
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024 9289

Towards Intelligent Adaptive Edge Caching Using
Deep Reinforcement Learning

Ting Wang , Senior Member, IEEE, Yuxiang Deng , Jiawei Mao , Mingsong Chen , Senior Member, IEEE,
Gang Liu , Member, IEEE, Jieming Di , and Keqin Li , Fellow, IEEE

Abstract—The tremendous expansion of edge data traffic poses
great challenges to network bandwidth and service responsiveness
for mobile computing. Edge caching has emerged as a promising
method to alleviate these issues by storing a portion of data at
the network edge. However, existing caching approaches suffer
from either poor caching efficiency with low content-hit ratio or
unintelligence of caching policies lacking self-adjustability. In this
article, we propose ICE, a novel Intelligent Edge Caching scheme
using a deep reinforcement learning (DRL) method to capture
specific valuable information from the requested data. With the
benefit of our proposed popularity model based on Newton’s law of
cooling, ICE fully takes into account the popularity of the contents
to be cached and leverages the formulated Markov decision model
to decide whether or not the contents should be cached. Moreover,
to further improve the caching efficiency, we propose a novel
distributed multi-node caching framework, named DCCC, assisted
by a multi-tiered caching hierarchy. Comprehensive experiments
show that the single-node ICE scheme greatly improves the cache
hit rate and contents exchanging time in comparison with both
DRL-based and legacy approaches, and our distributed multi-node
caching scheme DCCC further significantly improves the overall
utilization of caching space.

Index Terms—Edge caching, deep reinforcement learning,
quality of experience.

I. INTRODUCTION

A LONG with the prosperity of 5G, the Internet of Things
(IoT), and mobile cloud computing, the edge network is

experiencing a dramatic increase in mobile traffic, as well as

Manuscript received 8 December 2022; revised 24 January 2024; accepted 27
January 2024. Date of publication 1 February 2024; date of current version
3 September 2024. This work was supported in part by the National Key
Research and Development Program of China under Grants 2022ZD0119102
and 2021ZD0114600, and in part by the Shenzhen Science and Technology Plan
Project under Grant CJGJZD20210408092400001. An earlier version of this
work was presented in 2021 IEEE Global Communications Conference [DOI:
10.1109/GLOBECOM46510.2021.9685196]. Recommended for acceptance by
J. Xu. (Corresponding author: Mingsong Chen.)

Ting Wang, Yuxiang Deng, Jiawei Mao, and Mingsong Chen are with the
MoE Engineering Research Center of Software/Hardware Co-design Technol-
ogy and Application, Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai 200062, China (e-mail: twang@sei.
ecnu.edu.cn; 51255902150@stu.ecnu.edu.cn; 71194501143@stu.ecnu.edu.cn;
mschen@sei.ecnu.edu.cn).

Gang Liu is with Bell Labs, Nokia Shanghai Bell Corp., Shanghai 201206,
China (e-mail: gang.i.liu@nokia-sbell.com).

Jieming Di is with Meta, Seatle, WA 98109 USA (e-mail: jieming.
di@outlook.com).

Keqin Li is with the Department of Computer Science, State University of
New York, New York, NY 10018 USA (e-mail: lik@newpaltz.edu).

Digital Object Identifier 10.1109/TMC.2024.3361083

booming demand for high Quality of Experience (QoE) from
end users on account of the high quality of service (QoS) require-
ments of various emerging services (e.g., autonomous driving,
ultra-high-definition video, IoT-oriented services) [2], [3], [4].
This evidently impels a growing demand for network resources
and storage resources to facilitate these services. It is predicted
that the total amount of global data is expected to increase from
33 Zettabytes in 2018 to 175 Zettabytes by 2025 [5]. Such a huge
amount of continuously generated data will inevitably exacer-
bate network congestion, increase operating and maintenance
expenditure, and deteriorate the network QoS, which in turn
impedes data delivery. Although cloud computing can mitigate
the resource shortage problem of service requests initiated by
the low-end terminal devices [6], [7], end users still suffer from
high transmission latency with poor QoE due to their extremely
long distance from the cloud data center. In order to deal with
these problems, it will be greatly beneficial to push the data
service from the remote cloud to the network edge to provide
responsive services.

In practice, shifting some core network computation and
storage resources to the network edge that is closer to end users
would provide significant benefits [8], such as lowering the time
it takes to feedback contents to users [9], improving energy
efficiency, and enabling the network structure more flexible [10].
Various types of contents, such as videos, photos, music, and
texts, can be stored in edge nodes, where such contents are
usually frequently visited. The edge nodes storing the cached
contents can be nano edge data centers, base stations (BSs), or
even terminal devices around the users [11]. However, in view
of the high deployment cost of distributed edge nodes, these
edge nodes are usually low-end equipment with constrained
computation and storage resources. Consequently, the restricted
resource capacity of edge nodes brings significant challenges
for offloading services and contents from the central cloud to
the distributed edge nodes. In case the users’ requested contents
do not exist in edge nodes, the requests will be redirected to
the remote cloud to retrieve contents. In this situation, these
edge nodes will lose their intrinsic benefits, failing to provide
responsive services. As a result, how to increase the hit rates
of the contents cached on edge nodes is deemed a crucial and
challenging problem. To this end, extensive studies have been
carried out aiming to explore efficient edge caching schemes.

Conventional caching approaches are usually designed on
the basis of the content visit frequency (e.g., Least Frequently
Used (LFU)) [12], the content visit order (e.g. Fist In First Out

1536-1233 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 05:55:26 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7223-8849
https://orcid.org/0009-0003-8954-6850
https://orcid.org/0009-0007-6629-3642
https://orcid.org/0000-0002-3922-0989
https://orcid.org/0000-0003-0971-714X
https://orcid.org/0009-0009-1143-4828
https://orcid.org/0000-0001-5224-4048
mailto:twang@sei.ecnu.edu.cn
mailto:twang@sei.ecnu.edu.cn
mailto:51255902150@stu.ecnu.edu.cn
mailto:71194501143@stu.ecnu.edu.cn
mailto:mschen@sei.ecnu.edu.cn
mailto:gang.i.liu@nokia-sbell.com
mailto:jieming.di@outlook.com
mailto:jieming.di@outlook.com
mailto:lik@newpaltz.edu

9290 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

(FIFO)) [13], or the content visit times (e.g., Least Recently
Used (LRU)) [14]. However, these traditional caching schemes
fail to take into account the content attributes, such as the sizes
and types of content. As a result, even with high cache hit
rates, these legacy caching approaches may still cause significant
network latency since they may misguide the edge servers to
cache smaller-size contents while neglecting the large-size con-
tents that are more time-consuming. Hence, intuitively it would
be beneficial to effectively recognize and classify the content
requests in order to improve the overall caching efficiency.

To solve the problems confronted with traditional caching
approaches, machine learning (ML), especially deep learning,
has emerged as an effective technique for edge caching [15],
[16], [17], which exhibits more advantages in dealing with the
high dynamics of the edge environment and greatly outper-
forms traditional methods in cache optimization. Specifically,
the diversity of content requests, the high complexity of the
edge environment, the restricted resources, and the networking
constraints, in combination, make ML-based approaches more
effective than legacy methods in handling the tractable edge
caching issue [18]. Empirical studies indicate that deep learning
has a distinct advantage in classification. However, the caching
quality is determined not just by reasonable classification of
content requests but also by the caching decision-making policy
that plays a more critical role. Therefore, we should not only
leverage deep learning to classify content requests but also make
full use of its excellent decision-making ability to effectively
increase users’ QoE and decrease the system’s energy cost.

In view of the above observations, in our previous conference
paper [1], we presented a novel deep reinforcement learning
(DRL)-based single-node Intelligent Caching framework at the
Edge, called ICE. In ICE, the edge caching problem is formu-
lated as a Markov Decision Process (MDP), taking into account
the popularity of requested contents as well as their energy cost
on edge servers. Experimental results prove that benefiting from
our novel content popularity model, the efficiency of caching
strategies is significantly improved in terms of hit rate. Further-
more, with the learned knowledge of content attributes, ICE’s
caching policy prioritizes the most time-consuming and energy-
consuming content. However, although the caching space of one
single edge node is greatly optimized and fully utilized through
our ICE scheme, it still dwarfs with the increasing number of
resources.

