0

0
. . .

Φ�−1

⎞
⎟⎟⎟⎟⎠ . (12)

As can be seen, Φ is a measurement matrix with block diagonal
structure caused by block partition strategy, where Φk corre-
sponds to the k-th block of the target sensing area. This indicates
that (11) consists of � set of equations in the form of (10).

2) Attention Mechanism: Considering a common MCS sce-
nario, where the organizer may pay more attention to some
special regions of the target sensing area, we present an attention
mechanism to improve the efficiency of measurement equations.

With block partition, measurements are encoded by block.
This gives ones an opportunity, allowing encoding resources
to be deliberately assigned to the designated blocks, or allocate
more measurements to the blocks of being interested. We term it
as attention mechanism. Fig. 6 gives an instance to illustrate the
attention mechanism. The organizer may think the fourth block
is of more importance, and hope the recovered data field has
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Fig. 6. Two methods of measurement allocation, where a dot represents a
measurement. (a) Uniform allocation. (b) Allocation with more attention on the
fourth block.

Fig. 7. Comparison of two block diagonal matrices. (a) All sub-matrices have
the same number of rows. (b) Sub-matrix Φ4, corresponding to the fourth block
of being interested, is with more rows.

higher accuracy on this block. Instead of uniform allocation,
where each block is allocated the same measurements, it is
reasonable to allocate more measurements to the fourth block,
while the total number of measurements remains unchanged.

To put the attention mechanism into effect, we adjust the
size of the sub-matrices of Φ shown in (12). Simply designed
measurement matrix Φ corresponds to uniform allocation of
measurements. An example is shown in Fig. 7(a), where each
sub-matrix has the same 4 rows. With attention mechanism, the
size of Φ4 increases from 4 rows to 9 rows, as illustrated in
Fig. 7(b), since the fourth block may be an interested hot-spot
area. Here the total number of rows of Φ keeps unchanged.

It should be noted that (10) or (11) may represent an under-
determined system of equations. There are M linear equations
but the number of variables is N . Clearly, if M is equal to or
greater than N , then this set of equations will be easy to solve.
However, general MCS campaigns often recruit the participants
with minimum number to save the recruitment cost. That is,
normally,M is far smaller thanN in MCS scenarios. In this way,
(11) may have countless solutions, which can be problematic.

B. Decoding Algorithm Based on Compressed Sensing Theory

Fortunately, classical Compressed Sensing theory can be used
to solve the under-determined equations [4], [6], [29]. Com-
pressed Sensing is originally introduced to represent a signal
with fewer information than the Shannon-Nyquist limit. In Com-
pressed Sensing, signal recovery with only a small amount of
information is also formulated as an under-determined problem.
We can leverage this method from Compressed Sensing in our
proposed scheme to reconstruct the original data field.

Let y = (y0 y1 . . . yM−1)ᵀ, ψ represent a sparse basis, and
α be the result of x in the transform domain of ψ. The under-
determined system of measurement equations, y = Φx, can be
derived as y = Ψα, where Ψ is called as sensing matrix, Ψ =
Φψ, and x = ψα. According to Compressed Sensing theory,
although M � N , if Φ has the mutual coherence with ψ, one
can compute α by solving the following optimization problem

min
α
‖ α ‖1 subject to ‖ y −Ψα ‖22 ≤ λ, (13)

where λ is a small constant, ‖ · ‖1 denotes the 1-norm, and ‖ · ‖2
is the 2-norm. The author in [6] quantifies the error bound of (13)
by pointing out that, M measurements with M = O(Slog(N))
are just as good as knowing the S biggest coefficients of α.

Several fast algorithms have been introduced to solve this
optimization problem. Iteration-based DAMP presented in [15]
is one of the best performing algorithms. Block partition-based
measurement equations constructed in MCS scenarios can be
considered as a set of � equations, each of which is capable
of being formulated as an optimization equation shown in (13).
Intuitively, a Compressed Sensing algorithm, such as DAMP,
can be directly used to reconstruct each block, and the entire
data field is then recovered by simply concatenating all blocks
together. However, the data subsets related to each block of
the target area are correlated to each other. Using the same
Compressed Sensing algorithm will not exploit this correlation
and inevitably will introduce blocking artifacts.

