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Abstract
Text representation learning is significant as the cornerstone of natural language processing. In recent years, graph

contrastive learning (GCL) has been widely used in text representation learning due to its ability to represent and capture

complex text information in a self-supervised setting. However, the current mainstream graph contrastive learning methods

often require the incorporation of domain knowledge or cumbersome computations to guide the data augmentation process,

which significantly limits the application efficiency and scope of GCL. Additionally, many methods learn text represen-

tations only by constructing word-document relationships, which overlooks the rich contextual semantic information in the

text. To address these issues and exploit representative textual semantics, we present an event-based, simple, and effective

graph contrastive learning (SE-GCL) for text representation. Precisely, we extract event blocks from text and construct

internal relation graphs to represent inter-semantic interconnections, which can ensure that the most critical semantic

information is preserved. Then, we devise a streamlined, unsupervised graph contrastive learning framework to leverage

the complementary nature of the event semantic and structural information for intricate feature data capture. In particular,

we introduce the concept of an event skeleton for core representation semantics and simplify the typically complex data

augmentation techniques found in existing graph contrastive learning to boost algorithmic efficiency. We employ multiple

loss functions to prompt diverse embeddings to converge or diverge within a confined distance in the vector space,

ultimately achieving a harmonious equilibrium. We conducted experiments on the proposed SE-GCL on four standard data

sets (AG News, 20NG, SougouNews, and THUCNews) to verify its effectiveness in text representation learning. The

accuracy achieved on the respective datasets is 91.56, 86.76, 98.03, and 97.79%, demonstrating superior performance on

most datasets compared to baseline methods.
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1 Introduction

Text representation learning is a fundamental aspect of

natural language processing that helps capture semantic

and syntactic nuances of textual data. It enables adequate

comprehension and generation by machine learning models

[28]. Its paramount importance lies in its transformative

capacity to bridge the gap between raw text data and

computational models, paving the way for advancements in

information retrieval, text mining, machine translation,

sentiment analysis, and automated reasoning [10]. The

pervasive nature of textual data in the digital age
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underscores the necessity for advanced text representation

learning methods. Despite their significant progress,

existing text representation methods grapple with several

challenges.

One major flaw of the prevailing approach is its ten-

dency to treat text as an undifferentiated sequence and

extract only keywords or sentences as representatives of

the entire text. At best, it connects other similar texts or

additional information to enhance data. These approaches

significantly oversimplify the inherent content complexity

and discount its contextual richness. Traditional word-

based representations such as BoW and TF-IDF effectively

ignore the order of words, while others like Word2Vec

[13], GloVe [16], and fastText [8] model the semantics of

individual words but struggle with capturing the nuances of

longer phrases or sentences. Numerous academics are

diligently exploring sentence-level representations. For

instance, MixCSE [35] forces the model to capture subtle

sentence semantic features by introducing hard negative

examples. However, the encapsulation of text that

encompasses multiple sentences invariably results in the

erosion of structural integrity and the dilution of long-range

semantic coherence. Even more advanced Transformer-

based [20] methods treat the entire text as a sequence of

words and then employ the attention mechanism to

understand the context. For example, Bert [5], pretrained

on a large-scale corpus, uses the multi-head attention

mechanism to capture the dependencies between words and

achieve competitive results in multiple natural language

tasks. ELECTRA [4] designs the replaced token detection

method to achieve better robustness with lower training

costs. However, Transformer-based models mainly focus

on token information and may ignore the complex inter-

connections and multiple-level hierarchy. In addition, it has

a length limit on the input text, and truncation of the text

may lead to unpredictable loss of text semantics. Its pro-

cessing method is shown in Fig. 1a, while powerful, such

models may fail to consider the high-level semantic

structure inside the document, limiting their effectiveness

in text representation learning.

The advent of graph neural networks [24] provides a

new perspective for text representation, making it possible

to model unstructured data such as text. Its processing

method is shown in Fig. 1b. For example, TextGCN [32]

builds a corpus-level heterogeneous graph and uses word

nodes as a bridge for message passing to learn the repre-

sentation of document nodes. Although it solves the

problem of converting a text corpus into a graph, it cannot

take advantage of the rich contextual information in the

text. TextING [34] builds a separate graph for text,

reducing memory consumption, but it ignores the rich

relationship information between entities in the text and

lacks the grasp of semantic information. In summary, both

sequence-based and graph-based methods do not fully

utilize entities and their relationship information, which

cannot represent semantically sparse text well. Therefore,

designing a text representation method that can truly

embrace natural language’s semantic and structural com-

plexity is still a problem worth exploring.

Unsupervised graph contrastive learning has been

applied in text representation learning in the ongoing pur-

suit of a more streamlined learning paradigm. The advan-

tage of GCL-based methods is that they can autonomously

identify underlying structural features in data without

annotating the data. For example, CGA2TC [31] constructs

a corpus-level graph with words and documents as nodes

and designs a contrastive graph representation framework

with an adaptive augmentation strategy, which can effec-

tively remove graph noise and achieve promising perfor-

mance. However, it does not consider the structural and

semantic information in the text comprehensively, leading

to less distinguishable representations of texts. To alleviate

this problem, TGNCL [11] constructs a word graph for

each text, which captures the rich contextual information of

the text. Then, a contrastive learning regularization is

developed based on the constructed text graphs to improve

the robustness of text representation. Moreover, the effi-

ciency of CGA2TC [31] and TGNCL [11] is notably

reduced by their reliance on intricate graph data augmen-

tation techniques, including the creation and encoding of

contrastive views. Therefore, the delicate equilibrium

between robustness and efficiency underscores the urgent

need to develop more refined yet effective data augmen-

tation techniques in graph contrastive learning to unlock its

latent potential in text representation.