To this end, in this article, we further propose a new
distributed computing-based multi-node cooperative caching
scheme named DCCC. In the DCCC scheme, the ICE strategy
is leveraged to optimize the cache hit rate for each single node,
and the Linux Virtual Server (LVS) is adopted to achieve load
balancing among all involved edge nodes, where edge nodes
are classified as proxy nodes and two-tiered caching nodes
according to respective responsibilities. Proxy nodes, as the
front-end load balancer, are responsible for distributing content
requests to the caching nodes with lower network load to achieve
good load balancing. Two-tiered caching nodes, constituting
the server pool, manage the contents with unique identifica-
tion information, whereas the tier-1 nodes are responsible for
locating the tier-2 nodes that manage the requested contents

and merging the results that will be fed back to users. With
the benefit of ICE and DCCC, the caching space composed of
different caching nodes obtains high utilization with a high cache
hit rate. As a consequence, not only is the quality of experience
of users substantially increased, but the system’s energy cost is
significantly lowered. The main contributions of this article are
summarized as follows.
� We present a new content popularity model suiting the edge

caching scenario based on Newton’s cooling law. With this
model, the system can calculate a reasonable popularity
for each requested content, which further supports the
formulation of caching policies.

� We propose ICE, a novel DRL-based single-node non-
cooperative edge caching framework that outperforms its
competitors in terms of QoE and energy efficiency.

� We further propose a novel distributed computing-based
multi-node cooperative caching scheme, named DCCC,
which aims to maximize the overall caching efficiency of
multiple edge nodes, including overall cache space utiliza-
tion, cache hit ratio, response time, and energy efficiency.

� We conduct comprehensive experiments to evaluate the
performance of ICE and DCCC schemes. Experimen-
tal results prove that ICE is superior to both conven-
tional caching approaches and DRL-based approaches, and
DCCC further significantly increases the overall caching
efficiency from various aspects.

The rest of this article is organized as follows. Related works
are briefly summarized in Section II. The popularity model
design and the problem formulation are presented in Section III.
Section IV elaborates on the design of our proposed single-node
caching scheme ICE. Section V details the design of the multi-
node cooperative caching scheme DCCC. The experimental re-
sults are presented in Section VI. Finally, Section VII concludes
the article.

II. BACKGROUND AND RELATED WORK

With the dramatic increase in the number of terminal devices
in recent years, the volume of data generated and transmitted
on the network has increased exponentially. This dilemma im-
pels the emergence and evolution of a new network service
architecture, named edge caching, where the service provider
chooses to store a copy of the data at the edge in order to
ensure the user’s QoE. However, storing data at the network
edge comes with many new technical challenges and scientific
issues, such as what/where/how to cache. In general, existing
caching approaches can be divided into two groups: traditional
caching approaches and ML-based caching approaches.

A. Traditional Caching Approaches

The content replacement policies commonly employed in
traditional caching schemes include LFU, FIFO, and LRU.
Specifically, in the LRU scheme, the least recently used contents
are preferred to be removed and replaced with newly requested
contents. Comparatively, when the size of the content to be
cached exceeds the system’s storage capacity, LFU will choose
to delete the contents that are least frequently used. The FIFO

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 05:55:26 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TOWARDS INTELLIGENT ADAPTIVE EDGE CACHING USING DEEP REINFORCEMENT LEARNING 9291

strategy simply replaces the contents according to the order of
being cached, which follows the principle of first in first out.
These conventional caching strategies are straightforward but
truly efficient for same-sized contents. However, their perfor-
mance degrades when dealing with contents whose sizes differ
significantly and ignoring the introduced differentiated impact
of the transmission delay. Besides, the caching policies of these
approaches are static and are incapable of self-learning and
self-adjustment, which thus cannot adapt to the dynamic edge
environment.

B. ML-Based Caching Approaches

According to our investigation, deep learning (DL) and re-
inforcement learning (RL) are the two most commonly used
learning paradigms in the edge caching scenario.

1) DL-Based Caching Approaches: The work [19] studies
the caching problem of the information-centric network, then
designs a DL-assisted content popularity prediction scheme
leveraging software defined networking techniques, and finally
presents a lightweight caching method based on storage capacity
and popularity prediction. The work [20] considers the inter-
relationships between sequential content requests and proposes
a stimulable neural network-based caching approach by utilizing
such time-varying inter-relationships in caching policies. The
work [21] investigates the context-aware content caching prob-
lem confronted by the heterogeneous small cell networks and
presents a convolutional neural network (CNN)-based caching
scheme, which caches the predicted contents in advance to de-
crease the service latency. Similarly, the work [22] also proposes
a DL-based context-aware caching scheme aiming to decrease
the service latency and the backhaul congestion. Comparatively,
the work [23] takes the sequential features of contents into
consideration and proposes a proactive sequence-aware caching
approach based on CNN with an attention mechanism.

2) RL-Based Caching Approaches: Reinforcement learning
allows the agent to automatically choose the best action to take
in order to maximize its performance. The work [24] puts for-
ward a distributed Q-learning algorithm-based localized caching
scheme, where a new strategy for increasing the cache hit rate
is designed by incorporating Bayesian learning into predicting
request preferences. Taking privacy preservation into account,
the work [25] presents a distributed RL-based dynamic caching
method aiming to improve the caching efficiency, where the au-
thors formulate the distributed caching optimization as a model-
free Markov decision process. Comparatively, the work [26]
studies the energy conservation problem in mobile edge net-
works by leveraging caching methods. The authors then propose
an RL-based approach to optimize the caching efficiency while
aiming to minimize the system’s energy cost. The work [27] de-
signs an RL-based collaborative caching scheme for the Internet
of Vehicles, which aims to minimize the content access delay by
pre-caching the requested contents utilizing the long short-term
memory method and optimizing the caching efficiency using
an RL approach. The work [28] proposes a deep actor-critic
(AC) RL-based caching strategy for edge caching in wireless
networks by taking both cache hit rate and network latency

into consideration. Aiming at the caching problem in-vehicle
networks, the authors of the work [29] propose a multi-time
scale framework based on deep reinforcement learning and
design a mobile perception reward estimation method under the
multi-time scale model. The agent in the deep Q-network (DQN)
is responsible for receiving the system states and determining
the best action. Each action includes roadside unit information
and vehicle collection information, as well as the cache and
contents of the requesting vehicle. Although DQN can well
solve the problem that limitless states cannot be stored in limited
tables, there arises another problem that how to make agents
better understand the content popularity. The work [30] proposes
a new approach to caching in CDNs. They propose a CDN
caching design called Learning Relaxed Belady (LRB) to mimic
the Relaxed Belady algorithm. The experimental results show
that LRB outperforms traditional CDN algorithms in terms of
overhead and performance.

C. Multi-Node Distributed Caching

The unprecedented high data traffic at the edge inevitably
brings forward higher requirements for caching efficiency, while
single-node caching schemes usually cannot meet such require-
ments in many cases. Therefore, numerous research has been
conducted to explore effective multi-node cooperative caching
schemes to further improve overall caching efficiency. The
work [31] proposes a distributed edge caching scheme for dy-
namic contents of wireless service. The authors of this work con-
vert the joint cache and recommendation strategy into a “single”
cache strategy, avoiding the high training complexity of joint
optimization. Authors in [32] present a collaborative caching
method to minimize the file transmission time and content
placement rate in user-centric mobile networks. The work [33]
proposes a proactive cooperative caching mechanism to reduce
transmission delay by predicting the content demand. Authors
of the work [34] propose a multi-agent AC-based collaborative
caching method to reduce data exchanges. The work [35] ex-
plores a Lyapunov optimization-based online collaborative edge
caching algorithm, which targets minimizing the costs of content
caching, content migration, and QoS penalties. To deal with
the low task offloading efficiency caused by the consequences
of having few services cached, the work [36] investigates effi-
cient ways of dependent task offloading with restricted service
caching and proposes a convex programming-based approach.
To improve the efficiency of live video delivery, authors of the
work [37] design a proactive content push technique that can
mitigate the cache-miss issues in a distributed environment.
Although these existing works mentioned above make full use
of multiple edge nodes in cooperative caching, some critical
problems are ignored, such as how to balance the loads, how to
improve the computational efficiency of each caching node, and
how to improve the overall caching space utilization of different
caching nodes.