We propose an extended version of the-state-of-art DAMP,
termed as B-DAMP, specially targeting at data recovery of MCS
with block partition. The proposed algorithm is divided into
three stages, namely approximating, estimation of the residual,
and denoising process. Let Dσ̂t(·) be a common denoising
function, and σ̂t =‖ zti ‖2 /

√
mk represent an estimate of the

standard deviation of that noise. div denotes the operation of
partial derivative,divDσ̂t−1 is the divergence of denoiser σ̂,Φ∗k is
the inverse matrix ofΦk, andmk is the number of measurements
related to k-th block. The three stages are described below.
� Approximating: For the approximation corresponding to
k-th recovered block at t-th iteration, its (t+ 1)-th approx-
imation, x̂t+1

k , is calculated as

x̂t+1
k = x̂tk +Φ∗kz

t
k. (14)

� Estimation of the residual: For x̂tk, one can further estimate
its residual ztk,

ztk = yk − Φkx̂
t
k

+ zt−1k divDσ̂t−1
(
x̂t−1 +Φ∗kz

t−1
k

)
/mk. (15)

� Denoising: Concatenating � blocks, {x̂tk}, into an entire
data set, x̂t+1, one then performs denoising operation,

x̂t = Dσ̂t

(
x̂t

)
. (16)

Based on these three stages, the proposed block-based B-
DAMP algorithm is illustrated in Algorithm 4. The key idea
here is that, at each iteration, the denoising operation,Dσ̂t(·), is
performed on the entire data set, x̂, not separate blocks, x̂k. In
this way, our B-DAMP enjoys both the benefit of ameliorating
blocking artifacts and the advantage of high-performance data
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Algorithm 4: B-DAMP Decoding Algorithm.
Input: yk, Φ, �, Iter, Threshold;
Output: x̂t;
1: Initialize x̂0 = 0, t = 0, z0

k = yk;
2: while t < Iter do
3: Partition x̂t into � blocks;
4: for k = 0 to �-1 do
5: Calculate x̂t+1

k according to (14);
6: end for
7: t← t+ 1;
8: for k = 0 to �-1 do
9: Calculate ztk according to (15);
10: end for
11: Concatenate � blocks into the entire data set, x̂t;
12: Update x̂t according to (16);

13: error ← ‖x̂t−x̂t−1‖2
‖x̂t‖2 ;

14: if error < Threshold then
15: break;
16: end if
17: end while

recovery in the original DAMP. In Algorithm 4, the number
of iterations Iter and the desired accuracy Threshold are
predefined.

So far we have introduced four algorithms. Algorithms 1, 2,
and 3 are encoding algorithms while Algorithm 4 is a decoding
algorithm. The participants perform encoding operation inde-
pendently by employing an encoding algorithm and store the
encoded measurements. Decoding algorithm runs on a cloud
server for reconstructing the original data by receiving enough
number of measurements from the corresponding participants.

V. PERFORMANCE GUARANTEE OF COMPRESSED DATA

STORAGE

In this section, we mathematically demonstrate that our com-
pressed storage scheme can guarantee successful data recovery
with enough number of measurements. We also present in-depth
discussion on the decentralization performance.

A. Mathematical Foundation

Mathematically, measurement matrix Φ, shown in (12), is the
key to the performance of our participant-based data storage.
The proposed scheme includes decentralized data storage and
cloud-based data recovery, both of which are designed on the
basis of Φ. By constructing block diagonal matrix Φ of size
M ×N , the data field with N -point data are encoded into M
distinctive measurements, stored by different participants. Based
on matrix Φ, data recovery in MCS system is formulated as a
Compressed Sensing optimization problem, and a fast decoding
algorithm can then be employed to find the solution.

