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Tensors have drawn a growing attention in many applications, such as physics, engineering science, social 4
networks, recommended systems. Tensor decomposition is the key to explore the inherent intrinsic data rela- 5
tionship of tensor. There are many sparse tensor and vector multiplications (SpTV) in tensor decomposition. 6
We analyze a variety of storage formats of sparse tensors and develop a piecewise compression strategy to 7
improve the storage efficiency of large sparse tensors. This compression strategy can avoid storing a large 8
number of empty slices and empty fibers in sparse tensors, and thus the storage space is significantly reduced. 9
A parallel algorithm for the SpTV based on the high-order compressed format based on slices is designed to 10
greatly improve its computing performance on graphics processing unit. Each tensor is cut into multiple 11
slices to form a series of sparse matrix and vector multiplications, which form the pipelined parallelism. The 12
transmission time of the slices can be hidden through pipelined parallel to further optimize the performance 13
of the SpTV. 14
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1 INTRODUCTION 23

1.1 Motivation 24

These applications arise in numerous domains [Kolda and Bader 2009; Qi et al. 2007], includingQ1

Q2

25
neurosciences [Osorio and Bhavaraju 2013], health care analytics [Wang et al. 2015], recommended 26
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systems [Rendle et al. 2009], natural language processing [Bouchard et al. 2015], signal process-27
ing [Lathauwer and Moor 1998], machine learning [Sidiropoulos et al. 2017], and social network28
analytics [Nakatsuji et al. 2017]. Tensors, which are multi-way arrays, provide a natural way to29
represent multidimensional data. A subsequent analysis of the tensor usually takes the form of30
factoring or decomposing the tensor into interpretable components. (This process is analogous31
to the use of matrix decompositions to analyze 2-way data. Tensors generalize such analyses to32
the k-way case for k > 2.) The speed of most of the popular tensor decompositions, including the33
CANDECOMP/PARAFAC (CP) decomposition [Carroll and Chang 1970; Cattell 1944] and Tucker34
decomposition [Tucker 1966], depend critically on having a fast sparse tensor-vector multiplica-35
tion (SpTV). The sizes of tensors that arise in the above applications grow with the expansion of36
application scales. Compared with the matrix, the computation of SpTV is more complex. Fur-37
thermore, the tensors have obvious sparsity in the multidimensional data space. The compressed38
storage of the sparse tensor is more complex than the sparse matrix. Therefore, it faces great chal-39
lenges to improve the computing performance of the SpTV.40

Using the powerful parallel computing ability of GPUs to improve the performance of tensor41
decomposition is a hot research topic. Especially for GPU- and CPU-based heterogeneous comput-42
ing platforms, how to make full use of computing resources to maximize the parallel computing43
ability is the key to improve the performance of SpTV. Firstly, a reasonable partition of tensor for44
the characteristics of parallel computing is the basis of improving performance. Secondly, the con-45
currency of multiple blocks is very important to improve the parallel efficiency of CPUs and GPUs46
[Yang et al. 2015]. Reducing the synchronization between multiple processing steps can improve47
the concurrency of multiple blocks. Finally, an asynchronous mechanism can improve the whole48
parallel processing ability of the system.49

1.2 Our Contributions50

This article makes the following contributions to parallel pipeline computations of the SpTV on51
GPUs and CPUs.52

• We analyze a variety of storage formats of tensors and extend the compression method of53
sparse matrices to design the corresponding compression schemes of sparse tensors, such54
as the high-order COO (HOCOO) format and the high-order CSR (HOCSR) format.55

• A compressed fibers based (CFB) on buckets format is designed, and the CFB can avoid56
storing a large number of empty fibers in a sparse tensor to improve compression efficiency.57

• We define a compressed data format, i.e., high-order compressed format based on slices58
(HOCFS) to store the sparse tensors according to a dimension, which can avoid storing a59
large number of empty slices and empty fibers in the sparse tensors.60

• A parallel algorithm for SpTV based on the compression format (HOCFS) is designed to61
greatly improve its computing performance on GPUs. The tensor is cut into multiple slices62
to form a series of sparse matrix and vector multiplications (SpMV) operations, which63
form pipelined parallelism. The transmission time of the slices can be hidden through the64
pipelined parallel to further optimize the performance of SpTV.Q3

65

The remainder of the article is organized as follows. In Section 2, we review the related research66
on tensor. In Section 3, we review the programming modeling of GPUs. In Section 4, we introduce67
notations and preliminaries of tensors. In Section 5, we analyze and develop the compressed strate-68
gies of tensors. In Section 6, we analyze the density of partitions to get the best density threshold.69
In Section 7, we describe the GPU and CPU parallel computing methods and pipeline optimization70
strategy for SpTV. In Section 8, we demonstrate our extensive experimental performance compar-71
ison results. In Section 9, we conclude the article.72
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2 RELATED WORK 73

Tensor decompositions originated with Hitchcock [1927], and the idea of a multiway model is at- 74
tributed to Cattell [1944]. These concepts received scant attention until the work of Tucker [1966] 75
and Carroll and Chang [1970] and Harshman [1970], all of which appeared in the psychometrics 76
literature. Appellof and Davidson [1983] are generally credited as the first to use tensor decom- 77
positions (in 1981) in chemometrics, and tensors have since become extremely popular in that 78
field [Bro 1997, 1998], even spawning a book in 2004 [Booth 2004]. In parallel to the development 79
in psychometrics and chemometrics, there was a great deal of interest in the decompositions of 80
bilinear forms in the field of algebraic complexity (see, e.g., Knuth [1973]). The most interesting 81
example of this is the Strassen matrix multiplication, which is an application of a decomposition. 82

Several methods have been proposed to alleviate the need to store the entire tensor in high- 83
performance memory. Biased random sampling was used in Papalexakis et al. [2012], and was 84
shown to work well for sparse tensors, albeit without identifiability guarantees. In Sidiropoulos 85
et al. [2014a], the big tensor was randomly compressed into a smaller tensor. If the big tensor admits 86
a low-rank decomposition with sparse latent factors, the random sampling guarantees the identi- 87
fiability of the low-rank decomposition of the big tensor from that of the smaller tensor. However, 88
this guarantee may not hold if the latent factors are not sparse. In Sidiropoulos et al. [2014b], a 89
method of randomly compressing the big tensor into multiple small tensors (PARACOMP) is pro- 90
posed, where each small tensor is independently decomposed, and the decompositions are related 91
through a master linear equation. The tensor data are accessed only once during the compression 92
stage, and further operations are only performed on the smaller tensors. 93