In this research, we develop ICE, a novel DRL-based caching
method that addresses the drawbacks of existing traditional and
ML-based approaches. Taking into account the content popular-
ity and some specific properties of contents, we first present

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 05:55:26 UTC from IEEE Xplore. Restrictions apply.

9292 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

a single-node caching scheme utilizing the DQN algorithm
tailored for the formulated caching problem with better QoE and
higher energy efficiency. Then, based on ICE, we further design
an efficient multi-node distributed cooperative caching system
called DCCC, which further improves the overall efficiency of
edge caching.

III. MODEL DESIGN AND PROBLEM FORMULATION

This section first presents the design of our novel popularity
model based on Newton’s law of cooling and then details the
problem formulation of the caching problem at the network edge.

A. Content Popularity Model

To optimize the hit rates of the cached contents and maximize
the probability of the requested contents being cached, the
popularity of the content is often considered an essential, even
decisive, metric in making caching decisions. In this article, we
present a novel content popularity model based on Newton’s
law of cooling, which states that the heat loss rate of an object is
proportional to the difference in temperature between the object
and its surroundings. When an object and its surrounding envi-
ronment have different temperatures, the heat loss per time unit
is in proportion to the temperature difference. The selection of
Newton’s cooling law as the foundation for our cache popularity
model is grounded in its aptitude for capturing the temporal
dynamics of cache content popularity. Originally devised for
object cooling, Newton’s cooling law can be repurposed to
effectively model the decay in popularity of cache contents. This
modeling approach proves particularly pertinent in the domain
of caching systems for a multitude of reasons: i) Newton’s
cooling law provides an intuitive framework for representing the
innate waning of interest or popularity in cached content over
time, enabling us to replicate the natural cooling down of users’
interest. ii) The cooling constant in Newton’s cooling law serves
as a tunable parameter, facilitating alignment with real-world
caching scenarios. Through adjustments to this constant, we
gain control over the rate at which content popularity diminishes,
enhancing adaptability across different caching systems. iii) The
mathematical elegance of Newton’s cooling law streamlines the
modeling process, empowering us to make predictions about
cache content popularity through a straightforward equation.
This simplicity proves advantageous for both theoretical analy-
sis and practical implementation. iv) Newton’s cooling law has
demonstrated successful applications across various domains
beyond its original context, including information diffusion and
social network dynamics. Its inherent adaptability and versatility
render it a promising choice for modeling content popularity in
cache systems.

When there is a temperature difference between the object
and its surrounding environment, the heat lost per time unit
is in proportion to the temperature difference, where the pro-
portional coefficient is known as the heat transfer coefficient.
We performed a sequence of formula derivations on the basis
of Newton’s Law of Cooling, as stated in (1), and ultimately
obtained the popularity model calculated as (8). Table I lists the

TABLE I
SUMMARY OF NOTATIONS

symbols with relevant descriptions, and the derivation process
is given below:

dT (t)

dt
= −λ(T (t)− Tse), (1)

where T (t) indicates the temperature of the content at time t,
Tse refers to the temperature of the surrounding environment,
and λ is the proportionality coefficient. Then, we can obtain that∫

dT (t)

T (t)− Tse
=

∫
−λdt, (2)

ln(T (t)− Tse) = − λt+ C. (3)

We use elementary variations to obtain

T (t) = Tse +We−λt. (4)

Then, the variable t is substituted by the initial time t0, and we
obtain

T (t0) = Tse +We−λt0 . (5)

Thus, W can be computed as

W = (T (t0)− Tse)e
λt0 . (6)

Combined with (6), (4) can be further derived as follows

T (t) = Tse + (T (t0)− Tse)e
−λ(t0−t). (7)

In essence, the changes in content popularity could be inter-
preted as a natural cooling process of the content. As a result, if
no intervention is involved, the content popularity will ultimately
fall to zero, which is the same temperature as the surroundings.
Thus, we can deduce that Tse in (7) will turn out to be zero.
Then, we have

T (t) = T (t0)e
λ(t−t0). (8)

Based on the above derivations, taking into account the impact
of users’ behaviors on the content popularity, the increase in

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 05:55:26 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TOWARDS INTELLIGENT ADAPTIVE EDGE CACHING USING DEEP REINFORCEMENT LEARNING 9293

the number of requests for the content implies that the content
popularity is resisting the natural cooling brought by time. That
is to say, the content popularity will increase and the rate of
content cooling will decrease. As thus, the impact of users’
behaviors on the content popularity can be computed as (9).

ϕ = (Θreq +Θothers) ÷ μ. (9)

The above analysis demonstrates how content popularity
changes over time, dependent on its initial popularity. It can
be concluded that the popularity of the content is determined
not only by external influences but also by its initial popularity,
which depends on its content type. Empirically, different types
of contents, such as sports-related content and political news,
may have different initial popularities.

To summarize, in our caching scheme, we can combine the
changing process of the content’s popularity over time with its
initial states to dynamically represent the content popularity at
any given time, as computed in (10).

Pc(t) = (γ + ϕ)÷ T (t). (10)

B. Problem Formulation

In the scenario of edge computing, cache units such as BSs
are expected to cache as many contents as possible from the
core network [38] so as to decrease the transmission delay and
energy cost within the backhaul. The total transmission timeRti
and transmission energy Rei of request i are calculated as the
sum of all contents’ transmission time and energy, respectively.
The transmission time of each content rtj can be calculated
as (11) and the transmission energy of each content rej can be
computed as (12). The calculation of total transmission timeRti
and energy Rei can be defined as (13) and (14), respectively.

rtj = vj ×B × dj , (11)

rej = vj × E × dj , (12)

Rti =

N∑
j=1

rtj , (13)

Rei =

N∑
j=1

rej . (14)

In general, if one requested content has been cached on some
edge nodes, then the reduction ratio of transmission time pti
and energy consumption pei can be formulated as (15) and (16),
respectively.

pti = 1−
∑N

j=1 vj ×B × d′j∑N
j=1 vj ×B × dj

, (15)

pei = 1−
∑N

j=1 vj × E × d′j∑N
j=1 vj × E × dj

. (16)

The goal is thus to maximize the average reduction ratio of
transmission time and energy consumption of the system, and

the optimization objective can be formulated as

Objective : max
dj>0, d′

j>0
(pti + pei), (17)

subject to the following constraints:

dj > 0, d′j > 0, B > 0, E > 0 (18)

N∑
j=1

vj ×B × dj ≥
N∑
j=1

vj ×B × d′j , (19)

N∑
j=1

vj × E × dj ≥
N∑
j=1

vj × E × d′j . (20)

Thus, the problem to be addressed is how to achieve better
performance by maximizing the reduction rate of transmission
time and energy consumption. Note that the system proposed in
this article holds for resources whose content usually does not
change, such as videos and music.

IV. DRL-BASED SINGLE-NODE NON-COOPERATIVE CACHING

SCHEME

This section first introduces the RL model tailored for the
edge caching problem. Then, we elaborate on the design of our
proposed DRL-based ICE caching approach.

A. RL Model

In RL, through interacting with the environment, the agent
learns the best behavior so as to obtain the maximum reward.
The goal of RL can be characterized as a Markov Decision
Process (MDP), which necessitates the use of the state space
and reward function. Here, we define the MDP model by the
tuple {S,A,R(s, a)}.
� S = {s1, s2, . . ., sn} represents the set of possible states

constructed from all requests.
� A = {a1, a2, . . ., an} denotes the set of actions. The agent

performs an action at on the environment based on the
current state st, and the environment subsequently transits
to a new state st+1 based on the transition probability.

� R = {r1, r2, . . ., rn} stands for the set of rewards, where rt
indicates the reward that the agent receives after completing
action at in state st.

The reward function is the most crucial part of an RL algo-
rithm because it ultimately determines the actions to be taken,
which in turn exerts a considerable impact on the algorithm’s
performance. Empirically, to maximize the ultimate reward, the
agent should take not just the current but also the future reward
into consideration. The discount rate γ, 0 < γ < 1, is used to
indicate the reduction proportion of future rewards. Here, we
denote Rt as the discounted future reward, which is computed
as follows.

