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A B S T R A C T

Graph contrastive learning has been successfully applied in text classification due to its remarkable ability
for self-supervised node representation learning. However, explicit graph augmentations may lead to a loss
of semantics in the contrastive views. Secondly, existing methods tend to overlook edge features and the
varying significance of node features during multi-graph learning. Moreover, the contrastive loss suffer from
false negatives. To address these limitations, we propose a novel method of contrastive multi-graph learning
with neighbor hierarchical sifting for semi-supervised text classification, namely ConNHS. Specifically, we
exploit core features to form a multi-relational text graph, enhancing semantic connections among texts. By
separating text graphs, we provide diverse views for contrastive learning. Our approach ensures optimal
preservation of the graph information, minimizing data loss and distortion. Then, we separately execute
relation-aware propagation and cross-graph attention propagation, which effectively leverages the varying
correlations between nodes and edge features while harmonizing the information fusion across graphs.
Subsequently, we present the neighbor hierarchical sifting loss (NHS) to refine the negative selection. For one
thing, following the homophily assumption, NHS masks first-order neighbors of the anchor and positives from
being negatives. For another, NHS excludes the high-order neighbors analogous to the anchor based on their
similarities. Consequently, it effectively reduces the occurrence of false negatives, preventing the expansion of
the distance between similar samples in the embedding space. Our experiments on ThuCNews, SogouNews,
20 Newsgroups, and Ohsumed datasets achieved 95.86%, 97.52%, 87.43%, and 70.65%, which demonstrates
competitive results in semi-supervised text classification.
1. Introduction

Text classification is a crucial task in natural language processing,
with a wide range of applications, including sentiment analysis, news
categorization, question-answering systems, and spam filtering. Tradi-
tional deep learning methods (Chang et al., 2020; Lai et al., 2015; Shi
et al., 2024; Tai et al., 2015) approach text as a complete whole and
capture features from locally continuous word sequences, achieving
significant strides. Recent advances in graph-based methods (Linmei
et al., 2019; Piao et al., 2022; Yang, Miao, et al., 2022; Yao et al., 2019)
have ushered in a new era of text classification, leveraging the ability
of Graph Neural Networks in generating node representations to drive
competitive performance.

The first step for graph-based text classification tasks is to break
the independence of different data samples by constructing graph
topologies for unconnected free texts. The second step involves lever-
aging the ability of graph neural networks to capture both global and
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local information to learn text representations. Specifically, existing
methods (Lei et al., 2021; Lin et al., 2021; Yao et al., 2019; Zhang
& Zhang, 2020) treat words and documents as nodes and construct
a heterogeneous text graph based on the point-wise mutual informa-
tion (PMI) relationships between words and the TF-IDF relationships
between words and documents. Despite such methods having achieved
promising results, they neglect the rich and deep semantics, which
is pivotal for capturing the core intent of the text. To account for
deep textual semantics, some studies (Li et al., 2021; Liu et al., 2020)
propose to construct multi-typed text graphs (i.e., semantic, syntactic,
and sequential contexts). TensorGCN (Liu et al., 2020) executes GCN
propagation within different text graphs separately to aggregate neigh-
boring information of nodes. Subsequently, to integrate across-graph
features, a virtual graph for nodes at the same positions is constructed
to perform inter-graph propagation. TextGTL (Li et al., 2021) designs a
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Expert Systems With Applications 266 (2025) 125952 
two-layer parallel GCN to learn document node representations across
graphs. Specifically, it independently aggregates information over mul-
iple graphs in the first layer. Then, it performs average pooling on the

outputs of the different graphs from the first layer to serve as the input
or the second layer. However, these methods have some drawbacks.
irstly, they perform average pooling aggregation on neighboring nodes
uring intra-graph propagation, neglecting the edge features and the
arying relevance between nodes. Secondly, they assign equal weights
o different features during the inter-graph propagation, ignoring the
ntrinsic differences inherent in these features. Overall, the current
orks neither construct relationships between texts using rich seman-

ics nor propose an effective method for node representation learning
cross multiple graphs. These shortcomings indicate that exploring a
ext classification method capable of enhancing semantic connections
etween texts and improving the multi-graph learning process remains
n unresolved challenge.

The emergence of a large amount of unlabeled text has made semi-
upervised text classification extremely challenging. Recently, some
tudies (Li et al., 2023; Sun et al., 2022; Zhao & Song, 2023) have

leveraged the self-supervised representation learning capabilities of
graph contrastive learning (GCL) to mitigate the issue of label scarcity
in text classification. However, these methods rely on explicit graph
augmentation to obtain contrastive views. This not only requires prior
domain knowledge or trial and error to determine optimal graph aug-
mentation parameters but also may fail to preserve the integrity of
task-relevant information through augmentation. Specifically, common
augmentation techniques like randomly deleting document nodes or
key edges (Lan et al., 2023) can significantly alter the meaning of
the text. This reduces the consistency of learnable representations
between contrastive views, thereby misleading the learning process
of graph neural networks. Moreover, the fundamental goal of GCL is
to design an appropriate contrastive loss function to cluster similar
nodes while separating dissimilar nodes. However, current methods
ike CGA2TC (Yang, Miao, et al., 2022) typically employ the NT-Xent

contrastive loss function, which is widely used in GCL. Such contrastive
loss function considers nodes at the same position as positive samples
while treating the remaining nodes within and across views as negative
amples. This inevitably leads to selecting document nodes with similar
emantics as negative samples and results in similar nodes being far
part in the latent space, which contradicts the fundamental goal of
CL. Existing GCL-based text classification methods result in incom-
lete information due to their dependence on graph augmentation
nd produce false negatives on the ground that the use of common
ontrastive loss. These shortcomings underscore the necessity of de-
eloping a novel augmentation-free contrastive learning framework,
imed at overcoming information loss and false negative issues.

To tackle the aforementioned challenges, we propose a novel
ethod of Contrastive multi-graph learning with Neighbor Hierarchical

ifting for semi-supervised text classification, named ConNHS. The pro-
osed method eliminates the need for explicit graph augmentation and
ntroduces a novel contrastive loss function to optimize representation
earning. Firstly, we extract titles, keywords, and events to construct a
ulti-relational text graph that can represent more latent semantic con-

nections. Secondly, to avoid the loss of structural information caused
by graph augmentation, we separate the multi-relational text graph
to derive semantic subgraphs (corresponding to titles, keywords, and
events). This provides multiple views for the graph contrastive learning
stage. Subsequently, we propose a relation-aware graph convolutional
network (RW-GCN) to perform intra-graph propagation within each
semantic subgraph, which considers the varying correlations between
document nodes and incorporates edge feature information. Moreover,
considering the differences among semantic subgraphs, we design a
cross-graph attention network (CGAN) for inter-graph propagation to
obtain fused node representations, effectively harmonizing the feature
information from different subgraphs. Additionally, we present the
neighbor hierarchical sifting loss (NHS) to circumvent the false negative
2 
pairs that could undermine contrastive learning efforts. Specifically,
NHS masks the first-order neighbors of the anchor, as the construction
of the multi-relational text graph is dependent on the homophily
assumption, i.e., connected document nodes tend to share the same
label. Furthermore, NHS draws signals from the similarity score matrix
of the fused node representations, excluding high-order neighbors with
high similarity to the anchor from being chosen as negatives. This
dual approach, rooted in graph structure and node attributes, prevents
similar nodes from being distanced in the latent space. Finally, we input
the fused node representations obtained from multiple subgraphs into
a logistic regression classifier to achieve the final classification results.

The main contributions of this article can be summarized as follows:

• We harness core features to forge a multi-relational text graph
that contains multiple semantic connections among documents.
Meanwhile, we propose RW-GCN to leverage edge features and
capture varying correlations between nodes. We also design CGAN
to coordinate the fusion of feature information across graphs.

• We propose a contrastive learning method for semi-supervised
text classification that does not require graph augmentation. Our
innovative contrastive loss function effectively optimizes nega-
tive selection and avoids the occurrence of false negatives, thus
providing clearer clustering boundaries for downstream text clas-
sification.

• We test the proposed method on four real-world datasets (includ-
ing Thucnews, Sogounews, 20NG, and Ohsumed), and the results
demonstrate the effectiveness of ConNHS for semi-supervised text
classification tasks.

The rest of this paper is organized as follows: Section 2 introduces
elated work, Section 3 presents the detailed method, Section 4 gives

the experimental setup and results, and finally, Section 5 gives a brief
conclusion.