One of the most widely used tensor implementations is the Tensor Toolbox. By carefully choos- 94
ing which modes to compute with finer granularity, the intermediate data remain within the work- 95
ing memory. The Tensor Toolbox suffers from excessive data copies according to our experiments, 96
which motivates our in-place approach. The Cyclops Tensor Framework (CTF) [Solomonik et al. 97
2013] provides another baseline implementation. CTF is a recent HPC implementation with two 98
levels of parallelism (OpenMP and MPI), which focuses on communication reductions for symmet- 99
ric tensor contractions that arise frequently in quantum chemistry. The TTM is a specific instance 100
of tensor contraction [Li et al. 2017][Hirata 2003], a mature implementation that focuses on synthe- 101
sizing code and dynamically maintains the load balance on distributed systems. The TCE (Tensor 102
Contraction Engine) [Hirata 2003] also builds a model to choose the optimal data layout, while 103
we choose from different matrix shapes. The Matricized Tensor Times Khatri-Rao Product (MT- 104
TKRP) is an essential step of CANDECOMP/PARAFAC Decomposition, and differs from general 105
TTM in that the matrix is the result of the Khatri-Rao product of two matrices. Ravindran et al. 106
created an in-place tensor-matrix product for MTTKRP [Smith et al. 2015], but their implemen- 107
tation operates on the “slice” representation of the tensor. Our work takes advantage of a more 108
general sub-tensor representation, and in particular its opportunities for performance tuning. A 109
number of sparse implementations have been proposed as well. The GigaTensor [Kang et al. 2012] 110
restructures the MTTKRP as a series of Hadamard products in the MapReduce framework, which 111
increases the parallelism at the cost of more work. DFacTo [Choi and Vishwanathan 2014] restruc- 112
tures the operation as a series of sparse distributed matrix-vector multiplies. Tew [2016] explored 113
several sparse tensor formats while ultimately evaluating two implementations; one based on ex- 114
plicitly storing coordinates and one that compresses these coordinates. A sparse tensor operation 115
method based on F-COO compressed storage format is provided in the [Liu et al. 2017]. But the 116
literature does not provide open source codes. The CFB format described in our article is similar 117
to the F-COO format. Alen [ATe n.d.] provides sparse tensor algorithms on CPU and GPU, but its 118
Level 1,2 BLAS is implemented using the existing libraries of CPU and GPU, not directly providing 119
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Fig. 1. The heterogeneous parallel computing system based on CUDA.

SpTV functions. The compression format of sparse tensor in Alen is similar to HOCSR format. The120
tensor and vector multiplication operations used in tensor operations are similar to the implemen-121
tation of Algorithm 4 in our article. A Parallel Tensor Infrastructure (ParTI!) [Jiajia Li 2017] is to122
support fast essential sparse tensor operations and tensor decompositions on multicore CPU and123
GPU architectures. The sCOO compressed storage format of sparse tensor is provided in ParTI!124
is similar to The CFB format described in our article. Splatt [Smith et al. 2015] provides a CSF125
compression format for extended CSR compression algorithm, and provides a parallel computing126
method based on openMP. Tensor toolbox [Bader et al. 2015] and tensor lab [Sorber et al. 2016] are127
function libraries about tensors in matlab, which provide operation for sparse tensors, but tensor128
lab does not directly provide SpTV operation. Tensor Toolbox provides tensor operation functions129
for different levels, and uses sparse tensor compression format similar to HOCOO format in our130
article. Fastor [Poya et al. 2017], FTensor [FTe 2018], and ITensor [Matthew et al. 2017] provide131
basic function libraries for dense tensors, and are difficult to adapt to large scale sparse tensors.Q4

132

3 HETEROGENEOUS PROGRAMMING ARCHITECTURE133

The modern 3D graphics processing unit (GPU) has evolved from a fixed-function graphics134
pipeline to a programmable parallel processor with computing power exceeding that of multicore135
CPUs. For the GPU architecture, CUDA (Compute Unified Device Architecture) was provided by136
NVIDIA to improve the efficiency of programming on GPUs. CUDA is a complete GPGPU solu-137
tion that provides direct access to the hardware interface, rather than the traditional approach that138
must rely on the graphical interface API. The heterogeneous parallel computing system based on139
CPUs and GPUs can be built using CUDA, as shown Figure 1. Data transfer has some impacts on140
the performance of GPGPUs because of the bus bandwidth restrictions, which connect with the141
host. Therefore, the asynchronous data transmission mechanism was provided by CUDA to re-142
duce the synchronization between transmission and computing. In order to facilitate concurrent143
executions between the host and the device, some function calls of CUDA are asynchronous. Con-144
trol is returned to the host thread before the device has completed the requested task. Some GPUs145
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Fig. 2. A third-order tensor: XI×J×K.

of compute capability 1.1 and higher can perform copies between the page-locked host memory 146
and the device memory concurrently with the kernel execution. Some GPUs of compute capability 147
2.x can execute multiple kernels concurrently and can perform a copy from the page-locked host 148
memory to the device memory concurrently with a copy from the device memory to the page- 149
locked host memory. Applications manage concurrency through streams in CUDA. A stream is a 150
sequence of commands (possibly issued by different host threads) that execute in order. However, 151
different streams may execute their commands out of order with respect to one another or con- 152
currently. This behavior is not guaranteed and should therefore not be relied upon for correctness 153
[NVIDIA 2013]. 154

4 NOTATIONS AND PRELIMINARIES OF TENSORS 155

Tensors (i.e., multi-way arrays) are denoted by bold-faced Euler script letters (e.g., X). The order of 156
a tensor is the number of dimensions, also known as ways or modes, as shown in Figure 2. Matrices 157
are denoted by bold-faced capital letters (e.g., A), vectors are denoted by bold-faced lowercase 158
letters (e.g., a), and scalars are denoted by lowercase letters, e.g., a. The ith entry of vector a is 159
denoted by ai , element (i, j) of a matrix A by ai j , and element (i , j, k) of a third-order tensor X by 160
xi jk . Indices typically range from 1 to their capital version (e.g., i = 1, . . . , I ). The nth element in a 161

sequence is denoted by a superscript in parentheses. For example, A(n) denotes the nth matrix in 162
a sequence. 163

4.1 Vectorization of a Tensor 164

Fibers are the higher order analogues of matrix rows and columns. A fiber is defined by fixing every 165
index but one. A matrix column is a mode-1 fiber and a matrix row is a mode-2 fiber. Third-order 166
tensors have column, row, and tube fibers, denoted by x:jk , xi :k , and xi j :, respectively, as shown in 167
Figure 3. Fibers are always assumed to be column vectors. 168

4.2 Matricization of a Tensor 169

Matricization, which is also known as unfolding or flattening, is the process of reordering the 170
elements of an N -way array into a matrix, as shown in Figure 4. For an instance, a 2 × 3 × 4 tensor 171
can be arranged as a 6 × 4 matrix or a 2 × 12 matrix, and so on. In this article, we consider only 172
a special case of a mode-n matricization because it is the only form relevant to our discussion. 173
A more general treatment of matricization can be found in Kolda [Kolda and Bader 2009]. The 174
mode-n matricization of a tensor X ∈ RI1×I2×···×IN is denoted by X(n) and arranges the mode- 175
n fibers to be the columns of the matrix. Although conceptually simple, the formal notation is 176

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 6, Article 63. Publication date: October 2019.



TKDD1306-63 ACMJATS Trim: 6.75 X 10 in October 7, 2019 13:24

63:6 W. Yang et al.