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
j=0

γjrt+j+1. (21)

The objective of an RL agent is to find the best strategy that can
generate the highest reward in each state in order to maximize

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 05:55:26 UTC from IEEE Xplore. Restrictions apply.

9294 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

the cumulative reward over the long term. When the policy pi
is performed by the agent in the current state, the state-value
function that calculates the expected value of the discounted
cumulative reward is defined as (22), where t denotes the time
step.

V π(s) = Eπ

⎡
⎣ ∞∑
j=0

γjrt+j+1|st = s

⎤
⎦ . (22)

Equation (23) gives the optimal state-value function in accor-
dance with the Bellman Equation, where R(s, π(s)) denotes the
average of the immediate rewards r(s, π(s)), and Pss′(π(s))
refers to the probability of transiting from current state s to next
state s′ when policy π(s) is executed.

V π∗
(s) = max

a∈A

[
R(s, a) + γ

∑
s′∈S

Pss′(a)V
π∗
(s′)

]
. (23)

Likewise, the action-value function, which determines the
value of taking action x in state s under the policy π, is defined
as Qπ(s, a) and it is calculated as (24).

Qπ(s, a) = Eπ

[∞∑
k=0

γnrt+n+1|st = s, at = a

]
. (24)

The optimal action-value function is computed as (25).

Qπ∗
(s, a) = R(s, a) + γ

∑
s′∈S

Pss′(a)max
a′

[
Qπ∗

(s′, a′)
]

(25)

B. ICE: Deep Q-Learning-Based Caching Scheme

In an unknown environment, deep Q-learning provides an ef-
fective technique enabling agents to effectively acquire the best
rewards in case the rewards R and the transition probabilities P
are unknowable. To estimate the action-value function in DQN,
a function approximator is typically utilized. A nonlinear ap-
proximator, for instance a neural network Q(s, a, θ) ≈ Q(s, a),
is often leveraged to approximate a function. Here, θ represents
the weights of the neural network and in each iteration it is
adjusted to train the network to decrease the mean square error.
In accordance with the work [39], derived from Q-learning we
define the evaluation of Q(s, a) as in (26), where ζ ∈ (0, 1)
denotes the learning rate.

Q(st, at) = Q(st, at)

+ ζ [rt + γ ∗maxQ(st+1, at+1)−Q(st, at)]
(26)

The training of the Q-network will be executed until it con-
verges by minimizing the loss function, where the loss function
is given as (27).

L(θ+) = E[(rt + ζ ∗maxQ(st+1, at+1, θ)−Q(s, a, θ+))2]
(27)

The evaluation network and the target network are two dis-
tinct neural networks in the DQN algorithm, which have the
same structure but different parameters. θ+ and θ represent the
evaluation network and target network parameters, respectively.
Specifically, the current action-value Q values Q(s, a, θ+) are

Algorithm 1: DQN-Based Caching Scheme.

computed by the evaluation network using the latest parameter
θ+, and θ+ will be updated in each cycle. Comparatively, the the
next action-value Q value Q(s′, a′, θ) is computed by the target
network using the parameter θ, which is updated on a regular
basis. Note that the correlation between the Q value and the Q
target value can be decreased via the target network, enabling
DQN to converge more easily.

Furthermore, to decrease the data correlation and improve
learning efficiency, the experience replay mechanism is intro-
duced in DQN to store the valuable experiences obtained through
interacting with the environment. As experiences, the current
state, action, reward, and next state are stored in the memory in
the format {s, x, r, s′}. Then, during the training stage, the train-
ing data can be selected at random from the experience replay
space. In this way, the neural network’s overfitting problem can
be well solved by such kind of random selection, which breaks
the correlation of experiences. In the next three subsections, we
will present the design of states, actions, and reward functions,
which are pivotal for a DQN policy to obtain optimal rewards.

1) States: In our approach, the current state s is jointly deter-
mined by the popularity and size of the contents. Here, we define
the state at time t as a set {P (t), vt}, where P (t) represents the
content popularity and vt denotes the content size.

2) Actions: We design three different kinds of actions for
the agent in our ICE, namely, adding cache, deleting cache, and
keeping cache unchanged. Using the action-value function, the
agent outputs the one-hot value for each action and chooses the
most significant value to perform the corresponding action.

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 05:55:26 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TOWARDS INTELLIGENT ADAPTIVE EDGE CACHING USING DEEP REINFORCEMENT LEARNING 9295

3) Reward Function: Based on extensive trial experiments
and mathematical derivation, we define the reward function as
(28).

R =

⎧⎪⎨
⎪⎩

1

(1 + e−Pt−vt)
hitcache = true

− 1

(1 + e−Pt−vt)
hitcache = false

(28)

The reward function, denoted as R in (28), serves as a crucial
component in our RL framework. It is designed to quantify the
desirability of a given state-action pair by considering both the
content popularity (Pt) and the content size (vt) at a specific
time t.
� Positive Reward for Cache Hits: In the case where a cache

hit occurs (i.e., hitcache = true), the reward is a positive
value. We use the sigmoid function 1/(1 + e−(Pt−vt)) to
ensure that the reward increases as both content popularity
and size contribute positively to the desirability of the state-
action pair.

� Negative Reward for Cache Misses: Conversely, when a
cache miss occurs (i.e., hitcache = false), the reward is
a negative value. This penalizes cache misses, discourag-
ing the caching system from evicting potentially popular
content.

By incorporating both popularity and content size into the
reward function, we aim to strike a balance between favoring
popular content and considering the available cache space,
ultimately improving the overall performance of the caching
system.

The working procedure of our ICE approach is described in
Algorithm 1. At the very beginning, the stochastic policy and
neural network are initialized. Subsequently, the agent generates
an action depending on current states and policy. The agent
then observes the next state in the environment and obtains
rewards based on the prior strategy’s outcomes. Afterwards, the
tuple {rt, at, st, st+1} is stored in the experience replay mem-
ory using the observation. A small batch of transitions is then
randomly sampled from the replay buffer. Next, the Q-network
is trained based on each batch through the minimization of the
loss function. Lastly, the Q-network adjusts the adaptive learning
rate to maintain the training’s stochastic stability.

C. System Workflow of ICE

Fig. 1 depicts the workflow of the ICE system. In the initial
phase, the Q-network and replay memory of DQN are initial-
ized. The system then computes the content popularity using
our proposed content popularity model. Then, the ICE system
updates the reward returned by the previous action to reflect
the current content. Afterward, the system selects the most
significant value from each action’s one-hot value to perform
the corresponding action if a random number generated with
a random seed based on the current time is greater than the
parameters; otherwise, the system randomly chooses an action
from the action space to execute. Before caching the current
content, the systems will first judge the availability of storage
space. If the size of the content to be cached is greater than
the available storage capacity of the server, then the system

Fig. 1. ICE system workflow.

will delete the content whose reward is the least and replace
it with the current requested content. If the system has sufficient
storage space or it does not need to cache the current content,
then the system will perform corresponding actions. Then, ICE
updates the Q-network with the aim of minimizing the loss
function. In this way, the system will gradually optimize the
caching decisions over time by repeating the above procedures
and eventually achieve optimal policies.

V. DISTRIBUTED COMPUTING-BASED COOPERATIVE CACHING

SCHEME

The proposed ICE algorithm mainly focuses on optimizing
the caching efficiency of a single node. To further increase the
overall caching efficiency, in this section, we introduce a new
distributed computing-based multi-node cooperative caching
scheme, named DCCC. The relationship between ICE and
DCCC can be briefly described as DCCC offloading requests
to each edge node of the domain and then each edge node taking
advantage of ICE to determine whether to cache the requested
contents.

The primary purpose of DCCC design is to improve the uti-
lization of storage space as much as possible, which is quite dif-
ferent from the mainstream distributed systems. The mainstream
distributed systems aim to improve the availability of services by
adopting the form of master-slave backup in data storage, which
will also bring the problem of data redundancy. For the reason
that some key data, such as orders and amounts, do not allow data
inconsistency among multiple nodes in the distributed system,
distributed systems tend to improve the reliability and stability
of system services by reducing space utilization. Therefore, the
external consistency of the whole system can only be realized
by backing up data. However, in the cache field, this problem
is not very critical. Even if the data of each node in DCCC
is inconsistent or missing, it will only increase the delay of
data acquisition from the core network, and there will be no
problem with the data ultimately obtained by users. Therefore,
the design purpose of DCCC is no longer to take consistency as
the first requirement but to take high performance as the primary
purpose, that is, to increase the probability of cache hit. DCCC

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 05:55:26 UTC from IEEE Xplore. Restrictions apply.