2. Related work

2.1. Deep learning for text classification

In the early stages of text classification, methods primarily focused
on machine learning-based techniques, heavily relying on feature engi-
eering dependent on specific domain knowledge and experience. With

the advent of deep learning models, the need for feature engineering
has significantly been alleviated, as these models possess the capability
to learn textual features automatically. Specifically, TextCNN (Kim,
2014) is the first attempt to transfer the CNN model, widely applied
n computer vision, to text classification tasks. It extracts local features
sing multiple filters, but this method struggles to capture long-range
ependencies in text sequences effectively. RNN-based methods, such
s TopicRNN (Dieng et al., 2016) and RNN-Capsule (Wang et al.,

2018), can address the long-term dependency problem and learn more
omprehensive text representations, but they may encounter issues like
radient explosion or vanishing gradients. In recent years, Transformer-
ased pre-trained models (Kenton & Toutanova, 2019; Liu et al., 2019;

Shi et al., 2024), with their exceptional semantic understanding capa-
bilities, have been widely applied in text classification tasks, achieving
significant results. Despite the remarkable success of sequence-based
deep learning models in text classification tasks, they still exhibit
certain inherent limitations. For example, they primarily focus on
token-level information processing, potentially overlooking the com-
plex intertextual relationships and higher-level semantic structures.
These limitations highlight the necessity of exploring text classification
methods with enhanced semantic understanding capabilities to better
address complex classification challenges.



W. Ai et al.

p

G
a
w
m
o

c
c
m
L
e
t
(

a
H
s
a
A
f
d
f
r

f
i

h
e
c
d

t
g

p

n
A
w
p
a
C
w
t
s
t
t
m
r
s
m

Expert Systems With Applications 266 (2025) 125952 
2.2. GNN for text classification

Graph Neural Networks (GNN) are deep learning models designed
for graph-structured data. They are widely used in fields such as social
network analysis, recommendation systems, and molecular chemistry.
GNNs leverage the information from nodes and edges in a graph to ef-
fectively represent and learn from graph data. The Graph Convolutional
Network (GCN) (Kipf & Welling, 2016) model achieves good results by
erforming spectral convolutions on node features, making it widely

applicable for tasks like node classification and graph embedding. The
raph Attention Network (GAT) (Veličković et al., 2018) introduces an
ttention mechanism that allows the model to assign different weights
hen aggregating information from neighboring nodes, enhancing the
odel’s expressive power and flexibility. With the rapid development

f graph neural networks, a variety of graph-based text classification
models have also emerged.

These models can be broadly categorized into document-level and
orpus-level types. Document-level methods treat words as nodes and
onstruct an independent text graph for each document, effectively
ining contextually relevant word relationships. For example, Text-

evel-GNN (Huang et al., 2019) uses a sliding window approach,
mploying a limited number of nodes and edges in each text graph
o reduce memory and computational overhead. Meanwhile, TextFCG
Wang et al., 2023) builds a single graph for all words in a text,

marking edges with various contextual relationships, and adopts GNN
and GRU for text classification. On the other hand, corpus-level meth-
ods capture the global structural information of a corpus by con-
structing one or more graphs containing both word and document
nodes, which include various relationships like word-word and word-
document. TextGCN (Yao et al., 2019) constructs the entire corpus as
a heterogeneous graph, using word nodes as intermediaries for infor-
mation transfer and facilitating inter-document information exchange
through a two-layer GCN. TensorGCN (Liu et al., 2020) constructs
a text graph tensor to capture semantic, syntactic, and sequential
contextual information and uses both intra-graph and inter-graph prop-
gation to harmonize heterogeneous information from multiple graphs.
owever, these methods often fall short in fully capturing textual

emantic information when constructing graph structures, leading to
n inadequate understanding of the deeper meanings within the text.
dditionally, when employing multi-type text graphs, these approaches

ace challenges in learning both intra and inter graphs due to feature
iscrepancies between different types of nodes. This inconsistency in
eatures can hinder the model to accurately grasp global semantic
elationships and effectively propagate information.

2.3. Graph contrastive learning

Graph contrastive learning (Mo et al., 2022; Xia et al., 2022; Xu
et al., 2021; Yang, Chen, et al., 2022) is a technique for extracting
eatures efficiently using unlabeled data. Its core idea is to generate pos-
tive and negative samples by transforming the original data, thereby

reducing the distance between similar data and increasing the distance
between dissimilar data in the feature space, achieving a clustering-
like effect. The process of graph contrastive learning mainly covers
three key stages. The first is the graph data augmentation stage, which
is crucial to ensure the difference and diversity between views and
as a significant impact on the final model’s performance. Second is
mbedding learning, which involves encoding node samples to generate
ontrastive samples. Finally, the calculation of contrastive loss includes
efining positive and negative sample pairs, thereby promoting the

model to learn more discriminative node features.
Recently, in the field of graph contrastive learning, numerous

efficient methods and applications have gradually emerged. For in-
stance, MVGRL (Hassani & Khasahmadi, 2020) employs graph diffusion
echniques for graph-level data augmentation on the original input
raph, thereby obtaining views containing richer global information.
3 
GraphCL (You et al., 2020), on the other hand, explores various
graph augmentation strategies to address the heterogeneity issue in
graph data. Simultaneously, GCA (Zhu et al., 2021) introduces an
adaptive data augmentation scheme, moving away from the traditional
ractice of uniformly dropping edges or perturbing features. Instead, it

emphasizes the enhancement of essential nodes and edges and the dis-
ruption of node features to obtain more effective views. GCNSS (Miao
et al., 2022) effectively mitigates the false negative pairs problem in
graph contrastive learning by utilizing label information. Additionally,
NCLA (Shen et al., 2023) proposes a new learnable graph augmentation
strategy, generating higher-quality contrastive views. For GCL-based
text classification methods, ConKGNN (Lan et al., 2023) constructs a
unified graph that includes text and related knowledge graph (KG)
information and introduces contrastive learning to accomplish the
text classification task. However, the random graph augmentation it
utilizes can lead to unpredictable information loss. TextGCL (Zhao &
Song, 2023) simultaneously trains GCN and BERT, utilizing contrastive
learning loss to learn precise text representations. It lacks a discerning
mechanism in the selection of negative samples, inevitably introducing
false negatives.

3. Proposed method

In this section, we first provide a brief overview of our proposed
ConNHS method, followed by a detailed explanation of its constituent
modules. The overall process of ConNHS is illustrated in Fig. 1. As
shown, our proposed ConNHS comprises five main stages: (1) Feature
extraction: For semantically enriched texts, we start from the seman-
tic level by extracting the titles, keywords, and events of the texts.
These core features are used as the basis for constructing the text
graph. (2) Multi-relational text graph construction: Inspired by the
intrinsic logic that humans use to classify texts, we construct multiple
document-to-document relationships by calculating the similarity of
core features in the embedding space. The constructed text graph
contains more latent semantic connections between document nodes.
(3) Multi-graph learning: To avoid explicit graph augmentation, we
separate the multi-relational text graph into different semantic sub-
graphs. We propose a relation-aware graph convolutional network to
perform intra-graph propagation within each subgraph. This method
fully considers edge features and the varying correlations between
odes, thus aggregating more significant neighborhood information.
dditionally, given the differences in node features across subgraphs,
e design a cross-graph attention network. It facilitates inter-graph
ropagation to obtain the fused text representations, thereby enabling
 comprehensive and nuanced understanding of textual congruence. (4)
ontrastive learning with NHS: To acquire precise text representations,
e apply a novel graph contrastive learning methodology for model

raining. By presenting an innovative contrastive loss to refine negative
election, the ubiquitous quandary of false negatives in GCL is substan-
ially mitigated, thereby enhancing the fidelity and robustness of the
ext representations. (5) Label prediction: We leverage the pre-trained
odel to obtain fused text representation and input them into a logistic

egression classifier to predict the label of each text. In the subsequent
ections of the paper, we will describe each component of the ConNHS
odel in detail.