Fig. 3. Vectorization of a third-order tensor.

Fig. 4. Matricization of a third-order tensor.

clunky. The tensor element (i1, i2, . . . , iN ) is mapped to the matrix element (in , j) where177

j = 1 +

N∑

k=1,k�n

(in − 1)Jk ,

with178

Jk =
k−1∏

m−1,m�n

Im .

4.3 The n-Mode Product of a Tensor179

Tensors can be multiplied together, although the notation and symbols for this are obviously much180
more complex than for matrices. A full treatment of tensor multiplication is proposed by Kolda181
and Bader [2009]. Here, we consider only the tensor n-mode product (i.e., multiplying a tensor by182
a matrix (or a vector) in mode n). The n-mode (matrix) product of a tensor X ∈ RI1×I2×···×IN with a183
matrix U ∈ RJ×In is denoted by X×n U and is of size I1 · · · · · In−1 · J · In+1 · · · · · IN . Elementwise,184
we have185

X×nUi1 · · ·in−1jin+1iN =

In∑

in−1

xi1i2 · · ·iN ujin .
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Each mode-n fiber is multiplied by the matrix U. The idea can also be expressed in terms of unfolded 186
tensors: Y = X×nU,Y(n) = UX(n) . As an example, let the slices of X3×4×2 is 187

X1 =

⎡⎢⎢⎢⎢⎢⎣
1 4 7 0
2 5 8 11
3 6 9 12

⎤⎥⎥⎥⎥⎥⎦ ,
X2 =

⎡⎢⎢⎢⎢⎢⎣
13 16 19 22
14 17 20 23
15 18 21 24

⎤⎥⎥⎥⎥⎥⎦ .
Assume 188

U =

[
1 3 5
2 4 6

]
.

Then, the product Y = X×nU ∈ R2×4×2 is 189

Y1 =

[
22 49 76 103
28 64 100 136

]
,

Y2 =

[
130 157 184 211
172 208 244 280

]
.

5 THE COMPRESSED STORAGE OF A TENSOR 190

For example, a sparse tensor X4×5×4 is split into four slices according to the first dimension, we 191
have 192

X(1::) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 1 0 0
0 9 0 0
0 7 3 0
0 0 5 8
2 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,X(2::) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

X(3::) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 4 0
0 0 0 7
5 0 0 2
0 1 6 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,X(4::) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 7 0 8
3 0 0 0
0 0 2 1
0 0 0 0
0 0 6 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

5.1 High-Order COO Format (HOCOO) 193

The coordinate (COO) format is a particularly simple storage scheme with a triplet (row , column, 194
value) for a sparse matrix. The array’s rows , columns , andvalues store the row indices, the column 195
indices, and the values of the non-zero elements in a matrix respectively. The COO format can be 196
extended to high-dimensional data, which uses four tuple (Ti, Tj, Tk, Tv) to store the three-order 197
tensor. The arrays Ti, Tj, Tk, and Tv store the indices of the first, second, third dimensions, and the 198
values of the non-zero elements in a tensor, respectively. For the example sparse tensor X4×5×4, 199
we have 200

Ti = (1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4),

Tj = (1, 1, 2, 3, 3, 4, 4, 5, 1, 2, 3, 3, 4, 4, 1, 1, 2, 3, 3, 5, 5),

Tk = (1, 2, 2, 2, 3, 3, 4, 1, 3, 4, 1, 4, 2, 3, 2, 4, 1, 3, 4, 3, 4),

Tv = (3, 1, 9, 7, 3, 5, 8, 2, 4, 7, 5, 2, 1, 6, 7, 8, 3, 2, 1, 6, 5).
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The length of each array is the number of non-zeros (Abbreviation: NNZ) in the sparse tensor.201
For a sparse tensor XI×J×K, there are NNZ non-zero elements. If the tensor is stored by HOCOO202
according to the first dimension, the sizes of Ti, Tj, Tk, and Tv are NNZ. The total size of storage203
using HOCOO is 4NNZ.204

5.2 High-Order CSR Format (HOCSR)205

The compressed sparse row (CSR) format is a popular and general-purpose sparse matrix repre-206
sentation scheme. The CSR explicitly stores the column indices and non-zero values in arrays Aj207
and Av. The third array Ap represents the starting position of each row in the array Aj. For an208
N -by-M matrix, Ap has length N + 1 and stores the offset of the ith row in Ap[i]. The value of the209
last element is NNZ. For the example sparse matrix210

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0 2 0
0 0 7 0
0 5 0 8
0 1 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

we have211

Ap = ( 0 2 3 5 7),

Aj = ( 0 2 2 1 3 1 3),

Av = ( 1 2 7 5 8 1 3).

The CSR format for the sparse matrix can be extended to the three-order sparse tensor. A tensor212
is unfolded into a matrix (XT

1:: X
T
2:: . . . X

T
I::)

T according to the 1st dimension. The matrix has T · J213
rows. Define two arrays Tk and Tv to store the dimension K indices and the value of the non-214
zero elements respectively. Define an array Tj to represent the starting position of each row of the215
matrix in the array Tk. For the example sparse tensor X4×5×4, we have216

Tj = (1, 3, 4, 6, 8, 9, 9, 9, 9, 9, 9, 10, 11, 13, 15, 15, 17, 18, 20, 20, 22),

Tk = (1, 2, 2, 2, 3, 3, 4, 1, 3, 4, 1, 4, 2, 3, 2, 4, 1, 3, 4, 3, 4),

Tv = (3, 1, 9, 7, 3, 5, 8, 2, 4, 7, 5, 2, 1, 6, 7, 8, 3, 2, 1, 6, 5).

There are some redundant data in array Tj because of many empty rows in the matrix217
(XT

1:: X
T
2:: . . . X

T
I::)

T. The size of Tj is more than the number of non-zero elements for the exam-218

ple sparse tensor. For a sparse tensor XI×J×K, there are NNZ non-zero elements. If the tensor is219
stored by HOCSR according to the 1st dimension, the sizes of Tj, Tk, and Tv are I · J , NNZ, and220
NNZ, respectively. The total size of the storage using HOCSR is I · J+2NNZ.221

5.3 Compressed Fibers Based on Buckets Format (CFB)222

A tensor is transformed into a series of fibers X:jk according to the dimension I , and for a three-223
order tensor, the other two dimensions are constructed into a matrix Xi::, whose elements are the224
fibers. Define a series array’s fibers as buckets to store the non-zero elements of the fibers is X:jk.225
Furthermore, two arrays Tb and Tn are defined to store the indices and NNZ of the fibers X:jk in226
the Xi::. The index of the fibers X:jk is j · K + k . The element of the array’s fibers is a two-tuple (idx,227
value), where the idx and value store the index for the dimension I and the value of the non-zero228
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Table 1. The Storage Structure of X4×5×4 Based on the HOCFS Format

Slices f ormat No num fibers Ap Aj Av
1 1 1 5 1,2,3,4,5 0,2,3,5,7,8 1,2,2,2,3,3,4,1 3,1,9,7,3,5,8,2
2 1 3 4 1,2,3,4 0,1,2,4,6 3,4,1,4,2,3 4,7,5,2,1,6
3 1 4 4 1,2,3,5 0,2,3,5,7 2,4,1,3,4,3,4 7,8,3,2,1,6,5

element in the fiber X:jk, respectively. For the example sparse tensor X4×5×4, we have 229

Tb = (1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20),

Tn = (1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1),

fibers[1] = (1, 3), fibers[2] = (1, 1), (4, 7)
fibers[3] = (3, 4), fibers[4] = (4, 3)
fibers[5] = (1, 9), fibers[6] = (3, 7)
fibers[7] = (3, 5), fibers[8] = (1, 7)
fibers[9] = (1, 3), fibers[10] = (3, 2), (4, 1)
fibers[11] = (3, 1), fibers[12] = (1, 5), (3, 6)
fibers[13] = (1, 8), fibers[14] = (1, 2)
fibers[15] = (4, 6), fibers[16] = (4, 5).