In response to these challenges, we present an event-

based, simple, yet effective graph contrastive learning

framework SE-GCL for text representation learning. This

method diverges from traditional techniques by focusing

on textual events as the primary unit of analysis rather than

merely extracting keywords and sentences. SE-GCL cap-

tures the core intent of texts semantically and structurally

Fig. 1 Different processing methods for text representation
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by defining textual events and building internal relational

graphs for each text. Further, we introduce a streamlined,

unsupervised graph contrastive learning framework to

leverage the complementarity between semantic and

structural textual information for comprehensive feature

extraction. Specifically, to improve text representation

efficiency, we first mine the event skeletons in the internal

relationship graph to preserve only the more essential

semantics. Furthermore, we propose a simplification of the

complex data augmentation process commonly found in

existing graph contrastive learning. For anchor embed-

dings, instead of GCN, we use MLP to generate anchor

embeddings infused with semantic information. For event

skeletons, we adopt GCN for embedding representation.

This approach explores the complementarity of semantic

and structural information while effectively simplifying the

strategy for generating embeddings. In another simplifica-

tion step, we shuffle the anchor embeddings to generate

negative embeddings, avoiding the need for more compu-

tationally expensive strategies. Lastly, we can achieve

equilibrium by manipulating various embeddings using

multiple loss functions to approach or diverge from each

other within a finite distance in the vector space. This

systematic yet innovative approach effectively addresses

the challenges current text representation methods face,

offering a more efficient and robust path forward. Our

source code is available at https://github.com/KrisWongz/

SEGCL. The main contributions of this paper can be

summarized as follows:

• We first propose the definition of textual events and

construct an event-based internal relational graph to

express the core intent of each text at both semantic and

structural levels.

• We propose an event-based graph contrastive text

representation learning framework, which can explore

the complementarity between semantic and structural

information to obtain semantic-rich text representation

and achieve better efficiency.

• Experiments and analysis on real-world datasets show

that our method outperforms existing methods in

effectiveness and interpretation.

2 Related work

2.1 Word-sentence-based text representation

Primarily, the encoding of textual information hinges on

the representation of words, a foundational pillar in the

landscape of natural language processing that maintains its

indelible significance. Conventional word-based represen-

tations like bag-of-words and term frequency-inverse

document frequency tend to overlook the sequential

arrangement of words. In contrast, alternative techniques

such as Word2Vec, GloVe, and fastText [8, 13, 16]

endeavor to encapsulate the semantics of individual words

yet grapple with capturing the subtle intricacies of elon-

gated phrases or sentences. These methodologies have

recorded noteworthy successes in the realm of word rep-

resentation. However, their direct application for text rep-

resentation poses a formidable challenge.

An advanced approach lies in the representation of

sentences, a technique poised to assimilate more robust

features. For instance, Zhang et al. [35] have proposed a

contrastive model, which expands upon SimCSE [7] by

iteratively crafting hard negatives through a blend of both

positive and negative features. Similarly, Yan et al. [30]

have introduced a contrastive framework for self-super-

vised sentence representation transfer, employing con-

trastive learning to refine BERT [5] in an unsupervised yet

efficacious manner. In another noteworthy research [37], a

multilayered semantic representation network is explicitly

devised for sentence representation, wherein a multi-at-

tention mechanism garners the semantic information across

varying sentence levels. Sentence representation has seen

substantial advancements and has been effectively incor-

porated across multiple domains in recent years. Never-

theless, text representation spanning multiple sentences

invariably invites the degradation of structural integrity and

a concurrent dilution of long-range semantic coherence.

Word-based and sentence-based models achieve supe-

rior results in short text sequence representation learning.

However, when dealing with lengthy texts that have

complex meanings, these models often struggle to grasp the

deeper semantic features. This is because they tend to

analyze words and sentences in isolation without consid-

ering how these elements interrelate or how they contribute

to the overall coherence of the text.

2.2 Text representation via deep learning

The field of text representation via deep learning method-

ologies has undergone a remarkable metamorphosis,

marked by an exponential surge in model intricacy and the

multifaceted representations they facilitate. Primitive

undertakings centered predominantly on convolutional

neural networks (CNNs) [9] and recurrent neural networks

(RNNs) [33], along with their long short-term memory

(LSTM) [19] offshoot. These frameworks, exploiting the

inherently sequential characteristic of textual data, marked

a considerable stride forward from their preceding non-

contextual counterparts. Regrettably, the CNNs’ focus

remains tethered predominantly to local information,

overlooking long-range semantic relationships. Concur-

rently, RNNs and their ilk possess the capacity to consider
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the sequence in its entirety but display diminishing effec-

tiveness as the sequence length swells. Ultimately, none of

these models demonstrate an efficacious capability in

abstracting global semantics.

With the inception of attention mechanisms and trans-

former architectures, the domain of text representation

underwent a significant paradigm shift. Transformer-cen-

tric models, such as BERT [5] and GPT [17], seized the

potential of the attention mechanism to capture depen-

dencies without regard to their proximity within the textual

continuum, effectively circumventing the constraints of

RNNs and LSTMs. For example, SWCC [6] utilizes doc-

ument-level co-occurrence information of events to learn

event representations without additional annotations.

Simultaneously, the rise of graph neural networks

(GNNs) [2, 22, 24] signaled a promising development in

text representation. Uniquely endowed to grasp the struc-

tural nuances innate to text, GNNs address a critical gap

often neglected by sequence-oriented models. For instance,

TextGCN [32] erects a text graph predicated on word co-

occurrence and document-word correlations, subsequently

employing a Graph Convolutional Network to learn rep-

resentations. TREND [25] proposed the concepts of events

and dynamic nodes, which capture the individual and

collective characteristics of events, respectively. TextFCG

[23] builds a single graph for all words in each text, labels

edges by fusing various contextual relations, and uses GNN

and GRU for text classification.

Although these deep learning-based methods are prac-

tical and widely used, they all face difficult problems. First,

sequence-based models focus on local dependencies of text

but cannot fully capture long-term dependencies. Second,

although the graph-based models can construct the global

structure of the text corpus, they ignore the rich entity

information and relationship information within the texts.