3.1. Feature extraction

The fundamental logical judgment for humans to ascertain the
domain of a text is recognizing the features that can represent the
core intention of the text. For instance, when the word ‘‘goalkeeper’’
is present in two pieces of news, our cognitive systems are inclined to
categorize both texts under the sports domain. The inclination is rooted
in the understanding that texts sharing similar snippets of information
or vocabulary are likely to emanate from the same sphere. Drawing

inspiration from this human-centric logic for classifying texts, we aim
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Fig. 1. Flow chart of the proposed ConNHS. Initially, we construct a multi-relational text graph by leveraging inherent core features (titles, keywords, events) to establish semantic
connections among texts while encoding textual content as initial node representations. Subsequently, relational separation yields distinct subgraphs, upon which intra-graph and
inter-graph propagation are performed to obtain contrastive samples and similarity score matrix. During Contrastive learning with NHS, negative selection is optimized to encourage
more explicit cluster boundaries (minimizing intra-class distances while maximizing inter-class distances; distinct colors indicate different clusters). Ultimately, predicted labels are
assigned to document nodes via a logical classifier.
to extract various core features to forge links between texts that are
otherwise unconnected.

Title: Serving as the introductory sentence of an article, titles
typically encapsulate information pertinent to the topic of text, pro-
viding a high-level synopsis of the content. Fundamentally, the title is
constructed as the first sentence imbued with comprehensive semantic
information, necessitating no further processing. The titles set can be
formalized as 𝑇 𝑖𝑡𝑙 𝑒 = {𝑡1, 𝑡2,… , 𝑡𝑛}, where 𝑡𝑖 is the title of the text 𝑖.

Event: Moreover, we incorporate the concept of events to achieve a
more sophisticated level of textual representation. Typically, an event
is characterized as an action or condition that has transpired or is
currently happening. Utilizing events as a means of text representation
is a widely acknowledged approach, offering a clearer conveyance of
textual information than mere sentences or phrases. Therefore, con-
sidering that events are mainly composed of objects and the actions
they emit, we introduce the definition of event (Zhang et al., 2022) as
follows:

𝐸 𝑣𝑒𝑛𝑡 = (𝑊 , 𝐶 , 𝑂), (1)

where 𝑊 represents the action that occurs during the event, 𝐶 is
the factor that causes the event to happen, and 𝑂 is another object
that is involved in the event. The main task of event extraction is
identifying and extracting the subject, action, and object. We choose
DDparser (Zhang et al., 2020) and Stanza (Zhang et al., 2021) as extrac-
tion tools to extract events from Chinese and English texts, respectively.
The events can be formalized as 𝐸 𝑣𝑒𝑛𝑡𝑆 𝑒𝑡 = {𝐸1, 𝐸2,… , 𝐸𝑛}, where 𝐸𝑖
is the set of events extracted from the text 𝑖.

Keyword: Events distil the essence of a text under the assumption
that its semantic core is anchored in specific paragraphs or sentences.
Nonetheless, in instances where the content is more scattered, partic-
ularly in lengthier texts, the event-centric approach might fall short of
capturing textual semantics at the granularity of individual words. Con-
sequently, to address this granularity gap and ensure a comprehensive
understanding of the textual thematic breadth, we establish semantic
relationships between texts based on keywords at a more fine-grained
level. We choose KeyBert1 as the extraction tool, and the extracted
keywords are formalized as 𝐾 𝑒𝑦𝑤𝑜𝑟𝑑 𝑆 𝑒𝑡 = {𝐾1, 𝐾2,… , 𝐾𝑛}, where 𝐾𝑖
is the set of keywords extracted from the text 𝑖.

The core features delineated above and text contents are transmuted
into a computable format via a text embedding model, with the pre-
eminent choice being models pre-trained on extensive corpora. The
preference is rooted in two fundamental advantages: firstly, pre-trained
models are imbued with a robust knowledge base, endowing them with
superior semantic comprehension capabilities; secondly, these models
exhibit context sensitivity, which is crucial for adeptly navigating the

1 https://github.com/MaartenGr/KeyBERT
4 
complexities of homographs—words identical in spelling but divergent
in meaning. With the aim of precisely representing the core features and
textual contents, this study will employ a text encoder that is comprised
of the LangChain2 framework and BGE-M3 (Chen et al., 2024), a variant
version of Bert. This combination is tasked with converting each title,
keyword, and event into vector representations, which are instrumental
in constructing a multi-relational text graph and laying the groundwork
for intricate semantic relationships between texts.

3.2. Multi-relational text graph construction

A common graph construction strategy for graph-based text classi-
fication methods (Yao et al., 2019) involves analyzing the PMI rela-
tionships between words and the TF-IDF relationships between words
and documents. This approach, however, overlooks the deep semantic
information that can represent the underlying relationships within
the text. Therefore, we calculate the semantic similarity between the
extracted features to facilitate the construction of multiple semantic
relationships between document nodes, corresponding to title relation-
ships, keyword relationships, and event relationships. Based on the rich
features inherent in the text, the constructed text graph can maximize
the connections between similar documents. Formally, considering the
multi-relational text graph as: 𝐺 = {𝑉 , 𝐴, 𝑅} contains document nodes
and relationship collection, where 𝑉 = {𝑣1, 𝑣2,… , 𝑣𝑛}, 𝑣𝑖 represents
the document node 𝑖, and 𝑛 represents the number of document nodes.
Moreover, 𝐴 is the adjacency matrix of the text graph. The edge sets
are represented by 𝑅 = {𝑇 , 𝐾 , 𝐸}, corresponding to the title, keyword,
and event relationship.

Node representation: The majority of texts are interspersed with
information unrelated to the main topic, underscoring the necessity for
meticulous preprocessing of text content within the source space. For
example, the primary body of news articles often encompasses author
signatures, names of news agencies, and additional elements that are
tangential to the core intention of the article. The process of obtaining
the initial node representation is as follows:

𝑚𝑖 = 𝑇 𝑒𝑥𝑡𝐸 𝑛𝑐 𝑜𝑑 𝑒𝑟(𝑐𝑖), (2)

where 𝑐𝑖 is the preprocessed content of text 𝑖, 𝑚𝑖 ∈ R𝑑 , and 𝑑 is the
dimension of node representation.

Title relation: Titles serve as succinct summaries of textual content
and are pivotal in the classification of texts. It is observed that texts
belonging to the same category often exhibit a notable similarity in
their titles. To capitalize on this observation, we introduce a scoring
mechanism designed to quantify the similarity between titles. The

2 https://github.com/langchain-ai/langchain

https://github.com/MaartenGr/KeyBERT
https://github.com/langchain-ai/langchain
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quantification of the semantic similarity between titles 𝑡𝑖 and 𝑡𝑗 can
be expressed in the following manner:

𝑆𝑡
𝑖𝑗 = 𝑆 𝑖𝑚(𝑡𝑖, 𝑡𝑗 ), (3)

where 𝑆 𝑖𝑚(⋅, ⋅) denotes the cosine similarity measure, which quantifies
he magnitude of the angle formed by two vector representations 𝑋 and
𝑌 in the latent space. It can be formulated as:

𝑆 𝑖𝑚(𝑋 , 𝑌 ) =
∑𝑛

𝑖=1(𝑥𝑖 ⋅ 𝑦𝑖)

(
∑𝑛

𝑖=1 𝑥
2
𝑖 )

1
2 ⋅ (

∑𝑛
𝑖=1 𝑦

2
𝑖 )

1
2

, (4)

for the title relation between text 𝑖 and text 𝑗, we define it as follows:

𝑅𝑡
𝑖𝑗 =

{

1 if 𝑆𝑡
𝑖𝑗 > 𝜌𝑡,

0 otherwise,
(5)

if the quantified semantic similarity 𝑆𝑡
𝑖𝑗 between titles 𝑡𝑖 and 𝑡𝑗 tran-

cend the predefined threshold 𝜌𝑡, the title relation 𝑅𝑡
𝑖𝑗 shall be estab-

ished.
Event relation: Events describe the core intent of a document and

hus can serve as a significant feature in constructing the potential
connections of texts. Different documents often contain multiple events.
Two events sharing a similarity score exceeding the pre-determined
hreshold 𝜌𝑒 are considered as a matching event pair. For text 𝑖 and text
, we quantify the relatedness of their constituent events as follows:

𝐿𝑒
𝑖𝑗 = {(𝑒𝑎, 𝑒𝑏)|𝑒𝑎 ∈ 𝐸𝑖, 𝑒𝑏 ∈ 𝐸𝑗 , 𝑆 𝑖𝑚(𝑒𝑎, 𝑒𝑏) > 𝜌𝑒}, (6)

where 𝐿𝑒
𝑖𝑗 is the list of matching event pair.

𝑅𝑒
𝑖𝑗 =

{

1 if 𝐶 𝑜𝑢𝑛𝑡𝑒𝑟(𝐿𝑒
𝑖𝑗 ) > 𝛾𝑒,

0 otherwise,
(7)

where 𝐶 𝑜𝑢𝑛𝑡𝑒𝑟(⋅) is a utility function that serves to count the elements
within a list. If the matching event pairs shared by text 𝑖 and text 𝑗
xceed the minimum association coefficient 𝛾𝑒, the event relation 𝑅𝑒

𝑖𝑗
will be established.