For a sparse tensor XI×J×K, there are NNZ non-zero elements. If the tensor is stored by the CFB 230
according to the 1st dimension, the size of the fibers is 2NNZ. The sizes of Tb and Tn are the number 231
of non-empty fibers. The total size of the storage using CFB is 2NNZF +2NNZ, where NNZF is the 232
number of non-empty fibers. Due to the sparsity of the dimension, NNZF is less than I · J , and the 233
storage space of CFB is less than that of HOCSR. 234

5.4 High-Order Compressed Format Based on Slices (HOCFS) 235

A tensor is unfolded into a set of slices by matrixing according to a dimension, which can be stored 236
by the compressed format of the matrix. There are many zero elements that may lead to empty 237
slices without non-zero elements because of the sparsity of the tensor. Furthermore, most slices 238
of the sparse tensor are sparse. Therefore, the sparse tensor could be compressed by the main 239
dimension compression and the slice compression. The tensor is segmented into a set of slices 240
according to one dimension, which is called the main dimension. The main dimension compression 241
is that the empty slices of the set of slices are eliminated during storage to reduce the size of the 242
main dimension. The sparse slices are the sparse matrices, which can be stored by some compressed 243
formats, such as the CSR, ELL, and COO formats. We define a compressed data format HOCFS (see 244
Figure 5) to store the sparse tensor according to a dimension. 245

The tensors that arise in many real-life applications are usually represented by multidimensional 246
arrays, which are compressed to be stored by the HOCFS format as shown in Algorithm 1. There 247
are some empty fibers without non-zero elements in the slice because of the sparsity of the slice. 248
In many cases, the number of empty fibers is much greater than that of non-empty fibers. The 249
Ap array contains a large amount of redundant data if the slice is stored by the traditional CSR 250
or ELL format. The HOCFS format is adopted in Algorithm 1, in which only non-empty fibers 251
are stored, and the indices of the non-empty fibers are stored by the fiber_num array to realize 252
the corresponding consistency of the ordinal number in the operation process. The compressed 253
storage of the tensor X4×5×4 is shown in Table 1 if it is compressed by the HOCFS format. 254

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 6, Article 63. Publication date: October 2019.



TKDD1306-63 ACMJATS Trim: 6.75 X 10 in October 7, 2019 13:24

63:10 W. Yang et al.

Fig. 5. The data structure of the tensor using the HOCFS format.

The second slice is not stored because it has no non-zero elements. The total size of storageQ5
255

space is the sum of the sizes of arrays No, num, fibers, Ap, Aj, and Av. The sizes of arrays No256
and num are the number of non-empty slices. The sizes of arrays fibers and Ap are the number of257
non-empty fibers. The sizes of arrays Aj and Av are the number of non-zero elements. The total258
size of storage space of tensor using HOCFS is 2NNZS+2NNZF+2NNZ, where NNZS, NNZF, and259
NNZ are the number of non-empty slices, non-empty fibers, and non-zero elements, respectively.260
For the sparse tensor that arises from the recommender systems and social networking, there are261
many empty slices and fibers in the tensor, thus the NNZS and NNZF are less than I and I · J for262
XI×J×K. For the sparse tensor, the storage space of HOCFS is less than that of HOCSR.263

HOCFS can compress multiple dimensions for sparse tensors. Define a tensor X = (X1,X2,264
X3, . . . ,XK), where Xk, k = 1, 2, 3, . . . ,K , are low-dimensional tensors or matrices, or vectors, or265
scalars. Xk is uniformly defined as low dimensional elements. Xk is zero element if the content of266
Xk is empty or zero. The zero elements will not stored in HOCFS format. Algorithm 2 describes267
recursively how to compress high-dimensional sparse tensors by HOCFS. HOCFS can be extended268
to compress higher dimensional sparse tensors by Algorithm 2, and the sparse can be compressed269
for each dimension by dimensionality reduction.270

6 PARALLEL ALGORITHM FOR SPTV271

6.1 Parallel Implementation of SpTV on GPU272

6.1.1 Parallel Implementation of SpTV Based on HOCOO. For a non-zero element (i , j, k , v) of273
the three-order tensor X, the multiplying elements in a vector x are xi , x j , and xk for SpTV using274
the 1-mode, 2-mode, and 3-mode, respectively. The calculationv × xi is executed in the thread that275
is assigned the non-zero element (i , j, k , v).276
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ALGORITHM 1: The compressed algorithm for a tensor based on the HOCFS format.

Input: The three-order tensor XI×J×K; Three-dimensional arrays X(:::) ;The compression format of the

slices type.

Output: The slices stored by CFS format S1, S2, . . . , Sm .

idx ← 0;

for each i in [1, I ] do

if X(i::) contains the non-zero elements then

idx ← idx + 1;

Sidx .No ← i;

rid ← 0;

for each j in [1, J ] do

if X(ij:) contains the non-zero elements then

rid ← rid + 1;

Sidx . f ibers[rid]← j;

if type == 1 then

Sidx .Aj, Sidx .Av, Sidx .Ap ← Compress_CSR(X(ij:) );

else

if type == 2 then

Sidx .Aj,Sidx .Av, Sidx .Ap ← Compress_ELL(X(ij:) );

end

end

end

end

Sidx .num ← rid ;

end

end

ALGORITHM 2: The recursive compressed algorithm for a high-dimensional sparse tensors by HOCFS.

Input: The high-dimensional sparse tensor X ∈ RI1×I2×···×IK .

Output: The sub-tensors X1,X2, . . . ,XT, Xi ∈ RI1×I2×···×IK−1 , i = 1, 2, . . . ,T , T ≤ K .

for each i in [1,K] do

if Xi is not the zero element. Xi ∈ RI1×I2×···×IK−1 then

Compress_HOCFS(Xi);

end

else

delete Xi;

end

end

The SpTV based on the HOCOO format is described in Algorithm 3. The four arrays of HOCOO 277
can be read by only one element each time in a thread since each non-zero is assigned to a thread 278
when the SpTV is computed on a GPU. The data accessed in each thread contains two parts: one 279
element from each of the four arrays of HOCOO and the multiplying element in the vector. 280

The results of the above computation need to be summarized for each fiber by the function 281
segmented_reduction, which realizes the summation of the calculated results to get the result 282
matrix M. The results of one fiber are summed by one warp. The parallel reduction algorithm is 283
used when the summation of a fiber is calculated in Algorithm 3. This approach implicitly relies on 284
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ALGORITHM 3: The SpTV based on the HOCOO format.