9296 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

Fig. 2. DCCC system architecture.

achieves this requirement by maximizing the utilization of cache
space.

The distributed computing system architecture is as shown in
Fig. 2, and the workflow of DCCC is described in Algorithm 2.
Overall, according to respective responsibilities, the edge nodes
in the DCCC system are divided into two categories: proxy nodes
and two-tiered caching nodes. This is only a logical classifica-
tion, and physically one caching node can have two roles at the
same time by running different processes. The proxy nodes, as
the front-end load balancer, are responsible for load-balancing
content requests to appropriate caching nodes. The role of tier-1
nodes is to locate tier-2 nodes that have the requested contents.
The tier-2 caching nodes return the requested contents to the
corresponding tier-1 node if they have been cached before, or
remotely obtain the required contents from the core network
and execute ICE to decide whether the contents should be
cached, then return the results to the tier-1 node. Finally, the
corresponding tier-1 node merges the results and replies to
users with requested contents. As depicted in Fig. 2 and Al-
gorithm 2, the whole working procedure of DCCC is described
as follows.

Step 0: The DCCC algorithm initializes and starts the Proxy
Nodes, Tier-1 Caching Nodes, Tier-2 Caching Nodes,
and the standalone ICE algorithm in the service (Al-
gorithm 2: lines 1–2).

Step 1: The content requests from terminals are first sent to
proxy nodes.

Step 2: The proxy node leverages Linux Virtual Server (LVS)
to load balance the received requests to appropriate
tier-1 caching nodes (Algorithm 2: lines 4–5).

Step 3: When one tier-1 caching node (e.g., node x) receives
content requests distributed by the proxy node, it will
locate the responsible tier-2 caching nodes that have

Fig. 3. RPC message.

the requested contents through the hashing operation.
The hash value of content ni is calculated as below
(Algorithm 2: line 7).

H = ni mod p, (29)

where p is the amount of caching nodes. The current
caching node (node x) will find the IP address ai
of the target tier-2 caching node by searching the
routing table and send an RPC (Remote Procedure
Call) message to obtain the content ni. The RPC
message is as described in Fig. 3. The records in the
routing table are defined as the tuple U = {H,Y, T}.
� H = {h1, h2, . . . , hn} is the set of hash values.

Each content requested by users will be assigned
a unique hash value hi.

� Y = {y1, y2, . . . , yn} is the set of IP addresses of
tier-2 caching nodes, and yi refers to the IP address

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 05:55:26 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TOWARDS INTELLIGENT ADAPTIVE EDGE CACHING USING DEEP REINFORCEMENT LEARNING 9297

of the node that stores the content with hash value
hi.

� T = {t1, t2, . . . , tn} is the set of time and ti
means the time when the node with IP address
yi caches the content whose hash value is hi.

Step 4: The current tier-1 caching node (node x) sends an
RPC message with arguments consisting of the pop-
ularity, the size of the content ni, and other iden-
tification information of the content ni to the corre-
sponding tier-2 caching node whose IP address equals
yi or the first node with IP address greater than yi.
Accordingly, when one tier-2 caching node receives
an RPC message, it will first search its caching table
to check whether the requested content ni is cached.
The records in the caching table are defined as the
tuple U = {N,T,C} (Algorithm 2: lines 8–9).
� N = {n1, n2, . . . , nn} is the set of contents’ iden-

tification information. In the system, each content
requested by users has a unique identification
information ni.

� C = {c1, c2, . . . , cn} indicates the set of contents.
� T = {t1, t2, . . . , tn} has the same meaning as de-

scribed in Step 3.
Step 5: If the content ni does not exist in the caching table,

then the tier-2 node will request the contents from the
remote servers (Algorithm 2: lines 10–11).

Step 6: The requested contents are sent back to the tier-2
node from the remote servers. Then, the tier-2 node
determines whether to cache this content by taking
advantage of the ICE scheme (Algorithm 2: lines
12–14).

Step 7: Contrary to step 5, if the content ni already exists
in the caching table, then the tier-2 node will di-
rectly return the content ci to the tier-1 caching node.
Otherwise, the tier-2 node will transmit the remotely
obtained contents in Step 6 to the tier-1 caching node
(Algorithm 2: lines 12–14).

Step 8: When the tier-1 caching node receives the returned
requested contents from tier-2 caching nodes, the
tier-1 node merges the results and returns them to
terminals (Algorithm 2: lines 16–18).

Notably, in DCCC, the number of caching nodes is adjustable
according to the peak number of requests. To maintain the sta-
bility of the system, when the number of caching nodes changes,
the hash consistency principle is used to adjust the content of
caching tables stored in each caching node. Fig. 4 gives an
example that illustrates the working procedure of locating the
requested contents. Each caching node has a unique hash value
hi, and all caching nodes form a circular linked list in ascending
order according to their respective hash values. Tier-1 caching
nodes calculate a target hash value for each requested resource
according to its unique ID number ni. Different contents may
get the same hash value, and the corresponding content may
be cached in the same caching nodes. As Fig. 4 illustrates, the
hash value of content n0 is hn0

= 2, which is the same as that
of content n1. The tier-2 caching node node2 with hash value
hnode2 = 4 is the first node whose hash value is greater than the

Fig. 4. Hash circle.

hash value of n0 and n1. Thus, the node node2 is responsible
for storing the content of n0 and n1.

If a new caching node with a hash value hj launches, the
caching node first duplicates the caching table from the caching
node with hash value hj+1 orh0 (when j equals the total number
of caching nodes p). If a caching node with a hash value hj

is offline, its caching table will be duplicated by the caching
node with hash value hj+1 or h0 (when j equals p− 1). In this
way, when the number of caching nodes changes (increases or
decreases), only a few nodes’ caching tables need to be changed
instead of re-hashing all caching nodes, which enables the whole
system with great scalability and stability.

Finally, we briefly discuss the deployment of DCCC. DCCC
is inherently suited for contemporary deployment systems such
as Docker and Kubernetes (k8s). We deploy our cache nodes,
edge caching services, and the ICE module within Docker
containers, managing them through Kubernetes and facilitating
inter-container communication using RPC. In the subsequent
experimental section, we follow the logic of containerized de-
ployment to deploy DCCC on Alibaba Cloud, completing the
associated experiments.

VI. EXPERIMENTS

This section evaluates the effectiveness of our ICE and DCCC
approaches. To validate the superiority of our approaches, we
compare ICE and DCCC with both traditional caching schemes
and DRL-based intelligent caching methods in terms of cache hit
rate, transmission delay, energy cost, and contents exchanging
rate.

A. Experimental Settings

Experiments were conducted on a Linux workstation with
2.80 GHz Intel (R) Quad-Core CPU and 8 GB memory. We im-
plement ICE using Python v3.7.0 and use TensorFlow 1.9.0 [40]
as the training platform. The language used to build DCCC is
Go, and the version of Go SDK is 1.17.3. The edge nodes are
implemented as containers in the Docker environment (Docker
engine version 20.10.5). In experiments, the size of contents
ranges from 1MB to 2500MB, the cache size of each node is

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 05:55:26 UTC from IEEE Xplore. Restrictions apply.

9298 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

Algorithm 2: DCCC Algorithm.

TABLE II
PARAMETER SETTINGS IN OUR SIMULATIONS

set to 32,000 MB, and the requests for contents are dynamically
and randomly generated, and the random seed is time. Table II
summarizes a list of key parameter settings.

B. Baseline Algorithms

To compare the performance of our methods with other meth-
ods, we implement two traditional caching schemes and one
DRL-based caching scheme, as listed below.
� Least Frequently Used (LFU) [12]: A widely used tradi-

tional method, which prefers to remove the least frequently
used contents.

� Least Recently Used (LRU) [14]: A widely used traditional
method, which will remove the least recently used content

Fig. 5. Performance of ICE and DQN.