Keyword relation: Keywords are vital in understanding the theme
f a text, offering a new perspective for establishing semantic relations

between text nodes. The keywords exhibiting a similarity score that
surpasses the predetermined threshold 𝜌𝑘 are deemed to be a matching
keyword pair. The procedure for establishing keyword relation bears a
resemblance to that for event relation. It can be formulated as follows:

𝐿𝑘
𝑖𝑗 = {(𝑘𝑎, 𝑘𝑏)|𝑘𝑎 ∈ 𝐾𝑖, 𝑘𝑏 ∈ 𝐾𝑗 , 𝑆 𝑖𝑚(𝑘𝑎, 𝑘𝑏) > 𝜌𝑘}, (8)

where 𝐿𝑘
𝑖𝑗 is the list of matching keyword pair.

𝑅𝑘
𝑖𝑗 =

{

1 if 𝐶 𝑜𝑢𝑛𝑡𝑒𝑟(𝐿𝑘
𝑖𝑗 ) > 𝛾𝑘,

0 otherwise,
(9)

if the number of matching keyword pairs is greater than the minimum
association coefficient 𝛾𝑘, the keyword relation 𝑅𝑘

𝑖𝑗 shall be instantiated.
Titles, keywords, and events serve as foundational elements in

constructing connections between texts, each offering a unique per-
spective on the features that define their semantic relationships. The

ultifaceted approach enables texts that are potentially analogous to
share information across their respective nodes, thereby facilitating a
more enriched and nuanced text representation learning.

3.3. Multi-graph learning

Recent studies have proposed constructing multi-typed text graphs
or text classification tasks, but they have limitations during multi-
raph learning. Firstly, they discount the edge features and use average
ooling to aggregate neighborhood information during the intra-graph
ropagation. This aggregation method assumes that all neighboring

document nodes are equally important, disregarding the diversity of
ocuments. Secondly, they overlook the differences in node features
cross different text graphs during inter-graph propagation.

To maintain the integrity of task-relevant graph structural informa-
ion while providing diverse views for graph contrastive learning, a
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crucial step is separating the multi-relational text graph according to
the relationship type, leading to the creation of semantic subgraphs, as
illustrated in Fig. 1. After that, we perform intra-graph and inter-graph
propagation on these derived semantic subgraphs.

Intra-graph propagation: Rather than conventional GCN (Kipf &
Welling, 2016), we propose a relation-aware graph convolution net-
work which consists of a relation-aware aggregation operator 𝑔(⋅; 𝜃𝑔)
nd a transformation operator 𝑓 (⋅; 𝜃𝑓 ). In detail, let 𝑥𝑖 denote the
eature representation of node 𝑣𝑖 at the 𝑙th layer, the aggregation
peration can be formally expressed as follows:

𝑔(⋅; 𝜃𝑔) =
∑

𝑥𝑙𝑗∈ (𝑥𝑙𝑖 )

ℎ(𝑥𝑙𝑗 − 𝑥𝑙𝑗 ; 𝜃ℎ) ⋅ (𝑥
𝑙
𝑗 − 𝑥𝑙𝑗 ), (10)

where ℎ(⋅; 𝜃ℎ) represents a learnable function parameterized by 𝜃ℎ,
whose purpose is to ascertain the important weights quantifying the
orrelation between document nodes. The instantiation of ℎ(⋅; 𝜃ℎ) is

achieved through a fully connected layer followed by a sigmoid acti-
vation. Let  (𝑥𝑙𝑖) denote the feature set of neighboring nodes 𝑥𝑙𝑖 at the
𝑙th layer, wherein 𝑥𝑙𝑗 corresponds to the feature representation of the
neighbor node 𝑣𝑗 . Notably, the edges 𝑥𝑙𝑗 ∈  (𝑥𝑙𝑖), (𝑥

𝑙
𝑗 − 𝑥𝑙𝑖) connecting

he centroid node and its neighboring nodes serve as input to the
ggregation operator. In other words, ℎ(𝑥𝑙𝑗−𝑥

𝑙
𝑖; 𝜃ℎ) can be interpreted as

the importance weights characterizing the relation between 𝑥𝑙𝑗 and 𝑥𝑙𝑖.
Furthermore, we aggregate all the weighted correlation edge features
as the aggregating features in the graph, consequently capturing the
latent relations among diverse document nodes. Concerning the trans-
formation operator 𝑓 (⋅; 𝜃𝑓 ), we concatenate the node feature 𝑥𝑙𝑖 with
the aggregating features obtained from 𝑔(⋅; 𝜃𝑔) as its input. The updated
feature 𝑥𝑙+1𝑖 of node 𝑣𝑖 by the RW-GCN at the (𝑙 + 1)𝑡ℎ layer can be
formally defined as follows:

𝑥𝑙+1𝑖 = 𝑓 ([𝑥𝑙𝑖 , 𝑔(⋅; 𝜃𝑔)]; 𝜃𝑓 ), (11)

where 𝑥𝑙+1𝑖 ∈ R2×𝑑 , [⋅, ⋅] is a concatenation operation. 𝜃𝑓 is the indepen-
ent learnable weight matrix to transform the input features.

Within the realm of graph contrastive learning, a conventional
trategy involves augmenting the input graph to generate two distinct
iews, followed by the extraction of feature representations from these

views using a graph encoder. This methodology, reliant on graph aug-
mentation, presents two primary challenges: Firstly, prevalent graph
augmentation techniques, such as edge dropping and attribute masking,
risk compromising the structural integrity and semantic content of the
graph. For example, the elimination of critical edges could adversely
affect the learning of node representations. Secondly, the application
of graph augmentation techniques typically necessitates iterative fine-
tuning to identify optimal parameters, a process that can be both
time-consuming and imprecise. In response to these issues, our method
obviates the necessity for intricate graph augmentation procedures.
Instead, we employ relation-aware GCN to process semantic subgraphs
which inherently possess distinct adjacencies. This approach enables
the derivation of varied and diverse views without the introduction of
graph augmentations, thereby preserving the original graph structural
and semantic integrity.

Intra-graph propagation: After intra-graph propagation, each doc-
ument node learns unique feature information under different semantic
relationships. Therefore, we design a cross-graph attention network to
coordinate and integrate diverse feature information. The process of
aggregating document node representations from different subgraphs
can be formalized as follows:

𝛼𝑟 = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(𝑘𝑇 𝑡𝑎𝑛ℎ(𝑝(𝑥𝑖,𝑟; 𝜃𝑝))), (12)

where 𝑥𝑖,𝑟 is the representation of the document node 𝑣𝑖 at the relation 𝑟
ubgraph, and 𝛼𝑟 is the attention weight. 𝑝(⋅; 𝜃𝑝) is a feedforward neural
etwork parameterized by 𝜃𝑝. Then, we use the computed attention
eights to perform cross-graph information propagation. The process

s as follows:
′ 𝑅
𝐻𝑖 = (⊗{𝛼𝑟 ⋅ 𝑥𝑖,𝑟}|𝑟=1), (13)
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Fig. 2. Definition of negative pairs in different contrastive losses. Fig. 2 showcases different negative selection definition strategies. Specifically, both NT-Xent and NHS recognize
nodes positioned identically across views as positive samples for the anchor. However, NT-Xent designates all remaining nodes as negatives. In contrast, NHS masks first-order
neighbors of the anchor document node and the positive nodes based on the graph homophily principle, and also, based on the similarity score matrix of fused node representations,
as shown in (b), it excludes those high-order neighbors that exhibit significant similarity to the anchor. To facilitate a more straightforward interpretation, sifted hierarchical neighbors
that will not be included in the contrastive learning process are indicated with specific colors in (b).
l

where ⊗ is the sum operator, and 𝑅 = {𝑡𝑖𝑡𝑙 𝑒, 𝑘𝑒𝑦𝑤𝑜𝑟𝑑 , 𝑒𝑣𝑒𝑛𝑡} is the set
of semantic relations. 𝐻 ′

𝑖 is the fused representation of the document
ode 𝑣𝑖.
Projection mapping: To mitigate the impact of irrelevant features

cross contrasting views while preserving the most salient informa-
ion, certain graph contrastive learning approaches advocate mapping

node embeddings onto a specific latent space. Consistent with prior
approaches, we employ a projection head 𝑞(⋅; 𝜃𝑞) to transform the
node embedding representation into a tailored latent space prior to
computing the contrastive loss objective. In this paper, the mapping
process can be formulated as follows:

𝑢𝑖 = 𝑞(ℎ𝑖; 𝜃𝑞), (14)

where ℎ𝑖 is the learned representation of document node 𝑣𝑖, and 𝑢𝑖 is
the mapping result, which will be regarded as contrastive node samples
for contrastive learning.

