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Abstract—Since Multimodal Emotion Recognition in Conversa-
tion (MERC) can be applied to public opinion monitoring, intel-
ligent dialogue robots, and other fields, it has received extensive
research attention in recent years. Unlike traditional unimodal
emotion recognition, MERC can fuse complementary semantic in-
formation between multiple modalities (e.g., text, audio, and vision)
to improve emotion recognition. However, previous work ignored
the inter-modal alignment process and the intra-modal noise in-
formation before multimodal fusion but directly fuses multimodal
features, which will hinder the model for representation learning.
In this study, we have developed a novel approach called Masked
Graph Learning with Recursive Alignment (MGLRA) to tackle
this problem, which uses a recurrent iterative module with memory
to align multimodal features, and then uses the masked GCN for
multimodal feature fusion. First, we employ LSTM to capture con-
textual information and use a graph attention-filtering mechanism
to eliminate noise effectively within the modality. Second, we build
a recurrent iteration module with a memory function, which can
use communication between different modalities to eliminate the
gap between modalities and achieve the preliminary alignment
of features between modalities. Then, a cross-modal multi-head
attention mechanism is introduced to achieve feature alignment
between modalities and construct a masked GCN for multimodal
feature fusion, which can perform random mask reconstruction
on the nodes in the graph to obtain better node feature repre-
sentation. Finally, we utilize a multilayer perceptron (MLP) for
emotion recognition. Extensive experiments on two benchmark
datasets (i.e., IEMOCAP and MELD) demonstrate that MGLRA
outperforms state-of-the-art methods.

Index Terms—Graph representation learning, multimodal
emotion recognition, multimodal fusion, recurrent alignment.

I. INTRODUCTION

EMOTIONS affect every aspect of our lives through
thoughts or actions, and conversation is the primary way to
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express them [1]. Therefore, it is crucial to understand emotions
in conversation accurately, and the results can be widely used in
fields such as intelligent dialogue [2] and intelligent recommen-
dations [3]. However, in actual dialogue scenes, the emotions
expressed by the speaker are not only related to the content of
the speech but also closely related to his tone and expression.
Multimodal Emotion Recognition in Conversation (MERC) task
aims to use the utterance (text, audio) and visual (expression)
information in the conversation to identify the speaker’s emo-
tion. Compared with traditional unimodal emotion recognition
in conversation, MERC can improve the instability of emotion
analysis by fusing richer multimodal semantic information [4],
[5]. Therefore, the key to advancing MERC lies in the effective
alignment and fusion of text, audio, and visual information to
achieve a collaborative understanding of cross-modal emotional
semantics.

In response to the above challenges, many researchers have
made significant efforts in the field of conversational emotion
recognition. For instance, Liu et al. [6] first used a convolu-
tional neural network (CNN) to learn local features of speech
signals, then used a recurrent neural network (RNN) to capture
long sequence features, and finally fused the two types of fea-
tures to achieve emotion recognition. Lian et al. [7] propose a
transformer-based dialogue emotion recognition model called
CTNet, which can adaptively learn and capture important emo-
tional features from input dialogues. Due to the excellent perfor-
mance of graph neural networks (GNN) in relational modeling,
Ghosal et al. [4] converted the conversation history into a graph
data structure and effectively extracted the emotional features in
the conversation history through GNN. This method can not only
be used for emotion recognition tasks but also can be applied
to other dialogue-related tasks. Hu et al. [5] use GNN to model
speaker-to-speaker relationships, effectively exploiting multi-
modal dependencies and speaker information. Yuan et al. [8]
used the relational bilevel GNN to model MERC, which reduced
the redundancy of node information and improved the capture
of long-distance dependencies.

However, only considering multimodal fusion is not complete
enough for MERC. The alignment of semantic features before
multimodal fusion is also a difficult challenge for MERC, which
affects the fusion performance to some extent. Alignment is
often used to unify disparate data from multiple modalities [9],
[10]. At the same time, noise reduction processing is indis-
pensable during the alignment process. There are usually two
types of noise. (1) As shown in Fig. 1(a), features with different
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Fig. 1. An example to illustrate the importance of alignment before performing multi-modal fusion and the difference from existing methods. (a) The example
demonstrates the first type of noise in multimodal emotion recognition. Red and blue represent visual information and textual information, respectively. (b) Previous
alignment methods for MERC. (c) Our alignment method MGLRA.

granularities may mean inconsistent emotional polarity. Char-
acter visual angles represent positive emotions, while different
words represent neutral or negative emotions. (2) The original
features extracted from the corresponding single modality using
different pre-trained models may contain some missing, redun-
dant, or even wrong information. Previous researchers have done
a lot of work on this issue. For example, Chen et al. [11] proposed
a gated multimodal embedding LSTM, which can filter noise
information while processing noisy modality data and achieve
finer fusion between input modalities. Xu et al. [12] use the
attention mechanism to use an adaptive alignment strategy in
the alignment layer, which can automatically learn alignment
weights in the process of frame and word alignment in the time
domain. Xue et al. [13] proposed a multi-level attention map
network to filter intra-modal or inter-modal noise to achieve
fine-grained feature alignment. However, as shown in Fig. 1(b),
these methods have the following limitations: (1) The alignment
process is often completed in one go, lacking an iterative align-
ment process, resulting in the model being unable to complete
fine-grained alignment. (2) These methods do not allow the
model to observe representations extracted from other modali-
ties and realign them during the alignment process and do not
consider contextual dialogue relationships during the alignment
process, resulting in poor performance when dealing with the
first type of noise.

To align and fuse semantic information from multiple modal-
ities, we carry out a Masked Graph Learning with Recurrent
Alignment for Multimodal Emotion Recognition in Conversa-
tion (MGLRA), which uses an iterative alignment mechanism
to strengthen the modalities’ consistency gradually, as shown
in Fig. 1(c). First, MGLRA uses different feature encoders to
represent modality-specific features. Second, we employ LSTM
to capture contextual information and use a graph attention-
filtering mechanism to eliminate noise effectively within the
modality. Third, MGLRA employs a novel feature alignment
method based on recursive memory-augmented cross-modal
attention, which iteratively refines and aligns unimodal features
by observing memory modules from other modalities. Fourth,
we introduce a variational GCN-based fusion method to fuse uni-
modal features to produce a robust multimodal representation.
Finally, multimodal representation is directly used in MERC to

generate emotion classification. The contributions of our work
are summarized as follows:
� We propose a novel Masked Graph Learning with a Re-

current Alignment (MGLRA) model to refine unimodal
representations of semantic information from multiple
modalities. MGLRA uses a memory mechanism to itera-
tively align semantic information from multiple modalities,
making it more robust in noisy scenes and scenes lacking
modal information.