Fig. 6. Hit count.

first. DQN [29]: an RL-based caching method, which ap-
plies the traditional DQN model without considering the
content popularity.

� Actor-Critic (AC): An RL-based caching method. The
compared AC algorithm here is the traditional Actor-
Critic algorithm, which was proposed in the work [41]. It
combines the advantages of value-based and policy-based
approaches. It can strike a balance between stability and
efficiency in learning the optimal policy. In our comparison
experiments, the model parameters of the used Actor-Critic
algorithm here are consistent with DQN to ensure the
fairness and effectiveness of the comparison experiments.

C. Experimental Results

1) Cache Hit Count and Hit Rate: The cache hit rate and
hit count of a caching algorithm are considered the most
important metrics for determining its effectiveness. Figs. 6
and 7 demonstrate the number of hit counts and hit rates of
our ICE and compared algorithms, respectively. From Fig. 6,
we can observe that our ICE achieves the highest hit counts for
all cases. In terms of hit rate, as shown in Fig. 7, our ICE achieves
an average of 21.8% accumulative hit rate counting in all types
of contents, while LRU, LFU, and AC only reach 18.5%, 18.1%,
and 9.8% hit rates on average, respectively. Fig. 7 also shows
that our ICE demonstrates greater advantages for larger-sized

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 05:55:26 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TOWARDS INTELLIGENT ADAPTIVE EDGE CACHING USING DEEP REINFORCEMENT LEARNING 9299

Fig. 7. Hit rate of each type of content.

TABLE III
COMPARISONS OF CACHE HIT EFFICIENCY

contents. In addition, Fig. 5 compares the performance of our
ICE and the DQN scheme [29] in terms of successful cache
hit counts, where the content data size for input was set as a
random number between 2000 MB and 2500 MB. It can be
observed that our ICE method significantly outperforms DQN.
These achievements evidently prove that our ICE outperforms its
competitors in terms of both hit counts and hit rates. The better
performance of ICE in cache hit rate mainly gives the credit
to our effective Newton’s cooling law-based content popularity
model, which is prone to caching the contents that are more
likely to be visited again in the future.

2) Transmission Time and Energy Conservation: Because
the amount of energy cost in content data transmission is pro-
portional to its size, thus caching strategies should prioritize
larger contents. Table III compares the cache hit efficiency of
different methods, which is calculated as the ratio of the top five
large-sized contents’ hit count to the total hit count. The results
reveal that our ICE achieves the highest cache hit efficiency,
which is 12.9%, 12.0%, and 14.5% higher than LRU, LFU, and
AC, respectively. This fully convinces the advantages of our ICE
in terms of identifying contents that are more beneficial in mini-
mizing transmission latency and energy costs. Besides, in terms
of the time-reducing rate, which is computed as the percentage of
time saved compared to the time cost without using caching tech-
niques, Fig. 8 reveals that ICE achieves 35.1% time-reducing
rate on average, which is 11.6%, 12.0%, and 22.1% higher than
LRU, LFU, and AC, respectively. Moreover, from Fig. 10 we
can observe that, in terms of the energy-reducing rate, which is
calculated as the percentage of energy saved compared to the
energy cost without using caching techniques, the performance
of our ICE is 11.8%, 12.2%, and 22.7% higher than that of LRU,
LFU, and AC, respectively. These achievements imply that the
popularity and other relevant valuable information of contents
are fully exploited in ICE, making the caching decisions more
advantageous.

3) Model Performance With Fixed Patterns of Content Re-
questing: In the loading process of programs in most real-world

Fig. 8. Time reducing rate.

Fig. 9. Performance with fixed or randomized contents.

Fig. 10. Energy reducing rate.

scenarios, such as large-scale programs like games, page re-
placement is commonly performed. The amount of page re-
placements is often determined based on the demands at the
current time point. Similarly, the size of the content replaced
when triggering page replacement in the cache is also deter-
mined by service requirements. This is a challenging scenario
to simulate due to its inherent randomness, involving numerous
unpredictable factors. Therefore, initially, we used randomly
generated content sizes as the raw input for our experiments.
However, in certain situations, such as the need to rapidly retrieve
a substantial amount of data from the disk in an instant, when
exceeding the hardware’s reading capacity, there may be a period

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 05:55:26 UTC from IEEE Xplore. Restrictions apply.

9300 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

Fig. 11. Contents exchanging times.

Fig. 12. DCCC hit rate.

of time during which a fixed-size content is read, depending
on the different operating systems. To account for this, we
further evaluated the performance of ICE and DQN using a
fixed-size content request pattern, where the requested content
size is set to 2500 MB. The experimental results shown in Fig. 9
demonstrate that the performance of both ICE and DQN under
fixed-sized content settings is superior to that of randomized
settings. Moreover, with the incorporation of Newton’s cooling
law-based popularity model, ICE achieves higher hit counts than
DQN.

4) Contents Exchanging Rate: Fig. 11 demonstrates the per-
formance of all approaches in terms of content exchange times.
The results reveal that ICE achieves the minimum number of
content exchanges, which is 78.1%, 81.8%, and 82.5% of that
in AC, LFU, and LRU, respectively. Note that our ICE performs
a different content exchange policy compared with the other
three approaches, where LRU, LFU, and AC exchange contents
whenever the content does not hit the cache, while ICE takes
actions to add or delete contents depending on the judgment of
the agent about whether or not the content will be requested in
a short time.

5) Cache Hit Rate of DCCC: Fig. 12 compares the overall
hit rates of DCCC, LRU, LFU, and AC with a different number
of caching nodes. The experimental results reveal that when the
number of caching nodes increases, the hit rates of all methods
increase accordingly. We can observe that DCCC achieves up
to 97.1% hit rate, while the hit rates of LRU, LFU, and AC are
only 53.2%, 51.0%, and 26.3%, respectively. Evidently, DCCC
significantly outperforms the other three methods in terms of hit

Fig. 13. DCCC time reducing rate.

Fig. 14. DCCC energy reducing rate.

rate. The main reason behind this achievement is that DCCC can
ensure that the contents cached by DCCC have no duplications
in all caching nodes. Comparatively, the other three caching
methods can not fully exploit or maximize the utilization of
multiple caching nodes since many copies of the same content
may be stored in different cache nodes.

6) Transmission Time and Energy Efficiency of DCCC: Figs.
13 and 14 demonstrate the comparison results of DCCC, LRU,
LFU, and AC in terms of the total transmission time and energy
reduction rate with a different number of caching nodes. The
experimental results expose that when adding caching nodes
at the edge, the time-reducing rate of DCCC, which extends
caching capacity by collaborating multiple distributed caching
nodes, achieves up to 92.1%, while the time-reducing rates of
LRU, LFU, and AC are only 61.6%, 63.8%, and 36.1%, respec-
tively. The energy-reducing rate of DCCC is 94.8%, which is
57.4%, 30.8%, and 28.6% higher than AC (37.3%), LRU (64%)
and LFU (66.2%), respectively. The improvement of DCCC in
transmission time and energy efficiency mainly benefits from
the high cache hit rate of DCCC, which effectively utilizes the
cooperative storage resources of multiple caching nodes.

7) Scalability of DCCC: Fig. 15 presents the performance
of our ICE and the other three approaches in terms of cache hit
rate as the number of caching nodes grows. Overall, the cache
hit rates of the four approaches will increase as the number of
caching nodes grows. Comparatively, as shown in Fig. 15, with
the expansion of the system scale, DCCC achieves the fastest
increase in cache hit ratio. For example, when the number of

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 05:55:26 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TOWARDS INTELLIGENT ADAPTIVE EDGE CACHING USING DEEP REINFORCEMENT LEARNING 9301

Fig. 15. DCCC increased hit rate.

caching nodes is increased to five, the cache hit rate of DCCC
increases by 4.6 times compared with that of a single node,
where the hit rates of AC, LRU, and LFU only increase by
3.25 times, 3 times, and 3.31 times, respectively, for the same
circumstance. As a multi-node cooperative caching mechanism
based on distributed computing, the reason why DCCC can
significantly improve the overall cache hit rate is mainly due
to that DCCC can minimize the probability of contents being
repeatedly cached on multiple different nodes with the assistance
of routing tables and caching tables. More specifically, one
user’s request for the content ni will be transferred to a unique
caching node whose hash value is equal to the content’s hash
value hi. As a result, all requests for the same content will
be transferred to the same caching nodes, avoiding the same
content being repeatedly cached on different nodes. Therefore,
in DCCC, the same contents are ensured to be cached in the same
caching nodes, and other caching nodes will obtain the contents
from the corresponding adjacent caching nodes, which cache
the content, rather than request contents from the core network.
In this manner, as the amount of caching nodes increases, the
space utilization of each caching node can be maximized.