To make the Compressed Sensing optimization problem have
an optimal solution, sensing matrix Ψ has to obey the so-called
restricted isometry property. Let ψ be a sparse basis. For natural
signal x, one has x = ψα and Ψ = Φψ. It had been proven

Fig. 8. For matrix Φ of size M ×N , its row matrix Φk and diagonal sub-
matrixΦk are withmk ×N andmk × n, respectively. The size ofψ isN ×N ,
and its row matrix ψk is with n×N .

in [4] that, if Φ is a randomly generated matrix, then it has
mutual coherence with ψ, thus Ψ obeys the above-mentioned
restricted isometry property with a high probability. Let T k

represent mk trajectories of the participants in k-th block of
the target sensing area, φk is a matrix consisting of mk × n
random numbers. Then measurement matrix Φk related to k-th
block is formulated as Φk = φk ◦ T k. Note that the movements
of the participants in the target sensing area tend to be random
in nature. The distribution of 0 and 1 in trajectory matrix T k is
then random accordingly. Thus Φk can be seen as a randomly
generated matrix, and is coherent with any given sparse basis.

In terms of the mutual coherence, we next prove that block
diagonal matrix Φ including � sub-matrices, where Φk is the
k-th sub-matrix of size mk × n, also satisfies the condition
of mutual coherence for restricted isometry property. Suppose
that the size of Φ is M ×N ,

∑�−1
k=0 mk =M , �n = N , ψ

represents the sparse basis of size N ×N , and ϕ is with n× n.
Theorem 5.1. Let c be a pre-defined non-negative constant

satisfying c ≤ 1. If the mutual coherence between Φk and ϕ is
bounded by a positive constant γ, that is, μ(Φk, ϕ) < γ, then
block diagonal matrix Φ also has mutual coherence with ψ as

μ(Φ, ψ) < cγ. (17)

Proof. Denote Φk(i) be the i-th row of Φk, and ϕ(j) be the
j-th column of sparsity basis ϕ. One has

μ(Φk, ϕ) = max
0≤i<mk,0≤j<n

|〈Φk(i), ϕ(j)〉|
‖Φk(i)‖2‖ϕ(j)‖2 < γ. (18)

Dividing matrix Φ into � blocks, one can then calculate the
mutual coherence between Φ and ψ as

μ(Φ, ψ) = max
0≤k<�,0≤i<mk,0≤j<N

|〈Φk(i), ψ(j)〉|
‖Φk(i)‖2‖ψ(j)‖2 , (19)

where Φk denotes the k-th block of matrix Φ, which is drawn
with dashed lines in Fig. 8.

Considering that Φ is a�-block diagonal matrix, all elements
of Φk, except these corresponding to Φk, are zeroes. In this way,
one has |〈Φk(i), ψ(j)〉| = |〈Φk(i), ψk(j)〉|, where ψk denotes
the k-th block of matrix ψ shown in Fig. 8. According to (18),
one has |〈Φk(i), ψk(j)〉| < γ · ‖Φk(i)‖2‖ψk(j)‖2. As a result,
one can achieve

|〈Φk(i), ψ(j)〉| < γ · ‖Φk(i)‖2‖ψk(j)‖2. (20)
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Since ‖Φk(i)‖2 = ‖Φk(i)‖2, by applying (20) to (19), one fur-
ther has

μ(Φ, ψ) < max
0≤k<�,0≤j<N

‖ψk(j)‖2
‖ψ(j)‖2 · γ. (21)

Let c = max0≤k<�,0≤j<N
‖ψk(j)‖2
‖ψj‖2 , then

μ(Φ, ψ) < cγ. (22)

From Theorem V.1, matrix Φ constructed with our stor-
age scheme satisfies mathematical mutual coherence with any
given sparse transform basis. Given enough measurements, i.e.,
M = O(Slog(N)) illustrated in Compressed Sensing theory,
the under-determined system of equations formulated from the
proposed participant-based storage has an optimal solution with
an error bound. In other words, the original data field can be
recovered with desired accuracy by recruiting a certain number
of participants. We are going to further validate this claim in the
experimental study.