� We introduce a cross-modal multi-head attention mecha-
nism to explore interactive semantic information among
multiple modalities and expand the receptive field of con-
textual information.

� We utilize a simple and effective GCN with a random
masking mechanism to fuse complementary semantic in-
formation among multiple modalities without introducing
extra computation.

� Extensive experiments are conducted on two widely used
benchmark datasets (i.e., IEMOCAP and MELD) to verify
the effectiveness of the proposed model. The experimental
results show that the model proposed in this paper is
superior to the existing comparison algorithms regarding
accuracy and F1-score.

We organize the subsequent sections of this paper as follows:
Section II presents related work on MERC; Section III intro-
duces the model’s feature extraction part and the mathematical
part’s definition and interpretation; Section IV describes the
details of our proposed model; Sections V and VI present and
analyze our experimental results, and the conclusion is arranged
in Section VII.

II. RELATED WORK

In this section, we mainly introduce the research in emotion
recognition, the technology of alignment mechanism related to
our research, and the latest related work of GCN.

A. Multimodal Emotion Recognition in Conversation

Conversation analysis and speaker relationship modeling are
crucial in emotion recognition tasks. As demonstrated in [14]
and [15], previous studies have deeply explored the relationship
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between emotion and social relevance in conversations and
highlighted the dynamic emotional issues arising in human
interactions. These interactions form complex interrelationships
that require dynamic consideration in model design. To this end,
DialogueRNN [16] adopts a recurrent neural network (RNN)
and an attention mechanism to automatically learn long-term
dependencies and dynamic interaction patterns between speak-
ers, which shows excellent performance. DialogueGCN [4]
transfers and aggregates information on the nodes and edges
of the graph structure through graph convolutional neural net-
work (GCN), more effectively handles long-term dependen-
cies and multi-round dialogue interactions, and better captures
the global structure and context of dialogues. Inspired by the
high-performance models in multi-modal community tasks [17],
[18], [19], [20], many current models focus on the fusion pro-
cess to solve the multi-modal emotion recognition (MERC)
task. For example, LR-GCN [21] introduces a latent relation-
ship representation learning mechanism to better represent the
interactive relationships between nodes and edges by learn-
ing the latent connections between nodes, thereby improving
performance.

However, these methods mainly focus on the fusion process
of context information and speaker information to improve
the performance of the fusion process but ignore the semantic
information alignment process before fusion. This directly limits
the effectiveness of the model during fusion.

B. Alignment Mechanism

The alignment mechanism matches the semantic features
from different modalities so that the emotional expressions of
other modalities are consistent. Multimodal emotion recogni-
tion mainly uses context-order-based and enforced word-level
alignments.

The alignment of the contextual order relationship can be used
to compare the similarity or difference between two sentences
while aligning the relationship between words and frames to
achieve the fusion between modalities. Liu et al. [22] used
the attention mechanism to establish the alignment between
vision and audio modalities, and corresponding elements can
be found in the two modalities. This correspondence is called
bi-directional attention alignment. Li et al. [23] proposed an
Inter-modality Excitement Encoder (IMEE), which can learn
the refined excitability between modalities, such as vision and
audio modalities. Chen et al. [24] introduced a cross-modal time
consistency module, which used a Bi-LSTM model to learn the
time dependence between vision and audio modalities, ensuring
that the emotional prediction results of the two modalities at the
same time step are consistent.

Enforced word-level alignment in tasks with multiple modal
inputs by providing information in the decoder corresponding
to words or regions in different modalities; forced alignment
between other modalities and output sequences is achieved. Gu
et al. [25] proposed a method for multimodal emotion anal-
ysis using a hierarchical attention mechanism and word-level
alignment. Romanian et al. [26] implemented a technique for
detecting depression using word-level multimodal fusion, which

mainly relies on time-based recursive methods to achieve word-
level modal alignment, but word-level processing also brings
high computational complexity, which is something to consider.

Despite the success of the above methods, they are all local
alignment mechanisms, ignoring the interaction of global con-
text information, which leads to limited context awareness of
the model.

C. Graph Convolutional Network

The rise of graph neural networks (GNN) has attracted re-
searchers over the past few years. It has achieved remarkable
success in research areas such as semantic segmentation, ob-
ject detection, and knowledge graphs [27], [28]. The graph
convolutional network (GCN) proposed by Kipf et al. [29] is
central to this success. The technology is similar to traditional
convolutional neural networks (CNN), using convolutions to
pass information through the network and capture compre-
hensive data set features. Its efficiency stems from leveraging
unlabeled data for model augmentation, achieved using a simple
similarity matrix. Veljkovic et al. [30] recently developed a
graph attention network (GAT). This model innovatively uses
the attention mechanism to dynamically understand the graph
structure, thereby achieving accurate modeling and reasoning
of complex relationships in the graph. This enables superior
performance for tasks such as node classification and inference.
The progress of GCN has achieved significant breakthroughs,
motivating us to apply GCN to address challenges in MERC.

Although the effectiveness of deep learning methods has been
proven, the MERC task still needs to improve, such as semantic
consistency between different modalities and the complexity
of effectively fusing multi-modal features. To address these
challenges, our paper introduces the MGLRA framework. This
novel framework adopts a recurrent alignment strategy enhanced
by a memory component to ensure semantic alignment across
modalities before fusion. Furthermore, we utilize a multi-head
attention mechanism to explore the relationships between mod-
ules in detail and combine it with a computationally efficient
GCN for effective fusion.

III. PRELIMINARY

In this section, we introduce various details of our work from
a data flow perspective and how we extract multimodal features
of all utterances from the dataset.

A. Multimodal Feature Extraction

The reason for unimodal-specific feature extraction methods
is twofold. First, since each modality has its unique semantic
features, it is best to use its special feature extractor for each
modality to capture salient representations adequately. Second,
this unimodal feature extraction method allows state-of-the-art
feature extractors to obtain better unimodal semantic infor-
mation for transfer learning. The feature extraction methods
and different processing methods of all modalities used are as
follows:
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1) Text Feature Extraction: Emotion keywords in text con-
tent play a crucial role in emotion recognition, so extracting rich
lexical features from text content is a fundamental challenge
in multimodal emotion recognition. In addition, the contex-
tual semantic information composed of sentences as the basic
unit also provides many guiding clues for emotion recognition.
In multimodal emotion recognition research, RoBERTa often
captures local semantic and global contextual features. In this
paper, following previous work [4], [16], [31], we also adopt
the RoBERTa model to extract and represent text features. The
final processed text features are represented as xt, and xt ∈ Rdt ,
dt = 100. The sequence of text features is denoted by Xt.