Input: The three-order tensor XI×J×K using HOCOO format Ti, Tj, Tk, Tv; The number of non-zero

elements, nnz; The vector v ; The mode n.

Output: The result matrix of X ×n v M.

for each idx in [1,nnz] do

if n == 1 then

Tv[idx]← Tv[Ti[idx]] · v[Ti[idx]];

else

if n == 2 then

Tv[idx]← Tv[T j[idx]] · v[T j[idx]];

else

if n == 3 then

Tv[idx]← Tv[Tk[idx]] · v[Tk[idx]];

end

end

end

end

segmented_reduction(Ti, Tj, Tk, Tv, n, M);

ALGORITHM 4: The SpTV based on the HOCSR format.

Input: The three-order tensor XI×J×K based on HOCSR format using mode-1 Tj, Tk, Tv; The vector v .

Output: The result matrix of X ×n v M.

for each idx in [0, J · K − 1] do

j ← idx / K ;

k ← idx mod K ;

for eachm in [T j[idx],T j[idx + 1]] do

M[j,k]← M[j,k] +Tv[m] · v[Tk[m]];

end

end

the fact that each warp processes only one fiber of the tensor. In contrast, a segmented reduction285
allows warps to span multiple fibers.286

6.1.2 Parallel Implementation of SpTV Based on HOCSR. The implementation method of SpTV287
is similar to SpMV since the tensor is unfolded into a matrix using the HOCSR. Lines 10–11 can be288
processed in the same thread since the dot product of each row and right-vector yields a value of289
the resulting matrix. Different j in line 9 can be processed in different threads, and thus, the SpTV290
based on the HOCSR is relatively easy to be implemented in parallel computing.291

6.1.3 Parallel Implementation of SpTV Based on CFB. A sparse tensor X is compressed by the292
CFB format for mode-n. The SpTV X ×n v based on the CFB is described in Algorithm 4. The SpTV293
based on the CFB is relatively easy to be implemented in parallel computing, which is similar294
to that of the HOCSR. Lines 10–11 can be processed in the same thread to compute fiber ×v .295
Define the length of the array Tb as S , and at most S threads can be started to compute the SpTV296
simultaneously.297

6.1.4 Parallel Implementation of SpTV Based on HOCFS. A sparse tensor is compressed into298
CFS arrays S1, S2, . . . , Sm using the HOCFS format. For HOCFS, the SpTV is composed of a series of299
SpMVs, which is Si ×v . Each slice is multiplied by the vector and can be computed independently.300
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ALGORITHM 5: The SpTV based on the CFB format.

Input: The three-order tensor XI×J×K using CFB format Tb, fibers;

The vector v .

Output: The result matrix of X ×n v M.

for each Tb[b] in Tb do

j ← Tb[b] / K ;

k ← Tb[b] mod K ;

for each f iber [idx] in f ibers[b] do

M[j,k]← M[j,k] + f iber [idx].v · v[f iber [idx].i];

end

end

ALGORITHM 6: The SpTV based on the HOCFS format.

Input: The three-order tensor XI×J×K using CFS format S1, S2, . . . , Sm , fibers; The vector v .

Output: The result matrix of X ×n v M.

for each i in [1,m] do

j ← Si .No;

for each k in [1, Si .num] do

k ← Si . f iber_num[k];

if Si . f ormat == 1 then
//The slice is stored by CSR format.

for each idx in [Si . f iber_cou[k − 1], Si . f iber_cou[k]] do

M[j,k]← M[j,k] + Si . f iber_Av[idx] · v[Si . f iber_Aj[idx]];

end

else

if Si . f ormat == 2 then
//The slice is stored by ELL format.

for each idx in [1, Si . f iber_cou[k]] do

M[j,k]← M[j,k] + Si . f iber_Av[idx] · v[Si . f iber_Aj[idx]];

end

end

end

end

end

Furthermore, it can be computed in parallel. Each row in the slice is multiplied by the vector and 301
also can be computed independently [Yang et al. 2018]. Thus, two level parallel computing can be 302
used for the SpTV based on the HOCFS format. The first level parallel computing is Si ×v , and the 303
second level is the dot product of each row in Si and the vector v . 304

The data grid is built from the tensor by the HOCFS using the slices as the X dimension and the 305
rows in slices as the Y dimension. The data grid is assigned into the CUDA thread’s grid as shown 306
in Figure 6. To facilitate the construction of the data grid, a Slice_Ap array is defined to store the 307
start position of each slice in all fiber sequences of the HOCFS. If the slices are stored in the CSR 308
format, the storage structure of the HOCFS is shown in Figure 7, and if the slices are stored by 309
the ELL format, the storage structure of the HOCFS is shown in Figure 8. The kernel function of 310
the SpTV using the HOCFS with the CSR format is shown Figure 9, and the kernel function of the 311
SpTV using the HOCFS with the ELL format is shown in Figure 10. The result of the SpTV is a 312
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Fig. 6. The parallel computing model of the SpTV on the GPU based on the HOCFS format.

matrix, which is stored by the COO format (r , c , v), and the r , c , v arrays store the indices of the313
rows, columns, and the values of the elements, respectively. The number of slices is stored in the314
parameter CFS_num.315

We adopt data parallelism for SpTV. HOCFS format divides sparse tensor into a series of slices,316
and then different slices are allocated to different thread blocks to perform calculations in GPU.317
There is no data correlation between slices, and there is no data communication between differ-318
ent thread blocks. The execution time of parallel programs can be calculated by T = T1 +T2 +T3,319
where T1, T2, and T3 are computing time, scheduling time, and communication time, respectively.320
GPU uses hardware to thread scheduling, and its scheduling time is almost negligible. The parallel321
computing performance of SpTV is mainly related to computing time if T3 is zero. Increasing the322
core number of GPU can provide more thread blocks that can be used for computing simultane-323
ously, and more slices can be computed at the same time, thus reducing the overall computation324
time of the SpTV.325

6.2 A Pipeline Computing Method for SpTV on GPU326

The pipelined computing model is illustrated in Figure 11. First, a large task is input to the CPU.327
Second, the large task is partitioned into some sub-tasks (C1,C2, . . . ,Ck ). Third, the sub-tasks328
(C1,C2, . . . ,Ck ) are executed in the GPU. They are transported into the GPU by streams, and the329
computed results are also obtained by the streams. Fourth, these results are merged in the CPU. Fi-330
nally, the results of the large task are output. To improve the computational efficiency, the process331
is split into three sub-steps that input data into the GPU (step 3.1 in Figure 12), execute computa-332
tions on the GPU (step 3.2 in Figure 12), and get results from the GPU (step 3.3 in Figure 12). For a333
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Fig. 7. The storage structure of the HOCFS based on CSR.