B. In-Depth Discussion

Our decentralized storage scheme is in particular suitable
for MCS with energy consumption in mind by introducing a
two-part structure, i.e., compressed storage and data recovery.
Specifically, the two-part structure takes an asymmetric design.
Compressed storage is extremely simple, where the encoding
is just a linear operation, and thus the participants do not im-
pose extra energy consumption. However, data recovery has a
high computational complexity, since original data have to be
reconstructed from a number of simply encoded measurements.
Fortunately, data recovery is implemented at a cloud server,
generally with enough energy and computational resources.

The proposed decentralized storage scheme is independent of
any specific participants. It is a practical possibility that some
participants may leave MCS systems at any time for various rea-
sons. In this event, the measurements stored in these unreliable
participants may be discarded as they withdraw from the sys-
tems. We argue that, this has no effect on the performance of our
scheme. The reason is, every measurement, no matter where it is
stored, features the same data field. In this way, all participants
are equivalent to one another. As long as enough participants are
still recruited in MCS system, or to be more exact, the number of
measurements M satisfies M = O(Slog(N)), the original data
field can be recovered with desired accuracy.

Randomness is the mathematical prerequisite for our decen-
tralized and compressed storage, and block partition strategy
improves its performance. Thanks to the randomness of the
movements of the participants, we design a measurement matrix
that has mutual coherence with a sparse transform basis. The data
correlation can then be exploited, and the data field is encoded
into a measurement. Based on block partition, data exchange
and attention mechanism are further investigated to reduce the
number of participants and improve decoding accuracy. At the
same time, block partition also decreases the computational
complexity of data recovery, as it is usually employed in the
field of image processing.

One of the most important advantages of proposed scheme
is to provide a great alternative to the popular cloud storage by
utilizing little pieces of storage space scattered over numerous
participants. The disadvantage may be the query latency. With
the proposed decentralized scheme, data are not stored at cloud
server, but are stored across numerous individual participants.
In a sense, these participants form a large-scale distributed
database, which could cause a relatively longer query latency
in some cases. The proposed scheme is designed for uni-modal
data, however, as sensor technology advances, one mobile device
is capable of sensing and collecting multi-modal data, i.e.,
several kinds of data for collaboratively providing complete
information of the target sensing data. Although multi-modal
data can be considered as multiple uni-modal data, the data
with multi-modality may have strong correlation that needs to
be considered. Exploiting multi-modal correlation to improve
decentralized data storage can be a challenging task.

VI. EXPERIMENTAL RESULTS

This section first introduces the experimental scenario and
defines performance indexes. Extensive experiments are then
designed to evaluate the proposed scheme by using real gravity
data. The data set and our source codes are available at https:
//github.com/siwangzhou/pdds.

A. Experimental Scenario

The target sensing area consists of 40000 observation sites,
which follow a 200× 200 grid distribution. Virtual sensor nodes
are imagined as being deployed at the corresponding observation
sites, and a virtual node is related to a gravity datum. The par-
ticipants with their sensing devices move through these virtual
nodes based on the popular Metropolis-Hastings random walk
algorithm presented in [3]. The minimum number of steps of the
participants is set to 200, and the maximum number is 1200. A
participant randomly selects a site on the area to start its moving
process, and at the same time it enters this area at a randomly
chosen time point. Along with the process of random walk, the
participant collects the data from virtual sensor nodes. Each
participant independently runs encoding algorithm and stores
its own measurements. For block-based sampling strategy, the
crowdsensing system recruits 500 participants, while for sam-
pling scenarios without block partition, the number is increased
to 5000. After the participants finish their random walks, only
the trajectories at the central grid area of size 128× 128 are
retained for avoiding the impact of the boundary of the area.

Gravity anomaly data on the earth presented in [17] are used
to evaluate the proposed storage scheme. A public data set of
gravity anomaly is shown in Fig. 9, where Fig. 9(b) is a part
of Fig. 9(a). In the experiment, the data shown in Fig. 9(b) are
related to the virtual sensor nodes deployed in central target area
of size 128× 128. The values of gravity data range from−125.6
to 252.4. To facilitate the encoding and decoding operations, the
range of data values is changed from 0 to 378 in the experiments,
without influencing the performance evaluation.
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Fig. 9. Visual map of experimental data set.