2) Audio Feature Extraction: In determining the speaker’s
emotional state, audio features play a crucial role in information.
So we use openSMILE to extract audio features following pre-
vious work [4], [16], [31]. It is a highly open-source software for
extracting audio features, mainly used in emotion recognition,
emotion computing, music information processing, etc. It can
extract many vectors in audio, including MFCC, frame intensity,
frame energy, pitch, etc. The final processed audio features are
represented as xa, and xa ∈ Rda , da = 100. The audio feature
sequence is denoted by Xa.

3) Vision Feature Extraction: Since the facial expression
features can best reflect the emotional changes at a particular mo-
ment, we use 3D-CNN to extract the expressive facial features of
the interlocutor to enhance the extraction of unimodal features
of the vision to pursue better multimodal fusion effect following
previous work [4], [16], [31]. In addition to extracting the details
of relevant features from many key image frames, 3D-CNN can
extract spatiotemporal features jumping across multiple image
frames. Doing so makes it easy to identify critical emotional
states, such as smiling or depression. The final processed vision
features are represented as xv , and xv ∈ Rdv , dv = 512. The
vision feature sequence is denoted by Xv .

B. Problem Definition

Given a datasetS of multimodal dialogues with multiple char-
acters, through our designed preprocessing process, we get input
features Xr

m = (x(m,1), x(m,2), . . . , x(m,lrm)),m ∈ {a, v, t}, a,
v, t represent audio, vision, and text, respectively. Here, r rep-
resents the original feature, and lrm means the sequence length.
Given these sequences Xm, the final task is to determine a deep
fusion network F (Xm) such that the output ŷm is getting closer
and closer to the target ym, which can be achieved by minimizing
the loss function. The loss function of the model is defined as
shown in (1):

min
F

1

b

b∑
m=1

L (ŷm = F (Xm) , ym) (1)

where b represents the batch size, ym is the true emotion of the
utterance and ŷm is the predicted emotion of the model.

IV. METHODOLOGY

This section proposes a novel Masked Graph Learning
with Recurrent Alignment (MGLRA) to improve emotion

classification performance for multimodal emotion recogni-
tion in conversation. Fig. 2 shows the overall architecture of
MGLRA. This method consists of the following parts: data pre-
processing, multimodal iterative alignment, multimodal fusion
with masked GCN, and emotion classifier. (1) Data preprocess-
ing: Due to the different data structures of other modalities,
we use RoBERTa, openSMILE, and 3D-CNN to extract text,
audio, and visual features in the data preprocessing stage. (2)
Multimodal iterative alignment: First, a graph attention filtering
mechanism is developed in the multimodal feature alignment
stage to adequately filter redundant noise in multimodal features.
Second, to enhance the expressive ability of the original multi-
modal features, the memory-based recursive feature alignment
(MRFA) was created, and this module was used to gradually
realize the preliminary alignment of the three modalities using
the memory iteration mechanism. Third, we develop cross-
modal multi-head attention to discover shared information and
complementary relationships between modalities to understand
and express emotions better. (3) Multimodal fusion with masked
GCN: For the fusion problem of multimodal emotion recogni-
tion in conversation, a simple and effective masked GCN is used
for multimodal feature fusion, which achieves good performance
without bringing more parameters. (4) Emotion classifier: We
used MLP for emotion classification in the emotion classification
stage.

A. Multimodal Iterative Alignment

A multimodal iterative alignment module is designed to im-
prove the fusion effect of multimodal features, which provides
aligned and robust unimodal representations for downstream
fusion tasks. Specifically, due to the gap in the semantic in-
formation between the three modalities and the different peaks
of their data distributions, it is difficult for the model to cap-
ture the complementary semantic information among the three
modalities. Therefore, we cyclically align unimodal features
before downstream task fusion to produce a significant unimodal
representation. This unimodal feature alignment mechanism is
also reflected in the multisensory cognitive system of animals.
Technically, the multimodal iterative alignment module includes
a graph attention filtering mechanism, a memory-based recur-
sive feature alignment method, and cross-modal multi-head
attention. Specifically, we first exclude redundant or wrong
information within or between modalities through a graph at-
tention filtering mechanism. Then, the memory-based recursive
feature alignment is used to achieve the preliminary alignment
of features between modalities. Finally, the final alignment of
inter-modal features is achieved using cross-modal multi-head
attention.

1) Graph Attention Filtering Mechanism: Inspired by the
Multi-Level Attention Graph Network (MAMN) [13], we use
a graph attention filtering mechanism to filter out some noise in
raw multimodal features, which may contain wrong, redundant,
or missing information. The difference is that we assign higher
weights to the more critical multimodal features rather than
multi-granular features. After such a process, the representations
of all multimodal features are re-optimized. Correspondingly,
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Fig. 2. We propose the architecture of MGLRA. In the preprocessing stage, we use different feature extractors for the structural features of different modality
data. In the multimodal feature alignment stage, we use a graph filtering mechanism for noise reduction and propose an alignment architecture with a memory
iteration mechanism to enhance semantic features. Moreover, the speaker’s information is incorporated into the construction process of the graph. Then the masked
GCN is used to fuse the semantics to achieve the final emotion label classification.

the weighted average based on the attention mechanism rela-
tively emphasizes or weakens the role of a modality. This can
lead to more accurate emotional judgments.

The graph structure must be constructed before utilizing the
graph attention filtering mechanism for intra-modal or inter-
modal noise reduction. For the input text, visual, and audio
modality features, we first feed them into a long short-term mem-
ory network (LSTM) to extract contextual semantic information.
The formula for LSTM is defined as follows:

Xc
t , X

c
a, X

c
v = LSTM (Xr

t , X
r
a , X

r
v ) (2)

where r represents the original feature, and c represents features
with contextual information.

Then, we construct a graph structure for the captured multi-
modal context information. The specific graph construction
process is as follows. As shown in Fig. 2, the central node of
the graph is a multimodal feature node, represented by brown,
and its features are generated by connecting text, audio, and
visual features. The first-order neighbors of the central node are
unimodal feature nodes, and purple, green, and yellow represent
text, speech, and visual feature nodes, respectively. Moreover,
the edges represent the relationships between each unimodality
and multimodality, such as text-multimodal, audio-multimodal,
and visual-multimodal relationships. Finally, the graph atten-
tion filtering mechanism filters noise or redundant information
within and between modalities by learning information about
nodes and edges and assigning different weights to different
nodes.