2.3 Contrastive representation learning

Contrastive representation learning represents another sig-

nificant frontier in developing of advanced text represen-

tation techniques. This branch of learning operates on the

principle of learning representations by contrasting positive

pairs (similar or related instances) against negative pairs

(dissimilar or unrelated instances). Such learning mecha-

nisms have shown remarkable success across various

applications, including computer vision and natural lan-

guage processing [26].

SimCLR [3] extended InfoMax principles to multiple

views and maximized mutual information (MI) by aug-

menting the resulting views with data. The InfoGCL [27]

framework reduced mutual information between contrast-

ing parts through the Information Bottleneck principle

while maintaining the integrity of task-relevant information

at the level of individual modules and the entire frame-

work. Mo et al. [14] proposed a simple unsupervised graph

representation learning method SUGRL, whose multiple

losses explored the complementary information between

structural and neighbor information to produce more minor

generalization errors. GCNSS [12] effectively alleviates

the negative sampling bias problem in graph contrastive

learning by utilizing label information. NCLA [18] pro-

posed a learnable graph augmentation strategy to produce

safer contrasting views. For the field of text representation,

CGA2TC [31] designed an adaptive data enhancement

strategy to effectively filter graph noise information.

TextGCL [36] uses contrastive learning loss to simultane-

ously train GCN and Bert to learn a more robust text

representation. TGNCL [11] introduces contrastive learn-

ing regularization on text-level graphs to learn robust word

representations.

Existing graph data augmentation methods can lead to

two potential issues. Firstly, graph data augmentation

typically involves view generation and view encoding,

which incurs significant computational costs. Secondly,

modifying graph information in a random manner (such as

node dropping and edge dropping) may result in unpre-

dictable semantic loss. Consequently, there is a pressing

need to develop a more efficient strategy for data aug-

mentation in this context.

3 Proposed method

In this paper, we introduce an event-based, simple yet

effective graph contrastive learning (SE-GCL) framework,

a novel approach to text representation that effectively

captures both the semantic and structural intricacies

inherent in natural language. The proposed SE-GCL

method comprises four major steps, forming a systematic

pipeline for comprehensive text representation, whose

overall structure is shown in Fig. 2.

The first step is the construction of an intra-relation

graph. Recognizing that textual events represent core

semantic and structural information, we extract these event

blocks and build a graph based on their semantic rela-

tionships, thereby retaining the most critical and central

semantic information of the text.

Next, we introduce the concept of event skeleton

extraction. By defining event skeletons and applying them

to the intra-relation graphs, we effectively compress and

augment them, leading to a more efficient and enhanced

representation of textual events.

The third step involves the generation of embeddings in

the contrastive framework. We design a streamlined,

unsupervised graph contrastive learning framework to

exploit the complementarity between semantic and
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structural textual information for comprehensive feature

extraction. We use less complex embedding generation

strategies instead of complex data augmentation strategies

common in existing graph contrastive learning.

Finally, the SE-GCL method employs multiple loss

functions to facilitate the convergence of our model. A

harmonious balance is achieved by manipulating various

embeddings to approach or diverge from each other within

a finite distance in the vector space, ensuring the robustness

and effectiveness of our model.

In the following sections, we delve into a detailed

exposition of each step, elucidating the innovative mech-

anisms and strategies that underpin the SE-GCL method.

3.1 Intra-relation graph construction

In the first stage of our SE-GCL method, we convert the

raw text into an intra-relation graph using a syntactic

dependency-based language technology platform (LTP) [1]

event extraction tool. The overall process is shown in

Fig. 3. This tool allows us to delve beyond surface-level

syntactic structures of sentences and directly extract deep

semantic information, thereby providing a more compre-

hensive and enriched understanding of the text.

We commence by processing the text into multiple tri-

plet event blocks using the LTP tool. An example of such

an event block is [‘‘Peter,’’ ‘‘eats,’’ and ‘‘apple’’]. Each

element in these event blocks is referred to as an ‘‘event

element.’’ One of the key advantages of this approach is

that we can describe the semantics of sentences through the

semantic framework borne by the vocabulary without

needing to abstract the vocabulary itself. This is crucial as

the number of arguments is invariably smaller than the

vocabulary.

Subsequent to the event block formation, we retain the

part-of-speech information for each word. This stage can

be likened to the process of named entity recognition,

wherein entity information, such as person names, place

names, and institution names, is identified. The retention of

part-of-speech information is crucial as it provides addi-

tional context and semantic information that aids in the

construction of the intra-relation graph. It allows us to

differentiate between entities and actions and to understand

the roles different words play within the event blocks.

Building upon the event blocks and the part-of-speech

information, we then proceed to construct an intra-relation

graph. Initially, we include event blocks with entities,

establishing edge connections based on the relationships

between these entities. Specifically, entities that appear

simultaneously in the same sentence are connected through

edges, such as entity 1 and entity 2 in Fig. 3. It is worth

pointing out that the same entity in different event blocks

will be treated as a node, which means that different event

elements can be connected through the shared event entity.

In the next step, we preserve event blocks where an

event element appears multiple times and establish con-

nections based on the co-occurrence relationship of these

event elements. It should be noted that the event elements

need not be identical for a link to be established. A link is

created if the similarity between event elements exceeds a

predefined threshold (y). The similarity between event

elements is measured using a semantic similarity metric,

which takes into account both the semantic and syntactic

similarities between the elements. The threshold is deter-

mined empirically, with a higher threshold leading to fewer

but more confident connections and a lower threshold

leading to more but potentially less confident connections.