3.4. Contrastive learning with NHS

A key step in graph contrastive learning is designing an appropri-
te contrastive loss function to cluster similar nodes while separating

dissimilar nodes. In traditional contrastive learning paradigms, the
contrastive loss NT-Xent typically selects nodes at corresponding posi-
ions across views as positive samples for the anchor node. Conversely,
ll remaining nodes, irrespective of their positioning within or across
iews, are designated as negative samples. However, such negative
election that NT-Xent adopts inevitably induces false negative pairs.
t inadvertently broadens the gap between nodes that are inherently
imilar, thereby contravening the foundational goal of GCL.

The fundamental principle underlying contrastive learning can be
enerally encapsulated as employing a transformation function 𝑓 (⋅) to
ap the input node representation 𝑥 onto 𝑓 (𝑥), such that the resultant
apping adheres to the following inequality constraint:

𝐷 𝑖𝑠𝑡(𝑓 (𝑥𝑖), 𝑓 (𝑥+𝑖 )) ≪ 𝐷 𝑖𝑠𝑡(𝑓 (𝑥𝑖), 𝑓 (𝑥−𝑖 )), (15)

where 𝑥+𝑖 denotes a positive sample exhibiting similarity to 𝑥𝑖, while
−
𝑖 represents a negative sample dissimilar to 𝑥𝑖. The function 𝐷 𝑖𝑠𝑡(⋅, ⋅)
erves as a similarity measure employed to quantify the degree of
imilarity between the node embedding representations.
Neighbor Hierarchical Sifting: To address this challenge, our work

proposes the neighbor hierarchical sifting loss designed to prevent the
incidence of false negative pairs generation, as illustrated in Fig. 2.
In keeping with the conventional loss for identifying positive pairs,
6 
we continue to regard nodes situated in matching positions across
views as positive samples relative to each other. Importantly, extending
our consideration to the graph homophily, not only the first-order
neighbors of the anchor node but also positive nodes across different
views are masked and removed from the negatives. Furthermore, for
high-order neighboring nodes that belong to the same category yet
lack direct connections, their selection as negative samples can also
compromise contrastive learning efficacy. To address this, we access
the similarity score matrix between document nodes and identify those
high-order neighbors exhibiting substantial similarity to the anchor
node, excluding them from negative sample selection. The presented
neighbor hierarchical sifting loss significantly mitigates potential false
negatives by accounting for the characteristics of neighbors across
different hierarchical levels, thereby improving the contrastive learning
process and enhancing the quality of learned node representations.

Contrastive loss: Based on the proposed negative selection strat-
egy, we present a novel graph contrastive loss function neighbor hier-
archical sifting loss (NHS). In this paper, node 𝑖 in view 𝑟′ is selected as
the anchor node, its embedding is expressed as 𝑢(𝑟

′)
𝑖 , and its contrastive

oss can be formulated as follows:

(𝑢(𝑟
′)

𝑖 ) = −𝑙 𝑜𝑔 𝜉𝑝𝑜𝑠𝑖𝑛𝑡𝑒𝑟

𝜉𝑝𝑜𝑠𝑖𝑛𝑡𝑒𝑟 + 𝜉𝑛𝑒𝑔𝑖𝑛𝑡𝑟𝑎 + 𝜉𝑛𝑒𝑔𝑖𝑛𝑡𝑒𝑟
, (16)

the different terms in the above equation can be broken down into:

𝜉𝑝𝑜𝑠𝑖𝑛𝑡𝑒𝑟 = (⊗{𝑒𝐷 𝑖𝑠𝑡(𝑢(𝑟′)𝑖 ,𝑢(𝑟)𝑖 )∕𝜏}|𝑅𝑟=1), (17)

𝜉𝑛𝑒𝑔𝑖𝑛𝑡𝑟𝑎 =
∑

𝑣𝑗⊂𝐷
(𝑟′)
𝑖

(𝑒𝐷 𝑖𝑠𝑡(𝑢(𝑟′)𝑖 ,𝑢(𝑟
′)

𝑗 )∕𝜏 ), (18)

𝜉𝑛𝑒𝑔𝑖𝑛𝑡𝑒𝑟 = (⊗{
∑

𝑣𝑗⊂𝐷
(𝑟)
𝑖

𝑒𝐷 𝑖𝑠𝑡(𝑢(𝑟′)𝑖 ,𝑢(𝑟)𝑗 )∕𝜏}|𝑅𝑟=1), (19)

where 𝑅 = {𝑡𝑖𝑡𝑙 𝑒, 𝑘𝑒𝑦𝑤𝑜𝑟𝑑 , 𝑒𝑣𝑒𝑛𝑡}, 𝑟′ ∉ 𝑅, ⊗ is the sum operator.
𝑢(𝑟)𝑖 is the representations of node 𝑖 at the same position in view 𝑟.
And 𝐷(𝑟)

𝑖 is the negative sets of node 𝑖 from view 𝑟. Specifically, the
function 𝐷 𝑖𝑠𝑡(⋅, ⋅) is instantiated as the cosine similarity measure, which
quantifies the degree of similarity between two vector representations.
The final contrastive loss NHS, defined as averaged over all nodes
among the three views, is computed as follows:

𝑁 𝐻 𝑆 =
(⊗{

∑𝑁
𝑖=1 (𝑢

(𝑟)
𝑖 )}|𝑅𝑟=1)

𝑞 ⋅𝑁
, (20)

where 𝑅 = {𝑡𝑖𝑡𝑙 𝑒, 𝑘𝑒𝑦𝑤𝑜𝑟𝑑 , 𝑒𝑣𝑒𝑛𝑡}, 𝑞 = |𝑅|, ⊗ is the sum operator, and
𝑁 is the number of node in contrastive view.
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3.5. Label prediction

In the evaluation phase, we use the pre-trained RW-GCN and CGAN
models to obtain text representations for the test data. For the text 𝑖,
its final text representation is denoted as 𝑖. Then, 𝑖 will be input into
a logistic regression classifier to obtain the classification results:

𝑝𝑖 = 𝐿𝑅𝐶 𝑙 𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑟(𝑖). (21)

where 𝑝𝑖 denotes the predicted label of text 𝑖.
To sum up, the ConNHS can be summarized as Algorithm 1:

Algorithm 1 The overall process of ConNHS
Require: A text corpus 𝑪 , similarity threshold 𝝆𝒕, 𝝆𝒌, 𝝆𝒆, minimum

association coefficient 𝜸𝒌, 𝜸𝒆.
1: 𝒕𝒊𝒕𝒍𝒆𝒔, 𝒌𝒆𝒚 𝒘𝒐𝒓𝒅 𝒔, 𝒆𝒗𝒆𝒏𝒕𝒔 = FeatureExtraction(𝑪)
2: 𝑮 = (𝑽 , 𝑨, 𝑹) = BuildGraph(𝒕𝒊𝒕𝒍𝒆𝒔, 𝒌𝒆𝒚 𝒘𝒐𝒓𝒅 𝒔, 𝒆𝒗𝒆𝒏𝒕𝒔, 𝝆𝒕, 𝝆𝒌, 𝝆𝒆,

𝜸𝒌, 𝜸𝒆)
3: �̂�𝒕, 𝑮𝒌, 𝑮𝒆 = Separation(𝑮)
4: for 𝑡 = 1 to 𝑇 do
5: 𝑯𝒕, 𝑯𝒌, 𝑯𝒆 = 𝑹 𝑾 −𝑮 𝑪 𝑵(�̂�𝒕, �̂�𝒌, �̂�𝒆);
6: 𝑯 ′ = 𝑪 𝑮 𝑨𝑵 (𝑯𝒕, 𝑯𝒌, 𝑯𝒆);
7: 𝑼𝒕, 𝑼𝒌, 𝑼𝒆 = 𝑴 𝒂𝒑𝒑𝒊𝒏𝒈(𝑯𝒕, 𝑯𝒌, 𝑯𝒆);
8: 𝒔𝒄 𝒐𝒓𝒆 = SimilarityAssessment(𝑯 ′);
9: 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔 = NHS(𝑽 , 𝑨, 𝒔𝒄 𝒐𝒓𝒆); /*Negative selection by NHS*/

10: Compute contrastive loss 𝑵 𝑯 𝑺 with the refined 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔 via
Eq. (16) and Eq. (20);

11: Update parameters by applying gradient descent minimize
𝑵 𝑯 𝑺 .