The input of the graph attention filtering mechanism is the
edge relation category matrix C ∈ R3×T and the node eigen-
value matrix V ∈ R4×P , where T is the dimension of each rela-
tion type embedding, andP is the dimension of each eigenvalue.
The relation category C contains three basic semantic features:
text-multimodal, audio-multimodal, and visual-multimodal lev-
els. The eigenvalue matrix V contains four kinds of semantic
features: multimodal features Xc

m, text features Xc
t , audio fea-

tures Xc
a, and visual features Xc

v .
In order to filter the noise or redundant information of each

node, the relationship degree between feature node pairs is
represented by cijk, which is defined in (3):

cijk = Wijk [Vi ||Vj ||Ck] (3)

whereWijk represents the linear transformation matrix obtained
by learning in the network, ‖ represents cascade operation. In
particular, Vi, Vj , represents the i-th row and j-th column of the
value matrix, and Ck represents the k-th row of the edge relation
category matrix.

The purpose of filtering and enhancing the original semantic
features is achieved by using the attention mechanism to assign
different weights to different multimodal feature vectors. The
attention weight calculation formula is as follows:

αijk =
exp (cijk)∑

q∈Qi

∑
r∈Riq

exp (ciqr)
(4)

where Qi represents the neighbors of feature node vi, and Riq

represents the relationship type between feature node pair vi and
vq. For the feature node vi, its filtering feature is the sum of each
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Fig. 3. Detailed pipeline for aligning multimodal data using MRFA and cross-
modal multi-head attention. First, each modality has a corresponding memory
block for information storage. Then, a single-modal attention mechanism is used
to extract intra-modal information. Finally, cross-modal multi-head attention is
used to achieve multi-modal feature fusion. Here we use two modes as examples,
and the three modes in the paper cross each other in pairs.

pair of representations weighted by their attention weights:

hi =
∑
j∈Qi

∑
k∈Rij

αijkcijk (5)

Each feature vector is updated through all the above
computation steps, resulting in three new unimodal features
Xh

a , X
h
v , X

h
t . Furthermore, the noise in each mode has been

reduced.
2) Memory-Based Recursive Feature Alignment (MRFA): A

specific flowchart illustrating how we utilize MRFA and cross-
modal multi-head attention for alignment is depicted in Fig. 3. In
MRFA, each modality will create a memory block φ that stores
unimodal semantic features. After recursive strengthening of the
memory blocks, a feature sequence Xφ

m of size (lφm × dφm × b)
is obtained. Here, lφm and dφm sub-tables represent each memory
entry’s length and original feature dimension, and b is the batch
size.

Then, MRFA uses the semantic features Xh
m extracted from

different unimodal feature extractors to generate a memory block
by the subsequent recurrent alignment augmentation network.
As shown in (6),Xφ

m uses the featuresXh
m′ andXh

m′′ of the other
two modalities for alignment refinement.

Xφ
m = MRFA(Xh

m, Xh
m′ , X

h
m′′) (6)

In subsequent model runs, MRFA reads the content from
the memory repository, continuously refines Xφ

m using Xh
m,

and aligns the unimodal latent semantic information with the
other two modalities. These refined unimodal semantic features
obtained above will be stored in the memory block to replace
the old content in the block.

Moreover, MRFA uses an attention mechanism for each
modality to extract significant semantic features XR

m∈ Rb×FR
m .

Here, FR
m represents the embedding size of the enhanced uni-

modal feature. Intra-modality memory attention performs re-
fined feature extraction on the semantic features Xφ

m of each
entry τ in the three modal memory blocks. The calculation
formula of the attention weight of each memory entry τ in the
memory blocks is as follows:

μ(m,τ) = WRT

m Xφ
(m,τ) (7)

ω(m,τ) =
exp(μ(m, τ))∑lm
τ exp(μ(m, τ))

(8)

Then, MRFA utilizes ω(m,τ) to fuse memory block features
to extract the salient unimodal representations in each modality.
WRT

m represents a learnable dynamic parameter. lm indicates
the number of entries.

XR
m =

lm∑
τ=1

ω(m,τ)X
φ
(m,τ) (9)

In MRFA, we use the lightweight model 1D-CNN to calculate
the attention weight and set the filter size to 1 to speed up the
attention calculation.

3) Cross-Modal Multi-Head Attention: First, we apply linear
projections to the query Q ∈ RTQ×dQ , key K ∈ RTK×dK , and
value V ∈ RTV ×dV , n times using distinct linear transforma-
tions. Here, n represents the number of heads. TQ, TK , and TV

denote the sequence lengths of the query, key, and value, respec-
tively, representing the number of elements in each sequence.
Similarly, dQ, dK , and dV are used to indicate the feature di-
mensions of the query, key, and value, respectively, representing
the number of features or dimensions in each element of the
sequences.

After the basic description, to precisely illustrate how the
cross-modal multi-head attention mechanism is applied to data
of different modalities, we will use one modality as an example
for illustration. Let m represent one of the modalities, such as
text, and m′ represent one of the other two modalities, such as
visual or audio. In this case, we first process the text modality
(m) data, applying n different linear transformations to generate
the query Q̂. We then apply n different linear transformations to
the other modality (m′) data to generate K̂ and V̂ . This way, we
can capture cross-modal interaction information between each
modality and other modalities. The specific calculation is as
follows:

Q̂ = Concat(QXR
mWQ

1 , . . . , QXR
mWQ

i , . . . , QXR
mWQ

n )
(10)

K̂ = Concat(KXR
m′W

K
1 , . . . ,KXR

m′W
K
i , . . . ,KXR

m′W
K
n )
(11)

V̂ = Concat(V XR
m′W

V
1 , . . . , V XR

m′W
V
i , . . . , V XR

m′W
V
n )

(12)

where WQ
i ∈ RdQ×dm , WK

i ∈ RdK×dm and WV
i ∈ RdV ×dm

are learnable parameters in the fully connected layer, and dm is
the output dimension.

Then, we use the dot-product attention to compute
queries QWQ

i ∈ RTQ×dm , keys KWK
i ∈ RTK×dm , and values

VWV
i ∈ RTV ×dm on each projection, and get attention scores

for feature vectors composed of different relations. The formula
is defined as follows:

headi = softmax
(
(Q̂WQ

i )(K̂WK
i )

T
)
(V̂ WV

i ) (13)

Next, the outputs of the attention functionheadi, i ∈ [1, n] are
concatenated to form the final value Xhead

m , which is calculated
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as follows:

Xhead
m = Concat(head1, head2, . . . , headn) (14)

Here, headi ∈ RTQ×dm and Xhead ∈ RTQ×ndm . Finally, we
employ a GRU model to capture the correlation between feature
alignments at each iteration. The formula is defined as follows:

Xm = GRU
(
Xm, Xhead

m

)
(15)

B. Multimodal Fusion With Masked GCN

In this section, we introduce the embedding of speaker infor-
mation, the process of graph construction, and the masked graph
mechanism.