8) Discussion: Although conventional caching strategies
(e.g., LRU and LFU) are effective for similar-sized contents,
they neglect the factor of transmission latency, which has a
considerable impact on the caching efficiency in case the sizes
of cached contents differ significantly. Although the natural
deep reinforcement learning strategy (AC) possesses decision-
making ability, the strategy can not distinguish which resources
will be accessed again in the future. Furthermore, these existing
algorithms may cache contents that may not be important and
helpful in reducing waiting time and energy. Thus, they usually
cannot improve the performance of edge caching well. Compar-
atively, our ICE scheme explores and considers the popularity
and other valued information of data, and thus dramatically
increases the overall cache hit ratio and reduces the energy
consumption for transmission. Nevertheless, with the explosive
growth of edge traffic, the cache space of a single caching node
is too small to meet the increasing needs of end users’ high QoE
requirements. Aiming to achieve a higher caching efficiency,
based on the single-node ICE scheme, we further design a new
multi-node DCCC scheme, which can enable multiple nodes of
cooperative caching. DCCC manages the requests assisted by

the well-designed consistent hashing mechanism with good load
balance, and ICE is executed in each caching node to improve
the hit rate. In this way, the contents can be distributed more
reasonably with the lowest content repetition rate.

VII. CONCLUSION

In this work, we investigated the edge caching problem.
We first designed a new Newton’s cooling law-based con-
tent popularity model, which prefers to choose more time-
consuming and energy-consuming contents with higher pri-
orities, and mathematically formulate the caching problem a
multi-objective optimization problem that aims to maximize the
reduction ratio of transmission delay and energy consumption.
Then, we proposed a new DRL-based caching approach named
ICE to effectively solve the formulated problem. Moreover,
to further improve the overall caching efficiency, we further
presented a distributed computing-based multi-node coopera-
tive caching scheme, named DCCC. DCCC enables multiple
nodes to collaborate on joint caching and achieves good load
balancing with our efficient consistent hashing mechanism and
resource allocation scheme. Comprehensive experimental re-
sults demonstrate that, compared with the existing approaches,
our DRL-based ICE scheme achieves better performance in
minimizing the transmission delay and energy consumption,
and our DCCC further significantly improves the overall
cache hit rate of multiple caching nodes with higher resource
utilization.

REFERENCES

[1] T. Wang, J. Mao, M. Chen, G. Liu, J. Di, and S. Yu, “ICE: Intelli-
gent caching at the edge,” in Proc. IEEE Glob. Commun. Conf., 2021,
pp. 01–06.

[2] L. Wang, Y. L. Che, J. Long, L. Duan, and K. Wu, “Multiple access
mmWave design for UAV-aided 5G communications,” IEEE Wirel. Com-
mun., vol. 26, no. 1, pp. 64–71, Feb. 2019.

[3] A. Tian et al., “Efficient federated DRL-based cooperative caching for
mobile edge networks,” IEEE Trans. Netw. Service Manag., vol. 20, no. 1,
pp. 246–260, Mar. 2023.

[4] Z. Yu, J. Hu, G. Min, Z. Zhao, W. Miao, and M. S. Hossain, “Mobility-
aware proactive edge caching for connected vehicles using federated
learning,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 8, pp. 5341–5351,
Aug. 2021.

[5] D. R.-J. G.-J. Rydning, R. John, and G. John, “The digitization of the
world from edge to core,” Framingham: Int. Data Corporation, vol. 16,
pp. 1–28, 2018.

[6] C. Stergiou, K. E. Psannis, B. G. Kim, and B. Gupta, “Secure integration of
IoT and cloud computing,” Future Gener. Comput. Syst., vol. 78, no. PT.3,
pp. 964–975, 2016.

[7] B. Varghese and R. Buyya, “Next generation cloud computing: New
trends and research directions,” Future Gener. Comput. Syst., vol. 79,
pp. 849–861, 2018.

[8] A. Abouaomar, A. Filali, and A. Kobbane, “Caching, device-to-device and
fog computing in 5th cellular networks generation : Survey,” in Proc. Int.
Conf. Wirel. Netw. Mobile Commun., 2017, pp. 1–6.

[9] Soubhik and Chakraborty, “Algorithmic nuggets in content delivery,”
Comput. Rev., vol. 57, no. 2, pp. 103–103, 2016.

[10] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A
survey on mobile edge networks: Convergence of computing, caching and
communications,” IEEE Access, vol. 5, pp. 6757–6779, 2017.

[11] Z. Su, Q. Xu, F. Hou, Q. Yang, and Q. Qi, “Edge caching for layered video
contents in mobile social networks,” IEEE Trans. Multimedia, vol. 19,
no. 10, pp. 2210–2221, Oct. 2017.

[12] K. Geetha and N. A. Gounden, “Dynamic semantic LFU policy with victim
tracer (DSLV): A customizing technique for client cache,” Arabian J. Sci.
Eng., vol. 42, pp. 725–737, 2017.

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 05:55:26 UTC from IEEE Xplore. Restrictions apply.

9302 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

[13] T. G. Hendrantoro and A. Affandi, “Early result from adaptive combi-
nation of LRU, LFU and FIFO to improve cache server performance in
telecommunication network,” in Proc. Int. Seminar Intell. Technol. Appl.,
2015, pp. 429–432.

[14] B. Jiang, P. Nain, and D. Towsley, “LRU cache under stationary requests,”
ACM SIGMETRICS Perform. Eval. Rev., vol. 45, no. 2, pp. 24–26, 2017.

[15] M. C. Gursoy, C. Zhong, and S. Velipasalar, “Deep multi-agent reinforce-
ment learning for cooperative edge caching,” Mach. Learn. Future Wirel.
Commun., John Wiley & Sons, Ltd., ch. 21, pp. 439–457, 2020. [Online].
Available: https://doi.org/10.1002/9781119562306.ch21

[16] D. Qiao, S. Guo, D. Liu, S. Long, P. Zhou, and Z. Li, “Adaptive federated
deep reinforcement learning for proactive content caching in edge comput-
ing,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 12, pp. 4767–4782,
Dec. 2022.

[17] Q. Fan, X. Li, J. Li, Q. He, K. Wang, and J. Wen, “PA-cache: Evolv-
ing learning-based popularity-aware content caching in edge networks,”
IEEE Trans. Netw. Service Manag., vol. 18, no. 2, pp. 1746–1757,
Jun. 2021.

[18] N. Nomikos, S. Zoupanos, T. Charalambous, and I. Krikidis, “A
survey on reinforcement learning-aided caching in heterogeneous
mobile edge networks,” IEEE Access, vol. 10, pp. 4380–4413,
2022.

[19] W.-X. Liu, J. Zhang, Z.-W. Liang, L.-X. Peng, and J. Cai, “Content
popularity prediction and caching for ICN: A deep learning approach with
sdn,” IEEE Access, vol. 6, pp. 5075–5089, 2017.

[20] Y. Im, P. Prahladan, T. H. Kim, Y. G. Hong, and S. Ha, “SNN-cache:
A practical machine learning-based caching system utilizing the inter-
relationships of requests,” in Proc. 52nd Annu. Conf. Inf. Sci. Syst., 2018,
pp. 1–6.

[21] K. C. Tsai, L. Wang, and Z. Han, “Mobile social media networks caching
with convolutional neural network,” in Proc. IEEE Wirel. Commun. Netw.
Conf. Workshops, 2018, pp. 83–88.

[22] A. Lekharu, M. Jain, A. Sur, and A. Sarkar, “Deep learning model
for content aware caching at MEC servers,” IEEE Trans. Netw. Service
Manag., vol. 19, no. 2, pp. 1413–1425, Jun. 2022.