12: end for
13: Get the text representations  via the pre-trained RW-GCN and

CGAN.
14: Predict the labels of  via the logistic regression classifier.
15: return The predicted labels of each document node.

4. Experiments

In this section, we select four common text classification datasets
nd verify the effectiveness of our proposed method. Next, we will

introduce the datasets and preprocessing, comparison methods, ex-
perimental settings, evaluation indicators, experimental results, and
xperimental result analysis.

4.1. Datasets and preprocessing

We select three news topic classification datasets (including two
Chinese and one English news dataset) and a dataset in the medical
ield. A brief introduction to the dataset is as follows:
ThuCNews3: The ThuCNews corpus constitutes a news document

ollection derived through filtering the historical data from the Sina
ews RSS subscription channel spanning the period of 2005 to 2011,

encompassing 14 news categories and comprising approximately
830,000 news articles. Considering the device factor and balancing the
dataset, we randomly sample 5000 entries in each of the 14 categories.

SogouNews4: The SogouNews Corpus, furnished by SogouLabs,
epresents a news dataset encompassing SogouCA and SogouCS, com-
rising approximately 27,000 news items distributed across ten distinct
ategories. To attain a balanced distribution within the dataset, around
000 samples were randomly sampled from each category, with the
onstraint that the character count of each sample exceeded 500.

3 http://thuctc.thunlp.org/
4 https://huggingface.co/datasets/sogou_news
7 
Table 1
Summary statistics of the benchmark dataset.

#Docs #Train #Test #Classes #Avg.Length

ThuCNews 84,000 67,200 16,800 14 539.75
SogouNews 30,000 24,000 6,000 10 502.4
20NG 18,846 15,076 3,770 20 221.26
Ohsumed 7,400 5,920 1,480 23 135.82

20NG5: The 20 News Corpus is an English text classification dataset
ontaining newsgroup posts in 20 categories. There are 18,846 articles
n total, with an average of about 1,000 articles per category.
Ohsumed6: The Ohsumed corpus is derived from the MEDLINE

atabase, a bibliographic repository of significant medical literature cu-
rated by the National Library of Medicine. It encompasses 23 categories
nd a total of 7,400 articles. Given that each article is annotated with
ne or more tags, the highest-level tag is selected as the definitive label
or the experimental setting.
Pre-processing: First, we filtered two Chinese news data sets ac-

ording to the length of the text. The average length of the filtered
ews exceeded 500, which can verify the effectiveness of our proposed
ethod in classifying longer texts. Secondly, noisy information unre-

ated to text category labels, such as the name of the author of the
rticle and publication time, were removed from all datasets. Finally,

Table 1 lists the summary statistics of the benchmark datasets.

4.2. Comparison of methods

In order to verify the effectiveness of our proposed method, we
compared the four datasets mentioned above with the following eight
state-of-the-art methods, which are:

PV-DBOW (Le & Mikolov, 2014): It is a paragraph vector model
and ignores the word order in the text. Logistic regression is used as a
classifier.

fastText (Joulin et al., 2017): The approach utilizes the mean of
word/n-gram embeddings to represent document embeddings, subse-
quently feeding these aggregated vectors into a linear classifier for
further analysis.

TextCNN (Kim, 2014): It is a type of traditional deep learning model
nd harnesses convolutional layers to autonomously and adaptively
xtract spatial hierarchies of features from the input data, thereby en-
bling the model to discern intricate patterns and relationships within
he text.
RNN-Capsule (Wang et al., 2018): This model employs a capsule

network-enhanced Recurrent Neural Network (RNN) for conducting
sentiment analysis.

Bi-LSTM (Yao et al., 2019): A variant of the LSTM model is com-
only used in text classification tasks.
Bert-large (Sun et al., 2024): It is a pre-trained language model

based on the Transformer architecture. Based on the well-trained
odel, it is used for downstream text classification tasks after fine-

uning.
TextGCN (Yao et al., 2019): It is a model that uses graph convo-

utional neural networks for text classification. By building a graph
tructure and utilizing the representation learning capabilities of graph
eural networks, it can effectively capture the semantic relationships
etween texts and improve the accuracy of text classification.
HAN (Wang et al., 2019): It proposes a novel dual-layer attention

mechanism, encompassing node-level attention and semantic-level at-
tention. Node-level attention is employed to quantify the salience of the
relation between the centroid node and its heterogeneous neighboring

5 http://qwone.com/~jason/20Newsgroups/
6 https://disi.unitn.it/moschitti/corpora.htm

http://thuctc.thunlp.org/
https://huggingface.co/datasets/sogou_news
http://qwone.com/~jason/20Newsgroups/
https://disi.unitn.it/moschitti/corpora.htm
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nodes, whereas semantic-level attention serves to ascertain the relative
importance of distinct meta-paths.

RGCN (Schlichtkrull et al., 2018): It handles different types of nodes
nd relationship edges through relationship-specific graph convolu-
ion layers and node representation layers and obtains rich semantic

information by iteratively updating node representations.
TGNCL (Li et al., 2023): It builds a graph for each document and

evelops a contrastive learning regularization to learn fine-grained
word representations.

For all the aforementioned comparison methods, we adopted the
recommended hyperparameter values for their configuration to ensure
he optimal performance.

4.3. Experiment setting and evaluation criteria

In this section, we present the specific details of the experiment.
efore conducting many experiments, the text will be preprocessed to

remove irrelevant noise information. The second step is to extract the
core feature information of the text (including keywords and events).
Correspondingly, the title is a complete semantic sentence that can
be obtained directly without special processing. For document nodes,
which represent each text in this framework, the embedding repre-
sentation encodes the text attributes using the LangChain framework,
and the pre-trained embedding model BGE-M3 is used as the initial
representation of the node. It is worth noting that our experimental
results are the averages of 10 runs with different weight initializations.
Additionally, the hyperparameter 𝜌𝑡 is set to 0.7, while the default
alues for 𝜌𝑘 and 𝜌𝑒 are 0.6. The minimum association coefficient
𝑒 is set to 6 for long datasets and 3 for short datasets by default.

Similarly, 𝛾𝑘 is set to 10 for long datasets and 6 for short datasets. The
efault value for the temperature parameter 𝜏 is 0.5. Unless otherwise
pecified, our proposed ConNHS adopts these default values in the
ollowing several experiments.

During the training process, if the training loss does not decrease for
more than 50 consecutive epochs, the model is deemed to have reached
convergence. Our method uses the Adam optimizer in the deep learning
ramework Pytorch. The training and testing processes of all datasets

were completed on a computer equipped with Intel core i9-12900k CPU
and Nvidia Geforce RTX3090.

We choose 𝐴𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦, 𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛, and 𝐹1 scores, common indicators
n text classification tasks, to measure the effectiveness of our proposed

method. 𝐴𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 represents the proportion of correctly classified sam-
les to the total number of samples. 𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 indicates the proportion
f correctly classified positive samples among all samples classified

as positive. 𝐹1 takes into account precision and recall, making the
evaluation more comprehensive. They can be formulated as:

𝐴𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 = 𝑇 𝑃 + 𝑇 𝑁
𝑇 𝑃 + 𝑇 𝑁 + 𝐹 𝑃 + 𝐹 𝑁 (22)

𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑃 (23)

𝐹1 = 2𝑃 𝑅
𝑃 + 𝑅

(24)

where 𝑇 𝑃 (True Positives) represents the number of samples cor-
ectly classified as category 𝑌𝑖. 𝐹 𝑃 (False Positives) refers to the
umber of samples from other categories incorrectly classified as 𝑌𝑖.