Fig. 2 Illustration of our method SE-GCL. First, SE-GCL builds

intra-relation graphs for texts and identifies their event skeletons from

them. An MLP is used to generate the word node anchor embedding

Hþ of intra-relation graphs, and the negative embedding H� is

obtained by perturbing the anchor embedding, and the event

embedding Hþ
e is obtained by sampling. In addition, a GCN will be

used to generate structural embeddings Hþ
s . A contrastive loss is then

applied to close the distance between positive embeddings and anchor

embeddings while widening the distance between negative embed-

dings and anchor embeddings
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Through the aforementioned process, we successfully

convert the text into an intra-relation graph, capturing the

intricate semantic and structural details inherent in natural

language. This graph forms the foundation for the subse-

quent stages of our SE-GCL method.

3.2 Event skeleton extraction

The second stage of our SE-GCL method involves the

extraction of event skeletons. Event skeletons provide a

specific event composition architecture frequently observed

in these types of articles. The main purpose of event

skeleton extraction is to capture representative semantic

information within the text by establishing a relation graph

between event entities, which helps to mine the core event

organization pattern of the text. Therefore, the event

skeleton provides an effective way to represent the event

structure of text and is an important method to explore rich

text contextual semantics.

To extract these event skeletons, we employ the gSpan

(graph-based Substructure pattern mining) algorithm [29],

a seminal technique in the field of frequent subgraph

mining. The gSpan algorithm operates by mapping graph

data to a canonical order string and systematically

exploring the search space using a depth-first search

strategy. This technique enables us to efficiently identify

frequent subgraphs, i.e., substructures that recur at a fre-

quency above a given threshold.

Given a graph G, denote the intra-relation graph. In a

more sophisticated and elegant manner, we assign identi-

fiers to the nodes and connections within the intra-relation

graph. The trio of node categories can be associated with a

total of sextet edge types. Subsequently, we arrange the

nodes and connections in accordance with the frequency of

their identifiers and eliminate those nodes and connections

that exhibit a lower frequency, thereby deriving a novel

graph, denoted as Gnew. The amalgamation of connections

exhibiting a higher frequency into a set, denoted as E, can

be perceived as the formation of a set E encompassing all

connections within the graph Gnew. Arrange the edges in E

in descending order of the minimum depth-first search

(DFS) encoding order and frequency. Our objective is to

discern the subgraph of the frequency within the intra-re-

lation graph, and the connection can also be perceived as a

unique subgraph. The connections within the set E can be

viewed as the most rudimentary frequent subgraph. The

ensuing frequent subgraph mining is predicated upon these

frequent connections for recursive mining.

Subsequently, we procure the initial frequent subgraph,

denoted as A, predicated on E, and proceed to augment it

recursively. The augmentation process is partitioned into a

triad of steps. Initially, an assessment is made to determine

whether DFS encoding is fulfilled. If this condition is met,

an expansion is executed on the rightmost side. An eval-

uation of the newly augmented subgraph is conducted to

ascertain whether it complies with the support degree. If it

does, the recursive expansion continues predicated on the

new subgraph. Ultimately, we succeed in obtaining fre-

quent subgraphs.

Once these frequent subgraphs are extracted, they can be

represented as event skeletons when applied to the intra-

relation graph with event information. As such, the event

skeletons encapsulate the representative structure of the

events, providing a compact yet comprehensive snapshot of

the most salient semantic elements within the text. This

efficient representation paves the way for the subsequent

stages of the SE-GCL method.

3.3 Embedding generation

We focus on the generation of embeddings within the

graph contrastive learning framework in the third phase,

which includes the creation of anchor embeddings, positive

embeddings, and negative embeddings.

3.3.1 Anchor embedding

Traditionally, embedding generation methods have relied

heavily on deep learning techniques such as GCN, fol-

lowed by the application of a readout function to obtain

anchor embeddings. While effective, these methods can be

computationally intensive and time-consuming, posing

challenges for scalability.

In contrast, our approach in the SE-GCL method is to

leverage the intra-relation graph directly to generate anchor

embeddings with event information. Specifically, we

employ a simple multilayered perceptron (MLP) to trans-

form the word nodes in the intra-relation graph into anchor

embeddings. This approach effectively reduces the com-

putational burden of the algorithm, thereby enhancing its

scalability. By using the MLP, we can capture the event

information inherent in the word nodes of the intra-relation

graph. The formula is expressed as:

Hlþ1 ¼ sigmod
XM

i¼0

Hl
i �Wl

i þ b

 !
; ð1Þ

Fig. 3 The overall process of constructing intra-relation graph
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where Hl
i is the embedding of the l-th layer and H0 is the

input. Wl
i is the weight of the l-th layer. M represents the

number of neurons. b is the artificially set bias. Here, we

regard the output H of the last layer as the anchor

embedding.

3.3.2 Negative embedding

In contrastive learning, the combination of negative samples

containing significantly different features and anchor sam-

ples can promote the model to learn highly discriminative

representations. In the context of generating negative

embeddings, many previous methodologies have relied on

intricate negative sampling strategies or have utilized GCN

to obtain embeddings after distorting the original graph.

While these methods can be effective, they are often com-

plex and time-consuming, posing challenges for scalability

and efficiency. In contrast, we adopt a simpler strategy:

shuffle the anchor embeddings to generate the negative

embeddings. This approach significantly reduces the com-

putational burden of the algorithm. Through this strategy,

our method destroys the original order of anchor embed-

dings, creating a set of negative embeddings with distinct

characteristics from the anchor embeddings. This alignswith

the objective of contrastive learning,which aims tominimize

the similarity between negative pairs (i.e., the anchor and

negative embeddings). Furthermore, this simple strategy of

generating negative embeddings provides discriminative

negative samples while significantly reducing the computa-

tional cost by removing the graph neural network. The

negative embedding H� is defined as shown in Eq. (2).

H� ¼ shuffleðHÞ: ð2Þ

3.3.3 Positive embedding

The generation of positive embeddings is a crucial aspect

of the SE-GCL method. While there are diverse approaches

to this task, many existing methods rely on GCN to extract

the structural information of the graph or to perform further

data augmentation. However, we propose two distinct

strategies for generating positive embeddings, aiming to

capture more complementary information. These strategies

focus on two key types of information: structural infor-

mation Hþ
s and event information Hþ

e .