1) Speaker Embedding: Some existing GCN models do not
consider embedding learning of speaker information when con-
structing graphs, resulting in the inability to use speaker infor-
mation to model potential connections within or between speak-
ers. To solve the above problems, this paper embeds speaker
information into GCN. Assuming that there are N dialogue
characters in the data set, then the size of our speaker embedding
is also N . We show the speaker information embedding process
in Fig. 2. The original speaker information can be represented
by the vector Si, and XS represents the speaker’s embedding.
The calculation process is as follows:

XS = WsSi +Xhead
m (16)

Here, Ws represents a learnable weight matrix. After the
above process, we embed the speaker information in GCN
modeling with additional information about the speaker.

2) Graph Construction: The graph construction process con-
sists of node representation, edge connection, and edge weight
initialization. The following will introduce each in detail.

a) Node Representation: We form a graph of text, visual,
and audio data, and it is expressed as Gm = {Vm,Am, Em}.
Where Vm represents the node sets, Am ∈ R|Vm|×|Vm| is the
adjacency matrix, and Em represents the edge sets. Any node
vim ∈ Vm in the graph contains a sentence in modalities. At this
time, each sentence node vim in the fusion graph contains the
semantic features XS ∈ Rdm from the three modal fusions.

b) Edge Connection: In the same dialogue, we assume that
there are explicit or latent connections between arbitrary sen-
tences. Therefore, in the graph constructed in this study, any two
nodes in the same modality in the same dialogue are connected.
Furthermore, each node is also connected to nodes in the same
conversation in different modalities due to the complementarity
of the same discussion among other modalities.

c) Edge Weight Initialization: The graph designed in this
study has two different types of edges. (1) the two nodes con-
nected by the edge come from the exact modal; (2) the two nodes
connected by the edge come from two different modes. In order
to capture the similarity of node representations, we employ
degree similarity to determine the edge weight. The significance
of an edge connecting two nodes is directly proportional to their
similarity. This implies that nodes with higher similarity exhibit
more crucial information interaction between them.

To handle different types of edges, we use different edge
weighting strategies. For edges from the same modality, our

Fig. 4. Randomly mask the nodes on the graph, and use GCN for information
aggregation to achieve the final fusion of multimodal features and emotion
classification.

approach is computed as follows:

Aij = 1− arccos (sim(ninj))

π
(17)

where ni and nj represent the feature representations of the
n-th and j-th nodes in the graph. For edges from the different
modalities, our approach is computed as follows:

Aij = ℵ
(
1− arccos (sim(ni, nj))

π

)
(18)

where ℵ is a hyperparameter.
3) Graph Learning and Mask Mechanism: Through the anal-

ysis and research of GCNs used in the past for multimodal
emotion recognition, we found that the fully connected graphs
constructed by most previous models have more or less intro-
duced redundant or noisy information in the fusion process. The
node structure in graph information is overemphasized, and they
usually build more edges on GCNs to exploit the topological
closeness between adjacent nodes. Based on this situation, we
utilize a random masked graph neural network, as shown in
Fig. 4, by randomly masking the adjacency matrix to remove
excessive noise in the model and improve the robustness of
GCN. In addition, our masked GCN can also reduce the number
of network parameters of the model on a large scale so that the
model avoids the problem of overfitting.

We achieve the above effect by exploiting a random mask on
the adjacency matrix. Mathematically, a subset V̂ ⊂ V of nodes
is sampled, a subset Ê ⊂ E of nodes is sampled and a mask mark
[M ] is defined.

xi =

{
x[M ] , vi ∈

∼
V

xi , vi /∈∼V

}
. (19)

ei =

{
e[M ] , ei ∈

∼
E

ei , ei /∈∼E

}
. (20)

Here xi and ei, respectively, represent the set of nodes and
edges after the mask.

We construct a masked GCN, which is used to exploit the se-
mantic complementarity between different modalities further to
encode context dependencies. Specifically, given an undirected
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graphGm = {Vm,Am, Em}, P̃ be the renormalized graph lapla-
cian matrix of Gm:

∼
P =

∼
D
−1/2 ∼
AD−1/2

= (D + I)−1/2(A[M ] + I)(D + I)−1/2 (21)

Here, P̃ represents a learnable weight matrix, A represents
the neighbor weight matrix, A[M ] represents the mask matrix,
D represents the diagonal matrix, and I represents the identity
matrix.

C. Emotion Classifier

Using the masked GCN, we fuse the semantic information
from multiple modalities to obtain the semantic representation
of various modalities.

Then we input the feature P̃ that combines multiple modal
semantic information into an MLP with a fully connected layer,
then use the RELU activation function for nonlinear activation,
and normalize the feature information Pi of the hidden layer
through the Softmax function:

li = RELU(WlP̃ + bl) (22)

Pi = Softmax (Wsmaxli + bsmax) (23)

Here, Wl and Wsmax represent a learnable weight matrix.
Finally, we use the argmax function to match Pi with the
emotional label ŷi of the utterance and use the formula to express
the process of predicting the emotional label ŷi of the utterance
as follows:

∧
yi = argmax (Pi[k]) (24)

The entire inference process of the MGLRA pseudocode is
contained in Algorithm 1.

V. EXPERIMENTS

This section introduces two commonly used datasets for
multimodal emotion recognition and the evaluation indicators
of related experiments. We show our setup and experimental
procedure on these two datasets and discuss and analyze our
comparison methods and results. At the same time, we also
checked the results of the ablation experiments. We use visual-
ization experiments to study the distribution of semantic features
to verify the effectiveness of our proposed method.

A. Benchmark Datasets

Based on the latest research results in the MERC field, we
selected two benchmark datasets of different scales, IEMO-
CAP [32] and MELD [33], to conduct experiments to verify the
innovation and performance of our proposed algorithm model.
The detailed visualization statistics of the two datasets are shown
in Table I.