𝑇 𝑁 (True Negatives) indicates the number of samples from other
categories correctly classified as not 𝑌𝑖. 𝐹 𝑁 (False Negatives) are the
amples belonging to category 𝑌𝑖 but incorrectly classified into other

categories. Additionally, 𝑅 stands for Recall, which is the proportion of

correctly predicted positive samples out of all actual positive samples.
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4.4. Experiment results and analysis

4.4.1. Performance on text classification
Table 2 delineates the accuracy, precision, and F1 scores achieved

y various methodologies across four benchmark datasets. Predomi-
nantly, the proposed ConNHS outperforms the baseline methods, show-
casing its superior text classification prowess. The proposed ConNHS
chieved accuracy improvements of 1.12, 0.30, 1.51, and 2.12 on the

ThuCNews, SogouNews, 20NG, and Ohsumed datasets, respectively. We
observed that the improvements of ConNHS on English datasets were
more pronounced compared to the Chinese news datasets. This can
be attributed to the fact that the baseline methods already achieved
accuracy rates exceeding 90% on the Chinese news datasets. For Preci-
sion and F1 scores, ConNHS is likewise the most competitive method,
consistently ranking among the top across all datasets. It is worth
noting that RGCN demonstrated outstanding performance on the ThuC-
News dataset, achieving the best Precision. Additionally, Bert-large
and TGNLCL exhibited remarkable stability, with no significant perfor-
mance fluctuations across multiple datasets. In contrast, the PV-DBOW
model performed poorly in terms of precision and F1 score, lacking the
ompetitiveness compared to deep learning models.

In a deeper analysis, we observe that there are also differences
in classification capabilities between baseline methods. Firstly, the
erformance of deep learning-based baselines significantly surpassed

that of word embedding models. Notably, Bert-large achieved perfor-
mance competitive with GNN-based methods. This can be attributed to
its pretraining on large-scale corpora and the bidirectional attention
mechanism to understand each word in context, thereby possessing
 strong semantic understanding capability. Besides, thanks to the
act that graph structures can construct relationships between texts,
ethods based on graph neural networks (including TextGCN, RGCN,

nd HAN) have achieved more outstanding classification accuracy than
ethods based on traditional deep learning. It is worth mentioning

hat TGNCL, a method based on graph contrastive learning, achieved
ighly competitive results but did not surpass our proposed ConNHS.
his finding suggests that the graph augmentation adopted by TGNCL
ight, to some extent, disrupt critical semantic information in the text.

4.4.2. The effectiveness of the multi-relational text graph
To assess the effectiveness of our proposed multi-relational text

raph (MTG) on text classification, we integrate MTG with other graph
eural network models to observe the variations in text classification
esults.

The experimental results shown in Table 3 indicate that: by con-
structing semantic relationships based on core textual features, our
multi-relational text graph effectively facilitates nodes learning richer
semantic information from their diverse neighbors, thereby generating
uperior text representations. Upon leveraging our proposed multi-
elational text graph, both the HAN and RGCN models exhibit an
nhancement in classification accuracy performance. Notably, the HAN
odel has demonstrated a pronounced improvement in its performance

across the two Chinese datasets, registering an accuracy gain exceeding
3%. The results manifest that despite the HAN model’s capacity to adap-
tively acquire node representations via a dual attention mechanism,
yielding excellent performance, the incorporation of multiple semantic
elationships among documents offers additional perspectives, thereby
nabling the HAN to capture more high-dimensional semantic infor-
ation, consequently enhancing its learning capabilities. Conversely,

the combination of the multi-relational text graph with the RGCN
yields more substantial improvements in English datasets. While RGCN
already showcases commendable performance on Chinese datasets, the
integration of our proposed text graph still facilitates a certain level
of advancement. By initiating the process with the extraction of core
textual features and establishing multiple inter-text relationships, our
approach effectively encourages models to assimilate and interpret
high-dimensional semantic information. These experimental findings
highlight the intrinsic value of multi-relational text graphs in enhancing
text classification tasks.



W. Ai et al.

m
p
t

o
i
s

t
t

t
n
e

Expert Systems With Applications 266 (2025) 125952 
Table 2
Test accuracy (%), P (%), and F1 score (%) for different models on two Chinese datasets and two English datasets.
Method ThuCNews SogouNews 20NG Ohsumed

Acc P F1 Acc P F1 Acc P F1 Acc P F1

PV-DBOW 80.19 78.62 79.04 83.41 81.28 82.64 74.36 72.91 73.19 46.65 44.80 45.30
fastText 86.46 85.31 84.08 82.98 80.12 81.73 79.38 75.67 78.13 57.70 53.14 56.31
TextCNN 92.73 90.05 92.40 93.64 92.72 93.25 76.78 73.64 76.42 43.87 41.62 43.48
RNN-Capsule 85.52 84.25 83.21 86.43 85.32 85.92 73.18 72.49 73.02 49.37 46.98 49.10
Bi-LSTM 84.71 83.15 83.16 87.17 86.85 85.89 84.25 83.15 83.04 68.53 65.47 67.92
Bert-large 92.03 89.36 91.85 97.22 95.44 96.90 79.23 78.47 79.02 67.45 65.76 66.87
TextGCN 86.92 85.47 86.51 88.23 87.15 86.92 85.69 83.67 85.15 68.36 67.52 67.92
RGCN 94.74 93.21 92.33 93.62 91.09 92.16 78.72 77.06 77.45 67.51 64.78 65.90
HAN 86.17 84.67 83.08 89.06 87.36 88.52 79.86 78.26 77.30 68.20 65.14 67.51
TGNCL 94.10 90.12 93.27 96.37 94.25 95.18 85.92 84.86 85.13 67.82 66.47 66.03
ConNHS 95.86 93.14 94.51 97.52 96.43 96.93 87.43 85.46 86.98 70.65 69.01 69.32
Table 3
Test accuracy (%) and F1 score (%) for different models with multi-relational text graph.
Method ThuCNews SogouNews 20NG Ohsumed

Acc F1 Acc F1 Acc F1 Acc F1

RGCN 94.74 92.33 93.62 92.16 78.72 77.45 67.51 65.90
RGCN_MTG 94.95(+0.21) 92.46(+0.13) 93.80(+0.18) 92.21(+0.05) 80.97(+2.25) 79.29(+1.84) 69.11(+1.60) 67.21(+1.31)
HAN 86.17 83.08 89.06 88.52 79.86 77.30 68.20 67.51
HAN_MTG 90.42(+4.25) 88.61(+5.53) 92.18(+3.12) 91.53(+3.01) 81.97(+2.11) 78.56(+1.26) 69.15(+0.95) 67.71(+0.20)
ConNHS 95.86 94.51 97.52 96.93 87.43 86.98 70.65 69.32
4.4.3. Text classification with few labels
The advantage of self-supervised GCL lies in its ability to train

odels using unlabeled data when labels are inaccessible or scarce. Our
roposed ConNHS is designed for semi-supervised text classification
asks, requiring ground-true text labels during the testing phase. There-

fore, we further test the performance of ConNHS in semi-supervised
text classification under conditions of low label availability. We select
different proportions of labeled data on the 20NG dataset to assess Bi-
LSTM, TextGCN and the proposed ConNHS. To simulate scenarios of
scarce labels, we set label rates at 1%, 2%, 5%, and 10%.

The results in Fig. 3 indicate that under conditions of low label rates,
ur proposed ConNHS exhibits superior classification performance. It
s noteworthy that with only a sparse 1% of labeled text, our method
till achieved an accuracy of 70.21%, while Bi-LSTM and TextGCN

experienced a significant drop in performance. The reason behind this is
hat ConNHS effectively leverages large amounts of unlabeled data for
raining through self-supervised Graph Contrastive Learning (GCL). In

contrast, Bi-LSTM and TextGCN do not incorporate any samples from
the test set (unlabeled data) during the computation of training loss.
The classification results with few labels indicate that, even with very
sparse labeled text, our proposed method can be effectively applied to
semi-supervised text classification tasks.

4.5. Ablation studies

To validate the effectiveness of our proposed contrastive loss NHS,
his study conducted a series of ablation experiments on the ThuC-
ews, SogouNews, 20NG, and Ohsumed datasets. We design different
xperimental setups for the ablation study: employing the NT-Xent loss,

removing the structure-guided signal, removing the attribute-guided
signal, and utilizing the complete loss NHS. In these settings, NHS-na
represents the removal of node attribute information as the guiding
signal for negative sampling, leading to situations where high-order
neighbors with high similarity in the graph might still be considered
negative samples. NHS-gs denotes disregarding the graph homophily
assumption, treating first-order neighbors of the anchor node as nega-
tive samples. Furthermore, NT-Xent, a well-established contrastive loss
in graph contrastive learning, differs from NHS in that it considers both
first-order neighbors and high-order similar neighbors of the anchor
as negative samples. Through these ablation experiments, we aim to
delve into how each component of the NHS specifically impacts model

performance.
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Table 4
Ablation experiment of NHS.