3.3.4 Structural information

The first strategy is designed to capture the structural

information inherent in the intra-relation graph. This

involves leveraging the relationships between the nodes in

the graph, as represented by the edges and their properties.

By focusing on this structural information, we can capture

the underlying architecture of the events in the text, which

is crucial for understanding their context and semantics.

3.3.5 Event Information

The second strategy is focused on capturing the event

information represented in the intra-relation graph. This

involves leveraging the event blocks and event skeletons

that we have extracted in the previous steps. By focusing

on the event skeleton information, we can capture the

specific compositions of events in the text, which are

crucial for understanding the core semantics.

For each intra-relation graph G, we introduce a two-

layer GCN as an encoder to get the structure embedding.

Formally, Let A represents the adjacency matrix of G and

D is the degree matrix, where Dii ¼
P

j Aij. Moreover, each

node is connected to itself. Then, the neighbor information

is aggregated into Nv to update the embedding of node v

recursively by the aggregation function AGG. The steps

can be expressed as follows:

Hlþ1
i ¼ rð eA �Wl � q � concatðHl

i ;AGGðHl
j ; vj 2 NviÞÞ;

ð3Þ

where r represents the activation function, such as Leaky

ReLU. eA ¼ D�1
2AD�1

2 is the symmetric normalized adja-

cency matrix. Wl is the trainable transformation matrix of

the layer l. q is the event skeleton’s weight.

We select nodes in the event skeleton to sample and

obtain their average to obtain the positive embedding with

the event information. The sampled positive event

embeddings provide a new perspective to encourage the

model to learn discriminative representations. The formula

is expressed as follows:

Hþ
e ¼ 1

k

X
ðHijvi 2 event skeletonÞ; ð4Þ

where k represents the number of nodes in the event

skeleton.

In general, we design two positive embeddings from the

structural and event levels to explore their complementar-

ity. The structure embedding contains the information of

the whole intra-relation graph, and the event embedding

contains part of the nodes’ information. They interpret the

same graph from different perspectives. Therefore, it is

considered separately, and we can obtain specific com-

plementary information.

3.4 Multi-Loss functions

The purpose of contrastive learning is to make positive

embedding close to anchor embedding and negative
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embedding away from anchor embedding. Since a small

generalization error may improve the generalization ability

of contrastive learning, and reducing the intra-class varia-

tion or expanding the interclass variation is an effective

solution to reduce the generalization error, we design

multi-loss functions for the resulting positive, anchor, and

negative embeddings based on the event skeleton and intra-

relation graph. Meanwhile, we introduce an upper bound

loss to improve efficiency and replace the discriminator

method. The multi-loss can be formulated as follows:

simðH;HþÞ\simðH;H�Þ � g; ð5Þ

where simð�Þ is a similarity measure function, such as l2-

norm distance, and g is a nonnegative number to ensure

that the distance between positive and negative embed-

dings is within a fixed range. Integrate all negative

embeddings to get the loss f:

fmulti ¼
1

k

Xk

i¼1

simðH;HþÞ2 � ðsimðH;H�
i Þ

2 � gÞ
n omax

;

ð6Þ

where f�gmax means taking the maximum value between

f�; 0g, k represents the number of negative embeddings.

We apply the loss to the two defined positive embed-

dings. The loss of structure embedding Hþ
s can be formu-

lated as follows:

fs ¼
1

k

Xk

i¼1

simðH;Hþ
s Þ

2 � ðsimðH;H�
i Þ

2 � gÞ
n omax

; ð7Þ

while the loss of event embedding can be formulated as

follows:

fe ¼
1

k

Xk

j¼1

simðH;Hþ
e Þ

2 � ðsimðH;H�
j Þ

2 � gÞ
n omax

: ð8Þ

The implementation of such a multiplet loss, which is

essentially a pair of triplet losses, can enhance the disparity

between classes upon examining Eqs. (7) and (8), two

potential scenarios emerge. The first scenario is one where

the loss incurred in Eq. (8) is null, while that of Eq. (7) is

nonzero. In this case, Eq. (7) continues to extend the vector

representation of the negative sample in comparison to the

positive sample of Eq. (7) further afield. The converse

scenario is equally plausible. Equation (8) also serves to

distance the vector representation of negative samples.

Collectively, these two equations contribute significantly to

the differentiation between classes. In this way, we can

effectively expand the interclass variation in the case of

one type of loss with poor effect to obtain complementary

information of event information and structural

information.

In order to avoid the situation where the gap between the

anchor embedding and the positive embedding itself is very

large, we set an upper bound h for the negative pair to

ensure that the distance between the negative embedding

and the anchor embedding is limited, which can effectively

reduce the intra-class variation. The upper bound loss is

defined as follows:

fu ¼
1

k

Xk

i¼1

simðH;Hþ
e Þ

2 � ðsimðH;H�
j Þ

2 � g� hÞ
n omin

;

ð9Þ

where f�gmin means taking the minimum value between

f�; 0g. The final multi-loss f is given by

f ¼ We � fe þWs � fs þ fu; ð10Þ

whereWe andWs are the weights of fe and fw, respectively.

We average all final node embeddings in the graph to get

the text representation.

Overall, we explore the complementary information

between structural information and neighbor information

via two triplet loss functions to amplify interclass variation

and an upper bound loss to reduce intra-class variation. The

final multi-loss effectively maximizes the difference

between classes and minimizes the difference within clas-

ses. This kind of constraint in two directions can reduce the

generalization error. The process of SE-GCL can be shown

as Algorithm 1.

Algorithm 1 SE-GCL: An event-based simple and effective graph

contrastive learning for text representation
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4 Experiments

We conduct experiments on common datasets to evaluate

the performance of the SE-GCL method. In this section, we

will introduce the data sets and preprocessing, comparison

of methods, experiment settings, results, and corresponding

analysis.