Fig. 8. The storage structure of the HOCFS based on ELL.

stream, these steps are processed sequentially. For different streams, steps 3.1, 3.2, and 3.3 can be 334
executed concurrently to compose a pipeline in which steps 3.1 and 3.3 are asynchronous transfer 335
processes based on the stream model, while step 3.2 is processed in the GPU. 336

For the SpTV using the HOCOO format, the results of different streams may be cumulative since 337
there is no guarantee that data from the same row are assigned to the same stream. Therefore, 338
synchronization may be needed between different streams, which results in reduced pipelining 339
efficiency. 340

For the SpTV using the HOCSR format, different slices are assigned to different streams, which is 341
similar to the SpMV. How many rows are allocated in one stream is an important factor that affects 342
the performance of the pipeline. Too little data in one stream can reduce the transmission efficiency 343
of the PCIe, and too much data in a stream will make the pipelining parallelism be less obvious. 344

For the SpTV using the CFB format, different fiber buckets are assigned to different streams, 345
which is similar to the HOCSR since a fiber bucket stores the non-zero elements of a slice. 346

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 6, Article 63. Publication date: October 2019.



TKDD1306-63 ACMJATS Trim: 6.75 X 10 in October 7, 2019 13:24

63:16 W. Yang et al.

Fig. 9. The kernel function of the SpTV using the HOCFS based on CSR on the GPU.

For the SpTV using the HOCFS format, different slices are assigned to different streams. The347
SpTV is equivalent to an independent SpMV operation for each slice.348

The pipelined computational process is illustrated in Figure 13. Assume that the computational349
time of a tensor set using the synchronization mode is Ts and that using the pipelined mode is350
Tp . If each step in the pipeline does not wait for the data, the transmission time of the SpTV351
can be hidden. For the ith collection of the slices or buckets, assume that the times of step 3.1,352
step 3.2, and step 3.3 in Figure 12 are Δt1i , Δt2i , and Δt3i , respectively. Firstly, the first collection353
is transferred into the GPU. Then, the collection is computed in the GPU and the second collection354
is transferred concurrently. Next, the second collection is computed when the above two steps are355
completed. Thus, the time is Δt11 +max{Δt12,Δt21} before the pipeline completely overlaps. The356
time of the ith cycle is max{Δt1i+2,Δt2i+1,Δt3i } since the three steps are processed in parallel. The357
time is max{Δt3k−1,Δt2k } + Δt3k when the pipeline exits from the complete overlap as shown in358
Figure 13. For k collections, Ts and Tp are calculated by the following two equations, respectively359
[King et al. 1990]:360

Ts =

k∑

i=1

(Δt1i + Δt2i + Δt3i ),
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Fig. 10. The kernel function of the SpTV using the HOCFS based on ELL on the GPU.

and 361

Tp = Δt11 +max{Δt12,Δt21} +
k−2∑

i=1

max{Δt1i+2,Δt2i+1,Δt3i } +max{Δt3k−1,Δt2k } + Δt3k .

7 EXPERIMENTAL EVALUATION 362

7.1 Experiment Settings 363

The following test environment has been used for all benchmarks. The test computer is equipped 364
with an Intel i7-6700 CPU with hyper-threading technology and a NVIDIA GTX1070 GPU with 365
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Fig. 11. The pipelined computing model on the CPU and GPU.

Fig. 12. The pipelined executing process of the SpTV on the GPU based on the HOCFS format.

the Pascal architecture. CUDA compute capacity of GTX1070 is 6.1, but the bus of the tested GPU366
only supports PCIe 3.0. The specific parameters of CPU and GPU are shown in Table 2.367

We evaluate the performance of the algorithms in the article by comparing to two state-of-the-368
art tensor libraries, namely ParTI [Jiajia Li 2017] and SPLATT [Smith et al. 2015]. ParTI can accel-369
erate sparse tensor operations on multicore CPU and GPU architectures. SPLATT provides high-370
performance implementations of sparse tensor operations on shared-memory systems. SPLATT371
cannot support sparse tensor operations on GPUs.372
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Fig. 13. The computing process by the pipeline.

Table 2. Parameters for Processors of the Test Computer

Parameters Description CPU (i7 6700) GPU (GTX1070)
Core number of processors 4 1,092
Working frequency of processors 3.40GHz 1.683GHz
Memory of processors 32G(DDR4) 8 GB(DDR5)
Bandwidth 136GB/s 256GB/s
Bus width of memory 256 bit (4 channels) 256 bit
Working frequency of memory 2,133MHz 2,002MHz

Table 3. General Information of the Tensors Used in the Evaluation

No. Tensor I1 I2 I3 Non-zeros
1 user_ratedmovies 71,534 65,133 60 855,598
2 user_taggedmovies 71,534 65,133 31 47,957
3 user_taggedbookmarks 108,035 107,253 31 437,593
4 user_taggedartists 2,100 18,745 60 186,479
5 ratings-m1 6,040 3,952 31 1,000,209
6 ratings-m20 71,567 130,642 31 1,048,575
7 user_shopping-x10 100,208 10,147 10,000 9,999,998
8 user_shopping-x22 100,208 10,392 2,000 19,999,898
9 user_shopping-x40 100,208 10,504 1,000 29,999,529

We experimented with nine tensors that we formed from real world data, and the tensors 373
properties are shown in Table 3. All of the tested tensors have three dimensions, that are ex- 374
tracted from the datasets, which were published by the GroupLeans research group. The datasets 375
(user_ratedmovies.dat and user_taggedmovies.dat) have been maintained by users with both rat- 376
ing and tagging information, which link the movies from the MovieLens dataset with their corre- 377
sponding web pages at the Internet Movie Database (IMDb) and Rotten Tomatoes movie review 378
systems [Cantador et al. 2011]. This dataset (user_taggedbookmarks.dat) contains social network- 379
ing, bookmarking, and tagging information from a set of 2K users from the Delicious social book- 380
marking system [Cantador et al. 2011]. This dataset (user_taggedartists.dat) contains social net- 381
working, tagging, and music artist listening information from a set of 2K users from the Last.fm 382
online music system [Cantador et al. 2011]. This dataset (ratings-m20.dat) describes 5-star ratings 383
and free-text tagging activity from MovieLens, a movie recommendation service [Harper and Kon- 384
stan 2016]. It contains 10,000,054 ratings and 95,580 tags applied to 10,681 movies by 71,567 users. 385
The dataset (ratings-m1.dat) contains 1,000,209 anonymous ratings of approximately 3,900 movies 386
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Table 4. Storage Spaces of the Test Tensors for HOCOO, HOCSR, CFB, and HOCFS