Recruitment overhead, coverage ratio, decoding error and
decoding time of the decoding algorithm are used as perfor-
mance indexes. Recruitment overhead is used to indicate the
number of participants participating in decoding process in
the crowdsensing system. Coverage ratio is the proportion of
virtual nodes visited by the participants in the target sensing
area. Assume that x represents the original data field and x̂
corresponds to the recovered one. The size of x and x̂ are all
N , i.e., the number of the virtual nodes deployed in the target
area is N . Let pl denote the number of measurements stored by
participant Pl, and {sl} be the set of virtual nodes participant
Pl visits. Then, coverage ratio, cr, is defined as

cr =
| ∪ {sl}|
N

. (23)

Here∪{sl} denotes the union set of {sl} for all participants, and
| · | is the number of the elements in this union. Decoding error,
error, is defined as a relative square error,

error(x, x̂) =
‖x− x̂‖2
‖x‖2 . (24)

Let mae be mean absolute error, where mae(x, x̂) = ‖x−x̂‖1
N .

Set the threshold of mae to 1. If mae is less than 1, then the
original data field is said to be successfully recovered. Suppose
that one runs data reconstruction algorithm totalnumber times,
where the number of successful data recovery is number. The
proportion of successful data recovery, sdr, is then defined as

sdr =
number

totalnumber
. (25)

Decoding rate is defined as

dr =
M

N
, (26)

whereM =
∑
l pl, i.e.,M is the total number of measurements

stored by the participants involving in the decoding process.

The experiments are implemented using the MATLAB
R2015b simulator on a server platform configured with 256 GB
of memory and two 3.2 GHz Intel(R) CPUs.

B. Performance Analysis

This section analyses the performance of the proposed scheme
under several MCS scenarios by observing the impact of several
factors, including the steps of the participants, the probability of
data exchange, and various encoding and decoding strategies.

1) Impact of Steps of the Participants: This subsection eval-
uates the impact on performance of the proposed scheme in
terms of the participant’s scope of activities in the target sensing
area by setting various step numbers. Here, the probability of
data exchange is set to 50%. That is, when two participants
meet at an observation site, they exchange their data with a 50%
probability. Various probabilities will also be tested in the next
subsection.

Theoretically, if the number of measurements, M , satisfies
M = O(Slog(N)), the original data field can be recovered
with desired accuracy. We further validate it in experimental
environments by using decoding rate, dr =M/N , as an index.
Fig. 10(a) and (b) evaluate the recovery accuracy by investigating
the probability of successful data recovery and decoding error,
respectively. Here N = 128× 128 = 16384. From Fig. 10(a),
when dr exceeds 0.12, the proportion of successfully data
recovery could be one hundred percent at various scenarios.
The scenario, where the step ranges from 900 to 1200, has
better performance than other three scenarios with less steps.
This shows our decoding algorithm can achieve an accuracy
improvement along with the increase of the number of steps.
From Fig. 10(b), the number of steps has very small impact on
decoding error. As the decoding rate increases, decoding error in
all five scenarios continues to fall. This accords with the principle
of decoding algorithm, as dr is proportional to the number of the
measurements, M . The scenario where the steps ranging from
900 to 1200 has slightly lower decoding error than other four
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Fig. 10. Impact on performance in terms of various steps.

scenarios. This result agrees with that shown in Fig. 10(a), where
more steps indicate a relatively higher probability of successful
data recovery.

Fig. 10(c) shows that, along with the increase of the steps
of the participants, the coverage rate increases significantly.
When the crowdsensing system only recruits 20 participants,
the coverage rate is about 25% with the steps ranging from 200
to 500. Once the range of steps changes from 900 to 1200, the
coverage rate is up to 100%. This is because the participants have
more opportunities to exchange their data as they go further in
the target sensing area. Note that the scope of the participants’
activities corresponds to the crowdsensing cost, so we have to
see another side of the double-edged sword: the more steps a
participant moves, the more cost the crowdsensing system has.