4.1 Data sets

In our experiments, we utilized four diverse datasets to

evaluate the performance and robustness of the SE-GCL

method. These datasets are:

AG News1: This is a dataset of news articles from the

AG’s corpus of news articles on the web, pertaining to the

four largest classes. The dataset contains 30,000 training

examples and 1,900 test examples per class.

20NG2: This dataset is a collection of approximately

20,000 newsgroup documents partitioned across 20 dif-

ferent newsgroups. It is a popular dataset for experiments

in text applications of machine learning techniques, such as

text classification and text clustering.

SougouNews3: The data of SogouNews is compiled by

Sogou Lab. It comes from a total of 1,245,835 news reports

from 18 Sohu News channels, including domestic, inter-

national, sports, social, and entertainment, from June to

July 2012. Considering the device factor and balancing the

dataset, we randomly sample 3000 entries in each of the ten

categories.

THUCNews4: The ThuCNews corpus is a news docu-

ment generated by filtering the historical data of the Sina

News RSS subscription channel from 2005 to 2011, which

contains 14 news categories and about 830,000 news texts.

Considering the device factor and balancing the dataset, we

randomly sample 5000 entries in each of the 14 categories.

These datasets were chosen due to their diversity in

terms of domain (news articles from various categories)

and size. This diversity allows us to thoroughly evaluate

the performance of the SE-GCL method under different

conditions and settings.

Preprocessing: Following previous works, we remove

stopwords and low-frequency words (word frequency less

than 5), as well as word segmentation operations on all

datasets. Apart from this, to manage computational

demands and maintain the feasibility of our study, a sam-

pling strategy is applied to the large-scale Chinese datasets.

4.2 Comparison of methods

To evaluate the performance of our method, we compare it

with different types of text representation learning meth-

ods. Covering different types of models ensures that the

evaluation is not biased by specific model types, providing

more balanced and representative evaluation results. These

baseline methods can be divided into three groups,

including word embedding-based models, sequence deep

learning models, and graph-based representation learning

models. The selected methods are as follows:

(1) Word Embedding-based Models

TF-IDF?LR [32]: Bag-of-words model with word

frequency-inverse document frequency weighting.

Use logistic regression as the classifier.

fastText [8]: A simple yet efficient method for text

classification (Joulin et al. 2017) that treats the

average of word/n-gram embeddings as document

embeddings and then feeds the document embed-

dings into a linear classifier.

(2) Traditional deep learning models

CNN [9]: CNN is a type of traditional deep

learning model that is commonly used for text

classification tasks. It uses convolutional layers to

learn spatial hierarchies of features from the input

data automatically and adaptively.

Bert [5]: It is a transformer-based method that has

achieved state-of-the-art results on a wide range of

natural language processing tasks. It uses a masked

language model objective to pretrain deep bidi-

rectional representations from unlabeled text.

(3) Graph-based representation learning models

TextGCN [32]: TextGCN is a graph-based method

for text classification that constructs a single, large

graph over all documents in the corpus. It then

applies a graph convolutional network (GCN) to

this graph to learn document representations.

GAT [22]: It uses attention mechanisms to capture

the importance of neighbors in the graph, which

has been used for various tasks, including node

and graph classification.

TextING [34]: TextING is a graph-based method

for text classification that constructs a text infor-

mation graph and applies a graph neural network

to learn representations.

DGI [21]: An unsupervised graph embedding

algorithm based on mutual information whose

goal is to maximize the mutual information

between a local representation (patch) and the

1 http://groups.di.unipi.it/ gulli/AG_corpus_of_news_articles.html.
2 http://qwone.com/ jason/20Newsgroups/.
3 https://huggingface.co/datasets/sogou_news.
4 http://thuctc.thunlp.org/.
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corresponding graph summary representation

(summary).

GMI [15]: GMI is a method for unsupervised

learning on graphs. It uses mutual information to

measure the dependency between the input and

output of a graph neural network.

TGNCL [11]: It builds a graph for each document

and develops a contrastive learning regularization

to learn fine-grained word representations.

These comparative methods were chosen due to their

relevance and performance in text representation learning

tasks. By comparing the SE-GCL method against these

methods, we aim to provide a comprehensive evaluation of

its effects. It is of significance to note that both TextGCN

and TextING possess their own distinctive composition

methodologies, and we shall employ the techniques

delineated in their original papers for text classification.

Furthermore, given that GAT, DGI, and GMI are purely

graph neural network algorithms, we will process them

based on the intra-relation graph we have constructed to

procure the corresponding text representation. Remarkably,

it can also be viewed as an ablation experiment designed to

validate the efficacy of our proposed contrastive learning

framework.

4.3 Experimental setup

All experiments were conducted using the PyTorch

framework, a popular open-source machine learning library

for Python. The experiments were run on a computer

equipped with an i7-9700kf CPU and an RTX2080s GPU,

ensuring sufficient computational resources for the tasks.

During the model training phase, we trained all models

until the loss value converged to ensure optimal results. To

account for variability and randomness in the training

process, each experiment was repeated ten times using

different random seeds. The best precision and F1 scores

obtained from each experiment were then averaged to

provide the final result.

For large-scale datasets, we adopted a mini-batch strat-

egy to address potential out-of-memory issues. This strat-

egy involves dividing the dataset into smaller subsets or

’mini-batches’ that are processed independently. This

approach not only helps to manage memory usage but also

can lead to faster and more stable convergence of the model.

In the SE-GCL method, we set the output dimension of

each neuron in the hidden layer to 128. The learning rate, a

critical parameter that determines the step size at each

iteration while moving toward a minimum of a loss func-

tion, was set in the range of [0.005, 0.01]. The weight

decay, a regularization technique that prevents the weights

from growing too large, was set within the range of [0,

0.0001] for all datasets. The regularization factor was set to

n ¼ 1e� 6, and the dropout rate was set to 0.4.