[23] Y. Zhang, Y. Li, R. Wang, J. Lu, X. Ma, and M. Qiu, “PSAC: Proactive
sequence-aware content caching via deep learning at the network edge,”
IEEE Trans. Netw. Sci. Eng., vol. 7, no. 4, pp. 2145–2154, Fourth Quarter
2020.

[24] N. Kumar, S. N. Swain, and C. Siva Ram Murthy, “A novel distributed Q-
learning based resource reservation framework for facilitating D2D content
access requests in LTE-a networks,” IEEE Trans. Netw. Service Manag.,
vol. 15, no. 2, pp. 718–731, Jun. 2018.

[25] S. Liu, C. Zheng, Y. Huang, and T. Q. S. Quek, “Distributed reinforcement
learning for privacy-preserving dynamic edge caching,” IEEE J. Sel. Areas
Commun., vol. 40, no. 3, pp. 749–760, Mar. 2022.

[26] H. Zheng, H. Zhou, N. Wang, P. Chen, and S. Xu, “Reinforcement learning
for energy-efficient edge caching in mobile edge networks,” in Proc. IEEE
Conf. Comput. Commun. Workshops, 2021, pp. 1–6.

[27] R. Wang, Z. Kan, Y. Cui, D. Wu, and Y. Zhen, “Cooperative
caching strategy with content request prediction in Internet of Ve-
hicles,” IEEE Internet Things J., vol. 8, no. 11, pp. 8964–8975,
Jun. 2021.

[28] C. Zhong, M. C. Gursoy, and S. Velipasalar, “Deep reinforcement learning-
based edge caching in wireless networks,” IEEE Trans. Cogn. Commun.
Netw., vol. 6, no. 1, pp. 48–61, Mar. 2020.

[29] L. T. Tan and R. Q. Hu, “Mobility-aware edge caching and computing
in vehicle networks: A deep reinforcement learning,” IEEE Trans. Veh.
Technol, vol. 67, no. 11, pp. 10 190–10 203, Nov. 2018.

[30] Z. Song et al., “Learning relaxed belady for content distribution network
caching,” in Proc. 17th USENIX Symp. Netw. Syst. Des. Implementation,
2020, pp. 529–544.

[31] J. Yan, Y. Jiang, F. Zheng, F. R. Yu, and X. You, “Distributed edge caching
with content recommendation in fog-RANs via deep reinforcement learn-
ing,” in Proc. IEEE Int. Conf. Commun. Workshops, 2020, pp. 1–6.

[32] S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, and X. Shen, “Cooperative edge
caching in user-centric clustered mobile networks,” IEEE Trans. Mobile
Comput., vol. 17, no. 8, pp. 1791–1805, Aug. 2018.

[33] Y. M. Saputra, D. T. Hoang, D. N. Nguyen, E. Dutkiewicz, D. Niyato, and
D. I. Kim, “Distributed deep learning at the edge: A novel proactive and
cooperative caching framework for mobile edge networks,” IEEE Wireless
Commun. Lett., vol. 8, no. 4, pp. 1220–1223, Aug. 2019.

[34] S. Chen, Z. Yao, X. Jiang, J. Yang, and L. Hanzo, “Multi-agent deep rein-
forcement learning-based cooperative edge caching for ultra-dense next-
generation networks,” IEEE Trans. Commun., vol. 69, no. 4, pp. 2441–
2456, Apr. 2021.

[35] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin, “Online
collaborative data caching in edge computing,” IEEE Trans. Parallel
Distrib. Syst., vol. 32, no. 02, pp. 281–294, Feb. 2021.

[36] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Offloading tasks
with dependency and service caching in mobile edge computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 11, pp. 2777–2792,
Nov. 2021.

[37] H. Wang, G. Tang, K. Wu, and J. Wang, “PLVER: Joint stable al-
location and content replication for edge-assisted live video delivery,”
IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 01, pp. 218–230,
Jan. 2022.

[38] X. Wang, C. Wang, X. Li, V. C. M. Leung, and T. Taleb, “Federated deep
reinforcement learning for internet of things with decentralized coopera-
tive edge caching,” IEEE Internet Things J., vol. 7, no. 10, pp. 9441–9455,
Oct. 2020.

[39] Z. Zhao, W. Zhou, D. Dan, J. Xia, and L. Fan, “Intelligent mobile edge
computing with pricing in Internet of Things,” IEEE Access, vol. 8,
pp. 37727–37735, 2020.

[40] Google, Tensorflow1.9.0, 2018. [Online]. Available: https://github.com/
tensorflow/tensorflow/releases/tag/v1.9.0

[41] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” Adv.
Neural Inf. Process. Syst., vol. 12, pp. 1057–1063, 1999.

Ting Wang (Senior Member, IEEE) received the PhD
degree in computer science and engineering from
the Hong Kong University of Science and Technol-
ogy, Hong Kong, China, in 2015. He is currently an
associate professor with the Software Engineering
Institute, East China Normal University, Shanghai,
China. Prior to joining ECNU in 2020, he worked at
Bell Labs as a research scientist from 2015 to 2016,
and at Huawei as a senior engineer from 2016 to 2020.
His research interests include cloud/edge computing,
data center networks, machine learning, and AI-aided
intelligent networking.

Yuxiang Deng received the bachelor’s degree in
software engineering from the Hefei University of
Technology (HFUT), Hefei, China, in 2022. He is cur-
rently working toward the master’s degree with Soft-
ware Engineering Institute, ECNU, Shanghai, China.
His research interests include cloud computing, edge
computing, and machine learning.

Jiawei Mao received the bachelor’s degree in com-
puter science from Nantong University, China, in
2019, and the master’s degree with Software Engi-
neering from East China Normal University, Shang-
hai, China, in 2022. His research interests include
cloud computing, edge computing, and machine
learning.

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 05:55:26 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1002/9781119562306.ch21
https://github.com/tensorflow/tensorflow/releases/tag/v1.9.0
https://github.com/tensorflow/tensorflow/releases/tag/v1.9.0

WANG et al.: TOWARDS INTELLIGENT ADAPTIVE EDGE CACHING USING DEEP REINFORCEMENT LEARNING 9303

Mingsong Chen (Senior Member, IEEE) received
the PhD degree in computer engineering from the
University of Florida, Gainesville, in 2010. He is
currently a professor with the Software Engineering
Institute at East China Normal University. His re-
search interests include cloud computing, design au-
tomation of cyber-physical systems, parallel and dis-
tributed systems, and formal verification techniques.
Currently, he serves as the director of MoE Engineer-
ing Research Center of Software/Hardware Codesign
Technology and Application, and the vice director

of technical committee of embedded systems of China Computer Federation
(CCF). He is an associate editor of IET Computers & Digital Techniques, and
Journal of Circuits, Systems and Computers.

Gang Liu (Member, IEEE) received the BS and PhD
degree in computer science from Northwestern Poly-
technical University in 2002 and 2008. Currently, he
works as a research scientist with Bell Labs China
since 2008. His research interests include SDN/NFV,
edge/cloud computing, and AI-assisted cellular net-
works.

Jieming Di received the MS degree in computer sci-
ence from the Hong Kong University of Science and
Technology, Hong Kong, China, in 2013. He worked
in EMC, Microsoft as senior software engineer for
many years. Currently, he is a software engineer with
Meta (formerly named Facebook) since 2022. His
research interests include software defined networks,
Big Data, natural language processing (NLP), and
GenAI.

Keqin Li (Fellow, IEEE) is a SUNY distinguished
professor of computer science with the State Uni-
versity of New York. He is also a distinguished
professor with Hunan University, China. His cur-
rent research interests include cloud computing, fog
computing and mobile edge computing, embedded
systems and cyber-physical systems, heterogeneous
computing systems, Big Data computing, CPU-GPU
hybrid and cooperative computing, computer archi-
tectures and systems, computer networking, machine
learning, intelligent and soft computing. He has pub-

lished more than 680 journal articles, book chapters, and refereed conference
papers, and has received several best paper awards. He currently serves or
has served on the editorial boards of the IEEE Transactions on Parallel and
Distributed Systems, IEEE Transactions on Computers, IEEE Transactions
on Cloud Computing, IEEE Transactions on Services Computing, and IEEE
Transactions on Sustainable Computing.

Authorized licensed use limited to: East China Normal University. Downloaded on March 20,2025 at 05:55:26 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