IEMOCAP: is a multimodal dataset of binary interactions be-
tween actors consisting of five males and five females developed
at the University of Southern California. The dialogue process
between them was recorded using a video camera and a motion

Algorithm 1: MGLRA.
Input: Xr

t , X
r
a , X

r
v ← RoBERTa,OpenSMILE,3D-CNN

TF : total MRFA iterations
Output:

∧
yi: emotion label

1: for epoch← 1, 2, . . ., n do
2: Xc

t , X
c
a, X

c
v ← LSTM(Xr

t , X
r
a , X

r
v )

3: � (Eq. (2))
4: Xh

m ← Graph Attention Filtering Mechanism(Xc
m)

5: � (Eqs. (3) & (4) & (5))
6: for k ← 1, 2,..., TF do
7: Repeat steps 6-25 for each modality
8: if k = 1 then
9: Xφ

m ←Memory Module (Xh
m, Xh

m′ , X
h
m′′)

10: � Initialize memory block with Xh
m

11: else
12: Xφ

m ←Memory Module (Xm)
13: � Use Xm for subsequent rounds
14: end if
15: Calculate attention ω(m,τ) for each entry of Xφ

m

16: � (Eqs. (7) & (8))
17: XR

m =
∑lm

τ=1 ω(m,τ)X
φ
(m,τ)

18: � Unimodal feature (Eq. (9))
19: Project query (Q̂), key (K̂) and value (V̂ )
20: � (Eqs. (10) & (11) & (12))
21: Xhead

m ← Concat(head1, head2, . . . , headn)
22: � (Eqs. (13) & (14))
23: Xm ← GRU(Xm, Xhead

m )
24: � (Eq. (15))
25: end for
26: XS = WsSi +Xhead

m

27: � Speaker Embedding (Eqs. (16))
28: P̃ ←masked GCN(XS)
29: � (Eqs. (17) & (18) & (19) & (20) & (21))

30:
∧
yi ← RELU(P̃) + Softmax(li)

31: � (Eqs. (22) & (23))
32: end for
33: return

∧
yi

capture device. The dialogue recording contained five groups,
each group had a boy and a girl, and each group of interactive
sessions lasted 5 to 10 minutes. IEMOCAP provides the actors’
video, transcription, and audio in detail. In addition, the dataset
also includes annotations of various other features, such as facial
expressions and head and body movements. This consists of
the script content and some improvisational performances to
restore the multiple situations in which emotions occur more
realistically. IEMOCAP divides emotion tags into six categories:
happy, anger, frustration, sadness, excitement, and neutral. The
distribution of emotion labels is shown in Fig. 5(a). A total of
7433 samples were used for experimental verification.

MELD: is a collection of audiovisual clips designed for re-
search in emotion recognition. The dataset contains 1,535 pins
from the classic TV series Friends, each roughly 3-5 seconds
long. The clips were labeled with seven basic emotions: anger,
disgust, fear, happiness, sadness, and surprise, as well as a
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TABLE I
DETAILED VISUALIZATION STATISTICS FOR IEMOCAP AND MELD DATASETS

Fig. 5. Emotion label distribution on IEMOCAP and MELD datasets. Com-
pared with MELD’s emotional label distribution, IEMOCAP has a severe data
imbalance problem, indicating that it is more difficult to identify during the
experiment.

neutral category. MELD provides data in visual, audio, and text
form for experiments. Unlike IEMOCAP, in addition to emotion
labels, the dataset includes demographic information about the
actors in the clips, such as their gender, age, and race. Another
difference from IEMOCAP is that MELD divides the dataset
into three parts for users: the development set, training set, and
test set, thus providing a unified test method when analyzing the
model. The distribution of emotion labels is shown in Fig. 5(b).

Furthermore, following previous work [7], [21], [34], we
adopt a standard train/test split method to separate the train-
ing, validation, and test sets. Specifically, we use the first four
sessions of the dataset as the training and validation sets and the
last session as the test set. This approach ensures that the model’s
performance is evaluated on different sets, thereby maximizing
the diversity of training and testing scenarios and ensuring that
the specific characteristics of any single session do not bias the
model’s performance.

B. Implementation Details

Our experiments were conducted on a GeForce RTX 3090
GPU server with 24 GB of memory using an Intel Core 12900 K
CPU. The experimental code was developed based on the Py-
Torch 1.8.1 deep learning framework and implemented using
Python 3.7. To obtain the best performance of the MGLRA
model, we set the number of heads of the multi-head attention
mechanism to 10 and the random masking rate of the masked
GCN to 0.7. The batch size of the model was set to 32, and
the model was trained for 70 epochs, each taking approximately
55 seconds. We use the Adam optimizer and set the learning
rate to 0.0001 and weight decay to 0.00005. Due to the varying
data sizes of the IEMOCAP and MELD datasets, we train the
models for 3000 steps and 2500 steps, respectively. During
training, the models are evaluated or tested every 20 steps, and
the best-performing model is saved.

C. Baselines and Evaluation Metrics

To verify the effectiveness of our model on MGLRA, the
paper compared the following baseline models with our model:
text-CNN [35], MFN [36], bc-LSTM [37], CMN [31], Dia-
logueRNN [16], DialogueGCN [4], ICON [38], A-DMN [39],
CTnet [7], LR-GCN [21], GraphCFC [34]. It should be noted
that since the DialogueGCN and LR-GCN methods cannot di-
rectly fuse multi-modal information, we extended them through
a linear fusion layer. The extended methods are represented by
DialogueGCN* and LR-GCN*, respectively.

To compare with other studies, we uniformly use the accuracy
and F1-score to evaluate the performance of our model and use
the weighted average method to reduce the error.

VI. RESULTS AND DISCUSSION

A. Comparison With State-of-The-Art and Baseline Methods

We evaluate the performance of the proposed model and
compare it with baseline methods and state-of-the-art methods.
Table II represents the performance of all models on the IEMO-
CAP dataset, while Table III represents the performance of all
models on the MELD dataset.

IEMOCAP: Observing Table II, GraphCFC has the best per-
formance among all baseline models. GraphCFC extracts all the
different edge types from the constructed graph for further en-
coding, enabling GCN to model the interaction between contexts
in semantic information transfer accurately. We align semantic
information using a recurrent alignment network and a more
lightweight GCN to incorporate multimodal semantic details
in our work, resulting in better performance than GraphCFC.
Among all the compared models, LR-GCN* achieves excellent
performance second only to our model and GraphCFC, with
68.8% accuracy and 68.6% F1-score, respectively, effectively
utilizing the latent contextual semantic session information.
LR-GCN introduced a multi-head attention mechanism to find
potential connections between utterances. It then encoded the en-
hanced multimodal semantic information into a fully connected
graph, and this approach also inspired our work. However, both
GraphCFC and LR-GCN focus on the fusion of later models,
ignoring the noise within and between multimodal features in
the early alignment process, which limits their performance.
Compared with LR-GCN* and GraphCFC, our model improves
weighted accuracy and F1-score by 2.5%, 2.2%, 1.5%, and 1.6%,
respectively. Our model achieves the maximum performance
across six metrics on the IEMOCAP dataset, and has a more
balanced performance on each emotion label than other models.