For all datasets, we allocated 70% of the data for

training and the remaining 30% for testing. This split

ensures that the models have sufficient data to learn from

while providing an independent subset of data to evaluate

their performance.

To ensure a fair comparison, we used the parameter

settings from the original models for all comparative

analyses. This ensures that each model is evaluated under

its optimal conditions, providing a reliable basis for

comparison.

4.4 Experimental results and analysis

Table 1 presents the comparative evaluation of the pro-

posed SE-GCL method against several state-of-the-art

methods on four datasets: AG News, 20NG, SougouNews,

and THUCNews. Precision (P) and F1 score (F1) are the

evaluation metrics. It is important to note that the methods

compared span both supervised learning techniques (such

as CNN, Bert, TextGCN, GAT, and TextING) and unsu-

pervised learning techniques (such as DGI, GMI, and our

proposed SE-GCL). Despite this, the SE-GCL method

consistently performs well across all datasets, even out-

performing most supervised learning methods that leverage

label information.

From the results, it can be observed that the SE-GCL

method consistently performs well across all datasets.

Specifically, on the 20NG dataset, SE-GCL achieves the

highest precision of 86.76% and the highest F1 score of

85.92%. Similarly, on the SougouNews dataset, SE-GCL

outperforms all other methods, achieving a precision of

98.03% and an F1 score of 97.58%. On the THUCNews

dataset, SE-GCL again leads with a precision of 97.79%

and an F1 score of 97.32%. These demonstrate the effec-

tiveness of our novel approach in capturing the semantic

and structural complexity inherent within the texts.

Although on the AG News dataset, SE-GCL does not

achieve the highest precision (which is achieved by GAT at

92.23%), it still delivers a competitive performance with a

precision of 91.56% and an F1 score of 90.92%. This could

be attributed to the fact that AG News may contain less of

the text-event information that our method is designed to

capture.

Our experiments reveal that TF-IDF?LR exhibits

excellent performance across all tested datasets, particu-

larly on the 20NG, where its performance is on par with

other strong baseline models. On the other hand, fastText

shows promising results on the AG News dataset but suf-

fers from performance drops on the Chinese News dataset.

We speculate that this may be because fastText learns some
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less discriminative representations when processing longer

texts, thus affecting its performance. For traditional deep

learning models, CNN achieves promising results com-

pared to the baseline on the AG News dataset. However,

the performance on other datasets is obviously not as good

as the results of other baselines, which shows that CNN can

model short-range semantics and continuous semantics, but

it does not have advantages in long texts. Bert also treats

text as a sequence of words and performs significantly

better than CNN on four datasets, achieving competitive

results even against strong baseline methods. This shows

that Bert can capture the long-range semantic relation of

sequences through the self-attention mechanism. We

observe that graph-based models achieve more competitive

results, indicating that graph models are beneficial for text

processing. TextGCN performs worse than TextING on

AG News, 20NG, and THUCNews. This may be related to

the inability of the corpus-level graph to explore the

semantic structure information within the text. It is worth

noting that GAT achieves the best results on AG News,

which can benefit from the attention mechanism’s ability to

capture more important semantic information. For self-

supervised graph contrastive learning methods, we note

that the TGNCL model achieves performance levels com-

parable to some semi-supervised methods. However, its

performance failed to surpass the SE-GCL model on all test

datasets. This observation implies that the complex data

augmentation techniques adopted in TGNCL may have

resulted in a certain degree of semantic information loss,

thereby affecting the overall performance of the model.

Furthermore, SE-GCL outperforms the self-supervised

methods DGI and GMI on all datasets. The most significant

improvement is observed on the THUCNews dataset,

where SE-GCL achieves a 1.92% improvement in accuracy

compared to DGI.

In conclusion, the experimental results provide strong

empirical evidence supporting the effectiveness and

robustness of the SE-GCL method for text representation

learning. Its novel approach, which includes the construc-

tion of an intra-relation graph, event skeleton extraction,

and the event-based contrastive framework, leads to

improved performance across various datasets, outper-

forming both supervised and unsupervised methods.

4.5 Ablation experiments

In this ablation experiment, we investigate the impact of

removing specific components of the SE-GCL method,

specifically the structure embedding, event embedding

(i.e., event skeleton information), and the upper bound loss.

From the results in Table 2, we can observe that each

component of the SE-GCL method contributes to its

Table 1 The test accuracy and

F1 score of different methods on

four datasets

Method AG news 20NG SougouNews THUCNews

P F1 P F1 P F1 P F1

TF-IDF?LR 85.92 85.21 83.19 82.56 86.12 85.35 89.97 88.16

FastText 87.17 87.05 79.38 78.47 82.98 81.73 86.46 84.08

CNN 88.21 86.43 76.96 75.83 93.64 93.25 92.73 92.4

Bert 91.34 90.61 86.54 86.13 97.22 96.94 96.77 96.41

TextGCN 89.61 88.92 85.27 84.49 97.34 97.02 96.82 96.6

TextING 90.52 89.75 85.74 84.93 96.97 96.48 97.32 96.89

GAT 92.23 91.67 86.19 85.73 97.84 97.33 97.54 97.28

DGI 91.4 90.76 85.96 85.15 96.43 96.01 95.87 95.54

GMI 90.95 89.82 86.23 85.46 96.62 96.16 96.25 95.88

TGNCL 89.47 86.91 85.92 85.13 96.37 85.18 94.1 93.27

SE-GCL 91.56 90.92 86.76 85.92 98.03 97.58 97.79 97.32

The models that excel in vertical contrast are highlighted in bold

Table 2 Ablation experiment

without event embedding,

structure embedding, and upper

bound

Method AG news 20NG SougouNews THUCNews

P F1 P F1 P F1 P F1

Without structure 89.72 88.28 85.87 85.06 96.63 96.05 96.35 95.81

Without event 91.24 89.73 86.26 85.15 97.37 96.56 96.97 96.19

Without upper bound 91.18 89.71 86.53 85.26 97.49 96.84 97.28 96.61

SE-GCL 91.56 90.92 86.76 85.92 98.03 97.58 97.79 97.32

The models that excel in vertical contrast are highlighted in bold
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performance. The performance drops when any of the

components is removed, indicating their importance in the

method. When the structure embedding is removed, the

precision and F1 score on the AG News dataset drop from

91.56% and 90.92% to 89.72% and 88.23%, respectively.