Method ThuCNews SogouNews 20NG Ohsumed

Acc F1 Acc F1 Acc F1 Acc F1

NT-Xent 92.31 89.02 93.67 92.51 84.56 83.45 68.32 67.18
NHS 95.86 94.51 97.52 96.93 87.43 86.98 70.65 69.32
NHS-gs 94.38 93.34 95.56 95.08 85.63 85.34 69.56 68.41
NHS-na 95.04 94.82 96.21 95.69 86.27 85.97 69.94 68.84

Fig. 3. The accuracy with few labels.

As shown in the ablation study results in Table 4, we observed that
employing the NHS contrastive loss achieved the best performance on
all four datasets. A decline in classification performance is noted when
varying the contrastive loss of the ConNHS method, further highlighting
the critical role of our proposed NHS contrastive loss in text classifi-
cation tasks. Specifically, when switching to the NT-Xent contrastive
loss, there is a decline in classification accuracy ranging between
3.33% to 5.55%. This result suggests that treating all remaining nodes
in the graph as negatives inevitably increases the distance between
similar document nodes in the embedding space, thereby reducing the
accuracy of text classification. On the other hand, removing the graph
structure information as the supervisory signal for negative sampling
results in a decrease in accuracy ranging between 1.03% and 1.96%.
Similarly, removing node attribute information also led to a certain
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Table 5
Various hyperparameters.

Hyperparameter Impact

𝝆𝒕, 𝝆𝒆, 𝝆𝒌 These parameters determine whether there are similarities
in titles, events, and keywords within the text. Their
possible values range from [0.3, 0.9].

𝜸𝒆, 𝜸𝒌 They individually dictate the degree of correlation in
event relationships and keyword associations within the
text. The value range for 𝜸𝒆 is [3, 8], while 𝜸𝒌 ranges
from [5, 11].

𝝉 It regulates the model’s sensitivity to variations in
similarity. The adjustment range for 𝝉 is between 0.05
and 1.0.

degree of performance decline. Notably, the former scenario caused a
ore pronounced performance drop than the latter across all datasets.

The underlying reason for this phenomenon is that the construction
of the multi-relational text graph is based on the assumption of graph
homophily, which posits that document nodes connected tend to have
more similar core features and are more likely to belong to the same
category. Therefore, excluding first-order neighbors of the anchor node
from negative samples according to graph structure information aligns
more closely with the objectives of graph contrastive learning. Over-
all, the results of the ablation experiments across different datasets
conclusively demonstrate that our proposed NHS contrastive loss effec-
tively mitigates false negative pairs and enhances the accuracy of text
classification tasks.

4.6. Parameters sensitivity

In this section, we focus on exploring how various key parameters
influence the performance of our method. It is worth pointing out that,
inspired by the adjustment strategys of hyperparameters (Liu et al.,
2024; Mo et al., 2022; Zhao & Song, 2023), we fix other hyperpa-
rameters as constants when investigating the impact of a particular
hyperparameter on the performance of ConNHS. This allows for a
direct observation of the impact of each hyperparameter on the model’s
performance. The details of the hyperparameters are illustrated in
Table 5.

4.6.1. The impact of similarity threshold
Selecting an appropriate similarity threshold is vital for constructing

 multi-relational text graph, as the establishment of the text graph is
highly dependent on the degree of similarity between core features.
To investigate the impact of changes in the similarity threshold on the
performance of our method, we conducted a series of experiments and
isualized the results for detailed analysis and reference. We performed

independent experiments by sequentially varying the values of the title
threshold, event threshold, and keyword threshold.

As demonstrated in Fig. 4, we observed a clear trend that the
classification accuracy tends to increase as the 𝜌𝑡 rises. However, it is
noteworthy that once the 𝜌𝑡 exceeds 0.7, the improvement in accuracy
becomes more gradual. In terms of event feature analysis, increasing
the 𝜌𝑒 indeed effectively boosts accuracy, a trend that continues until
the threshold reaches 0.6. Beyond this point, further increases in the
𝜌𝑒 lead to a decrease in accuracy. This indicates that overly high
similarity thresholds might reduce the connections between similar
texts, weakening the model’s ability to learn textual information under
event relations. Additionally, we found that increasing the 𝜌𝑘 also
enhances classification accuracy, but this trend reverses when the 𝜌𝑘
exceeds 0.6. For all core features, the model performs worse when the
similarity threshold is too low. This may be because a low threshold
creates redundant edges between text nodes. An appropriate threshold,
on the other hand, establishes more reliable connections, thereby im-
proving the node representations learned by the graph neural network.
 s
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Experimental results indicate that the optimal 𝜌𝑡 is 0.7. While 𝜌𝑒 is 0.6,
onNHS achieved the best performance across all four datasets with
hese settings. For 𝜌𝑘, the optimal threshold range is between 0.6 and
.7.

4.6.2. The impact of minimum association coefficient
Texts that share semantically similar events or keywords tend to be-

long to the same domain. Therefore, we evaluate the impact of different
inimum association coefficients 𝛾𝑒 and 𝛾𝑘 on the performance of the
roposed ConNHS in text classification tasks.

As shown in Fig. 5, we observe that the accuracy of text classifi-
cation increases with the rise of 𝛾𝑒 and 𝛾𝑘. Overall, compared to the
Chinese dataset, the two English datasets, which have shorter average
lengths, achieve optimal results more quickly. Specifically, when the
value of 𝛾𝑒 is 3, ConNHS achieves the highest classification accuracy
on the 20NG and Ohsumed datasets. In contrast, when 𝛾𝑒 is set to 6
and 7, the corresponding accuracies for ThuCnews and SogouNews are
better. For the minimum association threshold 𝛾𝑘, when its value is 6,
the 20NG and Ohsumed datasets achieve the best results. In contrast,
ThuCnews and SogouNews achieve the highest classification accuracy
when 𝛾𝑘 is set to 9 and 10, respectively. It is worth noting that for
shorter datasets, after reaching the highest accuracy, further increasing
the values of 𝛾𝑒 and 𝛾𝑘 leads to a significant decline in performance. The
experimental results reveal a trend that for longer datasets, the optimal
values of 𝛾𝑒 and 𝛾𝑘 tend to be higher than those for shorter datasets.
This is because short texts have limited feature information, and setting
the minimum association threshold too high may cause many potential
semantic connections to be overlooked, thereby reducing effective links
between texts.

4.6.3. The impact of temperature hyperparameter
The temperature parameter plays a pivotal role in graph contrastive

learning as a fundamental hyperparameter that modulates the distribu-
tion of similarity scores within the contrastive loss function. To analyze
the impact of the temperature parameter on classification accuracy, we
conduct validation on the ThuCnews and 20NG datasets. As shown in
Fig. 6, the results indicate that a too-low temperature parameter leads
o suboptimal classification outcomes. As the value of 𝜏 increases, the
odel classification capability improves, and our method achieves the

est results on both ThuCnews and 20NG when 𝜏 is approximately
.5. It is noteworthy that a value that is too high for the temperature
arameter can also lead to a decline in performance. The experimental
esults suggest that the value of 𝜏 may require fine-tuning for different
atasets to achieve optimal performance. In general, we recommend
tarting with a value of 0.5 and conducting a thorough parameter
earch within the range of 0.4 to 0.7.

5. Conclusion

In this paper, the ConNHS method we propose demonstrates com-
etitive performance in semi-supervised text classification tasks. Firstly,

inspired by the logic humans use to categorize texts, we constructed a
multi-relational text graph. Subsequently, we introduced RW-GCN and
CGAN for intra-graph and inter-graph propagation, respectively. RW-

CN leverages edge features to capture varying correlations between
odes, while CGAN learns the differences in inter-graph features and
ntegrates document node representations. Additionally, we introduced
he neighbor hierarchical sifting loss to optimize the negative selection
rocess, effectively mitigating the issue of false negatives. Extensive ex-
eriments conducted on multiple datasets demonstrate that our method
chieves superior results across various evaluation metrics compared

to existing approaches. It is worth noting that the multi-relational
raphs we constructed inevitably contain some noisy edges, which may
islead the learning process of the graph neural networks. In future
ork, we will explore denoising techniques in multi-relational text
raphs to further optimize the node aggregation process and enhance
odel performance. Meanwhile, we will continue to investigate graph

ontrastive learning, with a particular focus on optimizing the negative

ample selection process.
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Fig. 4. The ConNHS performance under different similarity threshold of core features.
Fig. 5. The ConNHS performance under different minimum association coefficient.
Fig. 6. The ConNHS performance under different temperature.
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