Formats Based on Mode-1

No. HOCOO Slicenum Fibernum HOCSR CFB HOCFS
1 3,422,392 10,109 165,687 5,619,176 2,042,570 2,062,788
2 191,828 5,908 25,086 2,115,037 146,086 157,902
3 1,750,372 69,223 100,484 4,200,029 1,076,154 1,214,600
4 745,916 12,523 13,788 1,497,658 400,534 425,580
5 4,000,836 3,706 89,427 2,122,930 2,179,272 2,186,684
6 4,194,300 14,026 174,067 6,147,052 2,445,284 2,473,336
7 39,999,992 9,999 9,516,446 121,469,996 39,032,888 39,052,886
8 79,999,592 9,999 12,642,118 60,783,796 65,284,032 65,304,030
9 119,998,116 9,999 9,502,956 70,503,058 79,004,970 79,024,968

Table 5. Storage Spaces of the Test Tensors for HOCOO, HOCSR, CFB, and HOCFS formats

Based on Mode-2

No. HOCOO Slicenum Fibernum HOCSR CFB HOCFS
1 3,422,392 60 27,567 6,003,236 1,766,330 1,766,450
2 191,828 31 4,688 2,313,468 105,290 105,352
3 1,750,372 31 34,551 4,224,271 944,288 944,350
4 745,916 60 2,223 498,958 377,404 377,524
5 4,000,836 31 17,723 2,187,658 2,035,864 2,035,926
6 4,194,300 31 26,464 4,315,727 2,150,078 2,150,140
7 39,999,992 9,999 9,950,117 1,022,079,996 39,900,230 39,920,228
8 79,999,592 1,999 19,033,609 240,415,796 78,067,014 78,071,012
9 119,998,116 999 25,917,967 160,207,058 111,834,992 111,836,990

made by 6,040 MovieLens users who joined MovieLens in 2000[Harper and Konstan 2016]. These387
datasets (user_shopping-x10, user_shopping-x22, and user_shopping-x40) describe user shopping388
information of e-commerce websites. They include ordering customers, ordering products, and389
categorization information.390

7.2 Storage Spaces Analysis391

The storage spaces of the test tensors are analyzed for HOCOO, HOCSR, CFB, and HOCFS formats,392
which are illustrated in Tables 4–6. The HOCOO, HOCSR, CFB, and HOCFS in Tables 4–6 repre-393
sent the number of the storage units of tensor using HOCOO, HOCSR, CFB, and HOCFS formats,394
and Slicenum and Fibernum represent the number of non-empty slices and fibers, respectively. The395
storage units represent the number of all data that need to be stored for a tensor, including the396
values of non-zero elements, the indices of the elements, the pointers of the slices and the fibers,397
and so on. The storage units of HOCOO is the same for different modes of the tensor, because only398
the non-zero elements are stored for HOCOO format. The storage units of HOCSR varies greatly399
for different modes of the tensor, and generally larger than that of the other formats, because many400
empty slices and fibers are stored for HOCSR format. Compared with other formats, CFB format401
takes up the least storage units. The storage units of HOCFS is very close to that of CFB, and less402
than that of the other formats. The test tensor is not split into slices and fibers for HOCOO format,403
and directly is divided non-zero elements into different computing tasks for parallel computation.404
Parallel efficiency and scale are difficult to improve because the granularity of parallelism is too405
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Table 6. Storage Spaces of the Test Tensors for HOCOO, HOCSR, CFB, and HOCFS formats

Based on Mode-3

No. HOCOO Slicenum Fibernum HOCSR CFB HOCFS
1 3,422,392 2,113 855,598 4,660,935,218 3,422,392 3,426,618
2 191,828 2,113 27,712 4,659,319,936 151,338 155,564
3 1,750,372 1,867 104,799 11,587,953,041 1,084,784 1,088,518
4 745,916 1,892 71,064 39,737,458 515,086 518,870
5 4,000,836 6,039 1,000,209 25,870,498 4,000,836 4,012,914
6 4,194,300 7,119 1,048,575 9,351,753,164 4,194,300 4,208,538
7 39,999,992 99,999 9,950,296 1,036,810,572 39,900,588 40,100,586
8 79,999,592 99,999 19,801,191 1,081,361,332 79,602,178 79,802,176
9 119,998,116 99,999 29,555,291 1,112,583,890 119,109,640 119,309,638

Table 7. Computation Time of the SpTV on the CPU (unit: milliseconds)

No. HOCOO HOCSR CFB HOCFS_CSR HOCFS_ELL TTB ParTI splatt
1 8.69 8.40 9.13 7.48 7.93 333.00 13.81 7.82
2 6.57 2.80 5.69 1.12 1.16 13.00 1.21 1.10
3 10.78 3.42 6.37 3.39 3.29 163.00 10.19 3.38
4 3.75 1.88 4.38 1.32 1.02 69.00 4.31 1.08
5 4.58 2.96 6.16 1.64 1.99 378.00 15.62 3.20
6 14.74 8.48 9.61 8.51 8.42 435.00 17.18 7.69
7 97.19 94.32 97.56 31.27 30.75 4,260.00 86.23 32.16
8 198.21 187.63 186.75 67.09 60.68 8,571.00 173.69 68.64
9 304.16 298.72 294.57 85.57 82.28 12,978.00 288.12 99.98

small for HOCOO format. CFB and HOCFS formats have better robustness against different modes 406
of tensor. CFB has a good compression effect, but the tensor stored by CFB format cannot be par- 407
allel computed based on slices, resulting in parallel efficiency of CFB less than that of HOCFS. 408
Although the tensor stored by HOCSR can be parallel computed based on slices and fibers, the 409
computation efficiency is reduced due to too many empty slices and fibers. 410

7.3 SpTV Test and Performance Evaluation 411

We have performed the following two experiments for the comparative performance evaluation. 412
(1) The SpTV is tested using Algorithms 6 and is compared to that using Algorithms 3, 4, and 5 413

on the CPU. Furthermore, Algorithms 6 is compared to Tensor toolbox [Bader et al. 2015], ParTI 414
[Jiajia Li 2017] lib, and SPLATT [Smith et al. 2015] lib on the CPU. 415

(2) The SpTV is tested using the pipeline mode and the synchronization mode using Algorithms 6 416
on the GPU, and the performance is compared to that of Algorithms 3, 4, and 5 on the GPU. 417
Furthermore, Algorithms 6 is compared to ParTI [Jiajia Li 2017] lib on the GPU. 418

For the 9 test cases, the computation time of the SpTV are shown in Table 7, where the HOCOO, 419
HOCSR, CFB, TTB, ParTI, splatt represent the computation time of the SpTV using Algorithms 3, 420
4, 5, Tensor toolbox lib, ParTI lib, and SPLATT lib on the CPU respectively, and the HOCFS_CSR 421
and HOCFS_ELL represent the computation time of the SpTV using Algorithm 6 based on the 422
CSR and ELL, respectively. It is observed from Table 7 that the performances of HOCFS_CSR 423
and HOCFS_ELL are similar and that the average performance improvement as a percentage for 424
HOCFS_CSR compared with HOCSR is 38.75% on the CPU. 425
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Fig. 14. Performance improvements of the SpTV using Algorithm 6 over Algorithms 3, 4, 5, ParTI, and splatt

on the CPU (unit: %).