Fig. 10(d) illustrates the relationship between the recruitment
overhead and the steps the participants move in the target area.
Along with the increase of the decoding accuracy, the numbers
of the participants at various steps all increase accordingly. This
is a reasonable result, since more participants indicates more
measurements being stored. When a participant goes further
into the target area, it traverses across more blocks. With the

proposed block partition strategy, it can generate and store more
measurements. In this way, with the same measurements, or the
same decoding error, the scenario where the steps range from
900–1200 requires far less participants than that with the steps
ranging from 200–500.

2) Impact of Data Exchange: This subsection evaluates the
performance of the proposed scheme on the scenarios with
various probabilities of data exchange. In the experiments, the
step number of the participants is set from 200 to 500.

Fig. 11(a) illustrates that, at the same number of the partic-
ipants, as the exchanging probability increases from 10% to
100%, the coverage rate increases accordingly. When 50 partici-
pants are recruited in the crowdsensing system, the coverage rate
is up to more than 95% with 100 percent probability of exchang-
ing data compared to about 70% with 10 percent probability.
This experimental result is reasonable. When two participants,
at possible opportunities, to exchange their data with each other,
the same data is stored across these two participants. This is as
if one participant visits the observation sites on the walking path
of the other one. The coverage rate can then be increased with
the same number of the participants.
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Fig. 11. Impact on performance in terms of exchanging probability.

Fig. 12. Impact on performance in terms of attention mechanism and data exchange.

Fig. 11(b) gives the relationship between the number of the
participants and decoding accuracy in the scenarios with four
data exchanging probabilities. When two participants meet at a
certain observation site, data exchange is performed with certain
probability. Observing Fig. 11(b), the crowdsensing scenario
with 100 percent probability of exchanging data has the best
performance, while the worst performance is for the scenario
of 10 percent probability of exchanging data in terms of the
number of the participants. That is, to achieve the same decoding
accuracy, significantly fewer participants are required for the
crowdsensing system if higher probability of exchanging data
can be employed.

3) Ablation Study: This subsection performs an ablation
study to evaluate the impact of our attention mechanism and
data exchange strategy. A-B-DAMP denotes the proposed stor-
age by employing B-DAMP algorithm with attention mecha-
nism, E-B-DAMP denotes that with data exchange strategy, and
AE-B-DAMP denotes that with both attention mechanism and
data exchange. In the experiments, we set the probability of

data exchange to 50%, and the range of steps is from 200 to
500.

Fig. 12(a) shows that, by employing data exchange, E-B-
DAMP and AE-B-DAMP have significantly better performance
in terms of recruitment overhead than their counterparts, B-
DAMP and A-B-DAMP, respectively. For instance, to achieve
the accuracy of 0.05 of decoding error, only about 150 par-
ticipants have to be recruited for E-B-DAMP method, while
for B-DAMP the crowdsensing system requires more than 250
participants. This indicates that the improvement of recruitment
overhead mainly benefits from block partition-based data ex-
change strategy. It can also be seen from Fig. 12(a) that, E-B-
DAMP requires fewer participants than AE-B-DAMP, although
both approaches employ data exchanges. The reason is that
AE-B-DAMP is based on attention mechanism, which has to
choose reasonable measurements from participants in order to
achieve higher accuracy.

From Fig. 12(b), the methods employing attention mecha-
nism, A-B-DAMP and AE-B-DAMP, have lower decoding error
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Fig. 13. Performance comparison with the completing DDS-MCS method.

than their counterparts, B-DAMP and E-B-DAMP, respectively.
Taking decoding rate of 0.05 as an example, the decoding error is
about 0.04 for AE-B-DAMP, while for E-B-DAMP the decoding
error is more than 0.08. This indicates that our attention mech-
anism can decrease decoding error, i.e., improving the accuracy
of data recovery. The main reason for this improvement is that,
with attention mechanism, we can choose the participants whose
trajectories cover the blocks with significant data anomaly. This
ensures the efficient use of sampling resources and thus achieves
accuracy improvement.

C. Comparison With the Competing Method

To the best of our knowledge, nearly all the MCS systems
employ cloud storage except reference [32], which introduces a
distributed storage method and is most similar to our scheme. We
call it DDS-MCS for simplicity and choose it as the competing
method for comparing with our proposed AE-B-DAMP scheme.