MELD: As can be seen from Table III, the overall perfor-
mance of our MGLRA model is relatively close to that of
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TABLE II
OUR PROPOSED MODEL IS EVALUATED ON THE IEMOCAP DATASET, AND ITS PERFORMANCE IS COMPARED WITH VARIOUS BASELINE AND STATE-OF-THE-ART

MODELS

TABLE III
OUR PROPOSED MODEL IS EVALUATED BY COMPARING ITS PERFORMANCE WITH VARIOUS BASELINE AND STATE-OF-THE-ART MODELS ON THE MELD DATASET

LR-GCN*. However, it surpasses the *LR-GCN method in two
emotion categories and overall weighted average performance.
Specifically, across all methods listed, MGLRA achieved an
accuracy of 66.4%, an F1 score of 64.9%, an accuracy of 59.8%
for the surprise category, and an accuracy of 68.5% for the
joy category. Using graph attention filtering mechanism and
recurrent alignment architecture to align the three modes before
fusion can achieve better results. However, *LR-GCN performs
well in the Digust emotion category and achieves state-of-the-art
performance. *LR-GCN uses multi-head attention to dynam-
ically explore potential relationships between sentences and
introduces densely connected graphs to further capture graph

structure information. This is more effective for the MELD data
set with imbalanced data and can better capture the variety of
small sample emotions.

Experimental results show that our proposed MGLRA model
has absolute advantages over the IEMOCAP data set. It is on
par with or slightly ahead of the LR-GCN model on the MELD
data set. In general, MGLRA can more effectively eliminate
noise and enhance semantic features during the modal alignment
process. It can also effectively utilize this information to im-
prove the overall performance of the model. This improvement
is mainly attributed to two reasons: (1) MGLRA aligns the
three modalities using the graph attention filtering mechanism
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Fig. 6. The confusion matrices present the true and predicted labels of the
testing set for both the IEMOCAP dataset and the MELD dataset. The columns
represent the true labels, while the rows represent the predicted labels.

and iterative augmentation architecture, thereby capturing more
emotional information for fusion. (2) During the fusion process,
masked GCN randomly discards some nodes while incorporat-
ing speaker information. These advantages improve the experi-
mental performance of our model on the MELD dataset.

To analyze the performance of MGLRA more comprehen-
sively, we show the confusion matrices on the IEMCOAP and
MELD datasets in Fig. 6. By analyzing the confusion matrix of
IEMOCAP, it can be seen that people’s expressions of excite-
ment and happiness are very similar. The reason is that the acti-
vation domain and valence domain of excitement and happiness
are relatively close, which leads to the model making a confusing
judgment. It is easy to misclassify the two emotions. By analyz-
ing the confusion matrix of MELD, it can be seen that because
the data set does not provide adequate training data, our model
is almost unable to recognize the emotions of disgust and fear.
By analyzing the distribution of different emotion categories in
the MELD dataset, we know 361 sample data of disgust emotion
categories in MELD. Still, there are only 68 samples in the test
set, and what is more serious is that there are only 50 samples in
the test set for the fear category. The neutral class has up to 1256
samples in the test set. Due to the severe sample distribution
imbalance problem in the MELD dataset, there are considerable
differences in the model’s performance in different categories.
The above issues make the model more inclined to classify utter-
ances with other emotional analogies as neutral emotions when
classifying.

Using the T-SNE visualization tool, we examined the learned
characteristics of the model, as shown in Fig. 8. Compare
MGLRA (Fig. 8(d)) with original data (Fig. 8(a)), LSTM
model (Fig. 8(b)) and DialogueRNN (Fig. 8(c)). MGLRA
exhibits a more concentrated feature distribution, indicating
superior clustering ability. In contrast, the feature distribution
of the LSTM model, especially the feature distribution in the
upper right corner, blurs the distinction between Angry, Sad,
and Neutral emotions to a certain extent, causing the overall
distribution to be more dispersed. Likewise, DialogueRNN has
difficulty distinguishing between Happy and Neutral emotions
and merging their data distributions. MGLRA (Fig. 8(d))
demonstrates an impressive ability to cluster emotions

TABLE IV
PERFORMANCE EVALUATION OF VARIOUS MODELS ON IEMOCAP:

COMPARISON OF TIME, NUMBER OF PARAMETERS, AND PERFORMANCE

tightly, and its emotion classification is more precise and
effective.

B. Comparison of Time and Total Number of Parameters

In Table IV, we perform a comprehensive performance eval-
uation of the benchmark models on the IEMOCAP dataset,
focusing on the number of parameters required for each model
(megabytes) and the computation time (seconds). To make the
comparison fair, we only select GCN-based baseline methods
for comparison, such as DialogueGCN [4], LR-GCN [21],
RGAT [40], GraphCFC [34], and DER-GCN [41]. Specifically,
MGLRA with the mask mechanism achieves the lowest memory
footprint, with a parameter of only 13.21 MB, and the fastest
training time of 55.5 seconds. This efficiency is attributed to our
innovative masking mechanism, which effectively reduces re-
dundancy in computing and memory usage without affecting the
ability to capture relevant features from the data. This improves
the efficiency of the model. In addition, from a performance
perspective, using masks not only improves the efficiency of
the model but also promotes the effect of the model. Acc and
F1 are both improved by 0.6, respectively. The effectiveness of
our method in handling complex conversation-based emotion
recognition tasks makes it a highly competitive model in terms
of efficiency and performance.

C. Importance of the Modalities

To assess the significance of text, vision, and audio modali-
ties in emotion recognition, we conducted experiments on the
IEMOCAP and MELD datasets. Our objective was to evaluate
the impact of unimodal, bimodal, and multimodal features on
model performance. These experiments are detailed in Table V.
Considering the datasets’ data imbalance issue, we selected
Weighted F1 Score (WF1) as our primary metric for its balanced
consideration of precision and recall rates. Weighted Accuracy
(WA) is a secondary metric. Our findings reveal that text-based
features outperform those derived from audio and vision among
the unimodal approaches. Specifically, text modality achieved
WA scores of 63.1% and 62.7% and WF1 scores of 63.9%
and 61.8% on the IEMOCAP and MELD datasets, respectively.
These results underscore the text modality’s pivotal role in our
model’s emotion recognition capability. Audio features ranked
second in effectiveness, with WA scores of 61.3% and 62.0%
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Fig. 7. Visualization of the feature embedding space on the IEMCOAP dataset using T-SNE. In this visualization, each emotion category is represented by a
distinct color. (a) displays the original modal distribution of the IEMOCAP dataset, while (b), (c), and (d) demonstrate the modal distribution of the dataset after
applying LSTM, DialogueRNN and MGLRA.