For the nine test cases, the performance improvements as a percentage of computation time426
using the HOCFS based on the ELL over the HOCOO, HOCSR, CFB, ParTI, and SPLATT on the427
CPU are shown in Figure 14. The performance improvement as a percentage is calculated by (t1 −428
t2)/t1 × 100, where t2 is the computing time of the SpTV using the HOCFS based on the ELL and429
t1 is that of the HOCOO, HOCSR, CFB, ParTI, or SPLATT. For all test cases, it is observed from430
Figure 14 that the average performance improvements as percentages are 60.39%, 39.42%, 56.22%,431
58.88%, and 7.06% using the HOCFS compared with the HOCOO, HOCSR, and CFB, ParTI, and432
SPLATT, respectively. The performance of HOCFS has obvious advantages compared with Tensor433
toolbox in matlab, because Tensor toolbox uses serial computing mode.434

The process of the SpTV includes three steps, which are the transmission, pretreatment, and435
computation. A sparse tensor X and a vector x must be loaded into the global memory of the GPU436
by the PCIe bus before the SpTV is executed on the GPU, and then a result matrix A is returned437
from the GPU after the SpTV has been executed.438

For the nine test cases, the computation time of SpTV are shown in Table 8, where HOCOO,439
HOCSR, CFB, and ParTI represent the computation time of the SpTV using Algorithms 3, 4, 5, and440
ParTI lib on the GPU, and HOCFS_CSR and HOCFS_ELL represent the computation time of the441
SpTV on the GPU using Algorithm 6 based on CSR and ELL, respectively. CFB-p represents the442
computation time of the CFB format using the pipeline mode and HOCFS-p represents the compu-443
tation time of the HOCFS based on the ELL using the pipeline mode on the CPU-GPU. It is observed444
from Figure 16 that the average performance improvement as a percentage of HOCFS_CSR com-445
pared with HOCSR is 50.82% on the GPU. The HOCFS format based on ELL using the pipeline mode446
is used to test because the performance of HOCFS_ELL is better than that of HOCFS_CSR. It is ob-447
served from Figure 16 that the average performance improvement as a percentage of HOCFS_ELL448
compared with HOCFS_CSR is 10.22% on the GPU. It can align the access to reduce data read and449
write times and improve the whole computing performance on the GPU since the length of fibers450
in the same slice is the same for the HOCFS format using ELL [Li et al. 2015].451
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Table 8. Computation Time of the SpTV Using Algorithms 3, 4, 5, 6, and

ParTI on the GPU (unit: milliseconds)

No. HOCOO HOCSR CFB CFB-p HOCFS_CSR HOCFS_ELL HOCFS-p ParTI
1 9.31 7.69 8.80 8.13 3.07 2.37 2.30 5.27
2 4.82 2.57 3.67 2.79 1.43 1.42 1.36 1.39
3 5.42 2.78 3.27 2.67 2.44 1.97 1.79 2.63
4 2.42 1.75 2.47 2.18 0.98 0.89 0.88 1.11
5 2.56 2.58 3.71 3.36 1.88 1.67 1.59 5.10
6 7.74 7.74 8.03 7.41 3.46 2.86 2.53 7.16
7 92.34 87.05 92.37 86.18 25.15 23.43 21.36 61.90
8 176.93 168.51 165.87 151.04 51.29 49.81 44.23 128.24
9 287.59 280.95 281.23 254.56 74.49 72.43 63.74 187.32

Fig. 15. Performance improvements of the SpTV using Algorithm 6 over Algorithms 3, 4, 5, and ParTI on the

GPU (unit: %).

Due to the irregularity of slices of the sparse tensor, the utilization of memory bandwidth is low 452
for SpTV. Maintaining the continuity of data addresses accessed by multiple threads can improve 453
the bandwidth utilization of memory for parallel algorithms. The tensor is divided into slices by 454
HOCFS format and stored in CSR or ELL compression format. For CSR format, each thread usually 455
calculates a row of data independently. Because the data length of different rows may not be the 456
same, data accessed simultaneously by multiple threads may not be in a continuous address space. 457
The data length of each row of slices stored in ELL format is the same, and the data accessed by 458
multiple threads will basically be in a relatively continuous address space. Therefore, the band- 459
width utilization of ELL format is generally better than that of CSR format. It is observed from the 460
experimental results that the performance of SpTV based on HOCFS_ELL format is better than 461
that of HOCFS_CSR format. 462

For the nine test cases, the performance improvements as a percentage of computation time us- 463
ing HOCFS over HOCOO, HOCSR, and CFB on the GPU are shown in Figure 15. The performance 464
improvement as a percentage is calculated by (t1 − t2)/t1 × 100, where t2 is the computation time 465
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Fig. 16. Performance improvements of the SpTV using the HOCFS base on the CSR over the HOCSR on the

CPU and GPU.

Fig. 17. Performance improvements of the CFB and HOCFS format using the pipeline mode.

of the SpTV using the HOCFS and t1 is that of the HOCOO, HOCSR, CFB, or ParTI. For all test466
cases, it is observed from Figure 15 that the average performance improvements as a percentage467
are 65.65%, 56.43%, 64.01%, and 44.72% using the HOCFS compared with the HOCOO, HOCSR,468
CFB, and ParTI, respectively.469

The nine tensors are tested using the CFB and HOCFS format on the pipelined mode and the syn-470
chronization mode, respectively. The tasks between different streams are executed by out-of-order471
in the GPU. The computed results must be synchronized, thus leading to an overall performance472
deterioration for a tensor if the slices or buckets partitioned from the tensor are assigned into473
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different streams to be processed. If a stream is used only in the pipeline, the efficiency of the 474
pipeline is not high since the sizes of the slices or buckets may have big deviation, thus leading to 475
performance degradation according to the equation for Tp . However, the polling is costly for the 476
streams if there are many streams in CUDA. We find that the test using 3–5 streams has better 477
performance for the tested cases. We find that the transmission is the bottleneck for the SpTV 478
on the GPU. Therefore, the transmission time can be hidden to improve the performance when a 479
tensor is partitioned and processed by pipeline. 480

The performance improvements of the pipelined mode over the synchronization mode on the 481
CPU-GPU are shown in Figure 17, where CFB and HOCFS represent the performance improve- 482
ments of the CFB and HOCFS formats, respectively. The performance improvements are calculated 483
by (t1 − t2)/t1 × 100, where t2 is the computation time of the SpTV using the pipelined mode and 484
t1 is that of the synchronization mode. For all test cases, it is observed from Figure 17 that the av- 485
erage performance improvements in percentages are 11.56% and 7.48% using the pipelined mode 486
compared with the synchronization mode for the CFB and HOCFS formats, respectively. 487

8 CONCLUSION 488

In this article, we analyze and design a compressed storage strategy for large-scale sparse ten- 489
sors and propose a layered compression format (HOCFS) based on slices, which can greatly im- 490
prove the compression ratio of sparse tensors. A pipeline parallel algorithm for the SpTV based 491
on the compression format (HOCFS) is designed to greatly improve its computing performance 492
on the GPU. In future work, we will address tensor decomposition based on the current SpTV 493
method. 494
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