The experimental result is shown in Fig. 13, where exchanging
probability is set to 50% and step number ranges from 200
to 500. Our scheme has significantly less participants, much

higher coverage rate, and much faster decoding speed, while still
achieving almost the same decoding error when the decoding
rate exceeds 0.05.

Fig. 13(a) shows that our scheme requires far smaller num-
ber of the participants, thus saving recruitment overhead for
crowdsensing. The significant improvement is attributed to the
proposed block-based encoding strategy. By employing block
partition, each participant runs encoding algorithm and gener-
ates more measurements. In this way, at the same number of
measurements, our scheme requires much fewer participants. As
can be seen from Fig. 13(a), when the relative square error of data
recovery, i.e., decoding error error, is about 0.05, the proposed
scheme only requires 250 participants, while for DDS-MCS,
the number of the participants is more than 650. Along with the
decrease of the decoding error, our scheme even presents much
lower recruitment overhead.

Fig. 13(b) illustrates that our scheme achieves far higher
coverage rate than the competing one. High coverage rate
benefits from the proposed data exchange strategy. When two
participants meet in a certain observation site, they take the
opportunity to exchange their data. It is as if one participant
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is visiting the sites that the other participant has visited. For
example, by recruiting the same 50 participants, our scheme
covers more than 90% observation sites while the competing
DDS-MCS covers only about 60%. In other words, our scheme
can achieve the same coverage rate by recruiting fewer partic-
ipants. With achieved higher coverage rate, the crowdsensing
system has greater freedom when selecting the participants for
data recovery.

Fig. 13(c) compares the decoding time of the proposed scheme
and the competing DDS-MCS. The performance improvement
is mainly due to block partition, which implies a divide-and-
conquer strategy and is originally employed in image processing
for reducing computation complexity. From Fig. 13(c), it is
obvious that our scheme can recover the original data field much
faster than DDS-MCS at various decoding rate. Both schemes
take longer to recover the original data field as the decoding
rate increases, since the decoding algorithms incur higher com-
putation complexity along with the increase of decoding rate.
However, our proposed decoding algorithm always runs faster
than the competing one in any decoding rate. With our scheme,
the entire data field is recovered by blocks, which indicates
marked drop in computation overhead, hence the gain in speed.

Fig. 13(d) shows that, our scheme has almost the same de-
coding error as DDS-MCS when decoding rate exceeds 0.05,
thanks to the block-based B-DAMP technique and attention
mechanism. As we know, block partition, if unrestricted, may
reduce the accuracy of decoding algorithm due to blocking
artifacts. We observe from Fig. 9 in Section VI-A that, the dis-
tribution of gravity data is not uniform, and there exists gravity
anomaly subarea. By utilizing block partition, more sampling
resources are assigned to the subarea existing gravity anomaly
data and less to these relatively uniform subarea. Therefore when
the decoding rate exceeds a certain threshold, our scheme can
complete a reasonable allocation of sampling resources, and thus
eliminate the adverse impact of block partition.

VII. CONCLUSION

In contrast to the popular cloud-based storage, this article pro-
poses a decentralized and compressed data storage scheme for
MCS systems. Our scheme takes a two-part structure combined
with an asymmetric design: data storage with simple encoding
operation and data recovery with higher computational com-
plexity. Data storage is accomplished independently by numer-
ous participants without any support from cloud servers, while
data recovery, when necessary, is implemented on a cloud with
enough computational resources by using a compressed sensing
based decoding algorithm. We further investigate block partition
strategy as well as block-based data exchange and attention
mechanism, improving the encoding and decoding efficiency.
The mathematical foundation and extensive experimental results
validate the performance of the proposed decentralized storage
scheme.

With the decentralized storage scheme, the participants po-
tentially store sensitive data of other participants, introducing
security as a key problem. Although existing security strategies
can be utilized to add additional security by considering the

compressed data as a normal data, separating security from the
storage process may be less efficient. We will in the future
integrate security into the encoding algorithm and develop a
crowdsensing platform, combing the secure storage strategy
with the real scenario to validate its performance.
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