Similar drops in performance are observed on the other

datasets. This indicates that the structure information

contributes significantly to the effectiveness of the SE-

GCL method.

Removing the event embedding also leads to a decrease

in performance, but the impact is less pronounced than

removing the structure embedding. For instance, on the

THUCNews dataset, the precision and F1 score drop from

97.79% and 97.32% to 96.97% and 96.19%, respectively.

This suggests that the event skeleton information, while

important, is less critical than the structure information.

The upper bound loss also plays a role in the performance,

but its removal has a less pronounced impact on the results.

This suggests that while the upper bound loss contributes to

the performance of the SE-GCL method, it is not as critical

as the structure and event embeddings.

It merits attention that the impact of eliminating event

embedding on the AG News dataset surpasses that of

removing the upper bound, a finding that stands in contrast

to the results observed in the other three datasets. Upon

scrutinizing the outcomes of the preceding comparative

experiments, we conjecture that this discrepancy can be

attributed to the brevity of the text length in AG News and

the consequent scarcity of event information. Conse-

quently, the removal of event embedding does not signif-

icantly influence the results.

These findings highlight the importance of structure

embedding, event embedding, and upper bound loss in

achieving high performance in text representation learning

with the SE-GCL method. They also underscore the

effectiveness of the SE-GCL method, which outperforms

all ablated versions on all datasets.

4.6 Parameter analysis

In our experiments, we conducted a detailed analysis of the

hyperparameters, including g and h in Eq. (9) as well as We

and Ws in Eq. (10).

For g and h, we set their values in the range [0.1, 0.9].

While adjusting one parameter, the other parameter was

held constant at its optimal value of 0.9. The experimental

results, as shown in Fig. 4, indicate that the performance is

poor when their values are small, and the performance

improves as the value increases until it reaches a relatively

stable state. This can be attributed to the fact that when

their values are small, the difference between positive and

negative pairs is too small, resulting in insufficient

discrimination.

Similarly, parameters We and Ws were adjusted between

[0.001, 1000], with one parameter held constant at its

optimal value during the adjustment of the other. As

depicted in Fig. 5, the experimental results are poor when

their values are small. This suggests that fe and fs are

important for the performance of our method.

These findings underscore the importance of carefully

selecting the hyperparameters in our SE-GCL method.

They also highlight the effectiveness of our method, which

achieves high performance across a range of hyperparam-

eter settings.

4.7 Efficiency analysis

In our experiments, we also conducted an efficiency anal-

ysis to compare the time consumption of our SE-GCL

method with other methods, including CNN, DGI, GAT,

GMI, and BERT.

The time consumption of each method is presented in

Fig. 6. For the purpose of comparison, we set the time

consumption of SE-GCL as 1. The time consumption of the

other methods is as follows: CNN (1.5), DGI (3.5), GAT

(4.7), GMI (18.6), and BERT (24.8).

From the results, it is evident that our SE-GCL method

is more efficient than all the other methods. Specifically,

our proposed unsupervised learning SE-GCL demonstrates

algorithmic advantages compared to semi-supervised

methods.

Furthermore, the intra-relation graph we pass into the

model is simpler than the graph neural network approach,

which contributes to the efficiency of our method.

In terms of the unsupervised contrastive learning

method, we replace the discriminator by setting an upper

bound loss, obtain event embeddings through MLP,

structural embeddings through GCN, and negative

embeddings through shuffling anchor embeddings. These

Fig. 4 Experiment results in different settings (h and g)
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strategies effectively reduce the consumption of the algo-

rithm, further enhancing the efficiency of our SE-GCL

method.

These findings highlight the efficiency of our SE-GCL

method, which achieves high performance with less time

consumption compared to other methods.

5 Conclusion

In this paper, we introduced the event-based graph con-

trastive text representation learning (SE-GCL) method. SE-

GCL effectively captures both the semantic and structural

intricacies inherent in natural language through a system-

atic pipeline comprising four major steps: intra-relation

graph construction, event skeleton extraction, embedding

generation in a contrastive framework, and the employment

of multiple loss functions. First, grasp the core purpose of

the text semantically and structurally by identifying event

elements in the text and constructing intra-relation graphs

for each text. Then, more representative textual semantic

information is captured by extracting the event skeleton of

the intra-relation graph. Besides, we explore the comple-

mentarity between event information and structural infor-

mation through positive embeddings constructed from

different perspectives. Among them, we have greatly

simplified the embedding generation method, improving

efficiency while ensuring the effect. Finally, multiple loss

functions are used to expand the interclass differences in

embeddings while reducing the intra-class differences. Our

experimental results on four real-world datasets show that

SE-GCL outperforms several state-of-the-art methods in

terms of precision and F1 score. Furthermore, our ablation

study highlights the importance of each component, while

efficiency analysis shows that SE-GCL is more time-saving

than other methods. Considering that the SE-GCL model

incorporates the concept of events, it is particularly well-

suited for processing medium to long texts containing rich

event elements. However, the nature of such texts often

comes with complexity, a characteristic common in multi-

label classification datasets. Currently, our model archi-

tecture is not directly optimized for such multi-label sce-

narios, which limits its applicability to some extent. Given

the significant research value of multi-label classification

tasks, we plan to expand the SE-GCL model in the future

work to accommodate the needs of multi-label classifica-

tion. All in all, these findings underscore the effectiveness

and efficiency of SE-GCL in text representation learning,

paving the way for its application in various natural lan-

guage processing tasks.
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