Fig. 8. MGLRA experimental results of the number of heads in multi-head
attention Graphs on the IEMOCAP dataset.

TABLE V
THE EFFECT OF MGLRA ON TWO DATASETS USING UNIMODAL FEATURES

AND MULTIMODAL FEATURES, RESPECTIVELY

and WF1 scores of 61.5% and 61.2% on the respective datasets.
Vision features demonstrated the minor utility for emotion
recognition, evidenced by WA scores of 57.7% and 60.4% and
WF1 scores of 57.2% and 60.5% on IEMOCAP and MELD,
respectively. This suggests challenges in extracting valuable
emotional cues from vision data. Overall, our analysis indicates
that text features introduce the slightest noise, thus facilitating
more effective learning of dynamic feature representations by
the model.

The comparison between bi-modal and single-modal ap-
proaches shows a notable enhancement in performance, with
WA seeing an increase of 2% to 9% and WF1 improving by
2% to 10%. This improvement underscores that the context
of conversations and the variations in audio-useful signals and
visual cues from facial expressions influence emotional recogni-
tion. Bi-modal features significantly enhance the model’s abil-
ity to predict emotions by integrating two distinct modalities.
Among the bi-modal combinations, the fusion of text and audio
modalities emerged as the most effective for emotion prediction,
achieving WA scores of 66.8% and 63.7% and WF1 scores of
65.7% and 62.5%, respectively. The combination of text and
video modalities ranked second in performance, with WA scores
of 65.4% and 63.2% and WF1 scores of 64.7% and 63.3%,
respectively. The fusion of audio and video modalities was the
least effective, resulting in the lowest emotion prediction perfor-
mance, with WA scores of 62.2% and 60.2% and WF1 scores
of 61.9% and 59.7%, respectively. These findings highlight
the strategic advantage of combining modalities for improved
emotion prediction accuracy.

Integrating the modal features of text, vision, and audio leads
to superior emotion prediction performance, with multimodal
features outperforming those of single-modal and bi-modal con-
figurations. This improvement suggests that the model leverages
more than just the semantic content of dialogues. It also capi-
talizes on vision and audio cues to enrich the emotional feature
vectors’ representational capacity.

D. Ablation Study

In this section, we present the experimental results of de-
voiding each part in MGLRA and analyze their performance on
the IEMOCAP dataset to see their impact on performance. The
corresponding results are shown in Table VI.
� Comparing the first and second rows shows the impact

of the graph attention filtering mechanism (GAF) on per-
formance. Compared with emotion classification using
only LSTM’s discourse representation, graph filtering can
improve accuracy by 2.2% because the graph filtering
mechanism considers the impact of noise generated in the
dialogue.

� Comparing the second and third rows shows the impact
of memory-based recursive feature alignment (MRFA) on
enhancing semantic features. We can see that using loop
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TABLE VI
ABLATION EXPERIMENTAL PERFORMANCE OF MGLRA ON THE IEMOCAP

DATASET WITH DIFFERENT COMPONENTS OF MGLRA

alignment improves accuracy by 2.6% compared to graph
filtering alone, which shows that it effectively aligns se-
mantic features from multiple modalities to facilitate late
fusion performance.

� The results in the third and third rows show the effect
of adopting multi-head attention (MHA) on performance.
Compared with the recurrent alignment without multi-
head attention, the accuracy is improved by 2.4%, which
shows that the multi-head attention mechanism effectively
captures the correlation between utterances from multiple
modalities during the alignment process.

� The impact of adopting multimodal fusion with masked
GCN (MG) on emotion prediction is shown in the fourth
and fifth rows. The use of masked GCN not only brought
a 0.6% increase in accuracy but also effectively reduced
the model’s running memory and time, facilitating the de-
ployment and operation of our model on low-performance
machines.

When we adopt GAF, MRFA, MHA, and MG at the same time,
MGLRA achieves the best performance. These combinations
constitute our final model, and the rationality of our model is
proved by experiments.

E. Analysis on Parameters

In this section, we analyze the impact of the head number
M in multi-head attention and the masked rate in masked GCN
on the model. The relevant experimental results are shown in
Figs. 8 and 9, respectively.
M in the multi-head attention mechanism is a vital hyperpa-

rameter for the experimental results because it relates to the
depth of potential relationship exploration in the alignment
process. The masked rate in masked GCN is another hyper-
parameter that determines the performance of MGLRA. It is
directly related to memory usage, the time required for model
deployment, and the propagation depth of features in the model.
We choose M and masked rate through comparative experi-
ments. Specifically, we initially choose the most suitableM from
{2, 4, 6, 8, 10, 12, 14, 16, 20} and choose the most appropriate
masked rate from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. In
the experiment, we set M to 10 to get the experimental results
about the asking rate and put the masked rate to 0.7 to get the
testing results about M .

Fig. 9. Experimental results of MGLRA with different masked rate on the
IEMOCAP dataset.

The experimental results in Fig. 8 prove that MGLRA per-
formance is proportional to M in the range of 2 to 10. When
M = 10, MGLRA achieves the best performance, and the ac-
curacy is 71.3%. However, when M > 10, the performance of
MGLRA starts to drop significantly. It can be seen from the
experiments that when exploring more potential relations, multi-
head attention cannot provide useful semantic information, and
brings more redundant information, resulting in a decline in
model performance.

Furthermore, increasing the masked rate from 0.1 to 0.7 grad-
ually improves performance. As shown in Fig. 9, we observed
that MGLRA achieves the best performance when rate = 0.7;
at this time, accuracy = 71.3%, and F1-score = 70.10%, which
shows that shielding more nodes will only lead to the loss of
much crucial emotional information. This process reduces the
richness of emotional communication, which directly limits the
performance of MGLRA.

VII. CONCLUSION

In this study, we propose a recurrent alignment method to
enhance the features of each modality and make the semantic
gap between modalities more minor, making up for some short-
comings of current SOTA methods such as GraphCFC. Simulta-
neously, we incorporate a directed graph-based masked GCN to
enhance the model’s generalization ability and reduce memory
usage. Our proposed MGLRA approach consistently surpasses
existing SOTA models through experimental evaluation on two
public datasets. These results demonstrate the effectiveness of
our work in aligning semantic information between modalities
and enhancing self-representation features. Many recent studies
have shown that MERC still faces challenges, such as semantic
gaps between modalities and many noises within modalities.
In future work, we plan to optimize multimodal fusion and
semantic information alignment methods and evaluate whether
masked GCN applies to other multimodal tasks.
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